JP4065746B2 - Reduction of metal ions in novolac resin - Google Patents

Reduction of metal ions in novolac resin Download PDF

Info

Publication number
JP4065746B2
JP4065746B2 JP2002255832A JP2002255832A JP4065746B2 JP 4065746 B2 JP4065746 B2 JP 4065746B2 JP 2002255832 A JP2002255832 A JP 2002255832A JP 2002255832 A JP2002255832 A JP 2002255832A JP 4065746 B2 JP4065746 B2 JP 4065746B2
Authority
JP
Japan
Prior art keywords
ppb
ion exchange
solvent
solution
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002255832A
Other languages
Japanese (ja)
Other versions
JP2003160625A (en
Inventor
ラーマン・エム・ダリル
ダーマン・ダナ・エル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AZ Electronic Materials Japan Co Ltd
Original Assignee
AZ Electronic Materials Japan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AZ Electronic Materials Japan Co Ltd filed Critical AZ Electronic Materials Japan Co Ltd
Publication of JP2003160625A publication Critical patent/JP2003160625A/en
Application granted granted Critical
Publication of JP4065746B2 publication Critical patent/JP4065746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/10Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with phenol
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/023Macromolecular quinonediazides; Macromolecular additives, e.g. binders
    • G03F7/0233Macromolecular quinonediazides; Macromolecular additives, e.g. binders characterised by the polymeric binders or the macromolecular additives other than the macromolecular quinonediazides
    • G03F7/0236Condensation products of carbonyl compounds and phenolic compounds, e.g. novolak resins

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Phenolic Resins Or Amino Resins (AREA)
  • Materials For Photolithography (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

