JP4064986B2 - Method for selecting measurement points for optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics - Google Patents

Method for selecting measurement points for optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics Download PDF

Info

Publication number
JP4064986B2
JP4064986B2 JP2005236375A JP2005236375A JP4064986B2 JP 4064986 B2 JP4064986 B2 JP 4064986B2 JP 2005236375 A JP2005236375 A JP 2005236375A JP 2005236375 A JP2005236375 A JP 2005236375A JP 4064986 B2 JP4064986 B2 JP 4064986B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
optical output
value
drive current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005236375A
Other languages
Japanese (ja)
Other versions
JP2007053184A (en
Inventor
伸悟 河合
秀雄 川田
直人 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005236375A priority Critical patent/JP4064986B2/en
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to PCT/JP2006/301803 priority patent/WO2006098094A1/en
Priority to KR1020067021872A priority patent/KR100865428B1/en
Priority to CA2592373A priority patent/CA2592373C/en
Priority to EP08018484A priority patent/EP2043208B1/en
Priority to CN 200810145183 priority patent/CN101383484B/en
Priority to DE602006011692T priority patent/DE602006011692D1/en
Priority to CA002560143A priority patent/CA2560143C/en
Priority to CN2010101639298A priority patent/CN101867152B/en
Priority to CA2592318A priority patent/CA2592318C/en
Priority to EP09014055A priority patent/EP2146408B1/en
Priority to EP06712946A priority patent/EP1772932B1/en
Priority to CA2592479A priority patent/CA2592479C/en
Priority to EP12002642.2A priority patent/EP2479854B1/en
Priority to EP09014056.7A priority patent/EP2146409B1/en
Priority to US11/568,109 priority patent/US7869717B2/en
Publication of JP2007053184A publication Critical patent/JP2007053184A/en
Application granted granted Critical
Publication of JP4064986B2 publication Critical patent/JP4064986B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、光出力波長、光出力電力及びRF振幅を指定された値に設定・制御する直接変調型の光通信用光源部と、該直接変調型の光通信用光源部において光出力波長、光出力電力及びRF振幅の設定・制御に用いられる発光素子の光出力波長特性、光出力電力特性及びRF振幅特性の測定点の選定方法に関するものである。   The present invention provides a direct modulation type optical communication light source unit that sets and controls an optical output wavelength, optical output power, and RF amplitude to specified values, and an optical output wavelength in the direct modulation type optical communication light source unit, The present invention relates to a method of selecting measurement points of light output wavelength characteristics, light output power characteristics, and RF amplitude characteristics of a light emitting element used for setting and controlling light output power and RF amplitude.

近年、インターネット接続環境のブロードバンド化が急速に進展してきた。これに伴い、コア系からアクセス・メトロ系の全面に亘り、ネットワークの伝送容量の更なる増大が必要となってきた。このため、光通信技術を用いた大容量ネットワークの開発が盛んに行われている。   In recent years, broadbandization of the Internet connection environment has progressed rapidly. Along with this, it has become necessary to further increase the transmission capacity of the network from the core system to the entire access / metro system. For this reason, development of large-capacity networks using optical communication technology has been actively conducted.

光通信用光源部では、電気信号を光信号に変換するために、レーザダイオード(LD)等の発光素子が用いられる。その際、正常な光通信を確保するために、光源部を構成する各発光素子の光出力波長及び光出力電力は、それぞれ定められた光波長配置及び光伝送路の損失に応じて決定した値に設定するとともに、それらの値に保持されるよう制御する必要がある。各発光素子の光出力波長及び光出力電力は、駆動電流及び素子温度に依存し、通常の動作範囲では、一意的に決まるものである。   In the optical communication light source unit, a light emitting element such as a laser diode (LD) is used to convert an electrical signal into an optical signal. At that time, in order to ensure normal optical communication, the light output wavelength and the light output power of each light emitting element constituting the light source unit are values determined according to the determined light wavelength arrangement and the loss of the optical transmission path, respectively. It is necessary to control to be held at those values. The light output wavelength and light output power of each light-emitting element depend on the drive current and element temperature, and are uniquely determined in the normal operating range.

しかしながら、発光素子を長時間連続使用していると、経年変化等により光出力電力が変動し、この光出力電力の変動に伴い光出力電力を自動的に制御する手段(自動電力制御回路:APC)が動作し、この結果、各発光素子の駆動電流も光出力電力が定められた値に保たれるように変動する。これは、各発光素子の光出力波長を、定められた光波長配置の許容範囲外へ変動させてしまうこととなる。   However, when the light emitting element is continuously used for a long time, the optical output power fluctuates due to secular change or the like, and means for automatically controlling the optical output power in accordance with the fluctuation of the optical output power (automatic power control circuit: APC) As a result, the drive current of each light emitting element also fluctuates so that the optical output power is maintained at a predetermined value. This causes the light output wavelength of each light emitting element to fluctuate outside the allowable range of the predetermined light wavelength arrangement.

従来技術では、素子温度を自動的に制御する手段、光出力電力を自動的に制御する手段、及び光出力波長を自動的に制御する手段(波長ロッカ)を組み合わせて用いることにより、光出力波長及び光出力電力の定められた値への設定及び制御を実現してきた。   In the prior art, by combining a means for automatically controlling the element temperature, a means for automatically controlling the optical output power, and a means for automatically controlling the light output wavelength (wavelength locker), the light output wavelength is used. And setting and controlling the optical output power to a predetermined value.

しかしながら、この波長ロッカが非常に高価であり、かつ非常に複雑な設定・制御が必要であることが、低価格かつ簡易であることが必須であるアクセス・メトロ系への適応においては、大きな障壁となっていた。   However, this wavelength locker is very expensive and requires very complicated settings and control, and it is a major obstacle in adapting to access and metro systems where low cost and simplicity are essential. It was.

このような従来技術によるLD等の発光素子の光出力波長及び光出力電力の設定方法の一例は、非特許文献1に記述されている。その概要を以下で説明する。   An example of a method for setting the optical output wavelength and optical output power of a light emitting element such as an LD according to the prior art is described in Non-Patent Document 1. The outline will be described below.

図1に、従来技術による光通信用光源部の構成例を示す。   FIG. 1 shows a configuration example of a light source unit for optical communication according to the prior art.

この光通信用光源部は、発光素子11と、発光素子11からの光出力a1の光出力電力を与えられた目標値に保つよう自動的に制御する手段12と、発光素子11の素子温度を与えられた目標値に保つよう自動的に制御する手段13と、発光素子11からの光出力を分岐する手段14と、分岐された光出力b1の光出力波長を与えられた目標値に保つよう自動的に制御する手段(波長ロッカ)15とから構成される。この光源部において、発光素子11の光出力波長及び光出力電力の設定は以下のように行う。   The light source for optical communication includes a light emitting element 11, a means 12 for automatically controlling the light output power of the light output a 1 from the light emitting element 11 to be kept at a given target value, and an element temperature of the light emitting element 11. Means 13 for automatically controlling to keep the given target value, means 14 for branching the light output from the light emitting element 11, and keeping the light output wavelength of the branched light output b1 at the given target value. It comprises automatic control means (wavelength locker) 15. In this light source unit, the light output wavelength and light output power of the light emitting element 11 are set as follows.

波長ロッカ15において、光出力の検出により発生する光電流は、図2(b)に示すように光出力波長に対して周期的に変化する。従来技術では、この性質を利用して、光出力波長の設定を行う。   In the wavelength locker 15, the photocurrent generated by the detection of the optical output periodically changes with respect to the optical output wavelength as shown in FIG. In the prior art, the optical output wavelength is set using this property.

具体的には、まず、素子温度を与えられた目標値に保つよう自動的に制御する手段13を用いて、図2(a)に示すように素子温度を粗調整することにより、図2(b)に示す、波長ロッカ15の別途指定される光出力波長に対応した引き込みレンジ内に、光出力波長を追い込む。次に、光出力電力を与えられた目標値に保つよう自動的に制御する手段12を同時に動作させて、光出力波長をこの引き込みレンジ内に保ったまま、光出力電力を別途指定される値に設定する。最後に、光出力電力を与えられた目標値に保つよう自動的に制御する手段12の制御目標値を指定された値に固定した状態で、波長ロッカ15及び素子温度を与えられた目標値に保つよう自動的に制御する手段13を同時に動作させる。   Specifically, first, the device temperature is roughly adjusted as shown in FIG. 2 (a) by using means 13 for automatically controlling the device temperature so as to keep it at a given target value. The optical output wavelength is driven into a pull-in range corresponding to a separately specified optical output wavelength of the wavelength locker 15 shown in b). Next, the means 12 for automatically controlling the optical output power to be kept at the given target value is operated simultaneously, and the optical output power is separately designated while keeping the optical output wavelength within the pull-in range. Set to. Finally, in a state where the control target value of the means 12 for automatically controlling the optical output power to be kept at the given target value is fixed to the designated value, the wavelength locker 15 and the element temperature are set to the given target value. The means 13 for automatically controlling to keep is operated simultaneously.

この時、波長ロッカ15内に発生する光電流が別途指定される光出力波長に対応した値となるように微調整することにより、光出力波長を指定される値へ精密に合わせ込む。   At this time, the light output wavelength is precisely adjusted to the designated value by finely adjusting the photocurrent generated in the wavelength locker 15 to a value corresponding to the separately designated light output wavelength.

また、従来技術によるLD等の発光素子の光出力波長及び光出力電力の制御方法の一例は、非特許文献2に記述されている。発光素子11の光出力波長及び光出力電力の制御は以下のように行う。   Non-patent document 2 describes an example of a method for controlling the optical output wavelength and optical output power of a light emitting element such as an LD according to the prior art. The light output wavelength and light output power of the light emitting element 11 are controlled as follows.

波長ロッカ15において、光出力の検出により発生する光電流は、図2(b)に示すように光出力波長に対して周期的に変化するため、この性質を利用して、光出力波長の制御を行う。   In the wavelength locker 15, the photocurrent generated by the detection of the optical output periodically changes with respect to the optical output wavelength as shown in FIG. 2 (b). Therefore, this property is used to control the optical output wavelength. I do.

具体的には、光出力電力を与えられた目標値に保つよう自動的に制御する手段12の制御目標値を指定された値に固定した状態で、波長ロッカ15及び素子温度を与えられた目標値に保つよう自動的に制御する手段13を同時に動作させておく。これにより、発光素子11の光出力電力が変動すると、光出力電力を与えられた目標値に保つよう自動的に制御する手段12が動作して、光出力電力が制御目標値となるように、発光素子11の駆動電流を変化させる。この駆動電流の変化は、発光素子11の光出力波長及び素子温度を変化させる。この結果、波長ロッカ15及び素子温度を与えられた目標値に保つよう自動的に制御する手段13が動作して、光出力波長を指定値に戻すと同時に、光出力電力の変動時の駆動電流に応じた素子温度を保つよう制御する。   Specifically, in the state where the control target value of the means 12 for automatically controlling the optical output power to be maintained at the given target value is fixed to the specified value, the wavelength locker 15 and the target given the element temperature. The means 13 for automatically controlling to keep the value is operated simultaneously. Thereby, when the light output power of the light emitting element 11 fluctuates, the means 12 for automatically controlling the light output power to maintain the given target value operates, so that the light output power becomes the control target value. The drive current of the light emitting element 11 is changed. This change in driving current changes the light output wavelength of the light emitting element 11 and the element temperature. As a result, the wavelength locker 15 and the means 13 for automatically controlling to keep the element temperature at the given target value operate to return the optical output wavelength to the specified value, and at the same time, the driving current when the optical output power fluctuates. Control is performed so as to maintain the element temperature in accordance with.

以上説明したように、従来技術では、発光素子11の光出力波長及び光出力電力の設定・制御を、複数の段階に分けて行うため、非常に複雑であり、かつ、非常に高価な波長ロッカ15が不可欠であった。
"PowerSource(TM) Tunable High Power CW Laser Module with Integrated Wavelength Monitoring",[online],Avanex Inc.,[平成17年3月7日検索],インターネット<URL:http://www.avanex.com/Products/datasheets/Transmission/PwrSource.1935TLI.C.pdf> 高木 他「25GHz間隔波長モニタ内蔵DFBレーザモジュール」2002年電子情報通信総合学会講演論文集C−4−44、2002年、349頁 A.Zadok, et al. "Spectral shift and broadening of DFB lasers under direct modulation", IEEE Photon.Technol.Lett., Vol.10, No.12, pp.1709-1711, 1998 ITU-T recommendation, G959.1, 2001
As described above, in the prior art, since the setting and control of the light output wavelength and light output power of the light emitting element 11 are performed in a plurality of stages, the wavelength locker is very complicated and very expensive. 15 was indispensable.
"PowerSource (TM) Tunable High Power CW Laser Module with Integrated Wavelength Monitoring", [online], Avanex Inc., [Search March 7, 2005], Internet <URL: http://www.avanex.com/ Products / datasheets / Transmission / PwrSource.1935TLI.C.pdf> Takagi et al. "DFB laser module with built-in 25GHz interval wavelength monitor" 2002 Proceedings of the IEICE General Conference C-4-44, 2002, page 349 A. Zadok, et al. "Spectral shift and broadening of DFB lasers under direct modulation", IEEE Photon. Technol. Lett., Vol. 10, No. 12, pp. 1709-1711, 1998 ITU-T recommendation, G959.1, 2001

上述のように、従来技術では、発光素子の光出力波長及び光出力電力の設定・制御を、複数の段階に分けて行うため、非常に複雑であり、かつ、非常に高価な波長ロッカが不可欠であった。しかしながら、これらの点は、低価格かつ簡易であることが必須であるアクセス・メトロ系への適用においては、大きな障壁となるという問題があった。   As described above, in the prior art, the setting and control of the light output wavelength and the light output power of the light emitting element are performed in a plurality of stages, so a very complicated and very expensive wavelength locker is indispensable. Met. However, these points have a problem that they become a great barrier in application to an access / metro system where low cost and simplicity are essential.

このような従来技術の問題は、発明者らが既に発明し、出願した、非常に複雑な設定・制御及び非常に高価な光部品(波長ロッカ)を不要とし、簡易かつ安価に光出力波長及び光出力電力の両方の設定・制御を行うようにした光通信用光源部により、解決することができる。以下、既出願発明(特願2004−230458及び特願2004−261496:以下、それぞれ先願1及び先願2と呼ぶ。)の内容について説明する。   Such a problem of the prior art eliminates the need for the very complicated setting and control and the very expensive optical component (wavelength locker) that the inventors have already invented and applied for, and the optical output wavelength and the wavelength can be simply and inexpensively. This can be solved by a light source for optical communication configured to set and control both optical output powers. The contents of the inventions already filed (Japanese Patent Application Nos. 2004-230458 and 2004-26196: hereinafter referred to as the prior application 1 and the prior application 2, respectively) will be described.

光出力波長及び光出力電力の設定を行う光通信用光源部は、先願1に記載されている。先願1では、LD等の発光素子の光出力波長及び光出力電力に関する以下のような性質を利用する。発光素子の光出力波長の駆動電流及び素子温度に対する依存性は、図3(a)に示すように、通常の動作範囲内においては、駆動電流及び素子温度のいずれに対しても単調減少する。また、発光素子の光出力電力の駆動電流及び素子温度に対する依存性は、図3(b)に示すように、通常の動作範囲内においては、駆動電流に対し単調増加し、素子温度に対し単調減少する。   The light source unit for optical communication for setting the optical output wavelength and the optical output power is described in the prior application 1. In the prior application 1, the following properties regarding the light output wavelength and light output power of a light emitting element such as an LD are used. As shown in FIG. 3A, the dependency of the light output wavelength of the light emitting element on the driving current and the element temperature is monotonously decreased with respect to both the driving current and the element temperature within the normal operating range. In addition, as shown in FIG. 3B, the dependence of the light output power of the light emitting element on the driving current and the element temperature increases monotonously with respect to the driving current and monotonically with respect to the element temperature within the normal operating range. Decrease.