【0001】
【発明が属する技術分野】
本発明は、金属イオン、特にナトリウムおよび鉄、の含有量が非常に低いフェノール系樹脂の製造法、およびその様な樹脂の感光性組成物における使用に関する。また、本発明は、ポジ型フォトレジスト組成物に有用な感光性組成物の製造法に関する。さらに、本発明は、これらの感光性組成物で基材を被覆する方法、ならびにこれらの感光性混合物を基材上に塗布し、画像形成し、現像する方法に関する。
【0002】
【従来の技術】
フォトレジスト組成物は、コンピュータチップや集積回路の製造における様な、小型電子部品を製造するためのマイクロ平版印刷に使用される。一般的に、これらの方法では最初に、集積回路の製造に使用されるシリコンウエハーの様な基材をフォトレジスト組成物の薄い塗膜で被覆する。次いで被覆した基材をベーク処理し、フォトレジスト組成物中の溶剤をすべて蒸発させ、被覆を基材上に固定する。次に、基材のベーク処理した被覆表面を放射線に像様に露出する。
【0003】
この放射線露出により被覆された表面の露出区域における化学変化が引き起こされる。可視光線、紫外(UV)光線、電子線およびX線放射エネルギーが、マイクロ平版印刷法で今日一般的に使用されている種類の放射である。この像様露出の後、被覆された基材を現像剤溶液で処理し、基材の被覆表面の、放射線に露出した、または露出していない区域を溶解させて、除去する。
【0004】
高密度集積回路やコンピュータチップの製造では金属汚染が長年にわたり問題になっており、欠陥増加、収量損失、劣化および性能低下につながる事が多い。プラズマ法では、ナトリウムや鉄の様な金属がフォトレジスト中に存在すると、特にプラズマ剥離の際に汚染を引き起こすことがある。しかし、これらの問題は、例えば高温アニールサイクルの際に汚染物質のHCLゲッタリングを使用することにより、製造工程でかなりの程度解決されている。
半導体デバイスがより複雑化するにつれて、これらの問題の解決がはるかに困難になっている。シリコンウエハーを液体のポジ型フォトレジストで被覆し、続いて酸素マイクロ波プラズマなどで剥離する場合、半導体デバイスの性能および安定性が低下することが多い。プラズマ剥離法を繰り返すと、デバイスの分解がより頻繁に起こる。その様な問題の主な原因は、フォトレジスト中の金属汚染物、.特にナトリウムおよび鉄イオンであることが分かっている。フォトレジスト中の1.0ppm未満の金属量が、その様な半導体デバイスの特性に悪影響を及ぼずことが分かっている。
【0005】
ノボラック樹脂は、液体フォトレジスト処方で良く使用される重合体バインダーである。これらの樹脂は一般的に、シュウ酸の様な酸触媒の存在下で、ホルムアルデヒドと1種またはそれより多い多置換フェノールの縮合反応により製造される。複雑な半導体デバイスの製造では、金属汚染水準が1.0ppmよりも十分に低いノボラック樹脂を使用することが益々重要になっている。
【0006】
フォトレジスト組成物には、ネガ型とポジ型の2種類がある。ネガ型フォトレジスト組成物を放射線に像様に露出すると、レジスト組成物の放射線に露出された区域が現像剤溶液に溶解し難くなり(例えば架橋反応が起こる)、フォトレジスト被膜の非露光区域はその様な溶液に比較的可溶性のままである。この様に、露出したネガ型レジストを現像剤で処理することにより、フォトレジスト被膜の非露光区域が除去され、被膜中に陰画像が形成される。それによって、その下にある、フォトレジスト組成物を堆積させた基材表面の所望の部分が表に現れる。
【0007】
他方、ポジ型フォトレジスト組成物を放射線に像様に露出すると、フォトレジスト組成物の、放射線に露出された区域が現像剤溶液に対してより可溶性になる(例えば転位反応が起こる)のに対して、露出されなかった区域は現像剤溶液に比較的溶解し難いままである。この様に、露出したポジ型フォトレジストを現像剤で処理することにより、被膜の露光区域が除去され、フォトレジスト被膜中に陽画像が形成される。やはり、その下にある基材表面の所望の部分が現れる。
【0008】
この現像作業の後、部分的に保護されていない基材を、基材のエッチング剤溶液またはプラズマガス、等で処理する。このエッチング剤溶液またはプラズマガスが、基材の、現像中にフォトレジスト被膜が除去された部分をエッチングする。基材の、フォトレジスト被膜がまだ残っている区域は保護されるので、放射線に対する像様露出に使用したフォトマスクに対応するエッチングパターンが基材中に形成される。その後、フォトレジスト被膜の残留区域を剥離操作により除去し、鮮明にエッチングされた基材表面が残る。場合により、現像の後で、エッチング工程の前に、残留しているフォトレジスト層を熱処理し、その層の、その下にある基材に対する密着性、およびそのエッチング溶液に対する耐性を増大させるのが好ましい。
【0009】
ポジ型フォトレジスト組成物は解像能力およびパターン転写特性がより優れているので、現在のところ、ポジ型フォトレジストの方がネガ型レジストよりも好まれている。フォトレジストの解像度は、露出および現像の後に、レジスト組成物がフォトマスクから基材に高度の画像縁部の鋭さをもって転写することができる最小の図形として定義される。今日の多くの製造用途では、1ミクロン未満のオーダーのレジスト解像度が必要である。その上、現像されたフォトレジスト壁の輪郭は基材に対して垂直に近いことがほとんど常に望まれている。レジスト被膜の現像された区域と現像されていない区域の間のその様な境界限定により、マスク画像の正確なパターンが基材上に転写される。
【0010】
【発明の概要】
本発明は、金属イオン、特にナトリウムおよび鉄、の含有量が非常に低いフェノールホルムアルデヒド樹脂の製造法、およびそれらの感光性組成物における使用に関する。また、本発明は、これらのフェノールホルムアルデヒド樹脂および光増感剤を含むポジ型フォトレジストの製造法、および半導体デバイスの製造におけるその様なフォトレジストの使用法に関する。
【0011】
本発明の方法により、ホルムアルデヒドと、1種またはそれより多いフェノール性化合物例えば、メタ−クレゾール、パラ−クレゾール、3,5−ジメチルフェノールまたは3,5−キシレノール、の縮合により得られる、水に不溶であるが、水性アルカリに可溶なノボラック樹脂が提供される。
【0012】
得られるノボラック樹脂は、金属イオン、例えば鉄、ナトリウム、カリウム、カルシウム、マグネシウム、銅および亜鉛、の量が非常に少ない。総金属イオン含有量は好ましくは1ppm未満であり、より好ましくは500ppb未満である。ナトリウムおよび鉄は最も一般的な金属イオン汚染物であり、最も検出し易い。これらの金属イオンは、他の金属イオンの量の指針として役立つ。ナトリウムおよび鉄イオンの量は、それぞれ100ppbおよび400ppb未満、好ましくは75ppbおよび300ppb未満、より好ましくは50ppbおよび200ppb未満、さらに好ましくは30ppbおよび130ppb未満、最も好ましくは20ppbおよび20ppb未満、である。
【0013】
水に不溶で、水性アルカリに可溶なノボラック樹脂は、酸性イオン交換樹脂を使用してその様なノボラック樹脂を精製することによって得ることができる。
【0014】
US−A−5073622号明細書には、ノボラック樹脂を有機溶剤に溶解させ、その溶液を酸性錯体形成化合物の水溶液と接触させることにより、ナトリウムおよび鉄イオンの総量が500ppbであるノボラック樹脂を製造する方法が開示されている。
【0015】
特許請求する本発明は、その方法と、錯体形成剤の溶液を、a)水および鉱酸溶液およびc)ノボラック樹脂の溶剤と相容性がある溶剤で前処理した酸性イオン交換樹脂で置き換えている点で異なる。
【0016】
【好ましい実施態様の詳細な説明】
本発明は、金属イオン、特にナトリウムおよび鉄の含有量が非常に低いノボラック樹脂の製造方法を提供するものである。
【0017】
最初にホルムアルデヒドを1種またはそれより多いフェノール性化合物と、酸触媒の存在下で縮合させ、次いで樹脂から金属イオンを除去しようとしても、1)好適な溶剤を使用してノボラック樹脂の溶液を形成し、2)イオン交換樹脂を上記の様に水および鉱酸で処理し、3)次いで、ノボラック樹脂の溶剤と、同じであるか、または少なくとも相容性がある溶剤でイオン交換樹脂を十分にすすぎ、4)次いでノボラック樹脂溶液をイオン交換樹脂に通さない限り、金属イオン汚染物の量が非常に低いノボラック樹脂は得られないことが分かった。
【0018】
ノボラック樹脂を直接精製する方法は、
a)酸性イオン交換樹脂を水、好ましくは脱イオン水、で処理し、続いて鉱酸溶液(例えば硫酸、硝酸または塩酸の5〜98%溶液)で処理して、イオン交換樹脂中のナトリウムおよび鉄イオンの総量を500ppb未満、好ましくは100ppb未満、より好ましくは50ppb未満、最も好ましくは20ppb以下、に下げること、
b)ノボラック樹脂を好適な溶剤に溶解させた溶液を用意すること、
c)段階a)からの酸性イオン交換樹脂を、ノボラック樹脂溶剤と、同じであるか、または相容性がある溶剤で処理し、好ましくは樹脂を十分な溶剤で処理して、イオン交換樹脂上に残留している水の大部分を除去し、最も好ましくは実質的にすべての水を除去すること、および
d)段階c)からのイオン交換樹脂に段階b)からのノボラック樹脂溶液を通して、ナトリウムおよび鉄イオンの総量を、40%濃度溶液において500ppb未満、好ましくは375ppb未満、より好ましくは250ppb未満、さらに好ましくは180ppb未満、最も好ましくは40ppb以下、に下げること、
を含んでなる。
【0019】
本発明はさらに、金属イオンの量が非常に少ないポジ型フォトレジスト組成物の製造法を提供するものである。
【0020】
本方法は、
a)酸性イオン交換樹脂を水、好ましくは脱イオン水、で処理し、続いて鉱酸溶液(例えば硫酸、硝酸または塩酸の5〜98%溶液)で処理して、イオン交換樹脂中のナトリウムおよび鉄イオンの総量を500ppb未満、好ましくは100ppb未満、より好ましくは50ppb未満、最も好ましくは20ppb以下、に下げること、
b)ノボラック樹脂を好適な溶剤に溶解させた溶液を用意すること、
c)段階a)からの酸性イオン交換樹脂を、ノボラック樹脂溶剤と、同じであるか、または相容性がある溶剤で処理し、好ましくは樹脂を十分な溶剤で処理して、イオン交換樹脂上に残留している水の大部分を除去し、最も好ましくは実質的にすべての水を除去すること、
d)段階c)からのイオン交換樹脂に段階b)からのノボラック樹脂溶液を通して、 40%濃度溶液においてナトリウムおよび鉄イオンの総量を500ppb未満、好ましくは375ppb未満、より好ましくは250ppb未満、さらに好ましくは180ppb未満、最も好ましくは40ppb以下、に下げること、および
e)1)フォトレジスト組成物を光増感させるのに十分な量の感光性化合物、2)段階d)からの、水に不溶で、水性アルカリに可溶な、金属イオンの総量が少ないノボラック樹脂、および3)好適な溶剤の混合物を用意すること、
を含んでなる。
【0021】
本発明はさらに、好適な基材をポジ型フォトレジスト組成物で被覆し、基材上に写真画像を形成することにより半導体デバイスを製造する方法であって、
a)酸性イオン交換樹脂を水、好ましくは脱イオン水、で処理し、続いて鉱酸溶液(例えば硫酸、硝酸または塩酸の5〜98%溶液)で処理して、イオン交換樹脂中のナトリウムおよび鉄イオンの総量を500ppb未満、好ましくは100ppb未満、より好ましくは50ppb未満、最も好ましくは20ppb以下、に下げること、
b)ノボラック樹脂を好適な溶剤に溶解させた溶液を用意すること、
c)段階a)からの酸性イオン交換樹脂を、ノボラック樹脂溶剤と、同じであるか、または相容性がある溶剤で処理して、好ましくは樹脂を十分な溶剤で処理して、イオン交換樹脂上に残留している水の大部分を除去し、最も好ましくは実質的にすべての水を除去すること、
d)段階c)からのイオン交換樹脂に段階b)からのノボラック樹脂溶液を通して、 40%濃度溶液においてナトリウムおよび鉄イオンの総量を500ppb未満、好ましくは375ppb未満、より好ましくは250ppb未満、さらに好ましくは180ppb未満、最も好ましくは40ppb以下、に下げること、
e)1)フォトレジスト組成物を光増感させるのに十分な量の感光性化合物、2)段階d) からの、水に不溶で、水性アルカリに可溶な、金属イオンの総量が少ないノボラック樹脂、および3)好適な溶剤の混合物を用意すること、および