従って、通常の動作範囲内に動作させる光出力波長を指定する時、この動作条件を満たす等光出力波長線を(駆動電流−素子温度)座標面へ正射影したものは、図3(a)に太い実線で示すように、その範囲内では右下がり(単調減少)の一本の開曲線となる。同様に、通常の動作範囲内に動作させる光出力電力を指定する時、この動作条件を満たす等光出力電力線を(駆動電流−素子温度)座標面へ正射影したものは、図3(b)に太い破線で示すように、その範囲内では右上がり(単調増加)の一本の開曲線となる。よって、図3(c)に示すように、これら2本の開曲線は、通常の動作範囲内では1点で交わる。従って、この交点の座標値(駆動電流、素子温度)は一意的に決まり、その値が、光出力波長及び光出力電力の両方が指定された値となる駆動電流及び素子温度の目標値である。   Therefore, when the optical output wavelength to be operated within the normal operating range is designated, the equivalent optical output wavelength line that satisfies this operating condition is orthogonally projected onto the (driving current-element temperature) coordinate plane as shown in FIG. As shown by a thick solid line, a single open curve that falls to the right (monotonically decreases) within that range. Similarly, when the optical output power to be operated within the normal operation range is designated, the iso-optical output power line that satisfies this operation condition is orthogonally projected onto the (drive current-element temperature) coordinate plane as shown in FIG. As shown by a thick broken line, a single open curve that rises to the right (monotonically increases) within the range. Therefore, as shown in FIG. 3C, these two open curves intersect at one point within the normal operating range. Therefore, the coordinate value (drive current, element temperature) of this intersection is uniquely determined, and the value is the target value of the drive current and element temperature at which both the optical output wavelength and the optical output power are specified. .

上記発明の光通信用光源部の構成例は、図5に示すように、LD等の発光素子により構成され、光出力を発生する手段21と、手段21を構成する発光素子の駆動電流または光出力電力を与えられた目標値に保つよう自動的に制御する手段22と、手段21を構成する発光素子の素子温度を与えられた目標値に保つよう自動的に制御する手段23と、手段21を構成する発光素子における、駆動電流と素子温度に対する光出力波長の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値、及び手段21を構成する発光素子における、駆動電流と素子温度に対する光出力電力の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値を格納しておく手段24と、手段24に格納された手段21を構成する発光素子に対する少なくとも1つの値により決まる、該発光素子の駆動電流と素子温度と光出力波長との関係と、該発光素子の駆動電流と素子温度と光出力電力との関係とから、該発光素子の光出力波長及び光出力電力の両方が別途指定された値となる駆動電流または光出力電力及び素子温度を決定する手段25とから構成される。なお、符号a2は手段21からの光出力、b2は指定された光出力波長及び光出力電力、c2は手段25により決定された駆動電流または光出力電力、d2は手段25により決定された素子温度である。 As shown in FIG. 5, the configuration example of the light source unit for optical communication according to the present invention is composed of a light emitting element such as an LD, and generates a light output 21 and a driving current or light of the light emitting element constituting the means 21. A means 22 for automatically controlling the output power to be kept at a given target value, a means 23 for automatically controlling the element temperature of the light emitting elements constituting the means 21 to be kept at a given target value, and means 21 in the light-emitting element in the light-emitting element, which constitutes at least one value of the optical output wavelength for the drive current and device temperature, Oh Rui least one parameter value for determining the these three relationships, and means 21 constituting the drive at least one value of the optical output power for current and device temperature, Oh Rui and means 24 for storing at least one parameter value for determining the these three relationships, means 24 The relationship between the drive current, the element temperature, and the light output wavelength of the light emitting element, the drive current of the light emitting element, the element temperature, and the light output power, which are determined by at least one value for the light emitting element constituting the stored means 21. Therefore, the light output wavelength and the light output power of the light emitting element are configured by means 25 for determining the drive current or the light output power and the element temperature at which both values are specified separately. The symbol a2 is the optical output from the means 21, b2 is the designated optical output wavelength and optical output power, c2 is the drive current or optical output power determined by the means 25, and d2 is the element temperature determined by the means 25. It is.

光出力波長及び光出力電力の設定は以下のように行う。   The setting of the optical output wavelength and the optical output power is performed as follows.

手段25において、手段24に格納された少なくとも1つの値を用いて、手段21を構成する発光素子に対する駆動電流と素子温度と光出力電力との関係を決めるパラメータ値を計算する。次に、指定された光出力波長及び光出力電力b2に基づき、前記計算されたパラメータ値を用いて、手段21を構成する発光素子の光出力波長及び光出力電力が同時に指定された値となる、駆動電流または光出力電力c2及び素子温度d2を計算する。前記計算された駆動電流または光出力電力c2を手段22へ目標値として設定すると共に、前記計算された素子温度d2を手段23へ目標値として設定する。このようにして、手段21からの光出力a2の光出力波長及び光出力電力を指定された値に設定することができる。   In the means 25, at least one value stored in the means 24 is used to calculate a parameter value that determines the relationship among the drive current, the element temperature, and the optical output power for the light emitting element constituting the means 21. Next, based on the designated light output wavelength and light output power b2, using the calculated parameter values, the light output wavelength and light output power of the light emitting elements constituting the means 21 are simultaneously designated values. The drive current or optical output power c2 and the element temperature d2 are calculated. The calculated drive current or optical output power c2 is set as a target value in the means 22, and the calculated element temperature d2 is set as a target value in the means 23. In this way, the optical output wavelength and optical output power of the optical output a2 from the means 21 can be set to specified values.

一方、光出力波長及び光出力電力の定められた値への制御を行う光通信用光源部は、先願2に記載されている。先願2では、発光素子の光出力波長及び光出力電力に関する以下のような性質を利用する。発光素子の光出力電力変動時の、光出力波長の駆動電流及び素子温度に対する依存性及び光出力電力の駆動電流及び素子温度に対する依存性を、それぞれ図4(a)、(b)に示す。これらが“単調”であることは、光出力電力変動前と同様であり、光出力電力の駆動電流及び素子温度に対する依存性が駆動電流の増減に応じて平行移動する部分のみが異なる。   On the other hand, a light source unit for optical communication that controls the optical output wavelength and the optical output power to predetermined values is described in the prior application 2. Prior application 2 utilizes the following properties relating to the light output wavelength and light output power of the light emitting element. FIGS. 4A and 4B show the dependency of the light output wavelength on the drive current and the device temperature and the dependency of the light output power on the drive current and the device temperature, respectively, when the light output power of the light emitting device varies. The fact that these are “monotonic” is the same as that before the fluctuation of the optical output power, and the dependency of the optical output power on the drive current and the element temperature differs only in the part where the parallel movement occurs according to the increase or decrease of the drive current.

この結果、図4(c)に太い一点鎖線で示すように、指定された光出力電力となる等光出力電力線を(駆動電流−素子温度)座標面へ正射影したものも、駆動電流の増減に応じて平行移動する。この平行移動したものが、通常の動作範囲では等光出力波長線と1点で交わり、従って、光出力電力の変動前と同様に、光出力波長及び光出力電力の両方が指定された値となる駆動電流及び素子温度の目標値が一意的に決められる。   As a result, as shown by a thick alternate long and short dash line in FIG. 4C, the equivalent optical output power line that becomes the specified optical output power is orthogonally projected onto the (drive current-element temperature) coordinate plane. To move in parallel. This parallel movement intersects with the equal optical output wavelength line at one point in the normal operating range, and therefore, as before the fluctuation of the optical output power, both the optical output wavelength and the optical output power are specified values. The target values of the drive current and the element temperature are uniquely determined.

上記発明の光通信用光源部の構成例は、図6に示すように、図5の光通信用光源部と比較して、手段25の代わりに、手段21を構成する発光素子の駆動電流を監視し、別途指定される許容変動範囲内にあるか否かを比較判定し、許容変動範囲内にない場合には、手段24に格納された少なくとも1つの値により決まる、発光素子の駆動電流と素子温度と光出力電力との関係から、該発光素子の駆動電流変動時における駆動電流と素子温度と光出力電力との関係を予測する手段26と、手段24に格納された少なくとも1つの値により決まる、手段21を構成する発光素子の駆動電流と素子温度と光出力波長との関係と、手段26により予測された手段21を構成する発光素子の駆動電流変動時における駆動電流と素子温度と光出力電力との関係とから、該発光素子の駆動電流変動時における光出力波長及び光出力電力の両方が別途指定される値となる最新の駆動電流または光出力電力及び最新の素子温度を予測する手段27とを備えた点が異なる。なお、符号e2は手段21を構成する発光素子の駆動電流、f2は別途指定された駆動電流の許容変動範囲、g2は手段26により予測された手段21を構成する発光素子の駆動電流変動時における駆動電流と素子温度と光出力電力との関係を決めるパラメータ値、h2は手段27により決定された最新の駆動電流または光出力電力、j2は手段27により決定された最新の素子温度である。   As shown in FIG. 6, the configuration example of the light source unit for optical communication according to the present invention is different from the light source unit for optical communication in FIG. Monitoring, comparing and determining whether or not it is within a separately specified allowable variation range, and if not within the allowable variation range, the driving current of the light emitting element determined by at least one value stored in the means 24 and Based on the relationship between the element temperature and the light output power, the means 26 for predicting the relationship between the drive current, the element temperature, and the light output power when the drive current of the light emitting element varies, and at least one value stored in the means 24 The determined relationship between the drive current, the element temperature, and the light output wavelength of the light emitting element constituting the means 21, and the drive current, the element temperature, and the light when the drive current of the light emitting element constituting the means 21 predicted by the means 26 varies. With output power And a means 27 for predicting the latest drive current or optical output power and the latest element temperature at which both the light output wavelength and the light output power when the drive current of the light emitting element fluctuates are separately specified values. The prepared point is different. Reference symbol e2 is a drive current of the light emitting element constituting the means 21, f2 is an allowable fluctuation range of the drive current specified separately, and g2 is a drive current fluctuation of the light emitting element constituting the means 21 predicted by the means 26. The parameter value that determines the relationship among the drive current, element temperature, and optical output power, h2 is the latest drive current or optical output power determined by means 27, and j2 is the latest element temperature determined by means 27.

光出力波長及び光出力電力の定められた値への調整は以下のように行う。   Adjustment to the predetermined values of the optical output wavelength and the optical output power is performed as follows.

まず、手段27において、手段24から入力された少なくとも1つの値を用いて、手段21を構成する発光素子に対する駆動電流と素子温度と光出力波長との関係を決めるパラメータ値を計算する。また、手段26において、手段24から入力された少なくとも1つの値を用いて、手段21を構成する発光素子に対する駆動電流変動前における駆動電流と素子温度と光出力電力との関係を決めるパラメータ値を計算する。次に、手段26において、手段21を構成する発光素子の駆動電流e2を監視し、これが別途指定された駆動電流の許容変動範囲f2内にあるか否かを比較判定する。   First, in the means 27, using at least one value input from the means 24, a parameter value that determines the relationship among the drive current, the element temperature, and the light output wavelength for the light emitting element constituting the means 21 is calculated. In the means 26, using at least one value input from the means 24, a parameter value that determines the relationship among the drive current, the element temperature, and the optical output power before the drive current fluctuation for the light emitting element constituting the means 21 is obtained. calculate. Next, in the means 26, the drive current e2 of the light emitting element constituting the means 21 is monitored, and it is compared and determined whether or not this is within the allowable fluctuation range f2 of the drive current specified separately.

駆動電流e2が許容変動範囲f2内にない場合には、手段26において、前記計算されたパラメータ値を用いて、駆動電流変動時における手段21を構成する発光素子に対する駆動電流と素子温度と光出力電力との関係を決めるパラメータ値g2を予測し、計算して、手段27へ出力する。別途指定された光出力波長及び光出力電力に基づき、手段27において、前記計算されたパラメータ値及び手段26から入力されたパラメータ値g2を用いて、手段21を構成する発光素子の駆動電流変動時における光出力波長と光出力電力が同時に指定された値b2となる、最新の駆動電流または光出力電力h2及び最新の素子温度j2を計算する。   When the drive current e2 is not within the allowable fluctuation range f2, the means 26 uses the calculated parameter value to drive the drive current, the element temperature, and the optical output for the light-emitting element constituting the means 21 when the drive current fluctuates. A parameter value g2 that determines the relationship with power is predicted, calculated, and output to the means 27. Based on the separately specified light output wavelength and light output power, the means 27 uses the calculated parameter value and the parameter value g2 input from the means 26 to change the drive current of the light emitting element constituting the means 21. The latest drive current or optical output power h2 and the latest element temperature j2 at which the optical output wavelength and the optical output power at are simultaneously specified values b2 are calculated.

上記の過程で計算された駆動電流または光出力電力h2を手段22へ駆動電流変動時における新たな目標値として設定すると共に、計算された素子温度j2を手段23へ同様に新たな目標値として設定する。このようにして、駆動電流変動時においても、手段21からの光出力a2の光出力波長及び光出力電力の両方が別途指定される値b2となるよう自動的に制御することができる。   The drive current or optical output power h2 calculated in the above process is set to the means 22 as a new target value when the drive current fluctuates, and the calculated element temperature j2 is similarly set to the means 23 as a new target value. To do. In this way, even when the drive current fluctuates, it is possible to automatically control so that both the light output wavelength and the light output power of the light output a2 from the means 21 become the separately designated value b2.

以上説明したように、先願1、先願2の光通信用光源部においては、手段24に格納された値を用いて、発光素子の光出力波長及び光出力電力に関する“単調”な特性を推定することが特徴である。   As described above, in the optical communication light source units of the prior application 1 and the prior application 2, the “monotonic” characteristics regarding the light output wavelength and the light output power of the light emitting element are obtained using the values stored in the means 24. It is a feature to estimate.

ところで、上記のような光通信用光源部において、光出力波長及び光出力電力の推定誤差は、手段24に格納する、発光素子の光出力波長特性及び光出力電力特性の測定点(駆動電流、素子温度)の選び方に依存することになるが、光出力波長特性及び光出力電力特性は発光素子毎に異なるため、駆動電流と素子温度の動作範囲も発光素子毎にまちまちとなる。   By the way, in the light source part for optical communication as described above, the estimation error of the optical output wavelength and the optical output power is stored in the means 24, and the measurement points (drive current, optical output power characteristic) of the light output wavelength characteristic and the optical output power characteristic of the light emitting element are stored. Depending on how the element temperature is selected, the light output wavelength characteristics and the light output power characteristics differ for each light emitting element, and therefore the operating range of the drive current and the element temperature varies for each light emitting element.

このような、発光素子毎に異なる駆動電流と素子温度の動作範囲における、光出力波長特性及び光出力電力特性の測定点の選定については、発明者らが既に発明し、出願した、発光素子の指定された駆動電流と素子温度の範囲において、光出力波長及び光出力電力の推定誤差が小さくなる光出力波長特性及び光出力電力特性の測定点の選定方法により、解決することができる。以下、この既出願発明(特願2005−075245:以下、先願3と呼ぶ。)の内容について説明する。   Regarding the selection of the measurement points of the optical output wavelength characteristics and the optical output power characteristics in the operating ranges of the driving current and the element temperature which are different for each light emitting element, the inventors have already invented and filed the application of the light emitting element. This can be solved by a method of selecting measurement points for the optical output wavelength characteristic and the optical output power characteristic that reduce the estimation error of the optical output wavelength and the optical output power within the specified drive current and element temperature range. The contents of the invention of the already filed application (Japanese Patent Application No. 2005-075245: hereinafter referred to as prior application 3) will be described below.