f)基材を段階e)からの混合物で被覆し、この被覆された基材を実質的にすべての溶剤が除去されるまで熱処理し、感光性組成物を像様に露光し、その様な組成物の、像様に露光した区域を、好適な現像剤、例えば水性アルカリ現像剤、で除去し、所望により除去工程の直前または後に基材のベーク処理を行うこと、
を特徴とする方法を提供するものである。
【0022】
本方法では、酸性イオン交換樹脂、例えばスチレン/ジビニルベンゼン/陽イオン交換樹脂、を使用する。その様なイオン交換樹脂は、例えばRohmandHaas Companyから市販されているAMBERLYST15である。これらの樹脂は一般的に80,000〜200,000ppbものナトリウムおよび鉄を含んでいる。本発明の方法に使用する前に、イオン交換樹脂を水、次いで鉱酸溶液で処理し、金属イオン量を減少させなければならない。好ましくは、イオン交換樹脂を最初に脱イオン水ですすぎ、続いて鉱酸溶液、例えば10%硫酸溶液、ですすぎ、再度脱イオン水ですすぎ、再度鉱酸で処理し、もう一度脱イオン水ですすぐ。ノボラック樹脂溶液を精製する場合、ノボラック樹脂溶剤と、同じであるか、または少なくとも相容性である溶剤でイオン交換樹脂をすすぐことが重要である。
【0023】
ノボラック樹脂は、好ましくは溶液として、例えばプロピレングリコールメチルエーテルアセテート中ノボラック樹脂約40%の溶液として、イオン交換樹脂を含むカラムを通過させる。その様な溶液は一般的にそれぞれ250〜1000ppbのナトリウムおよび鉄イオンを含む。本発明の方法により、これらの量はそれぞれ10ppb程度まで低下する。
【0024】
本発明は、フォトレジスト組成物の製造法およびその様なフォトレジスト組成物を使用する半導体デバイスの製造法を提供するものである。フォトレジスト組成物は、光増感剤、上記の水に不溶で、水性アルカリに可溶なノボラック樹脂および好適な溶剤の混合物により製造される。その様なフォトレジストおよびノボラック樹脂に好適な溶剤には、プロピレングリコールモノアルキルエーテル、プロピレングリコールアルキル(例えばメチル)エーテルアセテート、エチル−3−エトキシプロピオネート、乳酸エチル、エチル−3−エトキシプロピオネートと乳酸エチルの混合物、酢酸ブチル、キシレン、ジグライム、エチレングリコールモノエチルエーテルアセテートがある。好ましい溶剤はプロピレングリコールメチルエーテルアセテート(PGMEA)およびエトキシプロピオン酸3−エチル(EEP)である。
【0025】
フォトレジスト組成物を基材に塗布する前に、他の所望により使用する成分、例えば着色剤、染料、縞防止剤(anti‐striationagent)、レベリング剤、可塑剤、接着促進剤、速度増加剤、溶剤、および界面活性剤、例えば非イオン系界面活性剤、を、ノボラック樹脂、増感剤および溶剤の溶液に加えることができる。本発明のフォトレジスト組成物と共に使用できる染料添加剤の例には、メチルバイオレット2B(C.I.No.42535)、クリスタルバイオレット(C.I.No.42555)、マラカイトグリーン(C.I.No.42000)、ビクトリアブルーB(C.I.No.44045)、およびニュートラルレッド(C.I.No.50040)があり、ノボラックと増感剤の総重量に対して1〜10重量%の量で使用する。染料の添加は、基材による光の散乱を防止することにより、解像力の増加に役立つ。
【0026】
縞防止剤は、ノボラックと増感剤の総重量に対して約5重量%までの量で使用することができる。使用可能な可塑剤には、例えばリン酸トリ−(ベータ−クロロエチル)−エステル、ステアリン酸、ジカンファー、ポリプロピレン、アセタール樹脂、フェノキシ樹脂、およびアルキル樹脂があり、ノボラックと増感剤の総重量に対して1〜10重量%の量で使用する。可塑剤により材料の塗装特性が改良されて、基材に平滑で一様な厚さの被膜を施すことができる。
【0027】
使用可能な接着促進剤には、例えばベータ−(3,4−エポキシ−シクロヘキシル)−エチルトリメトキシシラン、p−メチル−ジシラン−メチルメタクリレート、ビニルトリクロロシラン、およびガンマ−アミノ−プロピルトリエトキシシランがあり、ノボラックと増感剤の総重量に対して約4重量%までの量で使用することができる。使用可能な現像速度増加剤には、例えばピクリン酸、ニコチン酸またはニトロケイ皮酸があり、ノボラックと増感剤の総重量に対して約20重量%までの量で使用することができる。これらの増加剤は、フォトレジスト被膜の溶解性を露光区域および非露光区域の両方で増加させる傾向があるので、ある程度のコントラストが犠牲になっても現像速度の方が重要である場合に使用する。すなわち、現像剤により、フォトレジスト被覆の露光区域がより急速に溶解するが、速度増加剤により、非露光区域からも大量のフォトレジストが失われる。
【0028】
溶剤は、組成物全体の中で、組成物中の固体の95重量%までの量で存在することができる。無論、フォトレジスト溶液を基材上に塗布し、乾燥させた後は、溶剤は実質的に除去される。使用可能な非イオン系界面活性剤には、例えばノニルフェノキシポリ(エチレンオキシ)エタノール、オクチルフェノキシエタノールがあり、ノボラックと増感剤の総重量に対して約10重量%までの量で使用することができる。
【0029】
製造されたフォトレジスト溶液は、ディップ、スプレー、回転およびスピンコーティングを含む、フォトレジストの分野で使用されている通常の方法のいずれかにより基材に塗布することができる。スピンコーティングの場合、例えば、使用するスピンコーティング装置の種類およびスピンコーティングに許容される時間に対して、所望の厚さの被膜を得るために、レジスト溶液を固体含有量に関して調整することができる。好適な基材には、シリコン、アルミニウム、重合体樹脂、二酸化ケイ素、ドーピングした二酸化ケイ素、窒化ケイ素、タンタル、銅、ポリシリコン、セラミック、アルミニウム/銅混合物、ヒ化ガリウムおよび他のその様なIII/V族化合物がある。
【0030】
上記の手順により製造されたフォトレジスト被膜は、マイクロプロセッサーや他の小型集積回路部品の製造に使用される様な、熱的に成長させたケイ素/二酸化ケイ素被覆したウエハーに塗布するのに特に好適である。アルミニウム/酸化アルミニウムウエハーも使用できる。
基材は様々な重合体樹脂、特に透明重合体、例えばポリエステル、を含むこともできる。基材は、適当な組成の接着性の促進された層、例えばヘキサ−アルキルジシラザンを含むもの、を有することができる。
【0031】
次いで、フォトレジスト組成物の溶液を基材上に塗布し、その基材を約70℃〜約110℃の温度で、ホットプレート上では約30秒間〜約180秒間、または対流式オープン中では約15〜約90分間処理する。熱処理は、フォトレジスト中の残留溶剤の濃度を下げるが、光増感剤の著しい熱分解を引き起こさない様に選択する。一般的に、溶剤の濃度を最小に抑えるのが好ましく、この最初の熱処理は、実質的にすべての溶剤が蒸発し、厚さ1ミクロンのオーダーのフォトレジスト組成物の薄い被膜が基材上に残るまで行う。好ましい実施態様では、温度は約85℃〜約95℃である。この処理は、溶剤除去の変化率があまり重要でなくなるまで行う。温度と時間の選択は、使用者が望むフォトレジスト特性、ならびに使用する装置および商業的に望ましいコーティング時間により異なる。次いで被覆した基材を、波長約300nm〜約450nmの化学線放射、例えば紫外線放射、X線、電子線、イオン線またはレーザー放射に、好適なマスク、陰画、ステンシル、テンプレート、等を使用して製造した所望のパターンで露光する。
【0032】
次いで所望によりフォトレジストに、現像の前または後に、露光後の第二のベーク処理または熱処理を行う。加熱温度は約90℃〜約120℃でよく、より好ましくは約100℃〜約110℃である。加熱は、ホットプレート上では約30秒間〜約2分間、より好ましくは約60秒間〜約90秒間、対流式オープン中では約30から約45分間である。
【0033】
露光したフォトレジスト被覆基材は、アルカリ性現像溶液に浸漬することにより、またはスプレー現像法により、現像して像様に露光した区域を除去する。溶液は、例えば窒素噴入攪拌により、攪拌するのが好ましい。露光区域からすべての、または実質的にすべてのフォトレジスト被膜が溶解するまで、基材を現像剤中に入れておくことができる。現像剤は、アンモニウムまたはアルカリ金属水酸化物の水溶液を含むことができる。好ましい水酸化物の一つは水酸化テトラメチルアンモニウムである。現像溶液から被覆ウエハーを取り出した後、所望により、現像後の熱処理または焼付けを行い、被膜の密着性およびエッチング溶液や他の物質に対する耐薬品性を増加させることができる。現像後の熱処理では、被膜および基材をオープン中、被覆物の軟化点より低い温度でベーク処理することができる。工業用途、特にケイ素/二酸化ケイ素型基材上の微小回路ユニットの製造では、現像した基材を、緩衝したフッ化水素酸系のエッチング溶液で処理することができる。本発明のフォトレジスト組成物は、酸塩基エッチング溶液に耐性があり、基材の非露光フォトレジスト被覆区域を効果的に保護する。
【0034】
下記の諸例により本発明の組成物の製造および使用方法を詳細に説明する。しかし、これらの例は、本発明の範囲を制限するものではなく、本発明を実施する上で絶対的に使用しなければならない条件、パラメータまたは値を与えるものではない。
【0035】
【実施例】
参考例1
乾燥したAMBERLYST15イオン交換樹脂ビーズ25グラムを三角フラスコに入れ、樹脂ビーズが完全に浸るまで脱イオン水を加えた。フラスコを密封し、一晩放置して樹脂ビーズを膨潤させた。翌朝、水をデカンテーションし、脱イオン水を加えて樹脂ビーズを覆い、フラスコをゆっくりと振とうした。水を再度デカンテーションした。脱イオン水によるすすぎ、およびデカンテーション工程をさらに3回繰り返した。得られたイオン交換樹脂のスラリーを、長さ21.5cm、直径2cmの、多孔質ディスクおよびストップコックを備えたガラス製カラムの中に注ぎ込んだ。樹脂を底に沈殿させ、カラムを脱イオン水で25分間バックフラッシュした。樹脂を再び底に沈殿させた。
【0036】
床の長さを測定し、床体積を68mlと計算した。10%硫酸溶液を約16ml/分(14.1床体積/時間)の速度で樹脂床を下降させた。6床体積の酸溶液を樹脂床に通した。次いで、60床体積の脱イオン水をほぼ同じ流量で樹脂床に通した。溶出水のpHを測定し、新しい脱イオン水に対してpH6に適合することを確認した。
【0037】
pHが約3.5で、約240ppbのナトリウムおよび約4900ppbの鉄を含む、水および7%メタノール中の37%ホルムアルデヒド水溶液500グラムを、同じ流量で樹脂床を通した。得られたホルムアルデヒドは金属イオン量が非常に低く、ナトリウム<20ppb、鉄<100ppbであった。
参考例2
21.6Kg(48lbs.)の湿ったAMBERLYST15イオン交換樹脂(17.1Kg乾燥)(38lbs.乾燥)を、圧力定格275,790pA(40psig)の0.034m3 (1.2ft.3)樹脂容器に入れた。圧力定格689,475PA(100psig)、攪拌機および7.62cm.(3インチ)696,370PA(101psig)ラプチャーディスク(rupturedisk)を有する1895リットル(500gal.)のガラスライニングした供給容器中に、379リットル(100.0gal.)の脱イオン水を入れた。窒素を使用してこの供給容器を137,895PA(20psig)に加圧し、徐々に水を底部の出口弁を通し、樹脂容器を通し、供給弁を通し、圧力定格1,034,213PA(150psig)および5.08cm.(2インチ)689,476/689,476PA(100/100psig)ダブルラプチャーディスクを有するガラス張りの生成物ケトルの中に移動させた。
【0038】
すべての弁を閉じ、この供給容器に脱イオン水208.45リットル(55gal.)、次いで98%硫酸24.75Kg(55lbs.)を入れた。攪拌機を60rpmに設定し、温度を20から30℃に維持した。窒素を使用して供給容器を137,895PA(20psig)に加圧し、底部の出口弁を開き、徐々に硫酸溶液を、樹脂容器を通し、開いた入口弁を通して、生成物容器に移した。入口弁は、液体流量が約1.33リットル(0.35gal.)/分になる様に開いた。次いで供給容器および生成物容器を排出し、樹脂容器への供給容器出口弁を閉じ、供給容器を脱イオン水ですすいだ。
【0039】
脱イオン水1705.5リットル(450gal.)を供給容器に入れ、温度を20から30℃に維持し、攪拌機を60rpmに設定した。窒素を使用して供給容器を137,895PA(20psig)に加圧し、底部の出口弁を開き、徐々に水を、樹脂容器を通し、入口弁を通して生成物容器に、液体流量約6.8リットル(1.8gal.)/分で移動させた。生成物容器中の水のpHを試験し、新しい脱イオン水のpHに適合していることを確認した。攪拌機を停止した後、供給容器および生成物容器の中身を完全に排出し、すべての弁を閉じた。
【0040】
ナトリウム280ppbおよび鉄280ppbを含む、水および7%メタノール中の37%ホルムアルデヒド溶液416.9リットル(110gal.)を供給容器に入れ、温度を20から30℃に維持した。底部の出口弁を開き、樹脂容器を通してホルムアルデヒド溶液を徐々に移動させた。生成物容器の入口弁を開き、生成物容器中への液体流量約2.65リットル(0.7gal.)を得た。得られたホルムアルデヒドは金属イオンの含有量が非常に低く、ナトリウム<20ppb、鉄<20ppbであった。
参考例3
111.6Kg(248lbs.)の湿ったAMBERLYST 15イオン交換樹脂(88.2Kg乾燥)(196lbs.乾燥)を、圧力定格275,790PA(40psig)の0.174m3 (6.2ft.3)樹脂容器に入れた。
【0041】
参考例2に記載の洗浄工程により洗浄した樹脂容器の中に、1415.25Kg(3145lbs.)のホルムアルデヒドを、ナトリウム280ppbおよび鉄280ppbを含む、水および7%メタノール中の37%ホルムアルデヒド溶液として供給した。樹脂容器を通してホルムアルデヒド溶液を徐々に、毎分、溶液約14,985Kg(33.3lbs.)の流量で移動させた。得られたホルムアルデヒドは金属イオンの含有量が非常に低く、ナトリウム<10ppb、鉄<20ppbであった。
参考例4
参考例3の手順を繰り返し、1372.5Kg(3050lbs.)のホルムアルデヒドを、水および7%メタノール中の37%ホルムアルデヒド溶液として、樹脂容器を通過させた。得られたホルムアルデヒドは、ナトリウムイオン含有量<10ppb、鉄イオン含有量<20ppbであった。
参考例5
乾燥したAMBERLYST15イオン交換樹脂ビーズ180グラムを三角フラスコに入れ、樹脂ビーズが完全に浸るまで脱イオン水を加えた。フラスコを密封し、一晩放置して樹脂ビーズを膨潤させた。翌朝、水をデカンテーションし、脱イオン水を加えて樹脂ビーズを覆い、フラスコをゆっくりと振とうした。水を再度デカンテーションした。脱イオン水によるすすぎ、およびデカンテーション工程をさらに3回繰り返した。得られたイオン交換樹脂のスラリーを、500mlの、多孔質ディスクおよびストップコックを備えたガラス製カラムの中に注ぎ込んだ。樹脂を底に沈殿させ、カラムを脱イオン水で25分間バックフラッシュした。樹脂を再び底に沈殿させた。
【0042】
床の長さを測定し、床体積を500mlと計算した。10%硫酸溶液を約16ml/分(14.1床体積/時間)の速度で樹脂床を下降させた。6床体積の酸溶液を樹脂床に通した。次いで、50床体積の脱イオン水をほぼ同じ流量で樹脂床に通した。溶出水のpHを測定し、新しい脱イオン水に対してpH6に適合することを確認した。
【0043】
約110ppbのナトリウムおよび約140ppbの鉄を含む、8%シュウ酸溶液3600グラムを、同じ流量で樹脂床に通した。得られたシュウ酸は金属イオン量が、ナトリウム<10ppb、鉄<10ppbと非常に低かった。
参考例6
参考例2の、金属イオン含有量が低いホルムアルデヒドの37%溶液116.325Kg(258.5lbs.)を、圧力定格689,475PA(100psig)、攪拌機および5.08cm.(2インチ)413.685PA(60psi g)ラプチャーディスクを有する379リットル(100gal.)のテフロンライニングした供給容器中に入れた。1895リットル(500gal.)のガラスライニングした溶剤容器中に、液体エチル−3−エトキシプロピオネート溶剤(EEP)270Kg(600lbs.)を入れた。
【0044】
圧力定格2,068,428PA(300psig)および7.62cm.(3インチ)792,897PA(115psig)ラプチャーディスクを有する758リットル(200gal.)のステンレス鋼ライニングした反応容器中に、参考例5のシュウ酸2.25Kg(5lbs.)を粉体として、ボール弁を備えた5.08cm.(2インチ)のポートを通して加え、そして更に金属イオン含有量がナトリウム<10ppbおよび鉄270ppbである、45.2%m−クレゾール、40.6%p−クレゾールおよび14.0%2,5−キシレノールの混合物160.74Kg(357.2lbs.)、金属イオン含有量がナトリウム250ppbおよび鉄70ppbであるm−クレゾール液体21.87kg(48.6lbs.)、および金属イオン含有量がナトリウム300ppbおよび鉄40ppbであるp−クレゾール液体42.75kg(95.0lbs.)を加えた。
【0045】
反応容器攪拌機を100rpmに設定し、温度を92〜96℃に維持した。供給容器から、90分間かけて、ホルムアルデヒド溶液116.37Kg(258.6lbs.)を約1.3Kg(2.9lbs.)/分の流量で加えた。次いで、温度を92〜96℃に7時間維持した。溶剤の常圧蒸留を開始し、留出物を供給容器に流し込んだ。反応混合物の温度は3時間の間に約190℃に上昇した。温度約200℃および4666PA(35mmHg)真空に達するまで反応容器をさらに加熱および減圧し、この状態を約15分間維持した。次いで真空を解除し、反応は完了した。
【0046】
溶剤容器から反応容器に、EEP270Kg(600lbs.)を約35分間かけて加えた。反応物をEEPに溶解させ、得られたノボラック樹脂の溶液を0.4マイクロメーター(0.4ミクロン)のCunoカートリッジフィルターに通した。EEP中の40%ノボラック溶液は、ナトリウム40ppb、鉄60ppb、カリウム<10ppb、カルシウム<10ppb、マグネシウム<10ppb、銅30ppbおよび亜鉛<10ppbを含んでいた。
【0047】
この溶液を再度0.2マイクロメーター(0.2ミクロン)のAcrodi scフラットフィルターを通して濾過した。
金属イオン含有量は、ナトリウム14ppb、鉄15ppb、カリウム<10ppb、カルシウム<10ppb、マグネシウム<10ppb、銅25ppbおよび亜鉛<10ppbであった。
参考例7
参考例6の手順を繰り返し、40%ノボラック樹脂溶液で測定した金属イオン含有量は、ナトリウム<20ppbおよび鉄40ppbであった。
参考例8
参考例6の手順を繰り返し、40%ノボラック樹脂溶液で測定した金属イオン含有量は、ナトリウム<20ppbおよび鉄<20ppbであった。
参考例9
参考例6の手順を繰り返し、40%ノボラック樹脂溶液で測定した金属イオン含有量は、ナトリウム<20ppbおよび鉄60ppbであった。
参考例10
圧力定格2,068,428PA(300psig)および7.62cm.(3インチ)792,897PA(115psig)ラプチャーディスクを有する7580リットル(2000gal.)のステンレス鋼ライニングした反応容器中に、ボール弁を備えた口を通して、粉体として未精製シュウ酸27.9Kg(62lbs.)および脱イオン水18.95リットル(5gal.)を加えた。41.6%m−クレゾール、47.7%p−クレゾール、および10.6%の、2,5−キシレノールおよび2,4−キシレノールの55/45混合物、の混合物2809.35Kg(6243lbs.)を加えた。
【0048】
反応容器攪拌機を100rpmに設定し、温度を92から96℃に維持した。90分間かけて、参考例2のホルムアルデヒド溶液1415.25Kg(3145lbs.)を約14.985Kg(33.3lbs.)/分の流量で加えた。次いで、温度を92〜96℃に7時間維持した。溶剤の常圧蒸留を開始し、反応混合物の温度は6時間の間に約190℃に上昇した。温度約200℃および4666PA(35mmHg)真空に達するまで反応容器をさらに加熱および減圧し、この状態を約30分間維持した。次いで真空を解除し、反応は完了した。
【0049】
反応容器にPGMEA3375Kg(7500lbs.)を約35分間かけて加えた。生成物をPGMEAに溶解させ、得られたノボラック樹脂の溶液を0.4マイクロメーター(0.4ミクロン)のCunoカートリッジフィルターに通した。PGMEA中の40%ノボラック溶液は、ナトリウムイオン64ppb、カリウムイオン28ppb、鉄イオン47ppb、クロムイオン43ppb、カルシウム47ppbおよびアルミニウムイオン30ppbを含んでいた。
参考例11
参考例2の金属イオン含有量の低いホルムアルデヒドの37%溶液1372.5Kg(3050lbs.)を使用し、参考例10の手順を繰り返した。生成物は約3375Kg(7500lbs.)のPGMEAに溶解させた。得られたPGMEA中40%ノボラック溶液は、ナトリウムイオン43ppb、カリウムイオン15ppb、鉄イオン56ppb、クロムイオン86ppb、カルシウム45ppbおよびアルミニウムイオン28ppbを含んでいた。
比較例12
ホルムアルデヒドをイオン交換樹脂に通して金属イオン含有量を低下させることをしなかった以外は、参考例2の手順を繰り返した。ノボラック樹脂は、参考例6と同様に製造し、ジグライムに溶解させ、ノボラック樹脂20重量%を含む溶液を得た。この未処理溶液は、約150ppbのナトリウムおよび約1400ppbの鉄を含んでいた。次いでこの溶液を、参考例5に記載の手順により、イオン交換樹脂に通した。得られた溶液は、ナトリウム含有量が約110ppbで、鉄含有量が約1250ppbであった。
【0050】
例13
Amberlyst‐15でカラムを製造し(床体積45ml)、参考例1と同様に洗浄した。十分な量の蒸留したジグライムをカラムに通し、実質的にすべての水を除去し、次いでナトリウム1300ppbおよび鉄210ppbを含む、未精製ノボラック樹脂(参考例6の精製したノボラック樹脂と同じ組成を有する)のPGMEA溶液74gをカラムに通した。カラムの無効体積(ほとんどがジグライム)である最初の14mlを廃棄した。得られた樹脂溶液の金属イオンは非常に低く、ナトリウム<20ppb、鉄<20ppbであった。
例14
例13の手順を繰り返し、同じ樹脂溶液104gを洗浄したが、測定した金属含有量は、ナトリウム20ppb、鉄<20ppbであった。
参考例15
参考例6の精製ノボラック樹脂のEEP中45.82重量%溶液から、3種類の異なった濃度の、2,3,4,4’−テトラヒドロキシベンゾフェノン(PAC)の2,1,5−ジアゾエステル、すなわち8%、12%および16%(総固体成分の重量%)を加えることにより、フォトレジスト溶液を製造した。標準的な技術を使用し、フォトレジスト溶液をそれぞれ石英板上に一定速度でスピンコーティングし、初期厚さ1.5ミクロン(1.5μm)のフォトレジスト層を形成した。これらのフィルムを循環空気式オープン中、90℃で30分間ベーク処理した。各フォトレジスト組成物についてROおよびRを測定した。
【0051】
ROは、0.263Nテトラメチルアンモニウムヒドロキシド(TMAH)現像剤(25±0.5℃)中で測定した。ROは、未露光または暗色被膜損失であり、被膜を現像剤中に30分間置き、総被膜損失を測定して求める。ROは被膜損失速度としてオングストローム/分で表示する。
【0052】
Rは、完全に脱色された被膜の被膜損失率であり、やはり、各フォトレジスト処方について、0.263NTMAH現像剤(25±0.5℃)中で測定した。各被膜を完全に脱色するのに必要な線量は、石英板上1.5マイクロメーター(1.5μm)被膜に対して、様々な水準の放射に露出した後の、377nmにおける吸光度を測定して求めた。Rは1.5マイクロメーター(1.5μm)の脱色した被膜を完全に溶解させるのに必要な時間を測定して計算した。Rもオングストローム/分で表示する。
【0053】
最小露光量(DosetoClear)は、1.5マイクロメーター(1.5μm)被膜を、Optoline勾配マスクの下で狭い帯域365±10nmに露出し、最初の透明な、または完全に現像されたステップを得るのに必要なエネルギーを計算することにより決定した。現像はすべて0.263TMAH中、25±0.5℃で1分間行った。
【0054】
【表1】