先願3では、LD等の発光素子の光出力波長特性を考慮する際、駆動電流、素子温度及び光出力波長を座標軸とした3次元空間において、駆動電流及び素子温度の2次の項まで考慮し(光出力波長特性を駆動電流及び素子温度の2次関数で表す。)、同様に発光素子の光出力電力特性を考慮する際、駆動電流、素子温度及び光出力電力を座標軸とした3次元空間において、駆動電流及び素子温度の2次の項まで考慮する(光出力電力特性を駆動電流及び素子温度の次関数で表す。)ことが行われる。また、光出力波長及び光出力電力の実際の設定・制御時には、発光素子の光出力波長特性を平面(駆動電流及び素子温度の1次関数)により近似し、同様に発光素子の光出力電力特性を平面(駆動電流及び素子温度の1次関数)により近似する。発光素子の光出力波長特性を平面で近似する場合、それぞれに対して3つの測定点があれば、光出力波長特性を表す1次関数の係数を計算することができる。   In prior application 3, when considering the light output wavelength characteristics of light emitting elements such as LDs, the second order terms of drive current and element temperature are taken into consideration in a three-dimensional space with drive current, element temperature and light output wavelength as coordinate axes. (The optical output wavelength characteristic is expressed by a quadratic function of the driving current and the element temperature.) Similarly, when considering the optical output power characteristic of the light emitting element, the driving current, the element temperature, and the optical output power are three-dimensional with respect to the coordinate axes. In the space, consideration is given up to a quadratic term of the drive current and the element temperature (the optical output power characteristic is expressed by a function of the drive current and the element temperature). In actual setting and control of the optical output wavelength and optical output power, the optical output wavelength characteristic of the light emitting element is approximated by a plane (linear function of drive current and element temperature), and similarly the optical output power characteristic of the light emitting element. Is approximated by a plane (linear function of drive current and element temperature). When the light output wavelength characteristic of the light emitting element is approximated by a plane, if there are three measurement points for each, a coefficient of a linear function representing the light output wavelength characteristic can be calculated.

発光素子の光出力波長特性を考慮した測定点の選定方法について、図7を用いて説明する。   A method for selecting a measurement point in consideration of the light output wavelength characteristic of the light emitting element will be described with reference to FIG.

図7(a)は、素子温度を動作範囲内のある値で固定した場合の、光出力波長の駆動電流依存性を示す。記号i1,i2は、動作範囲における駆動電流iの最小値と最大値を表す。実際の光出力波長特性は駆動電流iの2次関数で表され、近似線が駆動電流iの1次関数で表される。前述したように、駆動電流に関して単調減少となっている。 FIG. 7A shows the drive current dependence of the optical output wavelength when the element temperature is fixed at a certain value within the operating range. Symbols i 1 and i 2 represent the minimum value and the maximum value of the drive current i in the operation range. The actual optical output wavelength characteristic is represented by a quadratic function of the drive current i, and the approximate line is represented by a linear function of the drive current i. As described above, the driving current is monotonously decreased.

ここで、駆動電流iの動作範囲(i1≦i≦i2)をp:1−p及び1−p:pで内分する(pは駆動電流iの動作範囲の内分点の比座標であり、0<p<1を満たす実数)。光出力波長の近似誤差をδλ0で表すと、図より、δλ0はi=(i1+i2)/2において最大となり、i=i1もしくはi=i2において最小となる。上記光出力波長の近似誤差の比|δλ0i=i1 or i2/|δλ0i=(i1+i2)/2及びその逆数を、pの値の関数としてプロットしたものを図8に示す。近似誤差の比が1となる(即ち、近似誤差の最大値と最小値の絶対値が等しくなる)pの値以外では、|δλ0i=i1 or i2、|δλ0i=(i1+i2)/2のどちらか一方が急激に大きくなるため、動作範囲における近似誤差が大きくなる。 Here, the operating range (i 1 ≦ i ≦ i 2 ) of the driving current i is internally divided by p: 1-p and 1-p: p (p is the ratio coordinate of the internal dividing point of the operating range of the driving current i) And a real number satisfying 0 <p <1). When the approximate error of the optical output wavelength is represented by δλ 0 , from the figure, δλ 0 is the maximum at i = (i 1 + i 2 ) / 2 and is the minimum at i = i 1 or i = i 2 . FIG. 8 shows a plot of the approximate error ratio | δλ 0 | i = i1 or i2 / | δλ 0 | i = (i1 + i2) / 2 and its inverse as a function of the value of p. Show. Except for the value of p where the ratio of approximation errors is 1 (that is, the absolute value of the approximation error is equal to the absolute value of the minimum value), | δλ 0 | i = i1 or i2 , | δλ 0 | i = (i1 Since either + i2) / 2 increases rapidly, the approximation error in the operating range increases.

従って、|δλ0i=i1 or i2=|δλ0i=(i1+i2)/2となるようにpの値を決定することにより、近似誤差の最大値と最小値の絶対値が等しくなり、動作範囲内における近似誤差が小さくなると考えられる。このpを用いて、動作範囲をp:1−p及び1−p:pで内分する駆動電流is1及びis2を測定点における駆動電流とすれば良い。 Therefore, by determining the value of p so that | δλ 0 | i = i1 or i2 = | δλ 0 | i = (i1 + i2) / 2 , the absolute values of the maximum value and the minimum value of the approximation error are obtained. It is considered that the approximation error in the operation range becomes small. Using this p, the drive currents i s1 and i s2 that internally divide the operation range by p: 1-p and 1-p: p may be used as the drive currents at the measurement points.

光出力波長の素子温度依存性(図7(b))に関しても同様である。上記の議論は光出力電力の駆動電流及び素子温度依存性についても同様に適用できる。   The same applies to the element temperature dependency of the optical output wavelength (FIG. 7B). The above discussion can be similarly applied to the drive current and device temperature dependence of the optical output power.

この結果、図9に示すように、発光素子の光出力波長及び光出力電力の駆動電流及び素子温度依存性を決定するための測定点として(is1,Ts1)、(is1,Ts2)、(is2,Ts1)、(is2,Ts2)の4点を決定することができる。実際には、3次元空間における1次関数の係数を決定するためには、上記4点のうち、任意の3つを測定点として選定すれば良い。 As a result, as shown in FIG. 9, (i s1 , T s1 ) and (i s1 , T s2 ) are measurement points for determining the light output wavelength of the light emitting element and the drive current and element temperature dependence of the light output power. ), (I s2 , T s1 ), and (i s2 , T s2 ) can be determined. Actually, in order to determine the coefficient of the linear function in the three-dimensional space, any three of the four points may be selected as measurement points.

以上説明したように、先願1、先願2により、簡易かつ安価に光出力波長及び光出力電力の設定・制御を行う光通信用光源部が構成可能である。また、先願3により、光出力波長及び光出力電力の設定・制御時に、これらの推定誤差が小さくなる測定点の選定が可能となる。いずれの構成においても、発光素子の光出力波長及び光出力電力に関する単調な特性を推定することが特徴である。   As described above, according to the prior application 1 and the prior application 2, the light source unit for optical communication that sets and controls the optical output wavelength and the optical output power can be configured easily and inexpensively. In addition, according to the prior application 3, it is possible to select a measurement point at which these estimation errors are reduced when setting and controlling the optical output wavelength and the optical output power. Each configuration is characterized by estimating monotonous characteristics regarding the light output wavelength and light output power of the light emitting element.

上記のような光通信用光源部は、主に外部変調用を想定しており、発光素子からの光出力は連続光(CW光)である。アクセス・メトロ系への適用を考慮した場合、部品点数削減による小型化と低価格化のため、直接変調型の光通信用光源部が求められる。直接変調型光通信用光源部では、駆動電流に直接変調用のRF信号を重畳して発光素子に印加する。RF信号により直接変調された信号光は、CW時と比較して光出力波長がシフトするとともに、信号光スペクトルが広がる(非特許文献3参照)。このため、直接変調型光通信用光源部の光出力波長及び光出力電力波長を設定・制御する際には、直接変調時の駆動電流と素子温度と光出力波長との関係及び直接変調時の駆動電流と素子温度と光出力電力との関係を格納しておけば良い。   The light source for optical communication as described above is mainly assumed for external modulation, and the light output from the light emitting element is continuous light (CW light). When considering application to the access / metro system, a direct modulation type optical communication light source unit is required to reduce the number of parts and reduce the price. In the direct modulation type optical communication light source unit, an RF signal for direct modulation is superimposed on the drive current and applied to the light emitting element. In the signal light directly modulated by the RF signal, the optical output wavelength is shifted and the signal light spectrum is widened as compared with the time of CW (see Non-Patent Document 3). For this reason, when setting and controlling the optical output wavelength and optical output power wavelength of the direct modulation type optical communication light source unit, the relationship between the drive current, element temperature, and optical output wavelength during direct modulation, and during direct modulation. The relationship among the drive current, element temperature, and optical output power may be stored.

光通信用光源部で生成される信号光に対しては、正常な通信を確保するため、消光比及びアイマスクに対する要求条件が設けられている。非特許文献4には、消光比に対する規定(8.2dB以上)、それぞれの伝送速度・フォーマットにより定められたアイマスク規定が記載されている。信号光の消光比及びアイマスクは、発光素子に印加される駆動電流、RF振幅及び素子温度の関係により決定される。従って、上記規定を満足するため、光通信用光源部では、駆動電流、素子温度に対して所望の信号光の消光比及びアイマスクが得られるよう、自動バイアス制御回路(ABC)によりRF振幅が一定値に制御される。 For signal light generated by the light source for optical communication, requirements for extinction ratio and eye mask are provided in order to ensure normal communication. Non-Patent Document 4 describes a rule for extinction ratio (8.2 dB or more) and an eye mask rule defined by each transmission speed and format. The extinction ratio of the signal light and the eye mask are determined by the relationship between the drive current applied to the light emitting element, the RF amplitude, and the element temperature. Therefore, in order to satisfy the above definition, in the optical communication light source unit, the RF amplitude is controlled by the automatic bias control circuit (ABC) so that the desired signal light extinction ratio and eye mask can be obtained with respect to the drive current and the element temperature. Controlled to a constant value.

しかしながら、これまで説明したように、発光素子の経年変化により駆動電流が変動し、あるいは光出力波長の設定値によって駆動電流、素子温度の目標値が異なるため、RF振幅を一定値に制御するだけでは必ずしも消光比及びアイマスク規定を満たすことができなかた。 However, as described above, the drive current fluctuates due to the aging of the light emitting element, or the target value of the drive current and the element temperature differs depending on the set value of the light output wavelength. In necessarily Tsu Naka can meet the extinction ratio and eye mask requirement.

図10に、DFB−LDバタフライモジュールを2.5Gbpsで直接変調した時のアイパターンの測定例を示す。測定中、RF振幅及び素子温度は一定とした。駆動電流が適正値(図10(b))よりも小さくなると、駆動電流に対してRF振幅が過大となり、信号光波形が乱れるとともに発光素子破壊の恐れがある(図10(a))。一方、駆動電流が適正値よりも大きくなると、RFによる十分な変調が行われず、所望の消光比及びアイマスク規定を満たす十分なアイ開口が得られない(図10(c))。駆動電流に対するRF振幅の比を一定に制御する場合は、RF過大による素子破壊の可能性はないが、RF振幅が過小な場合の振る舞いは同様である。 FIG. 10 shows an eye pattern measurement example when the DFB-LD butterfly module is directly modulated at 2.5 Gbps. During the measurement, the RF amplitude and the element temperature were constant. When the drive current is smaller than the appropriate value (FIG. 10B), the RF amplitude becomes excessive with respect to the drive current, the signal light waveform is disturbed and the light emitting element may be destroyed (FIG. 10A). On the other hand, when the drive current is larger than the appropriate value, sufficient modulation by RF is not performed, and a sufficient eye opening that satisfies the desired extinction ratio and eye mask specification cannot be obtained (FIG. 10C). When the ratio of the RF amplitude to the drive current is controlled to be constant, there is no possibility of element destruction due to excessive RF, but the behavior when the RF amplitude is too small is the same.

発光素子の指定された駆動電流と素子温度の動作範囲において、光出力波長及び光出力電力を設定・制御し、かつ所定の消光比及びアイマスク規定を満足することの可能な直接変調型光通信用光源部はこれまで検討されていなかった。 Direct modulation optical communication that can set and control the optical output wavelength and optical output power, and satisfy the specified extinction ratio and eye mask specifications, within the operating range of the specified drive current and element temperature of the light emitting element The light source unit for use has not been studied so far.

本発明の目的は、このような課題を解決するために、発光素子の指定された駆動電流と素子温度の動作範囲において、光出力波長及び光出力電力を設定・制御し、かつ所定の消光比及びアイマスク規定を満足する直接変調型光通信用光源部における、光出力波長、光出力電力及びRF振幅の推定誤差が小さくなる測定点の選定方法とを提供することにある。 In order to solve such problems, the object of the present invention is to set and control the optical output wavelength and the optical output power within a specified driving current and element temperature operating range of the light emitting element, and to achieve a predetermined extinction ratio. and definitive direct modulation type optical communication light source unit which satisfies the eye mask requirement, the optical output wavelength, and to provide a method of selecting the measuring points estimation error of the optical output power and RF amplitude is reduced.

上記目的を達成するための、光出力波長及び光出力電力を設定・制御し、かつ所定の消光比及びアイマスク規定を満足する直接変調型の光通信用光源部、さらに、該直接変調型の光通信用光源部内に格納する光出力波長、光出力電力及びRF振幅の測定点の選定方法について説明する。ここでは各発光素子の光出力波長及び光出力電力に加え、所定の消光比及びアイマスク規定を満足する直接変調時のRF振幅に関しても、図11に示すような“単調”な特性を推定することが特徴である。 In order to achieve the above object, a direct modulation type optical communication light source unit that sets and controls the optical output wavelength and optical output power and satisfies a predetermined extinction ratio and eye mask specification, and further, the direct modulation type A method of selecting measurement points for the optical output wavelength, optical output power, and RF amplitude stored in the optical communication light source unit will be described. Here, in addition to the light output wavelength and light output power of each light emitting element, the “monotonic” characteristics as shown in FIG. 11 are also estimated with respect to the RF amplitude during direct modulation that satisfies a predetermined extinction ratio and eye mask definition. It is a feature.

まず、光出力波長及び光出力電力を設定し、かつ所定の消光比及びアイマスク規定を満足する直接変調型光通信用光源部について述べる。 First, a direct modulation optical communication light source unit that sets an optical output wavelength and optical output power and satisfies a predetermined extinction ratio and eye mask specification will be described.