Figure 0004065746
[0001]
[Technical field to which the invention belongs]
The present invention relates to a process for the production of phenolic resins having a very low content of metal ions, in particular sodium and iron, and the use of such resins in photosensitive compositions. The present invention also relates to a method for producing a photosensitive composition useful for a positive photoresist composition. Furthermore, the present invention relates to a method for coating a substrate with these photosensitive compositions, as well as a method for coating these photosensitive mixtures on a substrate, forming an image, and developing.
[0002]
[Prior art]
Photoresist compositions are used in microlithographic printing to produce small electronic components, such as in the manufacture of computer chips and integrated circuits. In general, these methods first coat a substrate, such as a silicon wafer used in the manufacture of integrated circuits, with a thin coating of a photoresist composition. The coated substrate is then baked to evaporate any solvent in the photoresist composition and fix the coating onto the substrate. Next, the baked coated surface of the substrate is imagewise exposed to radiation.
[0003]
This radiation exposure causes chemical changes in the exposed areas of the coated surface. Visible light, ultraviolet (UV) light, electron beam and X-ray radiant energy are the types of radiation commonly used today in microlithographic printing. After this imagewise exposure, the coated substrate is treated with a developer solution to dissolve and remove the radiation exposed or unexposed areas of the coated surface of the substrate.
[0004]
Metal contamination has been a problem for many years in the manufacture of high density integrated circuits and computer chips, often leading to increased defects, loss of yield, degradation and performance degradation. In the plasma method, if a metal such as sodium or iron is present in the photoresist, contamination may occur particularly during plasma stripping. However, these problems have been solved to a considerable degree in the manufacturing process, for example by using contaminant HCL gettering during high temperature annealing cycles.
As semiconductor devices become more complex, it becomes much more difficult to solve these problems. When a silicon wafer is coated with a liquid positive photoresist and subsequently peeled off with oxygen microwave plasma or the like, the performance and stability of the semiconductor device are often lowered. Repeated plasma stripping causes more frequent device degradation. The main causes of such problems are metal contaminants in the photoresist,. In particular it has been found to be sodium and iron ions. It has been found that the amount of metal below 1.0 ppm in the photoresist does not adversely affect the properties of such semiconductor devices.
[0005]
Novolak resins are polymeric binders often used in liquid photoresist formulations. These resins are generally produced by the condensation reaction of formaldehyde and one or more polysubstituted phenols in the presence of an acid catalyst such as oxalic acid. In the manufacture of complex semiconductor devices, it is becoming increasingly important to use novolac resins with metal contamination levels well below 1.0 ppm.
[0006]
There are two types of photoresist compositions, negative and positive. When a negative photoresist composition is imagewise exposed to radiation, the exposed areas of the resist composition are less likely to dissolve in the developer solution (eg, a crosslinking reaction occurs) and the unexposed areas of the photoresist coating are It remains relatively soluble in such solutions. Thus, by treating the exposed negative resist with a developer, the unexposed areas of the photoresist film are removed and a negative image is formed in the film. Thereby, the underlying desired portion of the substrate surface on which the photoresist composition is deposited appears in the table.
[0007]
On the other hand, when the positive photoresist composition is imagewise exposed to radiation, the areas of the photoresist composition exposed to radiation become more soluble in the developer solution (eg, a rearrangement reaction occurs). Thus, the unexposed areas remain relatively insoluble in the developer solution. Thus, by treating the exposed positive photoresist with a developer, the exposed areas of the coating are removed and a positive image is formed in the photoresist coating. Again, the desired portion of the underlying substrate surface appears.
[0008]
After this development operation, the partially unprotected substrate is treated with a substrate etchant solution or plasma gas or the like. This etchant solution or plasma gas etches the portion of the substrate where the photoresist coating has been removed during development. Since the area of the substrate where the photoresist coating still remains is protected, an etching pattern corresponding to the photomask used for imagewise exposure to radiation is formed in the substrate. Thereafter, the remaining areas of the photoresist film are removed by a stripping operation, leaving a sharply etched substrate surface. In some cases, after development and prior to the etching step, the remaining photoresist layer may be heat treated to increase the adhesion of the layer to the underlying substrate and its resistance to the etching solution. preferable.
[0009]
Positive photoresists are currently preferred over negative resists because positive photoresist compositions have better resolution and pattern transfer characteristics. Photoresist resolution is defined as the smallest figure that, after exposure and development, the resist composition can be transferred from the photomask to the substrate with a high degree of image edge sharpness. Many today's manufacturing applications require resist resolution on the order of less than 1 micron. Moreover, it is almost always desirable that the developed photoresist wall profile be nearly perpendicular to the substrate. Due to such a boundary limitation between the developed and undeveloped areas of the resist coating, an accurate pattern of the mask image is transferred onto the substrate.
[0010]
SUMMARY OF THE INVENTION
The present invention relates to a process for producing phenol formaldehyde resins having a very low content of metal ions, in particular sodium and iron, and their use in photosensitive compositions. The present invention also relates to a method for producing a positive type photoresist containing these phenol formaldehyde resins and a photosensitizer, and a method for using such a photoresist in the production of a semiconductor device.
[0011]
Insoluble in water, obtained by condensation of formaldehyde with one or more phenolic compounds such as meta-cresol, para-cresol, 3,5-dimethylphenol or 3,5-xylenol by the process of the present invention However, a novolac resin soluble in aqueous alkali is provided.
[0012]
The resulting novolac resin has a very low amount of metal ions such as iron, sodium, potassium, calcium, magnesium, copper and zinc. The total metal ion content is preferably less than 1 ppm, more preferably less than 500 ppb. Sodium and iron are the most common metal ion contaminants and are most easily detected. These metal ions serve as a guide for the amount of other metal ions. The amount of sodium and iron ions is less than 100 ppb and 400 ppb, preferably less than 75 ppb and 300 ppb, more preferably less than 50 ppb and 200 ppb, still more preferably less than 30 ppb and 130 ppb, most preferably less than 20 ppb and 20 ppb.
[0013]
A novolak resin that is insoluble in water and soluble in aqueous alkali can be obtained by purifying such novolak resin using an acidic ion exchange resin.
[0014]
In U.S. Pat. No. 5,073,622, a novolak resin having a total amount of sodium and iron ions of 500 ppb is prepared by dissolving a novolak resin in an organic solvent and contacting the solution with an aqueous solution of an acidic complex-forming compound. A method is disclosed.
[0015]
The claimed invention replaces the method and solution of the complexing agent with an acidic ion exchange resin pretreated with a solvent compatible with a) water and mineral acid solutions and c) novolac resin solvents. Is different.
[0016]
Detailed Description of Preferred Embodiments
The present invention provides a method for producing a novolak resin having a very low content of metal ions, particularly sodium and iron.
[0017]
Even if you first try to condense formaldehyde with one or more phenolic compounds in the presence of an acid catalyst and then try to remove metal ions from the resin, 1) use a suitable solvent to form a novolac resin solution And 2) treating the ion exchange resin with water and mineral acid as described above, and 3) then sufficiently saturating the ion exchange resin with a solvent that is the same or at least compatible with the solvent of the novolak resin. Rinse 4) It was found that no novolac resin with a very low amount of metal ion contamination could be obtained unless the novolac resin solution was then passed through the ion exchange resin.
[0018]
The method of directly purifying novolak resin is as follows:
a) treating the acidic ion exchange resin with water, preferably deionized water, followed by treatment with a mineral acid solution (eg, a 5-98% solution of sulfuric acid, nitric acid or hydrochloric acid) to obtain sodium and Reducing the total amount of iron ions to less than 500 ppb, preferably less than 100 ppb, more preferably less than 50 ppb, most preferably less than 20 ppb,
b) preparing a solution in which a novolac resin is dissolved in a suitable solvent;
c) treating the acidic ion exchange resin from step a) with a solvent that is the same as or compatible with the novolac resin solvent, preferably treating the resin with a sufficient solvent, on the ion exchange resin Removing most of the remaining water, most preferably removing substantially all of the water, and
d) Through the novolac resin solution from step b) through the ion exchange resin from step c), the total amount of sodium and iron ions in a 40% strength solution is less than 500 ppb, preferably less than 375 ppb, more preferably less than 250 ppb, even more preferred Lower than 180 ppb, most preferably 40 ppb or less,
Comprising.
[0019]
The present invention further provides a method for producing a positive photoresist composition with a very low amount of metal ions.
[0020]
This method
a) treating the acidic ion exchange resin with water, preferably deionized water, followed by treatment with a mineral acid solution (eg, a 5-98% solution of sulfuric acid, nitric acid or hydrochloric acid) to obtain sodium and Reducing the total amount of iron ions to less than 500 ppb, preferably less than 100 ppb, more preferably less than 50 ppb, most preferably less than 20 ppb,
b) preparing a solution in which a novolac resin is dissolved in a suitable solvent;
c) treating the acidic ion exchange resin from step a) with a solvent that is the same as or compatible with the novolac resin solvent, preferably treating the resin with a sufficient solvent, on the ion exchange resin Removing most of the remaining water, most preferably removing substantially all of the water,
d) Through the novolac resin solution from step b) through the ion exchange resin from step c), the total amount of sodium and iron ions in the 40% strength solution is less than 500 ppb, preferably less than 375 ppb, more preferably less than 250 ppb, more preferably Lower to less than 180 ppb, most preferably 40 ppb or less, and
e) 1) a sufficient amount of the photosensitive compound to photosensitize the photoresist composition, 2) a novolak from step d) insoluble in water, soluble in aqueous alkali and having a low total amount of metal ions. Preparing a mixture of resin, and 3) a suitable solvent;
Comprising.
[0021]
The present invention is further a method of manufacturing a semiconductor device by coating a suitable substrate with a positive photoresist composition and forming a photographic image on the substrate, comprising:
a) treating the acidic ion exchange resin with water, preferably deionized water, followed by treatment with a mineral acid solution (eg, a 5-98% solution of sulfuric acid, nitric acid or hydrochloric acid) to obtain sodium and Reducing the total amount of iron ions to less than 500 ppb, preferably less than 100 ppb, more preferably less than 50 ppb, most preferably less than 20 ppb,
b) preparing a solution in which a novolac resin is dissolved in a suitable solvent;
c) treating the acidic ion exchange resin from step a) with a solvent that is the same as or compatible with the novolac resin solvent, preferably treating the resin with a sufficient solvent to obtain an ion exchange resin. Removing most of the water remaining on top, most preferably removing substantially all of the water,
d) Through the novolac resin solution from step b) through the ion exchange resin from step c), the total amount of sodium and iron ions in the 40% strength solution is less than 500 ppb, preferably less than 375 ppb, more preferably less than 250 ppb, more preferably Lower to less than 180 ppb, most preferably 40 ppb or less,
e) 1) a sufficient amount of the photosensitive compound to photosensitize the photoresist composition, 2) a novolak from step d) which is insoluble in water, soluble in aqueous alkali and has a low total amount of metal ions. Providing a mixture of resin, and 3) a suitable solvent, and
f) coating the substrate with the mixture from step e), heat-treating the coated substrate until substantially all of the solvent is removed, exposing the photosensitive composition imagewise, and Removing the imagewise exposed areas of the composition with a suitable developer, such as an aqueous alkaline developer, and optionally baking the substrate immediately before or after the removal step,
A method characterized by the above is provided.
[0022]
In this method, an acidic ion exchange resin such as styrene / divinylbenzene / cation exchange resin is used. Such an ion exchange resin is, for example, AMBERLYST15 commercially available from Rohmman Haas Company. These resins typically contain as much as 80,000 to 200,000 ppb sodium and iron. Prior to use in the process of the present invention, the ion exchange resin must be treated with water and then with a mineral acid solution to reduce the amount of metal ions. Preferably, the ion exchange resin is first rinsed with deionized water, followed by a mineral acid solution, such as a 10% sulfuric acid solution, rinsed again with deionized water, treated again with mineral acid, and rinsed again with deionized water. . When purifying a novolac resin solution, it is important to rinse the ion exchange resin with a solvent that is the same as or at least compatible with the novolac resin solvent.
[0023]
The novolak resin is preferably passed through a column containing the ion exchange resin as a solution, for example, as a solution of about 40% novolak resin in propylene glycol methyl ether acetate. Such solutions typically contain between 250 and 1000 ppb sodium and iron ions, respectively. By the method of the present invention, these amounts are reduced to about 10 ppb each.
[0024]
The present invention provides a method for producing a photoresist composition and a method for producing a semiconductor device using such a photoresist composition. The photoresist composition is produced by a mixture of a photosensitizer, a novolak resin that is insoluble in water and soluble in aqueous alkali, and a suitable solvent. Suitable solvents for such photoresists and novolak resins include propylene glycol monoalkyl ether, propylene glycol alkyl (eg methyl) ether acetate, ethyl-3-ethoxypropionate, ethyl lactate, ethyl-3-ethoxypropio. There is a mixture of nate and ethyl lactate, butyl acetate, xylene, diglyme, ethylene glycol monoethyl ether acetate. Preferred solvents are propylene glycol methyl ether acetate (PGMEA) and 3-ethyl ethoxypropionate (EEP).
[0025]
Before applying the photoresist composition to the substrate, other optional ingredients such as colorants, dyes, anti-streasants, leveling agents, plasticizers, adhesion promoters, speed increasing agents, Solvents and surfactants, such as nonionic surfactants, can be added to the novolac resin, sensitizer and solvent solutions. Examples of dye additives that can be used with the photoresist compositions of the present invention include methyl violet 2B (C.I. No. 42535), crystal violet (C.I.No. 42555), malachite green (C.I. No. 42000), Victoria Blue B (C.I. No. 44045), and Neutral Red (C.I. No. 50040), 1-10% by weight based on the total weight of the novolak and the sensitizer. Use in quantity. The addition of a dye helps to increase the resolution by preventing light scattering by the substrate.
[0026]
The anti-striping agent can be used in an amount up to about 5% by weight based on the total weight of the novolak and the sensitizer. Usable plasticizers include, for example, phosphoric acid tri- (beta-chloroethyl) -ester, stearic acid, dicamphor, polypropylene, acetal resin, phenoxy resin, and alkyl resin, with a total weight of novolak and sensitizer. It is used in an amount of 1 to 10% by weight. The plasticizer improves the coating properties of the material and allows a smooth and uniform coating to be applied to the substrate.
[0027]
Possible adhesion promoters include, for example, beta- (3,4-epoxy-cyclohexyl) -ethyltrimethoxysilane, p-methyl-disilane-methyl methacrylate, vinyltrichlorosilane, and gamma-amino-propyltriethoxysilane. Yes, it can be used in an amount up to about 4% by weight based on the total weight of the novolak and sensitizer. Usable development rate increasing agents include, for example, picric acid, nicotinic acid or nitrocinnamic acid, which can be used in an amount up to about 20% by weight based on the total weight of novolak and sensitizer. These enhancers tend to increase the solubility of the photoresist coating in both exposed and non-exposed areas, so use where development speed is more important at the expense of some contrast . That is, the developer dissolves the exposed areas of the photoresist coating more rapidly, but the speed increasing agent also loses a large amount of photoresist from the unexposed areas.
[0028]
The solvent can be present in the entire composition in an amount up to 95% by weight of the solids in the composition. Of course, after the photoresist solution is applied onto the substrate and dried, the solvent is substantially removed. Nonionic surfactants that can be used include, for example, nonylphenoxypoly (ethyleneoxy) ethanol and octylphenoxyethanol, which can be used in an amount up to about 10% by weight based on the total weight of novolak and sensitizer. it can.
[0029]
The produced photoresist solution can be applied to the substrate by any of the usual methods used in the field of photoresist, including dip, spray, spin and spin coating. In the case of spin coating, for example, the resist solution can be adjusted with respect to the solids content to obtain a film of the desired thickness for the type of spin coating apparatus used and the time allowed for spin coating. Suitable substrates include silicon, aluminum, polymer resins, silicon dioxide, doped silicon dioxide, silicon nitride, tantalum, copper, polysilicon, ceramics, aluminum / copper mixtures, gallium arsenide and other such III / V group compounds.
[0030]
The photoresist film produced by the above procedure is particularly suitable for application to thermally grown silicon / silicon dioxide coated wafers, such as those used in the manufacture of microprocessors and other small integrated circuit components. It is. Aluminum / aluminum oxide wafers can also be used.
The substrate can also include various polymer resins, particularly transparent polymers such as polyester. The substrate can have an appropriately promoted adhesion-promoted layer, such as one comprising hexa-alkyldisilazane.
[0031]
A solution of the photoresist composition is then applied onto the substrate and the substrate is heated at a temperature of about 70 ° C. to about 110 ° C., about 30 seconds to about 180 seconds on a hot plate, or about a convection open. Process for 15 to about 90 minutes. The heat treatment is selected so as to reduce the concentration of residual solvent in the photoresist but not cause significant thermal decomposition of the photosensitizer. In general, it is preferable to minimize the concentration of solvent, and this initial heat treatment causes substantially all of the solvent to evaporate and a thin film of photoresist composition on the order of 1 micron thick is deposited on the substrate. Do it until it remains. In a preferred embodiment, the temperature is from about 85 ° C to about 95 ° C. This process is performed until the rate of change in solvent removal is less important. The choice of temperature and time depends on the photoresist properties desired by the user, as well as the equipment used and the commercially desired coating time. The coated substrate is then used with a suitable mask, negative, stencil, template, etc. for actinic radiation having a wavelength of about 300 nm to about 450 nm, such as ultraviolet radiation, X-rays, electron beams, ion beams or laser radiation. Exposure with the desired pattern produced.
[0032]
If desired, the photoresist is then subjected to a post-exposure second bake or heat treatment before or after development. The heating temperature may be about 90 ° C to about 120 ° C, more preferably about 100 ° C to about 110 ° C. Heating is from about 30 seconds to about 2 minutes on the hot plate, more preferably from about 60 seconds to about 90 seconds, and from about 30 to about 45 minutes during the convection open.
[0033]
The exposed photoresist-coated substrate is developed by immersion in an alkaline developer solution or by spray development to remove the imagewise exposed areas. The solution is preferably stirred by, for example, nitrogen injection stirring. The substrate can be placed in the developer until all or substantially all of the photoresist coating has dissolved from the exposed area. The developer can include an aqueous solution of ammonium or alkali metal hydroxide. One preferred hydroxide is tetramethylammonium hydroxide. After removing the coated wafer from the developer solution, if desired, heat treatment or baking after development can be performed to increase the adhesion of the coating and the chemical resistance to the etching solution and other materials. In the heat treatment after development, the coating and the substrate can be baked at a temperature lower than the softening point of the coating while the coating and the substrate are open. In industrial applications, particularly the manufacture of microcircuit units on silicon / silicon dioxide type substrates, the developed substrate can be treated with a buffered hydrofluoric acid based etching solution. The photoresist composition of the present invention is resistant to acid-base etching solutions and effectively protects the unexposed photoresist-coated areas of the substrate.
[0034]
The following examples illustrate in detail how to make and use the compositions of the present invention. However, these examples do not limit the scope of the invention and do not provide conditions, parameters or values that must be used absolutely in practicing the invention.
[0035]
【Example】
Reference example 1
25 grams of dried AMBERLYST15 ion exchange resin beads were placed in an Erlenmeyer flask and deionized water was added until the resin beads were completely immersed. The flask was sealed and left overnight to swell the resin beads. The next morning, the water was decanted, deionized water was added to cover the resin beads, and the flask was shaken slowly. The water was decanted again. The rinse with deionized water and the decantation process were repeated three more times. The obtained slurry of the ion exchange resin was poured into a glass column having a length of 21.5 cm and a diameter of 2 cm and equipped with a porous disk and a stopcock. The resin was allowed to settle to the bottom and the column was backflushed with deionized water for 25 minutes. The resin again settled to the bottom.
[0036]
The bed length was measured and the bed volume was calculated to be 68 ml. The resin bed was lowered with a 10% sulfuric acid solution at a rate of about 16 ml / min (14.1 bed volume / hour). Six bed volumes of acid solution were passed through the resin bed. A 60 bed volume of deionized water was then passed through the resin bed at approximately the same flow rate. The pH of the elution water was measured and it was confirmed that pH 6 was satisfied with fresh deionized water.
[0037]
500 grams of an aqueous 37% formaldehyde solution in water and 7% methanol containing about 240 ppb sodium and about 4900 ppb iron at a pH of about 3.5 was passed through the resin bed at the same flow rate. The formaldehyde obtained had very low metal ion content, sodium <20 ppb and iron <100 ppb.
Reference example 2
21.6 Kg (48 lbs.) Of wet AMBERLYST15 ion exchange resin (17.1 Kg dry) (38 lbs. Dry) was applied to a 0.034 m pressure rating of 275,790 pA (40 psig).Three(1.2 ft.Three) Placed in a resin container. Pressure rating 689,475 PA (100 psig), stirrer and 7.62 cm. 379 liters (100.0 gal.) Of deionized water was placed in a 1895 liter (500 gal.) Glass-lined feed vessel with a (3 inch) 696,370 PA (101 psig) rupture disk. Pressurize the supply vessel to 137,895 PA (20 psig) using nitrogen, gradually pass water through the bottom outlet valve, through the resin vessel, through the supply valve, pressure rating 1,034,213 PA (150 psig) And 5.08 cm. (2 inches) 689, 476/689, 476 PA (100/100 psig) was transferred into a glassed product kettle with a double rupture disk.
[0038]
All valves were closed and the feed vessel was charged with 208.45 liters (55 gal.) Of deionized water followed by 24.75 Kg (55 lbs.) Of 98% sulfuric acid. The stirrer was set at 60 rpm and the temperature was maintained at 20-30 ° C. The feed vessel was pressurized to 137,895 PA (20 psig) using nitrogen, the bottom outlet valve was opened, and the sulfuric acid solution was gradually transferred through the resin vessel and through the open inlet valve to the product vessel. The inlet valve was opened so that the liquid flow rate was about 1.33 liters (0.35 gal.) / Min. The supply and product containers were then discharged, the supply container outlet valve to the resin container was closed, and the supply container was rinsed with deionized water.
[0039]
1705.5 liters (450 gal.) Of deionized water was placed in the supply vessel, the temperature was maintained at 20-30 ° C., and the agitator was set at 60 rpm. Pressurize the supply vessel to 137,895 PA (20 psig) using nitrogen, open the bottom outlet valve, gradually pass water through the resin vessel and through the inlet valve to the product vessel, the liquid flow rate about 6.8 liters. (1.8 gal.) / Min. The pH of the water in the product container was tested and confirmed to be compatible with the pH of fresh deionized water. After stopping the agitator, the contents of the feed and product containers were completely drained and all valves were closed.
[0040]
416.9 liters (110 gal.) Of a 37% formaldehyde solution in water and 7% methanol containing 280 ppb sodium and 280 ppb iron were placed in a feed vessel and the temperature was maintained at 20-30 ° C. The outlet valve at the bottom was opened and the formaldehyde solution was gradually moved through the resin container. The product container inlet valve was opened to obtain a liquid flow rate of about 2.65 liters (0.7 gal.) Into the product container. The formaldehyde obtained had very low metal ion content, sodium <20 ppb and iron <20 ppb.
Reference example 3
111.6 Kg (248 lbs.) Of wet AMBERLYST 15 ion exchange resin (88.2 Kg dry) (196 lbs. Dry) with a pressure rating of 275,790 PA (40 psig) 0.174 mThree(6.2 ft.Three) Placed in a resin container.
[0041]
In a resin container washed by the washing process described in Reference Example 2, 1415.25 Kg (3145 lbs.) Of formaldehyde was supplied as a 37% formaldehyde solution in water and 7% methanol containing 280 ppb sodium and 280 ppb iron. . The formaldehyde solution was slowly moved through the resin container at a flow rate of about 14,985 Kg (33.3 lbs.) Every minute. The resulting formaldehyde had very low metal ion content, sodium <10 ppb and iron <20 ppb.
Reference example 4
The procedure of Reference Example 3 was repeated and 1372.5 Kg (3050 lbs.) Of formaldehyde was passed through a resin container as a 37% formaldehyde solution in water and 7% methanol. The obtained formaldehyde had a sodium ion content <10 ppb and an iron ion content <20 ppb.
Reference Example 5
180 grams of dried AMBERLYST15 ion exchange resin beads were placed in an Erlenmeyer flask and deionized water was added until the resin beads were completely immersed. The flask was sealed and left overnight to swell the resin beads. The next morning, the water was decanted, deionized water was added to cover the resin beads, and the flask was shaken slowly. The water was decanted again. The rinse with deionized water and the decantation process were repeated three more times. The resulting ion exchange resin slurry was poured into a 500 ml glass column equipped with a porous disk and stopcock. The resin was allowed to settle to the bottom and the column was backflushed with deionized water for 25 minutes. The resin again settled to the bottom.
[0042]
The bed length was measured and the bed volume was calculated to be 500 ml. The resin bed was lowered with a 10% sulfuric acid solution at a rate of about 16 ml / min (14.1 bed volume / hour). Six bed volumes of acid solution were passed through the resin bed. A 50 bed volume of deionized water was then passed through the resin bed at approximately the same flow rate. The pH of the elution water was measured and it was confirmed that pH 6 was satisfied with fresh deionized water.
[0043]
3600 grams of an 8% oxalic acid solution containing about 110 ppb sodium and about 140 ppb iron was passed through the resin bed at the same flow rate. The obtained oxalic acid had very low metal ion amounts of sodium <10 ppb and iron <10 ppb.
Reference Example 6
A 37% solution of formaldehyde with a low metal ion content of Reference Example 2, 116.325 Kg (258.5 lbs.), A pressure rating of 689,475 PA (100 psig), a stirrer and 5.08 cm. Placed in a 379 liter (100 gal.) Teflon lined feed vessel with (2 inch) 413.685 PA (60 psig) rupture disk. In an 1895 liter (500 gal.) Glass-lined solvent container, 270 kg (600 lbs.) Of liquid ethyl-3-ethoxypropionate solvent (EEP) was placed.
[0044]
Pressure rating 2,068,428 PA (300 psig) and 7.62 cm. In a 758 liter (200 gal.) Stainless steel lined reaction vessel with (3 inch) 792,897 PA (115 psig) rupture disk, 2.25 Kg (5 lbs.) Of oxalic acid of Reference Example 5 was used as a powder. With 5.08 cm. 45.2% m-cresol, 40.6% p-cresol and 14.0% 2,5-xylenol, added through a (2 inch) port and further metal ion content sodium <10 ppb and iron 270 ppb A mixture of 160.74 Kg (357.2 lbs.), 21.87 kg (48.6 lbs.) Of m-cresol liquid with a metal ion content of 250 ppb sodium and 70 ppb iron, and a metal ion content of 300 ppb sodium and 40 ppb iron 42.75 kg (95.0 lbs.) Of a p-cresol liquid was added.
[0045]
The reaction vessel stirrer was set at 100 rpm and the temperature was maintained at 92-96 ° C. From the feed vessel, formaldehyde solution 116.37 Kg (258.6 lbs.) Was added at a flow rate of about 1.3 Kg (2.9 lbs.) / Min over 90 minutes. The temperature was then maintained at 92-96 ° C. for 7 hours. Atmospheric distillation of the solvent was started and the distillate was poured into the supply vessel. The temperature of the reaction mixture rose to about 190 ° C. during 3 hours. The reaction vessel was further heated and depressurized until a temperature of about 200 ° C. and a 4666 PA (35 mm Hg) vacuum were reached, and this state was maintained for about 15 minutes. The vacuum was then released and the reaction was complete.
[0046]
EEP 270 Kg (600 lbs.) Was added to the reaction vessel from the solvent vessel over about 35 minutes. The reaction was dissolved in EEP and the resulting novolak resin solution was passed through a 0.4 micron (0.4 micron) Cuno cartridge filter. The 40% novolak solution in EEP contained sodium 40 ppb, iron 60 ppb, potassium <10 ppb, calcium <10 ppb, magnesium <10 ppb, copper 30 ppb and zinc <10 ppb.
[0047]
The solution was filtered again through a 0.2 micrometer (0.2 micron) Acrodis sc flat filter.
The metal ion content was sodium 14 ppb, iron 15 ppb, potassium <10 ppb, calcium <10 ppb, magnesium <10 ppb, copper 25 ppb and zinc <10 ppb.
Reference Example 7
The procedure of Reference Example 6 was repeated and the metal ion content measured with a 40% novolac resin solution was sodium <20 ppb and iron 40 ppb.
Reference Example 8
The procedure of Reference Example 6 was repeated, and the metal ion content measured with a 40% novolak resin solution was sodium <20 ppb and iron <20 ppb.
Reference Example 9
The procedure of Reference Example 6 was repeated, and the metal ion content measured with a 40% novolak resin solution was sodium <20 ppb and iron 60 ppb.
Reference Example 10
Pressure rating 2,068,428 PA (300 psig) and 7.62 cm. 27.9 Kg (62 lbs) of unrefined oxalic acid as powder through a 7580 liter (2000 gal.) Stainless steel lined reaction vessel with (3 inch) 792,897 PA (115 psig) rupture disk through a mouth equipped with a ball valve. .) And 18.95 liters (5 gal.) Of deionized water were added. 2809.35 Kg (6243 lbs.) Of 41.6% m-cresol, 47.7% p-cresol, and 10.6% of a 55/45 mixture of 2,5-xylenol and 2,4-xylenol. added.
[0048]
The reaction vessel agitator was set at 100 rpm and the temperature was maintained at 92-96 ° C. Over 90 minutes, 1415.25 Kg (3145 lbs.) Of the formaldehyde solution of Reference Example 2 was added at a flow rate of about 14.985 Kg (33.3 lbs.) / Min. The temperature was then maintained at 92-96 ° C. for 7 hours. Atmospheric distillation of the solvent was begun and the temperature of the reaction mixture rose to about 190 ° C. during 6 hours. The reaction vessel was further heated and depressurized until a temperature of about 200 ° C. and 4666 PA (35 mm Hg) vacuum was reached, and this state was maintained for about 30 minutes. The vacuum was then released and the reaction was complete.
[0049]
PGMEA 3375 Kg (7500 lbs.) Was added to the reaction vessel over about 35 minutes. The product was dissolved in PGMEA and the resulting novolac resin solution was passed through a 0.4 micron (0.4 micron) Cuno cartridge filter. The 40% novolak solution in PGMEA contained sodium ions 64 ppb, potassium ions 28 ppb, iron ions 47 ppb, chromium ions 43 ppb, calcium 47 ppb and aluminum ions 30 ppb.
Reference Example 11
The procedure of Reference Example 10 was repeated using 1372.5 Kg (3050 lbs.) Of a 37% solution of formaldehyde with a low metal ion content of Reference Example 2. The product was dissolved in about 3375 Kg (7500 lbs.) Of PGMEA. The resulting 40% novolak solution in PGMEA contained sodium ions 43 ppb, potassium ions 15 ppb, iron ions 56 ppb, chromium ions 86 ppb, calcium 45 ppb and aluminum ions 28 ppb.
Comparative Example 12
The procedure of Reference Example 2 was repeated except that the formaldehyde was not passed through the ion exchange resin to reduce the metal ion content. The novolak resin was produced in the same manner as in Reference Example 6 and dissolved in diglyme to obtain a solution containing 20% by weight of the novolak resin. This untreated solution contained about 150 ppb sodium and about 1400 ppb iron. The solution was then passed through an ion exchange resin by the procedure described in Reference Example 5. The resulting solution had a sodium content of about 110 ppb and an iron content of about 1250 ppb.
[0050]
Example 13
A column was produced with Amberlyst-15 (bed volume 45 ml) and washed as in Reference Example 1. A sufficient amount of distilled diglyme is passed through the column to remove substantially all of the water, and then an unpurified novolak resin (having the same composition as the purified novolak resin of Reference Example 6) containing 1300 ppb sodium and 210 ppb iron. Of PGMEA was passed through the column. The first 14 ml, the invalid volume of the column (mostly diglyme), was discarded. The resulting resin solution had very low metal ions, sodium <20 ppb and iron <20 ppb.
Example 14
The procedure of Example 13 was repeated and 104 g of the same resin solution was washed, but the measured metal content was 20 ppb sodium and <20 ppb iron.
Reference Example 15
2,1,4-diazoester of 2,3,4,4′-tetrahydroxybenzophenone (PAC) in three different concentrations from a 45.82 wt% solution of the purified novolak resin of Reference Example 6 in EEP That is, 8%, 12% and 16% (% by weight of total solid components) were added to produce a photoresist solution. Using standard techniques, each photoresist solution was spin coated onto a quartz plate at a constant rate to form a photoresist layer with an initial thickness of 1.5 microns (1.5 μm). These films were baked at 90 ° C. for 30 minutes in a circulating air open. RO and R were measured for each photoresist composition.
[0051]
RO was measured in 0.263N tetramethylammonium hydroxide (TMAH) developer (25 ± 0.5 ° C.). RO is unexposed or dark film loss, determined by placing the film in developer for 30 minutes and measuring total film loss. RO is displayed as the film loss rate in angstroms / minute.
[0052]
R is the film loss rate of the fully decolored film, again measured for each photoresist formulation in 0.263 NTMAH developer (25 ± 0.5 ° C.). The dose required to completely decolor each coating was determined by measuring the absorbance at 377 nm after exposure to various levels of radiation for a 1.5 micrometer (1.5 μm) coating on a quartz plate. Asked. R was calculated by measuring the time required to completely dissolve the 1.5 micrometer (1.5 μm) decolorized film. R is also displayed in angstroms / minute.
[0053]
Minimum exposure (DosetoClear) exposes a 1.5 micrometer (1.5 μm) coating to a narrow band 365 ± 10 nm under an Optoline gradient mask to obtain the first transparent or fully developed step It was determined by calculating the energy required for. All development was done in 0.263 TMAH at 25 ± 0.5 ° C. for 1 minute.
[0054]
[Table 1]
Figure 0004065746