光出力波長の駆動電流及び素子温度に対する依存性を決定するために必要な情報として、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力波長の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値、また、光出力電力の駆動電流及び素子温度に対する依存性を決定するために必要な情報として、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力電力の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値、さらに、上記光出力波長及び光出力電力を与える駆動電流と素子温度に対するRF振幅の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値を、予め格納しておく手段を、直接変調型光通信用光源部内に設ける。 As information necessary for determining the dependency of the optical output wavelength on the driving current and the element temperature, at least one of the optical output wavelength with respect to the driving current and the element temperature during direct modulation satisfying a predetermined extinction ratio and eye mask specification value, Oh Rui least one parameter value for determining the these three relationships, also as information necessary to determine the dependence on drive current and device temperature of the light output power, predetermined extinction ratio and eye mask at least one value of the optical output power for the drive current and device temperature direct modulation time satisfying the provisions, Oh Rui least one parameter value for determining the these three relations, further the optical output wavelength and optical output power at least one value of the RF amplitude for the drive current and device temperature to give, Oh Rui determines these three relationships at least one path The meter value, a means for storing in advance, provided the direct modulation type optical communication light source unit.

また、直接変調型光通信用光源部内には、発光素子の光出力波長及び光出力電力の両方が別途指定された値となる駆動電流または光出力電力、素子温度及びRF振幅を決定する手段を設ける。この手段を用いて、光通信用光源部内に予め格納しておいた少なくとも1つの値を用いて、所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長の駆動電流及び素子温度依存性を決めるパラメータ値を求める。同様に、前記少なくとも1つの値を用いて、所定の消光比及びアイマスク規定を満足する直接変調時の光出力電力の駆動電流及び素子温度依存性を決めるパラメータ値を求める。これらのパラメータ値を用いて、先に述べた交点の座標値(駆動電流、素子温度)を算出する。 The direct modulation type optical communication light source unit includes means for determining a drive current or optical output power, an element temperature, and an RF amplitude in which both the light output wavelength and the light output power of the light emitting element are separately specified values. Provide. Using this means, using at least one value stored in advance in the light source unit for optical communication, the drive current and element temperature of the optical output wavelength during direct modulation satisfying a predetermined extinction ratio and eye mask specification Find the parameter value that determines the dependency. Similarly, a parameter value that determines the drive current and element temperature dependence of the optical output power during direct modulation that satisfies a predetermined extinction ratio and eye mask definition is obtained using the at least one value. Using these parameter values, the coordinate values (drive current, element temperature) of the intersection described above are calculated.

さらに、前記少なくとも1つの値を用いて、図11(a)に示すような所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長及び光出力電力を与えるRF振幅の駆動電流及び素子温度依存性を決めるパラメータ値を求める。前記算出された座標値(駆動電流、素子温度)と、該座標値におけるRF振幅とから、発光素子の光出力波長及び光出力電力の両方が別途指定された値となる駆動電流または光出力電力、素子温度及びRF振幅を決定する。 Further, by using the at least one value, a driving current having an RF amplitude that gives an optical output wavelength and optical output power at the time of direct modulation satisfying a predetermined extinction ratio and an eye mask definition as shown in FIG. A parameter value that determines the element temperature dependency is obtained. Based on the calculated coordinate value (drive current, element temperature) and the RF amplitude at the coordinate value, the drive current or the optical output power at which both the light output wavelength and the light output power of the light emitting element are separately designated. Determine device temperature and RF amplitude.

上記のように決定した駆動電流または光出力電力、素子温度及びRF振幅を、直接変調型光通信用光源部内に設けた駆動電流または光出力電力を自動的に制御する手段、素子温度を自動的に制御する手段及びRF振幅を自動的に制御する手段に、それぞれの目標値として与える。   Means for automatically controlling the drive current or optical output power provided in the light source unit for direct modulation type optical communication, the drive current or optical output power determined as described above, the element temperature and the RF amplitude, and the element temperature automatically And a means for automatically controlling the RF amplitude are given as respective target values.

続いて、光出力波長及び光出力電力を調整・制御し、かつ所定の消光比及びアイマスク規定を満足する直接変調型光通信用光源部について述べる。 Next, a direct modulation type optical communication light source unit that adjusts and controls the optical output wavelength and optical output power and satisfies a predetermined extinction ratio and eye mask specification will be described.

上記と同様に、光出力波長の駆動電流及び素子温度に対する依存性を決定するために必要な情報として、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力波長の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値、また、光出力電力の駆動電流及び素子温度に対する依存性を決定するために必要な情報として、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力電力の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値、さらに、上記光出力波長及び光出力電力を与える駆動電流と素子温度に対するRF振幅の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値を、予め格納しておく手段を直接変調型光通信用光源部内に設ける。 Similar to the above, as information necessary for determining the dependency of the optical output wavelength on the driving current and the element temperature, the optical output with respect to the driving current and the element temperature at the time of direct modulation satisfying the predetermined extinction ratio and the eye mask specification. at least one value of the wavelength, Oh Rui least one parameter value for determining the these three relationships, also as information necessary to determine the dependence on drive current and device temperature of the light output power, predetermined at least one value of the optical output power for the drive current and device temperature direct modulation time satisfying the extinction ratio and eye mask requirement, Oh Rui least one parameter value for determining the these three relations, further the light output at least one value of the RF amplitude for the drive current and device temperature which gives the wavelength and optical output power, Oh Rui small to determine these three parties relationships Both the single parameter values, providing a means for storing in advance in the direct modulation type optical communication light source unit.

また、直接変調型光通信用光源部内には、発光素子の駆動電流を監視し、別途指定された許容変動範囲内にあるか否かを比較判定し、その比較判定結果に基づいて、発光素子の駆動電流変動時における所定の消光比及びアイマスク規定を満足する直接変調時の光出力電力の駆動電流及び素子温度に対する依存性、RF振幅の駆動電流及び素子温度に対する依存性を予測する手段を設ける。図11(b)に示すように、RF振幅に対しても“単調”性を利用して、駆動電流の増減に応じて平行移動することにより駆動電流及び素子温度に対する依存性を予測する。 Further, in the light source unit for direct modulation type optical communication, the drive current of the light emitting element is monitored, and it is compared and determined whether or not it is within a separately specified allowable fluctuation range, and based on the comparison determination result, the light emitting element A means for predicting the dependence of the optical output power on the drive current and the element temperature during direct modulation that satisfies the predetermined extinction ratio and eye mask specification when the drive current fluctuates, and the dependence of the RF amplitude on the drive current and the element temperature Provide. As shown in FIG. 11B, the dependence on the driving current and the element temperature is predicted by using the “monotonic” property for the RF amplitude and performing parallel movement according to the increase and decrease of the driving current.

更に、直接変調型光通信用光源部内には、発光素子の駆動電流変動時における所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長及び光出力電力の両方が別途指定された値となる駆動電流及び素子温度を決定する手段を設ける。この手段を用いて、直接変調型光通信用光源部内に予め格納しておいた少なくとも1つの値を用いて、所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長の駆動電流及び素子温度依存性を決めるパラメータ値を求める。 Further, in the light source unit for direct modulation type optical communication, both the light output wavelength and the light output power at the time of direct modulation satisfying a predetermined extinction ratio and eye mask specification when the driving current of the light emitting element fluctuates are separately designated. Means for determining the driving current and the element temperature are provided. Using this means, using at least one value stored in advance in the light source unit for direct modulation optical communication, the drive current of the optical output wavelength at the time of direct modulation that satisfies the predetermined extinction ratio and eye mask specification And a parameter value for determining the element temperature dependency.

このパラメータ値と、前記予測手段により計算した駆動電流変動時における所定の消光比及びアイマスク規定を満足する直接変調時の光出力電力の駆動電流及び素子温度依存性を決めるパラメータ値とを用いて、前記駆動電流変動時における交点の座標値(駆動電流、素子温度)を算出する。前記予測手段により計算した駆動電流変動時における所定の消光比及びアイマスク規定を満足する直接変調時のRF振幅の駆動電流及び素子温度依存性を決めるパラメータ値と、算出された座標値(駆動電流、素子温度)を用いて計算したRF振幅とから、発光素子の光出力波長及び光出力電力の両方が別途指定された値となる駆動電流、素子温度及びRF振幅の新たな目標値を決定する。 Using this parameter value and the parameter value that determines the drive current and element temperature dependence of the optical output power at the time of direct modulation that satisfies the predetermined extinction ratio and eye mask specification when the drive current fluctuates calculated by the prediction means Then, the coordinate value (drive current, element temperature) of the intersection when the drive current fluctuates is calculated. A parameter value that determines the drive current and element temperature dependency of the RF amplitude at the time of direct modulation that satisfies the predetermined extinction ratio and eye mask specification when the drive current fluctuates calculated by the prediction means, and the calculated coordinate value (drive current) , Element temperature) and a new target value of the drive current, the element temperature, and the RF amplitude at which both the light output wavelength and the light output power of the light emitting element are separately specified values are determined. .

上記のように決定した駆動電流、素子温度及びRF振幅を、直接変調型光通信用光源部内に設けた光出力電力、素子温度及びRF振幅を自動的に制御する手段に対する新たな目標値としてそれぞれ与えることにより、発光素子の光出力波長及び光出力電力が指定値に保持されるよう調整・制御する。   The drive current, element temperature, and RF amplitude determined as described above are respectively set as new target values for means for automatically controlling the optical output power, element temperature, and RF amplitude provided in the light source unit for direct modulation type optical communication. By giving, the light output wavelength and light output power of the light emitting element are adjusted and controlled so as to be held at specified values.

最後に、直接変調型光通信用光源部内に格納する光出力波長、光出力電力及びRF振幅の測定点の選定方法について説明する。   Finally, a method of selecting measurement points for the optical output wavelength, optical output power, and RF amplitude stored in the light source unit for direct modulation optical communication will be described.

LD等の発光素子が所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性を考慮する際、駆動電流、素子温度及び光出力波長を座標軸とした3次元空間において、駆動電流及び素子温度の2次の項まで考慮し(光出力波長特性を駆動電流及び素子温度の2次関数で表す。)、発光素子が所定の消光比及びアイマスク規定を満足する直接変調時の光出力電力特性を考慮する際、駆動電流、素子温度及び光出力電力を座標軸とした3次元空間において、駆動電流及び素子温度の2次の項まで考慮し(光出力電力特性を駆動電流及び素子温度の2次関数で表す。)、同様に発光素子が所定の消光比及びアイマスク規定を満足する直接変調時のRF振幅を考慮する際、駆動電流、素子温度及びRF振幅を座標軸とした3次元空間において、駆動電流及び素子温度の2次の項まで考慮する(RF振幅特性を駆動電流及び素子温度の2次関数で表す。)。 When considering the light output wavelength characteristics at the time of direct modulation in which a light emitting element such as an LD satisfies a predetermined extinction ratio and eye mask specification, the drive current is measured in a three-dimensional space with the drive current, element temperature and light output wavelength as coordinate axes. And the second order term of the element temperature (the light output wavelength characteristic is expressed by a quadratic function of the drive current and the element temperature), and the light at the time of direct modulation in which the light emitting element satisfies the predetermined extinction ratio and the eye mask specification. When considering the output power characteristics, in the three-dimensional space with the drive current, element temperature, and optical output power as coordinate axes, the second term of the drive current and element temperature is taken into consideration (the optical output power characteristics are considered as the drive current and element temperature). Similarly, when considering the RF amplitude at the time of direct modulation in which the light emitting element satisfies the predetermined extinction ratio and the eye mask specification, the three-dimensional using the drive current, the element temperature, and the RF amplitude as coordinate axes. In space There are, considered up to the second order term of the drive current and device temperature (representative of the RF amplitude characteristics by a quadratic function of the drive current and device temperature.).

また、所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長、光出力電力及びRF振幅の実際の設定・制御時には、発光素子の光出力波長特性を平面(駆動電流及び素子温度の1次関数)により近似し、同様に発光素子の光出力電力特性を平面(駆動電流及び素子温度の1次関数)により近似し、更に、発光素子のRF振幅を平面(駆動電流及び素子温度の1次関数)により近似する。 In addition, when the optical output wavelength, optical output power, and RF amplitude at the time of direct modulation satisfying a predetermined extinction ratio and eye mask specification are actually set and controlled, the light output wavelength characteristic of the light emitting element is set to a plane (drive current and element temperature) The light output power characteristic of the light emitting element is similarly approximated by a plane (linear function of driving current and element temperature), and the RF amplitude of the light emitting element is further approximated by a plane (driving current and element temperature). Approximated by a linear function).

発光素子の光出力波長特性を平面で近似する場合、それぞれに対して3つの測定点があれば、光出力波長特性を表す1次関数の係数を計算することができるため、測定点選定方法は、(駆動電流−素子温度)座標面上の動作範囲内で、実際の光出力波長特性と平面近似した光出力波長特性との差がより小さくなる、駆動電流と素子温度の値をそれぞれ2つ、選定する問題に帰着できる。発光素子の光電力特性、RF振幅特性に関しても同様である。   When approximating the light output wavelength characteristic of a light emitting element in a plane, if there are three measurement points for each, a coefficient of a linear function representing the light output wavelength characteristic can be calculated. , (Driving current-element temperature) Within the operating range on the coordinate plane, the difference between the actual optical output wavelength characteristic and the optical output wavelength characteristic approximated by plane becomes smaller. To the problem you choose. The same applies to the optical power characteristic and the RF amplitude characteristic of the light emitting element.

まず、発光素子の光出力波長特性を考慮した測定点の選定について説明する。   First, selection of measurement points in consideration of the light output wavelength characteristics of the light emitting element will be described.

所定の消光比及びアイマスク規定を満足する直接変調時の実際の光出力波長特性は駆動電流iの2次関数で表され、近似線が駆動電流iの1次関数で表される。ここで、図12(a)に示すように、駆動電流iの動作範囲(i1≦i≦i2)をp:1−p及び1−p:pで内分する(pは駆動電流iの動作範囲の内分点の比座標であり、0<p<1を満たす実数)。所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長の近似誤差をδλ0で表すと、|δλ0i=i1 or i2=|δλ0i=(i1+i2)/2となるようにpの値を決定することにより、近似誤差の最大値と最小値の絶対値が等しくなり、動作範囲内における近似誤差が小さくなると考えられる。このpを用いて、動作範囲をp:1−p及び1−p:pで内分する駆動電流is1及びis2を測定点における駆動電流とすれば良い。 The actual optical output wavelength characteristic at the time of direct modulation that satisfies the predetermined extinction ratio and eye mask definition is represented by a quadratic function of the drive current i, and the approximate line is represented by a linear function of the drive current i. Here, as shown in FIG. 12A, the operating range (i 1 ≦ i ≦ i 2 ) of the drive current i is internally divided by p: 1−p and 1−p: p (p is the drive current i). Is a ratio coordinate of the inner dividing point of the operation range of the real number satisfying 0 <p <1). It expressed predetermined extinction ratio and the approximation error of the optical output wavelength of the direct modulation time satisfying the eye mask requirement in δλ 0, | δλ 0 | i = i1 or i2 = | δλ 0 | i = (i1 + i2) / By determining the value of p to be 2 , it is considered that the absolute value of the maximum value and the minimum value of the approximation error are equal, and the approximation error within the operating range is reduced. Using this p, the drive currents i s1 and i s2 that internally divide the operation range by p: 1-p and 1-p: p may be used as the drive currents at the measurement points.

同様に、所定の消光比及びアイマスク規定を満足する直接変調時の実際の光出力波長特性は素子温度Tの2次関数で表され、近似線が素子温度Tの1次関数で表される。素子温度Tの動作範囲(T1≦T≦T2)を図12(b)に示すようにq:1−q及び1−q:qで内分し(qは素子温度Tの動作範囲の内分点の比座標であり、0<q<1を満たす実数)、近似誤差の最大値と最小値の絶対値が等しくなる(|δλ0T=T1 or T2=|δλ0T=(T1+T2)/2となる)qの値を決定する。このqを用いて、動作範囲をq:1−q及び1−q:qで内分する素子温度Ts1及びTs2を測定点における素子温度とする。上述したように、実際には、qの値として、上記で計算したpと同じ値を用いることができる。光出力電力特性(近似誤差δP0)、RF振幅特性(近似誤差δiRF0)に関しても同様である(図13(a)、(b))。 Similarly, an actual optical output wavelength characteristic at the time of direct modulation that satisfies a predetermined extinction ratio and eye mask specification is represented by a quadratic function of the element temperature T, and an approximate line is represented by a linear function of the element temperature T. . The operating range of element temperature T (T 1 ≦ T ≦ T 2 ) is internally divided by q: 1-q and 1-q: q as shown in FIG. 12B (q is the operating range of element temperature T). The ratio coordinates of internal dividing points, which are real numbers satisfying 0 <q <1, and the absolute values of the maximum and minimum approximation errors are equal (| δλ 0 | T = T1 or T2 = | δλ 0 | T = Determine the value of q (which is (T1 + T2) / 2 ). Using this q, element temperatures T s1 and T s2 that internally divide the operating range by q: 1-q and 1-q: q are set as element temperatures at the measurement points. As described above, in practice, the same value as p calculated above can be used as the value of q. The same applies to the optical output power characteristic (approximation error δP 0 ) and the RF amplitude characteristic (approximation error δi RF0 ) (FIGS. 13A and 13B).

この結果、所定の消光比及びアイマスク規定を満足する直接変調時の発光素子の光出力波長の駆動電流及び素子温度依存性、並びに光出力電力の駆動電流及び素子温度依存性を決定するための測定点として(is1,Ts1)、(is1,Ts2)、(is2,Ts1)、(is2,Ts2)の4点を決定することができる(図14)。実際には、3次元空間における1次関数の係数を決定するためには、上記4点のうち、任意の3つを測定点として選定すれば良い。 As a result, the drive current and device temperature dependence of the light output wavelength of the light emitting device during direct modulation satisfying the predetermined extinction ratio and eye mask specification, and the drive current and device temperature dependence of the optical output power are determined. Four measurement points (i s1 , T s1 ), (i s1 , T s2 ), (i s2 , T s1 ), (i s2 , T s2 ) can be determined (FIG. 14). Actually, in order to determine the coefficient of the linear function in the three-dimensional space, any three of the four points may be selected as measurement points.

このように、光出力波長及び光出力電力の設定・調整・制御を行うことにより、発光素子の指定された駆動電流と素子温度の動作範囲において、光出力波長及び光出力電力を設定・制御し、かつ所定の消光比及びアイマスク規定を満足する直接変調用の光通信用光源部が実現できる。また、発光素子の光出力波長の駆動電流及び素子温度依存性、並びに発光素子の光出力電力の駆動電流及び素子温度依存性を決定するための測定点を選定することにより、直接変調用の光通信用光源部において、光出力波長及び光出力電力の推定誤差を小さくすることができる。 In this way, by setting, adjusting, and controlling the light output wavelength and light output power, the light output wavelength and light output power can be set and controlled in the operating range of the specified drive current and device temperature of the light emitting element. In addition, it is possible to realize an optical communication light source unit for direct modulation that satisfies a predetermined extinction ratio and eye mask definition. In addition, by selecting measurement points for determining the drive current and element temperature dependence of the light output wavelength of the light emitting element, and the drive current and element temperature dependence of the light output power of the light emitting element, light for direct modulation is selected. In the communication light source unit, the estimation error of the light output wavelength and the light output power can be reduced.

以上説明したように、本発明によれば、非常に複雑な設定・制御及び非常に高価な光部品(波長ロッカ)を不要とした直接変調型の光通信用光源部において、所定の消光比及びアイマスク規定を満足しつつ、簡易かつ安価に光出力波長及び光出力電力の両方の設定・制御を行えると共に、光出力波長及び光出力電力の推定誤差を小さくすることが可能となる。このような光通信用光源部は、低価格かつ簡易であることが必須であるアクセス・メトロ系へも十分に適用可能である。 As described above, according to the present invention, in a direct modulation optical communication light source unit that does not require very complicated setting and control and a very expensive optical component (wavelength locker), a predetermined extinction ratio and While satisfying the eye mask regulations, it is possible to set and control both the light output wavelength and the light output power easily and inexpensively, and to reduce the estimation error of the light output wavelength and the light output power. Such a light source unit for optical communication can be sufficiently applied to an access / metro system that is essential to be inexpensive and simple.

以下、図面を参照して本発明の実施の形態について説明する。   Embodiments of the present invention will be described below with reference to the drawings.

[実施の形態1]
図15は、本発明の実施の形態1(但し、特許請求の範囲には含まれない。)の構成を示したものである。
[Embodiment 1]
Figure 15 is a form of implementation of the present invention 1 (but not included in the scope of the appended claims.) Shows the structure of a.

図中、符号1はLD等の発光素子により構成され、光出力を発生する第1の手段、2は第1の手段1を構成する発光素子の駆動電流または光出力電力を、与えられる目標値に保つようフィードバック制御等により自動的に制御する第2の手段、3は第1の手段1を構成する発光素子の素子温度を、与えられる目標値に保つようフィードバック制御等により自動的に制御する第3の手段、4は第1の手段1を構成する発光素子の直接変調用のRF振幅を、与えられる目標値に保つようフィードバック制御等により自動的に制御する第4の手段である。   In the figure, reference numeral 1 is composed of a light emitting element such as an LD, and is a first means for generating light output, and 2 is a target value to which a drive current or light output power of the light emitting element constituting the first means 1 is given. The second means 3 for automatically controlling by feedback control or the like so as to keep at 3 is automatically controlled by feedback control or the like so as to keep the element temperature of the light emitting element constituting the first means 1 at a given target value. The third means 4 is a fourth means for automatically controlling the RF amplitude for direct modulation of the light emitting elements constituting the first means 1 by feedback control or the like so as to keep the given target value.

また、5は第1の手段1を構成する発光素子に対し、所定の消光比・アイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力波長の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力電力の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対するRF振幅の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値とを格納しておく第5の手段である。 Further, with respect to the light emitting device constituting the first means 1 5, at least one value of the optical output wavelength for the drive current and device temperature direct modulation time satisfying the predetermined extinction ratio eye mask requirement, Oh Rui these 3 and at least one parameter value for determining the relationship between the user, at least one value of the optical output power for the drive current and device temperatures of direct modulation time satisfying the predetermined extinction ratio and eye mask requirement, Oh Rui these 3 at least one parameter value for determining the users of relationships, predetermined extinction ratio and at least one value of the RF amplitude for the drive current and device temperature direct modulation time satisfying the eye mask requirement, Oh Rui these three relationships And a fifth means for storing at least one parameter value for determining.

また、6は第5の手段5に格納された前記発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力波長との関係と、該発光素子の所定の消光比・アイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係とから、該発光素子の光出力波長及び光出力電力の両方が別途指定された値となる駆動電流または光出力電力及び素子温度を決定すると共に、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度とRF振幅との関係から、前記決定された駆動電流または光出力電力及び素子温度におけるRF振幅を決定する第6の手段である。 Further, 6 is determined by at least one value for the light emitting element stored in the fifth means 5, and the driving current, element temperature and light during direct modulation satisfying a predetermined extinction ratio and eye mask definition of the light emitting element. From the relationship between the output wavelength and the relationship between the drive current, the element temperature, and the optical output power at the time of direct modulation that satisfies the predetermined extinction ratio / eye mask specification of the light emitting element, the light output wavelength and light of the light emitting element The drive current or the optical output power and the element temperature at which both the output powers are separately specified values are determined, and at the time of the drive current fluctuation at the time of direct modulation that satisfies the predetermined extinction ratio and eye mask specification of the light emitting element This is a sixth means for determining the determined drive current or optical output power and the RF amplitude at the device temperature from the relationship between the drive current, the device temperature and the RF amplitude.

また、符号aは第1の手段1からの光出力、bは指定された光出力波長及び光出力電力、cは第6の手段6により決定された駆動電流または光出力電力、dは第6の手段6により決定されたRF振幅、eは第6の手段6により決定された素子温度である。   The symbol a is the optical output from the first means 1, b is the designated optical output wavelength and optical output power, c is the drive current or optical output power determined by the sixth means 6, and d is the sixth. The RF amplitude determined by the means 6 is e, and the element temperature is determined by the sixth means 6.

図16に本実施の形態の動作手順を示す。   FIG. 16 shows an operation procedure of the present embodiment.

まず、(1−1)では、第5の手段5に格納されている所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力波長の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力電力の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対するRF振幅の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値とを読み出し、第6の手段6に出力する。 First, (1-1), the at least one value of the optical output wavelength for the drive current and device temperature direct modulation time satisfying the predetermined extinction ratio and eye mask requirement stored in the means 5 of the fifth, Oh Rui at least one parameter value for determining the these three relationships, at least one value of the optical output power for the drive current and device temperature direct modulation time satisfying the predetermined extinction ratio and eye mask requirement, Oh Rui these 3 and at least one parameter value for determining the relationship between the user, at least one value of the RF amplitude for a given extinction ratio and the drive current and device temperature of the direct modulation time satisfying the eye mask requirement, Oh Rui these three And at least one parameter value that determines the relationship between the first and second parameters is read out and output to the sixth means 6.

(1−2)では、第6の手段6において、第5の手段5から入力された少なくとも1つの値を用いて、第1の手段1を構成する発光素子に対する所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力波長との関係を決めるパラメータ値を計算する。 In (1-2), the sixth means 6 uses the at least one value input from the fifth means 5 to use a predetermined extinction ratio and eye mask definition for the light-emitting elements constituting the first means 1. The parameter value that determines the relationship among the drive current, the element temperature, and the optical output wavelength during direct modulation that satisfies the above is calculated.

(1−3)では、第6の手段6において、第5の手段5から入力された少なくとも1つの値を用いて、第1の手段1を構成する発光素子に対する所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係を決めるパラメータ値を計算する。 In (1-3), the sixth means 6 uses the at least one value input from the fifth means 5 to use a predetermined extinction ratio and eye mask definition for the light-emitting elements constituting the first means 1. The parameter value that determines the relationship among the drive current, the element temperature, and the optical output power during direct modulation that satisfies the above is calculated.

同様に(1−4)では、第6の手段6において、第5の手段5から入力された少なくとも1つの値を用いて、第1の手段1を構成する発光素子に対する所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度とRF振幅との関係を決めるパラメータ値を計算する。 Similarly, in (1-4), the sixth means 6 uses the at least one value input from the fifth means 5 to use a predetermined extinction ratio and an eye for the light emitting element constituting the first means 1. A parameter value that determines the relationship among the drive current, the element temperature, and the RF amplitude during direct modulation that satisfies the mask definition is calculated.

次に、(1−5)では、第6の手段6において、指定された光出力波長及び光出力電力bに基づき、(1−2)及び(1−3)で計算されたパラメータ値を用いて、所定の消光比及びアイマスク規定を満足する直接変調時の発光素子の光出力波長及び光出力電力が同時に指定された値となる駆動電流または光出力電力c及び素子温度eを計算し、決定すると共に、(1−4)で計算されたパラメータ値を用いて、前記計算・決定された駆動電流または光出力電力及び素子温度におけるRF振幅dを計算する。 Next, in (1-5), the sixth means 6 uses the parameter values calculated in (1-2) and (1-3) based on the designated optical output wavelength and optical output power b. Calculating the driving current or the optical output power c and the element temperature e at which the light output wavelength and the light output power of the light emitting element at the time of direct modulation satisfying a predetermined extinction ratio and an eye mask specification are simultaneously designated, At the same time, the parameter value calculated in (1-4) is used to calculate the calculated / determined drive current or optical output power and the RF amplitude d at the element temperature.

(1−6)では、(1−5)で計算された駆動電流または光出力電力cを第2の手段2へ目標値として設定し、(1−5)で計算された素子温度eを第3の手段3へ目標値として設定すると共に、(1−5)で計算されたRF振幅dを第4の手段4へ目標値として設定する。このようにして、第1の手段1からの光出力aの光出力波長及び光出力電力を指定された値に設定・制御することができる。   In (1-6), the drive current or optical output power c calculated in (1-5) is set as a target value in the second means 2, and the element temperature e calculated in (1-5) is set to the first value. The RF amplitude d calculated in (1-5) is set as a target value in the fourth means 4 while being set as a target value in the third means 3. In this way, the optical output wavelength and optical output power of the optical output a from the first means 1 can be set and controlled to specified values.

先に述べた動作手順(1−1)〜(1−6)は、例えば以下のようにして実現することができる。   The operation procedures (1-1) to (1-6) described above can be realized as follows, for example.

ここでは、発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性が、駆動電流、素子温度及び光出力波長を座標軸とした3次元空間において平面(駆動電流及び素子温度の1次関数)により良く表現され、発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力電力特性が、駆動電流、素子温度及び光出力電力を座標軸とした3次元空間において平面(駆動電流及び素子温度の1次関数)により良く表現され、同様に所定の消光比及びアイマスク規定を満足する直接変調時のRF振幅特性が駆動電流、素子温度及び光出力波長を座標軸とした3次元空間において平面(駆動電流及び素子温度の1次関数)により良く表現される場合について説明する。また、第5の手段5には、定められた駆動電流と素子温度に対する発光素子の光出力波長、光出力電力及びRF振幅の値を格納しておく場合を例にとり説明する。 Here, the light output wavelength characteristic at the time of direct modulation that satisfies the predetermined extinction ratio and eye mask specification of the light emitting element is a plane (drive current and element in a three-dimensional space with the drive current, element temperature, and light output wavelength as coordinate axes. The light output power characteristic during direct modulation that is well expressed by the linear function of temperature and satisfies the predetermined extinction ratio and eye mask specification of the light emitting element is three-dimensional with the drive current, element temperature, and light output power as coordinate axes. The RF amplitude characteristics during direct modulation, which is well represented by a plane (linear function of drive current and element temperature) in space, and that satisfies the predetermined extinction ratio and eye mask definition, similarly represent the drive current, element temperature, and optical output wavelength. A case will be described in which a three-dimensional space having coordinate axes is well expressed by a plane (linear function of drive current and element temperature). The fifth means 5 will be described by taking as an example the case where the values of the light output wavelength, light output power and RF amplitude of the light emitting element with respect to the predetermined drive current and element temperature are stored.

(1−1)では、第5の手段5に格納されたこれらの値を読み出して、第6の手段6に入力する。   In (1-1), these values stored in the fifth means 5 are read out and input to the sixth means 6.

(1−2)では、第6の手段6において、第5の手段5から入力された値を用いて、発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性を表す1次関数の係数を計算する。 In (1-2), the sixth means 6 uses the value inputted from the fifth means 5 and uses the value inputted from the fifth means 5 for the light output wavelength characteristic at the time of direct modulation satisfying the predetermined extinction ratio and eye mask specification of the light emitting element. The coefficient of the linear function representing is calculated.

(1−3)では、第6の手段6において、第5の手段5から入力された値を用いて、発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力電力特性を表す1次関数の係数を計算する。 In (1-3), the sixth means 6 uses the value input from the fifth means 5 and uses the value inputted from the fifth means 5 for the optical output power characteristics at the time of direct modulation satisfying the predetermined extinction ratio and eye mask specification of the light emitting element. The coefficient of the linear function representing is calculated.

(1−4)では、第6の手段6において、第5の手段5から入力された値を用いて、発光素子の所定の消光比及びアイマスク規定を満足する直接変調時のRF振幅特性を表す1次関数の係数を計算する。 In (1-4), the sixth means 6 uses the value inputted from the fifth means 5 to obtain the RF amplitude characteristic at the time of direct modulation that satisfies the predetermined extinction ratio and eye mask definition of the light emitting element. Calculate the coefficient of the linear function to be represented.

この場合、(1−2)から(1−4)で計算された係数が、それぞれ上記で説明した所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力波長との関係、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係、及び所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度とRF振幅との関係を決めるパラメータ値である。 In this case, the coefficients calculated in (1-2) to (1-4) are the drive current, element temperature, and light output wavelength at the time of direct modulation satisfying the predetermined extinction ratio and eye mask specification described above, respectively. , The relationship between the drive current at the time of direct modulation that satisfies the predetermined extinction ratio and eye mask specification, the relationship between the element temperature and the optical output power, and the drive current at the time of direct modulation that satisfies the predetermined extinction ratio and eye mask specification And a parameter value that determines the relationship between the element temperature and the RF amplitude.

(1−5)では、(1−2)及び(1−3)で計算された係数と、指定された光出力波長及び光出力電力とから、図3(c)で説明した等光出力波長線、等光出力電力線を表す方程式(1次方程式)の係数が全て決まることを利用して、これらの係数から、2本の等値線の交点の座標値(駆動電流、素子温度)を計算し、該計算された駆動電流及び素子温度と、(1−4)で計算された係数とから、RF振幅の値を計算する。   In (1-5), from the coefficients calculated in (1-2) and (1-3) and the specified optical output wavelength and optical output power, the equal optical output wavelength described in FIG. Using the fact that all the coefficients of the equation representing the line and the iso-optical output power line (primary equation) are determined, the coordinate values (drive current, element temperature) of the intersection of the two isolines are calculated from these coefficients. Then, the value of the RF amplitude is calculated from the calculated drive current and element temperature and the coefficient calculated in (1-4).

上記の例では、簡単のために、発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長、光出力電力、並びにRF振幅の駆動電流依存性及び素子温度依存性が、それぞれ平面(駆動電流及び素子温度の1次関数)により良く表現される場合について説明したが、発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長、光出力電力、並びにRF振幅の駆動電流依存性及び素子温度依存性が2次曲面や、より一般的な関数、あるいは分割された複数の領域毎に平面もしくは曲面により良く表現される場合でも、同様の手順を用いて、それぞれの特性を表す関数の係数を数値的に決定することが可能であるから、本発明の効果は変わらない。 In the above example, for the sake of simplicity, the light output wavelength, light output power, and RF amplitude drive current dependency and device temperature dependency during direct modulation satisfying a predetermined extinction ratio and eye mask specification of the light emitting element are shown. In the above description, the planes (primary functions of the drive current and the element temperature) are well described. However, the light output wavelength and the light output power at the time of direct modulation satisfying the predetermined extinction ratio and the eye mask specification of the light emitting element. Even if the RF current drive current dependency and the element temperature dependency are well expressed by a quadratic curved surface, a more general function, or a plane or curved surface for each of a plurality of divided regions, the same procedure is used. It is possible to numerically determine the coefficient of the function representing each characteristic, and the effect of the present invention does not change.

[実施の形態2]
図17は、本発明の実施の形態2(但し、特許請求の範囲には含まれない。)の構成を示したものである。図15に示した実施の形態1とは、第6の手段6の代わりに、第7の手段7及び第8の手段8を備えている点が異なる。
[Embodiment 2]
17, the implementation of the second embodiment (however, not included in the scope of the appended claims.) Of the present invention shows the structure of a. This embodiment differs from the first embodiment shown in FIG. 15 in that a seventh means 7 and an eighth means 8 are provided instead of the sixth means 6.

第7の手段7は、第1の手段1を構成する発光素子の駆動電流を監視し、別途指定される許容変動範囲内にあるか否かを比較判定し、許容変動範囲内にない場合は、第5の手段5に格納された該発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係から、該発光素子の駆動電流変動時における駆動電流と素子温度と光出力電力との関係を予測し、第5の手段5に格納された該発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度とRF振幅との関係から、該発光素子の駆動電流変動時における駆動電流と素子温度とRF振幅との関係を予測する。 The seventh means 7 monitors the drive current of the light-emitting elements constituting the first means 1 and compares and determines whether or not it is within the separately specified allowable fluctuation range. If it is not within the allowable fluctuation range, Drive current, element temperature, and optical output power at the time of direct modulation satisfying a predetermined extinction ratio of the light emitting element and an eye mask specification determined by at least one value for the light emitting element stored in the fifth means 5 From the relationship, the relationship between the drive current, the device temperature, and the optical output power when the drive current of the light emitting device varies is predicted, and is determined by at least one value for the light emitting device stored in the fifth means 5. From the relationship between the drive current, the element temperature, and the RF amplitude at the time of direct modulation that satisfies the predetermined extinction ratio and eye mask specification of the light emitting element, Predict relationships To.

また、第8の手段8は、第5の手段5に格納された前記発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力波長との関係と、第7の手段7により予測された該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度と光出力電力との関係とから、該発光素子の駆動電流変動時における所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長及び光出力電力の両方が、それぞれに対し別途指定される値となる最新の駆動電流または光出力電力及び最新の素子温度を予測すると共に、第7の手段7により予測された該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度とRF振幅との関係から、最新の駆動電流または光出力電力及び最新の素子温度における最新のRF振幅を予測する。 Further, the eighth means 8 is a drive current at the time of direct modulation that satisfies a predetermined extinction ratio and eye mask specification of the light emitting element determined by at least one value for the light emitting element stored in the fifth means 5. , Device temperature and optical output wavelength, and the drive current and device temperature when the drive current fluctuates during direct modulation that satisfies the predetermined extinction ratio and eye mask definition of the light emitting device predicted by the seventh means 7 Both the optical output wavelength and optical output power during direct modulation that satisfy the specified extinction ratio and eye mask specification when the drive current of the light emitting element varies are separately specified for each from the relationship between the optical output power and the optical output power with predicting the latest drive current or optical output power and the latest device temperature to be the value that is, satisfying the predetermined extinction ratio and eye mask requirement of the expected light emitting element by means 7 of the seventh From the relationship between the drive current and device temperature and the RF amplitude during the driving current fluctuation during contact modulation, predicts the latest RF amplitude in the latest drive current or optical output power and the latest device temperature.

また、fは第1の手段1を構成する発光素子の駆動電流、gは指定された駆動電流の許容変動範囲、hは第7の手段7により予測された発光素子の駆動電流変動時における駆動電流と素子温度と光出力電力との関係を決めるパラメータ値及び駆動電流と素子温度とRF振幅との関係を決めるパラメータ値、jは第8の手段8により決定された最新の駆動電流または光出力電力、kは第8の手段8により決定された最新のRF振幅、lは第8の手段8により決定された最新の素子温度である。   Further, f is a driving current of the light emitting element constituting the first means 1, g is an allowable fluctuation range of the designated driving current, and h is a driving at the time of fluctuation of the driving current of the light emitting element predicted by the seventh means 7. A parameter value that determines the relationship between current, element temperature, and optical output power, and a parameter value that determines the relationship between drive current, element temperature, and RF amplitude, j is the latest driving current or optical output determined by the eighth means 8 Power, k is the latest RF amplitude determined by the eighth means 8, and l is the latest element temperature determined by the eighth means 8.

図18に本実施の形態の動作手順を示す。   FIG. 18 shows an operation procedure of the present embodiment.

まず、(2−1)では、第5の手段5に格納されている所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力波長の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値を読み出し、第8の手段8へ出力する。 First, (2-1), the at least one value of the optical output wavelength for the drive current and device temperature direct modulation time satisfying the predetermined extinction ratio and eye mask requirement stored in the means 5 of the fifth, Oh Alternatively, at least one parameter value that determines the relationship between these three components is read and output to the eighth means 8.

(2−2)では、第8の手段8において、第5の手段5から入力された少なくとも1つの値を用いて、第1の手段1を構成する発光素子に対する所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力波長との関係を決めるパラメータ値を計算する。 In (2-2), the eighth means 8 uses the at least one value input from the fifth means 5 to use a predetermined extinction ratio and eye mask definition for the light-emitting elements constituting the first means 1. The parameter value that determines the relationship among the drive current, the element temperature, and the optical output wavelength during direct modulation that satisfies the above is calculated.

(2−3)では、第5の手段5に格納されている所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力電力の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値、及び所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対するRF振幅の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値を読み出し、第7の手段7へ出力する。 In (2-3), at least one value of the optical output power for the drive current and device temperature direct modulation time satisfying the predetermined extinction ratio and eye mask requirement stored in the means 5 of the fifth, Oh Rui at least one parameter value for determining the these three relationships, and the predetermined extinction ratio and at least one value of the RF amplitude for the drive current and device temperature direct modulation time satisfying the eye mask requirement, Oh Rui these three At least one parameter value that determines the relationship is read out and output to the seventh means 7.

(2−4)では、第7の手段7において、第5の手段5から入力された少なくとも1つの値を用いて、第1の手段1を構成する発光素子に対する所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動前における駆動電流と素子温度と光出力電力の関係を決めるパラメータ値を計算する。 In (2-4), the seventh means 7 uses the at least one value input from the fifth means 5 to use a predetermined extinction ratio and eye mask prescription for the light-emitting elements constituting the first means 1. The parameter value that determines the relationship between the drive current, the element temperature, and the optical output power before the drive current fluctuation at the time of direct modulation that satisfies the above is calculated.

(2−5)では、第7の手段7において、第5の手段5から入力された少なくとも1つの値を用いて、第1の手段1を構成する発光素子に対する所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動前における駆動電流と素子温度とRF振幅の関係を決めるパラメータ値を計算する。 In (2-5), the seventh means 7 uses the at least one value input from the fifth means 5 to use a predetermined extinction ratio and eye mask definition for the light-emitting elements constituting the first means 1. The parameter value that determines the relationship between the drive current, the element temperature, and the RF amplitude before the drive current fluctuation at the time of direct modulation that satisfies the above is calculated.

(2−6)では、第7の手段7において、第1の手段1を構成する発光素子の駆動電流fを監視し、これが別途指定された駆動電流の許容変動範囲g内にあるか否かを比較判定する。   In (2-6), the seventh means 7 monitors the drive current f of the light emitting element constituting the first means 1, and determines whether or not this is within the allowable fluctuation range g of the drive current specified separately. Are compared.

(2−7)では、駆動電流fが許容変動範囲内にある場合には、再び(2−6)を行い、駆動電流fが許容変動範囲内にない場合には、(2−8)に移る。   In (2-7), when the drive current f is within the allowable variation range, (2-6) is performed again, and when the drive current f is not within the allowable variation range, the operation proceeds to (2-8). Move.

(2−8)では、第7の手段7において、(2−4)で計算されたパラメータ値を用いて、駆動電流変動時における第1の手段1を構成する発光素子に対する所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係を決めるパラメータ値を予測し、計算して、第8の手段8へ出力する。 In (2-8), in the seventh means 7, using the parameter value calculated in (2-4), a predetermined extinction ratio with respect to the light emitting element constituting the first means 1 when the drive current fluctuates and A parameter value that determines the relationship between the drive current, the element temperature, and the optical output power at the time of direct modulation that satisfies the eye mask specification is predicted, calculated, and output to the eighth means 8.

(2−9)では、第7の手段7において、(2−5)で計算されたパラメータ値を用いて、駆動電流変動時における第1の手段1を構成する発光素子に対する所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度とRF振幅との関係を決めるパラメータ値を予測し、計算して、第8の手段8へ出力する。 In (2-9), in the seventh means 7, using the parameter value calculated in (2-5), a predetermined extinction ratio with respect to the light emitting element constituting the first means 1 when the drive current fluctuates and A parameter value that determines the relationship between the drive current, the element temperature, and the RF amplitude at the time of direct modulation that satisfies the eye mask specification is predicted, calculated, and output to the eighth means 8.

(2−10)では、指定された光出力波長及び光出力電力に基づき、第8の手段8において、(2−2)で計算されたパラメータ値、及び(2−8)で計算されたパラメータ値hを用いて、第1の手段1を構成する発光素子の駆動電流変動時における所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長及び光出力電力が同時に指定された値bとなる、最新の駆動電流または光出力電力j及び最新の素子温度lを計算すると共に、(2−9)の過程で計算されたパラメータ値を用いて最新の駆動電流または光出力電力j及び最新の素子温度lにおける最新のRF振幅kを計算する。 In (2-10), based on the designated optical output wavelength and optical output power, the eighth means 8 uses the parameter value calculated in (2-2) and the parameter calculated in (2-8). Using the value h, the light output wavelength and the light output power at the time of direct modulation satisfying a predetermined extinction ratio and eye mask specification when the drive current of the light emitting element constituting the first means 1 is varied are simultaneously designated. b, the latest drive current or optical output power j and the latest element temperature l are calculated, and the parameter values calculated in the process of (2-9) are used to calculate the latest drive current or optical output power j and The latest RF amplitude k at the latest element temperature l is calculated.

(2−11)では、(2−10)で計算された駆動電流または光出力電力jを第2の手段2へ駆動電流変動時における新たな目標値として設定し、(2−10)で計算された素子温度lを第3の手段3へ同様に新たな目標値として設定すると共に、(2−10)で計算されたRF振幅kを第4の手段4へ駆動電流変動時における新たな目標値として設定する。その後、(2−6)へ戻る。   In (2-11), the drive current or optical output power j calculated in (2-10) is set as a new target value when the drive current fluctuates in the second means 2, and calculated in (2-10). The set element temperature 1 is similarly set to the third means 3 as a new target value, and the RF amplitude k calculated in (2-10) is set to the fourth means 4 as a new target when the drive current fluctuates. Set as a value. Thereafter, the process returns to (2-6).

このようにして、駆動電流変動時においても、第1の手段1からの光出力aの光出力波長及び光出力電力の両方が別途指定される値bとなるよう自動的に調整・制御することができる。   In this way, even when the drive current fluctuates, the light output wavelength and the light output power of the light output a from the first means 1 are automatically adjusted and controlled so as to have a separately designated value b. Can do.

先に述べた動作手順(2−1)〜(2−5)、(2−6)〜(2−7)、及び(2−8)〜(2−10)は、例えば以下のようにして実現することができる。   The operation procedures (2-1) to (2-5), (2-6) to (2-7), and (2-8) to (2-10) described above are performed as follows, for example. Can be realized.

まず、動作手順(2−1)〜(2−5)について説明する。ここでは、発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性が、駆動電流、素子温度及び光出力波長を座標軸とした3次元空間において平面(駆動電流及び素子温度の1次関数)により良く表現され、発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力電力特性が、駆動電流、素子温度及び光出力電力を座標軸とした3次元空間において平面(駆動電流及び素子温度の1次関数)により良く表現され、同様に発光素子の所定の消光比及びアイマスク規定を満足する直接変調時のRF振幅特性が、駆動電流、素子温度及び光出力電力を座標軸とした3次元空間において平面(駆動電流及び素子温度の1次関数)により良く表現される場合について説明する。また、第5の手段5には、定められた駆動電流と素子温度に対する発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長、光出力電力及びRF振幅の値を格納しておく場合を例にとり説明する。 First, the operation procedures (2-1) to (2-5) will be described. Here, the light output wavelength characteristic at the time of direct modulation that satisfies the predetermined extinction ratio and eye mask specification of the light emitting element is a plane (drive current and element in a three-dimensional space with the drive current, element temperature, and light output wavelength as coordinate axes. The light output power characteristic during direct modulation that is well expressed by the linear function of temperature and satisfies the predetermined extinction ratio and eye mask specification of the light emitting element is three-dimensional with the drive current, element temperature, and light output power as coordinate axes. The RF amplitude characteristic during direct modulation, which is well represented by a plane (linear function of drive current and element temperature) in the space and similarly satisfies a predetermined extinction ratio and eye mask definition of the light emitting element, is represented by the drive current, element temperature, and A case will be described in which a three-dimensional space with optical output power as a coordinate axis is well expressed by a plane (linear function of drive current and element temperature). The fifth means 5 includes values of the light output wavelength, the light output power, and the RF amplitude at the time of direct modulation satisfying a predetermined extinction ratio of the light emitting element with respect to a predetermined driving current and element temperature and an eye mask specification. The case of storing will be described as an example.

(2−1)では、第5の手段5に格納された、定められた駆動電流と素子温度に対する所定の消光比及びアイマスク規定を満足する直接変調時の発光素子の光出力波長の値を読み出して、第8の手段8に入力する。 In (2-1), the value of the light output wavelength of the light emitting element at the time of direct modulation satisfying a predetermined extinction ratio and eye mask specification for the predetermined drive current and element temperature stored in the fifth means 5 is calculated. Read and input to the eighth means 8.

(2−2)では、第8の手段8において、第5の手段5から入力された値を用いて、所定の消光比及びアイマスク規定を満足する直接変調時の発光素子の光出力波長特性を表す1次関数の係数を計算する。 In (2-2), the light output wavelength characteristic of the light emitting element at the time of direct modulation that satisfies the predetermined extinction ratio and the eye mask definition using the value input from the fifth means 5 in the eighth means 8. The coefficient of the linear function representing is calculated.

同様に(2−3)では、第5の手段5に格納された、定められた駆動電流と素子温度に対する所定の消光比及びアイマスク規定を満足する直接変調時の発光素子の光出力電力の値、定められた駆動電流と素子温度に対する所定の消光比及びアイマスク規定を満足する直接変調時の発光素子のRF振幅を読み出して、第7の手段7に入力する。 Similarly, in (2-3), the optical output power of the light emitting element at the time of direct modulation satisfying a predetermined extinction ratio and eye mask specification stored in the fifth means 5 with respect to a predetermined drive current and element temperature. The value, the predetermined extinction ratio with respect to the determined drive current and element temperature, and the RF amplitude of the light emitting element at the time of direct modulation satisfying the eye mask definition are read out and input to the seventh means 7.

(2−4)では、第7の手段7において、第5の手段5から入力された値を用いて、発光素子の駆動電流変動前における所定の消光比及びアイマスク規定を満足する直接変調時の発光素子の光出力電力特性を表す1次関数の係数を計算する。 In (2-4), when the seventh means 7 uses the value input from the fifth means 5 during direct modulation satisfying a predetermined extinction ratio and eye mask prescription before the drive current fluctuation of the light emitting element. A coefficient of a linear function representing the light output power characteristic of the light emitting element is calculated.

(2−5)では、第7の手段7において、第5の手段5から入力された値を用いて、発光素子の駆動電流変動前における所定の消光比及びアイマスク規定を満足する直接変調時の発光素子のRF振幅特性を表す1次関数の係数を計算する。この場合、(2−2)、(2−4)及び(2−5)で計算された係数が、それぞれ上記で説明した所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力波長との関係、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度とRF振幅との関係を決めるパラメータ値である。 In (2-5), the seventh means 7 uses the value input from the fifth means 5 during direct modulation satisfying a predetermined extinction ratio and eye mask definition before the drive current fluctuation of the light emitting element. A coefficient of a linear function representing the RF amplitude characteristic of the light emitting element is calculated. In this case, the coefficients calculated in (2-2), (2-4), and (2-5) are the driving current during direct modulation that satisfies the predetermined extinction ratio and eye mask specification described above, respectively. direct satisfying relationship of the element temperature and the optical output wavelength, the relationship between the predetermined extinction ratio and the drive current and device temperature and the optical output power of the direct modulation time satisfying the eye mask requirement, predetermined extinction ratio and eye mask requirement It is a parameter value that determines the relationship among drive current, element temperature, and RF amplitude during modulation.

次に、動作手順(2−6)〜(2−7)について説明する。   Next, operation procedures (2-6) to (2-7) will be described.

(2−6)では、第1の手段1を構成する発光素子の駆動電流に対し、定められた短い時間に亘る時間平均(移動平均)を取るか、定められたカットオフ特性を有する低周波帯域通過フィルタまたは高周波帯域遮断フィルタを通す、等の、瞬時的な雑音を低減するフィルタ処理を行って得られた値を、指定された駆動電流の許容変動範囲と比較判定する。   In (2-6), a time average (moving average) over a predetermined short time is taken for the drive current of the light emitting element constituting the first means 1, or a low frequency having a predetermined cut-off characteristic A value obtained by performing filter processing for reducing instantaneous noise, such as passing through a band-pass filter or a high-frequency band cut-off filter, is compared with a specified drive current allowable fluctuation range.

(2−7)では、(2−6)の比較判定の結果が、1回以上の予め定められた回数連続して範囲内に無い時、または範囲外にある時に限り、(2−8)へ移り、その他の場合は(2−6)に戻る。   In (2-7), only when the result of the comparison / determination in (2-6) is not within the range for a predetermined number of times or more, or outside the range (2-8) , Go to (2-6) otherwise.

ここでは、駆動電流の許容変動範囲を別途指定することとしたが、駆動電流の定められた長い時間に亘る時間平均値をiav、標準偏差をσ、定められた倍数をα、駆動電流の最新の目標値をinewとする時、iav±ασまたはinew±ασを、光通信用光源部内(例えば、第7の手段7または第8の手段8)において計算し、このいずれかを駆動電流の許容変動範囲としても、本発明の効果は変わらない。 Here, the allowable fluctuation range of the drive current is separately designated, but the time average value over a long period of time for which the drive current is determined is i av , the standard deviation is σ, the predetermined multiple is α, When the latest target value is i new , i av ± ασ or i new ± ασ is calculated in the optical communication light source unit (for example, the seventh means 7 or the eighth means 8), and either of these is calculated. The effect of the present invention does not change even when the allowable fluctuation range of the drive current is reached.

また、電源投入後、一定時間経過し、発光素子の光出力が安定してから、充分に長い時間ではあるが、発光素子の光出力電力特性が経年変化するまでには至らない程度の定められた長い時間における、駆動電流の最大値Max、最小値Minを監視等により求め、このMin,Maxで決まる範囲を駆動電流の許容変動範囲としても、本発明の効果は変わらない。   In addition, after a certain period of time has elapsed since the power was turned on and the light output of the light emitting element has stabilized, the light output power characteristics of the light emitting element are determined so as not to change over time, although it is a sufficiently long time. Even if the maximum value Max and the minimum value Min of the driving current in a long time are obtained by monitoring or the like, and the range determined by the Min and Max is set as the allowable fluctuation range of the driving current, the effect of the present invention does not change.

最後に、動作手順(2−8)〜(2−10)について説明する。   Finally, the operation procedures (2-8) to (2-10) will be described.

(2−8)では、(2−6)の比較判定結果に基づき、監視された駆動電流が指定された駆動電流の許容変動範囲内にない場合には、(2−4)で計算された、発光素子の駆動電流変動前における所定の消光比及びアイマスク規定を満足する直接変調時の光出力電力特性を表す1次関数の係数をもとに、駆動電流変動時における所定の消光比及びアイマスク規定を満足する直接変調時の光出力電力特性を表す1次関数の係数を予測して、計算する。即ち、駆動電流の増減に応じて、発光素子の光出力電力特性を表す平面(1次関数)を駆動電流に関する座標軸に沿って平行移動した平面を表す1次関数の係数を予測し、計算する。 In (2-8), when the monitored drive current is not within the specified allowable fluctuation range of the drive current based on the comparison determination result of (2-6), the calculation is performed in (2-4). , based on the coefficient of the linear function representing the light output power characteristics of the direct modulation time satisfying the predetermined extinction ratio and eye mask requirement before the drive current fluctuation of the light emitting element, predetermined extinction ratio when the drive current fluctuation and A coefficient of a linear function representing the optical output power characteristic at the time of direct modulation that satisfies the eye mask specification is predicted and calculated. That is, a coefficient of a linear function representing a plane obtained by translating a plane (linear function) representing the optical output power characteristics of the light emitting element along the coordinate axis relating to the drive current is predicted and calculated according to increase / decrease of the drive current. .

次に、(2−9)では、(2−5)で計算された、発光素子の駆動電流変動前における所定の消光比及びアイマスク規定を満足する直接変調時のRF振幅特性を表す1次関数の係数をもとに、駆動電流変動時における所定の消光比及びアイマスク規定を満足する直接変調時のRF振幅特性を表す1次関数の係数を予測して、計算する。即ち、駆動電流の増減に応じて、発光素子のRF振幅特性を表す平面(1次関数)を駆動電流に関する座標軸に沿って平行移動した平面を表す1次関数の係数を予測し、計算する。この場合、(2−8)で計算された係数が、駆動電流変動時における所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係を決めるパラメータ値であり、(2−9)で計算された係数が、駆動電流変動時における所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度とRF振幅との関係を決めるパラメータ値である。 Next, in (2-9), the first order representing the RF amplitude characteristic at the time of direct modulation that satisfies the predetermined extinction ratio and eye mask prescription before the drive current fluctuation of the light emitting element calculated in (2-5). Based on the coefficient of the function, the coefficient of the linear function representing the RF amplitude characteristic at the time of direct modulation that satisfies the predetermined extinction ratio and eye mask specification when the drive current fluctuates is predicted and calculated. That is, the coefficient of the linear function representing the plane obtained by translating the plane (linear function) representing the RF amplitude characteristics of the light emitting element along the coordinate axis related to the drive current is predicted and calculated according to the increase or decrease of the drive current. In this case, the coefficient calculated in (2-8) is a parameter that determines the relationship among the drive current, element temperature, and optical output power during direct modulation that satisfies the predetermined extinction ratio and eye mask specification when the drive current fluctuates. Parameter that determines the relationship between the drive current, element temperature, and RF amplitude during direct modulation that satisfies the predetermined extinction ratio and eye mask specification when the drive current fluctuates. Value.

(2−10)では、(2−2)及び(2−8)で計算された係数と、指定された光出力波長及び光出力電力とから、等光出力波長線及び駆動電流変動時における等光出力電力線を表す方程式(一次方程式)の係数が全て決まることを利用して、これらの係数から、2本の等値線の交点の座標値(駆動電流、素子温度)として、駆動電流変動時における最新の駆動電流または光出力電力及び最新の素子温度を計算する。計算された最新の駆動電流または光出力電力及び最新の素子温度と、(2−9)で計算された係数とを用いて、最新のRF振幅を計算する。   In (2-10), from the coefficients calculated in (2-2) and (2-8) and the specified optical output wavelength and optical output power, the equal optical output wavelength line and the drive current fluctuation, etc. Utilizing the fact that all the coefficients of the equation representing the optical output power line (primary equation) are determined, from these coefficients, the coordinate value (drive current, element temperature) of the intersection of two isolines is used when the drive current fluctuates. Calculate the latest drive current or optical output power and the latest device temperature at. The latest RF amplitude is calculated using the calculated latest drive current or optical output power and the latest element temperature, and the coefficient calculated in (2-9).

上記の例では、簡単のために、発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長、光出力電力、並びにRF振幅の駆動電流依存性及び素子温度依存性が、それぞれ平面(駆動電流及び素子温度の1次関数)により良く表現される場合について説明したが、発光素子の光出力波長、光出力電力、並びにRF振幅の駆動電流依存性及び素子温度依存性が2次曲面や、より一般的な関数、あるいは分割された複数の領域毎に平面もしくは曲面により良く表現される場合でも、同様の手順を用いて、それぞれの特性を表す関数の係数を数値的に決定することが可能であるから、本発明の効果は変わらない。 In the above example, for the sake of simplicity, the light output wavelength, light output power, and RF amplitude drive current dependency and device temperature dependency during direct modulation satisfying a predetermined extinction ratio and eye mask specification of the light emitting element are shown. In the above description, the planes (primary functions of the drive current and the element temperature) are well described, but the light output wavelength of the light emitting element, the light output power, and the RF amplitude drive current dependence and element temperature dependence are described. Even when a quadratic curved surface, a more general function, or a plane or curved surface is better expressed for each of a plurality of divided areas, the coefficient of the function representing each characteristic is numerically expressed using the same procedure. Since it can be determined, the effect of the present invention does not change.

[実施の形態3]
図19は、本発明の実施の形態3(但し、特許請求の範囲には含まれない。)の構成を示したものである。図17に示した実施の形態2とは、第8の手段8により決定された最新の駆動電流または光出力電力j、最新のRF振幅k及び最新の素子温度lを格納しておく第9の手段9が追加されている点が異なる。
[Embodiment 3]
19, the implementation of the third (but not included in the scope of the appended claims.) Of the present invention shows the structure of a. In the second embodiment shown in FIG. 17, the latest drive current or optical output power j determined by the eighth means 8, the latest RF amplitude k, and the latest element temperature l are stored. The difference is that the means 9 is added.

本実施の形態の動作手順を図20に示す。図18の動作手順とは異なる部分について主に説明する。   The operation procedure of the present embodiment is shown in FIG. A portion different from the operation procedure of FIG. 18 will be mainly described.

まず、(3−1)では、光通信用光源部をウォーム・スタートする場合等を考慮して、第9の手段9に格納されている値を使用するかどうかを判定する。   First, in (3-1), it is determined whether or not to use the value stored in the ninth means 9 in consideration of the case where the light source for optical communication is warm-started.

使用する場合には、更に(3−2)で、第9の手段9に第8の手段8により決定された最新の駆動電流または光出力電力j、RF振幅k及び素子温度lが格納されているかどうかを判定する。   When used, the latest drive current or optical output power j, RF amplitude k and element temperature l determined by the eighth means 8 are stored in the ninth means 9 in (3-2). Determine whether or not.

第9の手段9に第8の手段8により決定された最新の駆動電流または光出力電力j、素子温度l及びRF振幅kが格納されている場合には、(3−3)で、それらの値を読み出し、それぞれ第2の手段2、第3の手段3及び第4の手段4へ出力する。   If the latest drive current or optical output power j determined by the eighth means 8, the element temperature l and the RF amplitude k are stored in the ninth means 9, those (3-3) The values are read and output to the second means 2, the third means 3, and the fourth means 4, respectively.

その後、(3−15)で、第2の手段2、第3の手段3及び第4の手段4において、第9の手段9から入力されたそれぞれの値を、目標値として設定する。   Thereafter, in (3-15), in the second means 2, the third means 3, and the fourth means 4, the respective values input from the ninth means 9 are set as target values.

一方、第9の手段9に格納されている値を使用しない場合、または第9の手段9に第8の手段8により決定された最新の駆動電流または光出力電力j、RF振幅k及び素子温度lが格納されていない場合には、(3−4)〜(3−13)は、実施の形態2における手順(2−1)〜(2−10)とそれぞれ同様である。   On the other hand, when the value stored in the ninth means 9 is not used, or the latest drive current or optical output power j, RF amplitude k, and element temperature determined by the eighth means 8 in the ninth means 9 When l is not stored, steps (3-4) to (3-13) are the same as steps (2-1) to (2-10) in the second embodiment, respectively.

これらの後、(3−14)において、(3−13)で決定した最新の駆動電流または光出力電力j、最新のRF振幅k及び最新の素子温度lを第9の手段9へ格納する。次の(3−15)は、実施の形態2における手順(2−11)と同様である。   After that, in (3-14), the latest drive current or optical output power j determined in (3-13), the latest RF amplitude k, and the latest element temperature l are stored in the ninth means 9. The next (3-15) is the same as the procedure (2-11) in the second embodiment.

本実施の形態では、実施の形態2の構成の光通信用光源部をウォーム・スタートする場合等を考慮したが、実施の形態1の構成の光通信用光源部をウォーム・スタートさせても、本発明の効果は変わらない。   In the present embodiment, the case where the optical communication light source unit having the configuration of the second embodiment is warm-started is considered, but even if the optical communication light source unit having the configuration of the first embodiment is warm-started, The effect of the present invention is not changed.

[実施の形態4]
図21は、本発明の実施の形態4(但し、特許請求の範囲には含まれない。)の構成を示したものである。図19に示した実施の形態3の構成とは、第1の手段1からの光出力aの光出力波長及び光出力電力の両方またはどちらか一方を監視し、それぞれ別途指定された光出力波長範囲及び光出力電力範囲にあるか否かを比較判定し、その比較判定結果を出力する第10の手段10が追加されている点が異なる。本実施の形態では、光出力波長及び光出力電力の両方について比較判定する場合について説明する。
[Embodiment 4]
Figure 21 is a form of implementation of the present invention 4 (however, not included in the scope of the appended claims.) Shows the structure of a. The configuration of the third embodiment shown in FIG. 19 is to monitor the optical output wavelength and / or the optical output power of the optical output a from the first means 1, and separately specify the optical output wavelength specified separately. A difference is that a tenth means 10 for comparing and determining whether or not the output power range is within the range and the optical output power range and outputting the comparison determination result is added. In the present embodiment, a case will be described in which both the optical output wavelength and the optical output power are compared and determined.

図22に、本実施の形態の動作手順を示す。   FIG. 22 shows an operation procedure of the present embodiment.

まず、実施の形態3における動作手順(3−1)〜(3−15)と同様の手順で、指定された光出力波長及び光出力電力bとなるように駆動電流または光出力電力、RF振幅及び素子温度の設定、調整・制御を行い、これと並行して第1の手段1からの光出力aについて、光出力波長及び光出力電力の監視を行う。   First, in the same procedure as the operation procedures (3-1) to (3-15) in the third embodiment, the drive current or the optical output power, the RF amplitude so as to obtain the designated optical output wavelength and optical output power b. In addition, the device temperature is set, adjusted, and controlled, and the optical output wavelength and optical output power of the optical output a from the first means 1 are monitored in parallel.

(4−1)では、第8の手段8により決定された最新の駆動電流または光出力電力j、最新の素子温度l及び最新のRF振幅kで駆動された、第1の手段1からの光出力aの光出力波長及び光出力電力の両方を、第10の手段10を用いて監視する。   In (4-1), the light from the first means 1 driven by the latest drive current or optical output power j determined by the eighth means 8, the latest element temperature l, and the latest RF amplitude k. Both the optical output wavelength and the optical output power of the output a are monitored using the tenth means 10.

次に、(4−2)では、(4−1)で監視された光出力波長及び光出力電力を、それぞれ別途指定された光出力波長範囲及び光出力電力範囲mと比較する。   Next, in (4-2), the optical output wavelength and optical output power monitored in (4-1) are compared with the separately specified optical output wavelength range and optical output power range m, respectively.

(4−3)で判定を行い、監視された光出力波長及び光出力電力が指定された光出力波長範囲及び光出力電力範囲内にある場合には、(4−4)で比較判定結果nを状態表示として出力し、(4−1)へ戻る。   When the determination is made in (4-3) and the monitored optical output wavelength and optical output power are within the specified optical output wavelength range and optical output power range, the comparison determination result n in (4-4). Is output as a status display, and the process returns to (4-1).

また、監視された光出力波長及び光出力電力が指定された光出力波長範囲及び光出力電力範囲内にない場合には、(4−5)で比較判定結果nを異常警報として出力し、(4−1)へ戻る。   If the monitored optical output wavelength and optical output power are not within the specified optical output wavelength range and optical output power range, the comparison determination result n is output as an abnormality alarm in (4-5), ( Return to 4-1).

先に述べた動作手順のうち、(4−1)は、例えば以下のようにして実現することができる。第1の手段1からの光出力aを、指定された光出力波長範囲の光を透過する光フィルタ等の光波長帯域透過手段に入力する。この出力を更に、入力光の光電力を光電流に変換するフォトダイオード等の光電変換手段に入力する。このようにして得た光電流を監視・比較することにより、光出力波長及び光出力電力を監視・比較する。即ち、予め分かっている光波長帯域透過手段の光波長透過特性及び光電変換手段の変換特性と、指定された光出力波長範囲及び光出力電力範囲とから決まる光電流の範囲と、先の監視により得られた光電流とを比較することにより、先に述べた比較を行う。   Among the operation procedures described above, (4-1) can be realized as follows, for example. The light output a from the first means 1 is input to a light wavelength band transmitting means such as an optical filter that transmits light in a designated light output wavelength range. This output is further input to a photoelectric conversion means such as a photodiode that converts the optical power of the input light into a photocurrent. By monitoring and comparing the photocurrents thus obtained, the optical output wavelength and the optical output power are monitored and compared. That is, the optical wavelength transmission characteristics of the optical wavelength band transmission means and the conversion characteristics of the photoelectric conversion means, the photocurrent range determined from the specified optical output wavelength range and optical output power range, and the previous monitoring. The comparison described above is performed by comparing the obtained photocurrent.

本実施の形態では、実施の形態3の構成の光通信用光源部の光出力波長及び光出力電力を監視する場合について説明したが、実施の形態1もしくは実施の形態2の構成の光通信用光源部の光出力波長及び光出力電力を監視する場合でも、本発明の効果は変わらない。   In the present embodiment, the case where the optical output wavelength and the optical output power of the optical communication light source unit having the configuration of the third embodiment is monitored has been described. However, for optical communication having the configuration of the first or second embodiment. Even when the light output wavelength and light output power of the light source unit are monitored, the effect of the present invention does not change.

以上、実施の形態1〜4においては、簡単のため、第1の手段1が1つの発光素子により構成される場合について説明したが、第1の手段1が複数の発光素子により構成され、第2の手段2が各発光素子の駆動電流または光出力電力を、各々に対し与えられる目標値に保つよう自動的に制御し、第3の手段3が各発光素子の素子温度を、各々に対し与えられる目標値に保つよう自動的に制御し、第4の手段4が各発光素子のRF振幅を、各々に対し与えられる目標値に保つよう自動的に制御する場合でも、第5の手段5において、第1の手段1を構成する各発光素子における、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力波長の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力電力の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対するRF振幅の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値とを格納しておき、第6の手段6において、第5の手段5に格納された第1の手段1を構成する各発光素子に対する少なくとも1つの値により決まる、該各発光素子毎の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力波長との関係と、該各発光素子毎の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係とから、該各発光素子の光出力波長及び光出力電力の両方が別途指定された値となる駆動電流または光出力電力及び素子温度を決定すると共に、該各発光素子毎の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度とRF振幅との関係から、前記決定された駆動電流または光出力電力及び素子温度におけるRF振幅を決定することにより、第1の手段1を構成する各発光素子に対する光出力波長及び光出力電力の設定、並びに所定の消光比及びアイマスク規定の達成が同様に可能となり、また、第7の手段7において、第1の手段1を構成する各発光素子の駆動電流を監視し、該各発光素子毎に別途指定される許容変動範囲内にあるか否かを比較判定し、許容変動範囲内にない発光素子に対しては、第5の手段5に格納された該発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係から、該発光素子の駆動電流変動時における駆動電流と素子温度と光出力電力との関係を予測し、第5の手段5に格納された該発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度とRF振幅との関係から、該発光素子の駆動電流変動時における駆動電流と素子温度とRF振幅との関係を予測し、第8の手段8において、前記許容変動範囲内にない発光素子に対しては、第5の手段5に格納された該発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力波長との関係と、第7の手段7により予測された該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度と光出力電力との関係とから、該発光素子の駆動電流変動時における所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長及び光出力電力の両方が該発光素子毎に別途指定される値となる最新の駆動電流または光出力電力及び最新の素子温度を予測すると共に、第7の手段7により予測された該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度とRF振幅との関係から、最新の駆動電流または光出力電力及び最新の素子温度における最新のRF振幅を予測することにより、第1の手段1を構成する各発光素子に対する光出力波長及び光出力電力の調整・制御、並びに所定の消光比及びアイマスク規定の達成が同様に可能となり、また、第9の手段9において、発光素子毎に第2の手段、第3の手段及び第4の手段にそれぞれ与えられた目標値の最新の値を格納しておことにより、第1の手段1を構成する各発光素子に対する光出力波長及び光出力電力のウォーム・スタートする場合等を含めた設定や調整・制御が同様に可能となり、また、第10の手段10において、第1の手段1を構成する各発光素子が発生する光出力を監視し、該光出力の光出力波長及び光出力電力の両方またはどちらか一方について、各々に対し別途指定された光出力波長範囲及び光出力電力範囲にあるか否かを比較判定し、その比較判定結果を出力することにより、第1の手段1を構成する各発光素子に対する光出力波長及び光出力電力の両方またはどちらか一方の監視が同様に可能となり、本発明の効果は変わらない。 As described above, in Embodiments 1 to 4, the case where the first means 1 is configured by one light emitting element has been described for the sake of simplicity. However, the first means 1 is configured by a plurality of light emitting elements. The second means 2 automatically controls the driving current or the optical output power of each light emitting element so as to keep the target value given thereto, and the third means 3 controls the element temperature of each light emitting element for each. Even when the fourth means 4 automatically controls to maintain the given target value and the fourth means 4 automatically controls to keep the RF amplitude of each light emitting element at the given target value for each, the fifth means 5 in, in each light emitting device constituting the first means 1, at least one value of the optical output wavelength for the drive current and device temperature direct modulation time satisfying the predetermined extinction ratio and eye mask requirement, the Oh Rui these 3 To determine the relationship Both the single parameter values, at least one of determining the predetermined extinction ratio and at least one value of the optical output power for the drive current and device temperature direct modulation time satisfying the eye mask requirement, Oh Rui of these three related one of the parameter values, at least one value of the RF amplitude for a given extinction ratio and the drive current and device temperature of the direct modulation time satisfying the eye mask requirement, Oh Rui least one parameter value for determining the these three relationships In the sixth means 6, a predetermined value for each light-emitting element determined by at least one value for each light-emitting element constituting the first means 1 stored in the fifth means 5 is stored. and the relationship between the drive current and device temperature and the optical output wavelength of the direct modulation time satisfying the extinction ratio and eye mask requirement, predetermined extinction ratio and eye mask requirement of each respective light emitting element From the relationship between the drive current, the element temperature, and the optical output power at the time of satisfying direct modulation, the drive current or the optical output power at which both the optical output wavelength and the optical output power of each light emitting element are separately designated values and The element temperature is determined, and is determined from the relationship between the drive current, the element temperature, and the RF amplitude when the drive current fluctuates during direct modulation that satisfies the predetermined extinction ratio and eye mask specification for each light emitting element. by the Ruco to determine the RF amplitude in the drive current or optical output power and device temperature, the first means 1 setting of the optical output wavelength and optical output power of each light emitting device constituting the, as well as predetermined extinction ratio and eye mask It is possible to achieve the regulation in the same manner, and the seventh means 7 monitors the drive current of each light emitting element constituting the first means 1 and is within an allowable fluctuation range separately designated for each light emitting element. If the light emitting element is not within the allowable variation range, the predetermined extinction of the light emitting element determined by at least one value for the light emitting element stored in the fifth means 5 is determined. From the relationship between the drive current, element temperature, and optical output power during direct modulation that satisfies the ratio and eye mask regulations, the relationship between the drive current, element temperature, and optical output power when the drive current of the light-emitting element varies is predicted. The drive current, element temperature, and RF amplitude at the time of direct modulation satisfying a predetermined extinction ratio of the light emitting element and an eye mask defined by at least one value for the light emitting element stored in the fifth means 5 From the relationship, the relationship between the drive current, the element temperature, and the RF amplitude when the drive current of the light emitting element is varied is predicted. In the eighth means 8, the light emitting element that is not within the allowable variation range is Means At least determined by one value, the relationship between the predetermined extinction ratio and the drive current and device temperature and the optical output wavelength of the direct modulation time satisfying the eye mask requirement of the light emitting element against the stored light emitting element, the seventh From the relationship between the driving current, the element temperature, and the optical output power at the time of fluctuation of the driving current during direct modulation that satisfies the predetermined extinction ratio of the light emitting element predicted by the means 7 and the eye mask definition, Latest driving current or optical output power in which both the optical output wavelength and optical output power during direct modulation satisfying a predetermined extinction ratio and eye mask specification when the driving current fluctuates are values specified separately for each light emitting element and thereby predicting the latest device temperature, driving at the time of driving current fluctuation of direct modulation time satisfying the predetermined extinction ratio and eye mask requirement of the expected light emitting element by means 7 of the seventh From the relationship between the current and device temperature and the RF amplitude, for each light emitting device constituting a and benzalkonium predict the latest RF amplitude in the latest drive current or optical output power and the latest device temperature, the first means 1 The adjustment and control of the light output wavelength and the light output power, and the achievement of the predetermined extinction ratio and the eye mask definition can be similarly achieved. In the ninth means 9, the second means, by latest in our store value Ku means and the target value given respectively to the fourth means, for warm start of the optical output wavelength and optical output power of each light emitting device constituting the first means 1 The setting, adjustment, and control including the case can be similarly performed, and the tenth means 10 monitors the light output generated by each light emitting element constituting the first means 1, and the light of the light output is monitored. Output wavelength and optical output For power both or either, and the comparison determination whether or not separately specified optical output wavelength range and optical output power range for each, by the Turkey to output the comparison determination result, the first The light output wavelength and / or light output power for each light-emitting element constituting the means 1 can be monitored in the same manner, and the effect of the present invention does not change.

なお、第1の手段1を構成する複数の発光素子に対し別途指定される光出力波長は通常、各々異なるが、全て同一もしくは一部同一の場合を含む任意の光出力波長を各々に対し指定可能であることはいうまでもない。同様に、第1の手段1を構成する複数の発光素子に対し別途指定される光出力電力は通常、同一であるが、全て異なるもしくは一部異なる場合を含む任意の光出力電力を各々に対し指定可能であることはいうまでもない。   The light output wavelengths separately designated for the plurality of light emitting elements constituting the first means 1 are usually different from each other, but any light output wavelengths including cases where they are all the same or partially the same are designated for each. It goes without saying that it is possible. Similarly, the optical output power separately designated for the plurality of light emitting elements constituting the first means 1 is usually the same, but any optical output power including cases where they are all different or partially different is assigned to each. Needless to say, it can be specified.

また、実施の形態1〜4においては、少なくとも1つの値そのもの(生の値)を第5の手段5へ格納しておく場合について説明したが、これらの全てまたは少なくとも1つの値を前もって規格化、スクランブル、ビット反転、暗号化等の符号化処理を行って第5の手段5に格納しておき、第5の手段5から読み出した後にそれぞれ非規格化、デスクランブル、ビット反転、暗号復号化等の復号化処理を行ってから用いる場合についても、本発明の効果は変わらない。   In the first to fourth embodiments, the case where at least one value itself (raw value) is stored in