Claims (19)

水に不溶で、水性アルカリに可溶な、金属イオン含有量が非常に低いノボラック樹脂の製造法であって、
a)酸性イオン交換樹脂を水で処理し、続いて前記イオン交換樹脂を鉱酸溶液で洗浄し、それによって前記イオン交換樹脂中のナトリウムおよび鉄イオンの総量を500ppb未満に下げること、
b)ノボラック樹脂を溶剤に溶解させた溶液を用意すること、
c)段階a)からの前記イオン交換樹脂を、ノボラック樹脂溶剤と同じであるか、または相容性がある溶剤で洗浄すること、および
d)段階c)からの前記イオン交換樹脂に段階b)からのノボラック樹脂溶液を通し、それによって前記溶液のナトリウムおよび鉄イオンの総量を、40重量%濃度溶液において500ppb未満に下げること、
を含んでなることを特徴とする方法。
A method for producing a novolak resin that is insoluble in water, soluble in aqueous alkali, and has a very low metal ion content,
a) treating the acidic ion exchange resin with water, followed by washing the ion exchange resin with a mineral acid solution, thereby reducing the total amount of sodium and iron ions in the ion exchange resin to less than 500 ppb;
b) preparing a solution in which a novolak resin is dissolved in a solvent;
c) washing the ion exchange resin from step a) with a solvent that is the same as or compatible with the novolac resin solvent; and d) step b) into the ion exchange resin from step c). Passing the novolac resin solution from, thereby reducing the total amount of sodium and iron ions in the solution to less than 500 ppb in a 40 wt% strength solution,
A method comprising the steps of:
段階a)において、前記イオン交換樹脂が、ナトリウムおよび鉄イオンの総量が100ppb未満に下がるまで洗浄される、請求項1に記載の方法。 The process according to claim 1 , wherein in step a) the ion exchange resin is washed until the total amount of sodium and iron ions falls below 100 ppb. 精製された前記ノボラック樹脂溶液のナトリウムおよび鉄イオンの総量が、40重量%濃度溶液において180ppb未満である、請求項1に記載の方法。  The method of claim 1, wherein the total amount of sodium and iron ions in the purified novolak resin solution is less than 180 ppb in a 40 wt% strength solution. 段階b)及び/またはc)において使用される前記溶剤が、プロピレングリコールメチルエーテルアセテートおよびエチル−3−エトキシプロピオネートからなる群から選択される、請求項1に記載の方法。 The process according to claim 1, wherein the solvent used in step b) and / or c) is selected from the group consisting of propylene glycol methyl ether acetate and ethyl-3-ethoxypropionate. ノボラック樹脂の溶剤および前記イオン交換樹脂の洗浄に使用される溶剤が同一である、請求項1に記載の方法。  The method of claim 1, wherein the solvent of the novolac resin and the solvent used for cleaning the ion exchange resin are the same. 金属イオン含有量が非常に低いポジ型フォトレジストの製造方法であって、
a)酸性イオン交換樹脂を水で処理し、続いて前記イオン交換樹脂を鉱酸溶液で洗浄し、それによって前記イオン交換樹脂中のナトリウムおよび鉄イオンの総量を500ppb未満に下げること、
b)ノボラック樹脂を溶剤に溶解させた溶液を用意すること、
c)段階a)からの前記酸性イオン交換樹脂を、ノボラック樹脂溶剤と同じであるか、または相容性がある溶剤で洗浄すること、
d)段階c)からの前記イオン交換樹脂に段階b)からのノボラック樹脂溶液を通し、それによって、前記溶液のナトリウムおよび鉄イオンの総量を、40重量%濃度溶液において500ppb未満に下げること、および
e)1)フォトレジスト組成物を光増感させるのに十分な量の感光性成分、2)段階d)からの、前記水に不溶で水性アルカリに可溶な、金属イオンの総量が非常に少ないノボラック樹脂、および3)溶剤の混合物を用意すること、
を含んでなることを特徴とする方法。
A method for producing a positive photoresist having a very low metal ion content,
a) treating the acidic ion exchange resin with water, followed by washing the ion exchange resin with a mineral acid solution, thereby reducing the total amount of sodium and iron ions in the ion exchange resin to less than 500 ppb;
b) preparing a solution in which a novolak resin is dissolved in a solvent;
c) washing the acidic ion exchange resin from step a) with a solvent that is the same as or compatible with the novolac resin solvent;
d) passing the novolac resin solution from step b) through the ion exchange resin from step c), thereby reducing the total amount of sodium and iron ions in the solution to less than 500 ppb in a 40 wt% solution; and e) 1) a sufficient amount of photosensitive component to photosensitize the photoresist composition, 2) the total amount of metal ions from step d) insoluble in water and soluble in aqueous alkali is very high Preparing a small novolac resin, and 3) a mixture of solvents,
A method comprising the steps of:
段階a)において、前記イオン交換樹脂が、ナトリウムおよび鉄イオンの総量が100ppb未満に下がるまで洗浄される請求項6に記載の方法。The method according to claim 6 , wherein in step a), the ion exchange resin is washed until the total amount of sodium and iron ions falls below 100 ppb. 精製された前記ノボラック樹脂溶液のナトリウムおよび鉄イオンの総量が、40重量%濃度溶液において180ppb未満である、請求項6に記載の方法。  The method according to claim 6, wherein the total amount of sodium and iron ions in the purified novolak resin solution is less than 180 ppb in a 40 wt% strength solution. 段階b)及び/またはc)及び/またはe)において使用される前記溶剤が、プロピレングリコールメチルエーテルアセテートおよびエチル−3−エトキシプロピオネートからなる群から選択される、請求項6に記載の方法。 The process according to claim 6, wherein the solvent used in steps b) and / or c) and / or e) is selected from the group consisting of propylene glycol methyl ether acetate and ethyl-3-ethoxypropionate. . ノボラック樹脂の溶剤および前記イオン交換樹脂の洗浄に使用される溶剤が同一である、請求項6に記載の方法。  The method according to claim 6, wherein the solvent for the novolac resin and the solvent used for washing the ion exchange resin are the same. ノボラック樹脂の溶剤、前記イオン交換樹脂の洗浄に使用される溶剤、および前記フォトレジスト組成物用の溶剤がすべて同一である、請求項6に記載の方法。  The method of claim 6, wherein the novolac resin solvent, the solvent used to clean the ion exchange resin, and the solvent for the photoresist composition are all the same. 基材をポジ型フォトレジスト組成物で被覆し、基材上に写真画像を形成することにより半導体デバイスを製造する方法であって、
a)酸性イオン交換樹脂を水で処理し、続いて前記イオン交換樹脂を鉱酸溶液で洗浄し、それによって前記イオン交換樹脂中のナトリウムおよび鉄イオンの総量を500ppb未満に下げること、
b)ノボラック樹脂を溶剤に溶解させた溶液を用意すること、
c)段階a)からの前記酸性イオン交換樹脂を、ノボラック樹脂溶剤と同じであるか、または相容性がある溶剤で洗浄すること、
d)段階c)からの前記イオン交換樹脂に段階b)からのノボラック樹脂溶液を通し、それによって前記溶液のナトリウムおよび鉄イオンの総量を、40重量%濃度溶液において500ppb未満に下げること、
e)1)フォトレジスト組成物を光増感させるのに十分な量の感光性成分、2)段階d)からの、水に不溶で、水性アルカリに可溶な、金属イオンの総量が非常に少ないノボラック樹脂、および3)溶剤の混合物を用意すること、および
f)基材を段階e)からの混合物で被覆し、この被覆された基材を実質的にすべての溶剤が除去されるまで熱処理し、感光性組成物を像様に露光させ、その様な組成物の、像様に露光した区域を、現像剤で除去すること、
を含んでなることを特徴とする方法。
A method of manufacturing a semiconductor device by coating a substrate with a positive photoresist composition and forming a photographic image on the substrate,
a) treating the acidic ion exchange resin with water, followed by washing the ion exchange resin with a mineral acid solution, thereby reducing the total amount of sodium and iron ions in the ion exchange resin to less than 500 ppb;
b) preparing a solution in which a novolak resin is dissolved in a solvent;
c) washing the acidic ion exchange resin from step a) with a solvent that is the same as or compatible with the novolac resin solvent;
d) passing the novolac resin solution from step b) through the ion exchange resin from step c), thereby reducing the total amount of sodium and iron ions in the solution to less than 500 ppb in a 40 wt% solution;
e) 1) a sufficient amount of photosensitive component to photosensitize the photoresist composition, 2) the total amount of metal ions from step d) insoluble in water and soluble in aqueous alkali is very high 3) providing a mixture of less novolac resin, and 3) solvent, and f) coating the substrate with the mixture from step e) and heat treating the coated substrate until substantially all of the solvent is removed. Exposing the photosensitive composition imagewise and removing the imagewise exposed areas of such composition with a developer;
A method comprising the steps of:
前記現像剤が水性アルカリ現像剤である、請求項12に記載の方法。  The method of claim 12, wherein the developer is an aqueous alkaline developer. さらに、除去工程の直前または後に、被覆した基材をベーク処理する工程を含んでなる、請求項12に記載の方法。  The method of claim 12, further comprising the step of baking the coated substrate immediately before or after the removing step. 段階a)において、前記イオン交換樹脂が、ナトリウムおよび鉄イオンの総量が100ppb未満に下がるまで洗浄される、請求項12に記載の方法。13. The method according to claim 12 , wherein in step a), the ion exchange resin is washed until the total amount of sodium and iron ions falls below 100 ppb. 精製された前記ノボラック樹脂溶液のナトリウムおよび鉄イオンの総量が、40重量%濃度溶液において180ppb未満である、請求項12に記載の方法。  The method according to claim 12, wherein the total amount of sodium and iron ions in the purified novolak resin solution is less than 180 ppb in a 40 wt% strength solution. 段階b)及び/またはc)及び/またはe)において使用される前記溶剤が、プロピレングリコールメチルエーテルアセテートおよびエチル−3−エトキシプロピオネートからなる群から選択される、請求項12に記載の方法。 The process according to claim 12, wherein the solvent used in steps b) and / or c) and / or e) is selected from the group consisting of propylene glycol methyl ether acetate and ethyl-3-ethoxypropionate. . ノボラック樹脂の溶剤および前記イオン交換樹脂の洗浄に使用される溶剤が同一である、請求項12に記載の方法。  The method of claim 12, wherein the solvent of the novolac resin and the solvent used for cleaning the ion exchange resin are the same. ノボラック樹脂の溶剤、前記イオン交換樹脂の洗浄に使用される溶剤、および前記フォトレジスト組成物用の溶剤がすべて同一である、請求項12に記載の方法。  13. The method of claim 12, wherein the solvent for the novolac resin, the solvent used for cleaning the ion exchange resin, and the solvent for the photoresist composition are all the same.
JP2002255832A 1991-12-18 2002-07-29 Reduction of metal ions in novolac resin Expired - Fee Related JP4065746B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US80959191A 1991-12-18 1991-12-18
US809,591 1991-12-18

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP51114293A Division JP3630422B2 (en) 1991-12-18 1992-12-15 Reduction of metal ions in novolac resin

Publications (2)

Publication Number Publication Date
JP2003160625A JP2003160625A (en) 2003-06-03
JP4065746B2 true JP4065746B2 (en) 2008-03-26

Family

ID=25201706

Family Applications (2)

Application Number Title Priority Date Filing Date
JP51114293A Expired - Lifetime JP3630422B2 (en) 1991-12-18 1992-12-15 Reduction of metal ions in novolac resin
JP2002255832A Expired - Fee Related JP4065746B2 (en) 1991-12-18 2002-07-29 Reduction of metal ions in novolac resin

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP51114293A Expired - Lifetime JP3630422B2 (en) 1991-12-18 1992-12-15 Reduction of metal ions in novolac resin

Country Status (7)

Country Link
US (1) US5594098A (en)
EP (1) EP0617709B1 (en)
JP (2) JP3630422B2 (en)
KR (1) KR100231655B1 (en)
DE (1) DE69215383T2 (en)
SG (1) SG48902A1 (en)
WO (1) WO1993012152A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5580949A (en) * 1991-12-18 1996-12-03 Hoechst Celanese Corporation Metal ion reduction in novolak resins and photoresists
JP3184530B2 (en) * 1992-03-06 2001-07-09 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Photoresist with low metal ion level
US5830990A (en) * 1992-07-10 1998-11-03 Clariant Finance (Bvi) Limited Low metals perfluorooctanoic acid and top anti-reflective coatings for photoresists
SG52770A1 (en) * 1992-07-10 1998-09-28 Hoechst Celanese Corp Metal ion reduction in top anti-reflective coatings for photoresists
DE69313132T2 (en) * 1992-11-25 1997-12-11 Hoechst Celanese Corp METALION REDUCTION IN ANTI-REFLECTIVE UNDERLAYERS FOR PHOTORESIST
US5614349A (en) * 1992-12-29 1997-03-25 Hoechst Celanese Corporation Using a Lewis base to control molecular weight of novolak resins
US5476750A (en) * 1992-12-29 1995-12-19 Hoechst Celanese Corporation Metal ion reduction in the raw materials and using a Lewis base to control molecular weight of novolak resin to be used in positive photoresists
US5286606A (en) * 1992-12-29 1994-02-15 Hoechst Celanese Corporation Process for producing a developer having a low metal ion level
US5443736A (en) * 1993-10-20 1995-08-22 Shipley Company Inc. Purification process
US5472616A (en) * 1993-10-27 1995-12-05 Shipley Company, Inc. Modified anion exchange process
US5350714A (en) * 1993-11-08 1994-09-27 Shipley Company Inc. Point-of-use purification
US5525315A (en) * 1993-12-07 1996-06-11 Shipley Company, L.L.C. Process for removing heavy metal ions with a chelating cation exchange resin
US5679766A (en) * 1993-12-07 1997-10-21 Shipley Company, L.L.C. Purification process of novolar resins using acid treated chelating cation exchange resin
US5500127A (en) * 1994-03-14 1996-03-19 Rohm And Haas Company Purification process
WO1996012214A1 (en) * 1994-10-12 1996-04-25 Hoechst Celanese Corporation Low metal ion photoactive compounds and photoresists compositions produced therefrom
US5837417A (en) * 1994-12-30 1998-11-17 Clariant Finance (Bvi) Limited Quinone diazide compositions containing low metals p-cresol oligomers and process of producing the composition
US5614352A (en) * 1994-12-30 1997-03-25 Hoechst Celanese Corporation Metal ion reduction in novolak resins solution in PGMEA by chelating ion exchange resin
US5521052A (en) * 1994-12-30 1996-05-28 Hoechst Celanese Corporation Metal ion reduction in novolak resin using an ion exchange catalyst in a polar solvent and photoresists compositions therefrom
WO1997000465A1 (en) * 1995-06-16 1997-01-03 Clariant International Ltd. Resin compositions for photoresist applications
US5739265A (en) * 1995-09-20 1998-04-14 Clariant Finance (Bvi) Ltd. Fractionation of phenol formaldehyde condensate and photoresist compositions produced therefrom
US5693749A (en) * 1995-09-20 1997-12-02 Hoechst Celanese Corporation Fractionation of phenol formaldehyde condensate and photoresist compositions produced therefrom
US5750031A (en) * 1995-09-26 1998-05-12 Clariant Finance (Bvi) Limited Process for producing surfactant having a low metal ion level and developer produced therefrom
US5656413A (en) * 1995-09-28 1997-08-12 Hoechst Celanese Corporation Low metal ion containing 4,4'-[1-[4-[1-(4-Hydroxyphenyl)-1-methylethyl]phenyl]ethylidene]bisphe nol and photoresist compositions therefrom
US5962183A (en) * 1995-11-27 1999-10-05 Clariant Finance (Bvi) Limited Metal ion reduction in photoresist compositions by chelating ion exchange resin
US5665517A (en) * 1996-01-11 1997-09-09 Hoechst Celanese Corporation Acidic ion exchange resin as a catalyst to synthesize a novolak resin and photoresist composition therefrom
US5789522A (en) * 1996-09-06 1998-08-04 Shipley Company, L.L.C. Resin purification process
US6200479B1 (en) 1997-01-14 2001-03-13 Shipley Company, L.L.C. Phenolic resin purification
US5702611A (en) * 1997-01-14 1997-12-30 Shipley Company, L.L.C. Process for removing heavy metal ions by ion exchange
US5936071A (en) * 1998-02-02 1999-08-10 Clariant Finance (Bvi) Limited Process for making a photoactive compound and photoresist therefrom
JP2002182402A (en) * 2000-12-18 2002-06-26 Shin Etsu Chem Co Ltd Method for refining base polymer of resist
US20040206702A1 (en) * 2002-08-08 2004-10-21 Davidson James M. Use of an oxidizer to improve trace metals removal from photoresist and photoresist components
JP2005075767A (en) * 2003-08-29 2005-03-24 Idemitsu Kosan Co Ltd Photoresist base and method for refining the same, and photoresist composition
JPWO2005097725A1 (en) * 2004-04-05 2008-02-28 出光興産株式会社 Calix resorcinarene compound, photoresist substrate and composition thereof

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2929808A (en) * 1956-04-04 1960-03-22 Exxon Research Engineering Co Removal of metal contaminants in polymerization processes
US4033909A (en) * 1974-08-13 1977-07-05 Union Carbide Corporation Stable phenolic resoles
US4033910A (en) * 1975-09-26 1977-07-05 Union Carbide Corporation Methyl formate as an adjuvant in phenolic foam formation
GB1509354A (en) * 1976-04-24 1978-05-04 Maruzen Oil Co Ltd Process for purifying halogenated alkenyl-phenol polymers
JPH063549B2 (en) * 1984-12-25 1994-01-12 株式会社東芝 Positive photoresist developer composition
US4636540A (en) * 1985-07-08 1987-01-13 Atlantic Richfield Company Purification of polymer solutions
US4784937A (en) * 1985-08-06 1988-11-15 Tokyo Ohka Kogyo Co., Ltd. Developing solution for positive-working photoresist comprising a metal ion free organic base and an anionic surfactant
JPS6232453A (en) * 1985-08-06 1987-02-12 Tokyo Ohka Kogyo Co Ltd Developing solution for positive type photoresist
US4747954A (en) * 1985-09-16 1988-05-31 The Dow Chemical Company Removal of metals from solutions
JPH0737486B2 (en) * 1986-11-18 1995-04-26 日本ゼオン株式会社 Method for purifying polymer for semiconductor substrate coating material
JPH0680119B2 (en) * 1986-06-27 1994-10-12 日本ゼオン株式会社 Purification method of novolak resin
JPS6472155A (en) * 1987-09-12 1989-03-17 Tama Kagaku Kogyo Kk Developing solution for positive type photoresist
GB8729510D0 (en) * 1987-12-18 1988-02-03 Ucb Sa Photosensitive compositions containing phenolic resins & diazoquinone compounds
JPH0751611B2 (en) * 1988-01-25 1995-06-05 旭有機材工業株式会社 Method for producing phenolic resin and bisphenol
JPH01228560A (en) * 1988-03-08 1989-09-12 Hitachi Chem Co Ltd Manufacture of solution containing decreased impure metallic components
JP2536600B2 (en) * 1988-08-29 1996-09-18 日本合成ゴム株式会社 Method for removing low-nuclear body in novolak resin
US5175078A (en) * 1988-10-20 1992-12-29 Mitsubishi Gas Chemical Company, Inc. Positive type photoresist developer
JPH03128903A (en) * 1989-07-13 1991-05-31 Fine Kurei:Kk Method for modifying synthetic resin and modified synthetic resin
DE3923426A1 (en) * 1989-07-15 1991-01-17 Hoechst Ag METHOD FOR PRODUCING NOVOLAK RESIN WITH A LOW METAL ION CONTENT
JPH0465415A (en) * 1990-07-04 1992-03-02 Hitachi Chem Co Ltd Production of novolak resin having decreased inpurity metal content
US5378802A (en) * 1991-09-03 1995-01-03 Ocg Microelectronic Materials, Inc. Method for removing impurities from resist components and novolak resins
JP2771075B2 (en) * 1991-09-03 1998-07-02 オリン・マイクロエレクトロニツク・ケミカルズ・インコーポレイテツド Method for removing metal impurities from resist components
JP2771076B2 (en) * 1991-09-03 1998-07-02 オリン・マイクロエレクトロニツク・ケミカルズ・インコーポレイテツド Method for removing metal impurities from resist components
JPH0768297B2 (en) * 1991-11-28 1995-07-26 丸善石油化学株式会社 Method for purifying vinylphenol polymer for photoresist
JPH0768296B2 (en) * 1991-11-28 1995-07-26 丸善石油化学株式会社 Method for removing metal from vinylphenol polymer
JP3184530B2 (en) * 1992-03-06 2001-07-09 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Photoresist with low metal ion level
JPH0673148A (en) * 1992-07-03 1994-03-15 Gun Ei Chem Ind Co Ltd Production of phenolic resin
SG52770A1 (en) * 1992-07-10 1998-09-28 Hoechst Celanese Corp Metal ion reduction in top anti-reflective coatings for photoresists
DE69313132T2 (en) * 1992-11-25 1997-12-11 Hoechst Celanese Corp METALION REDUCTION IN ANTI-REFLECTIVE UNDERLAYERS FOR PHOTORESIST
US5476750A (en) * 1992-12-29 1995-12-19 Hoechst Celanese Corporation Metal ion reduction in the raw materials and using a Lewis base to control molecular weight of novolak resin to be used in positive photoresists
US5286606A (en) * 1992-12-29 1994-02-15 Hoechst Celanese Corporation Process for producing a developer having a low metal ion level
WO1994014858A1 (en) * 1992-12-29 1994-07-07 Hoechst Celanese Corporation Metal ion reduction in polyhydroxystyrene and photoresists
JP3282284B2 (en) * 1993-03-31 2002-05-13 日本ゼオン株式会社 Processing method of photosensitive composition

Also Published As

Publication number Publication date
SG48902A1 (en) 1998-05-18
WO1993012152A1 (en) 1993-06-24
EP0617709A1 (en) 1994-10-05
DE69215383T2 (en) 1997-04-30
US5594098A (en) 1997-01-14
JP3630422B2 (en) 2005-03-16
DE69215383D1 (en) 1997-01-02
EP0617709B1 (en) 1996-11-20
KR100231655B1 (en) 1999-11-15
KR940703873A (en) 1994-12-12
JPH07502295A (en) 1995-03-09
JP2003160625A (en) 2003-06-03

Similar Documents

Publication Publication Date Title
JP4065746B2 (en) Reduction of metal ions in novolac resin
JP3547743B2 (en) Reduction of metal ions in raw materials
JP3612077B2 (en) Method for reducing metal ions in a novolak resin using an ion exchange catalyst in a polar solvent, and a photoresist composition obtained therefrom
US5543263A (en) Photoresist having a low level of metal ions
WO1994014858A1 (en) Metal ion reduction in polyhydroxystyrene and photoresists
EP0863925B1 (en) Metal ion reduction in photoresist compositions by chelating ion exchange resin
JP3895776B2 (en) 4,4 &#39;-[1- [4- [1- (4-Hydroxyphenyl) -1-methylethyl] phenyl] ethylidene] bisphenol having a low metal ion concentration and a photoresist composition obtained therefrom
EP0805828B1 (en) Metal ion reduction in novolak resins solution in pgmea by chelating ion exchange resin
EP0777694B1 (en) Metal ion reduction in novolak resin solution using an anion exchange resin
EP0948756B1 (en) A method for reducing metal ion contaminants in photoresist compositions containing an organic polar solvent by ion exchange
EP1144119B1 (en) Trace metal ion reduction by ion exchange pack
US5580949A (en) Metal ion reduction in novolak resins and photoresists

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050525

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080107

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees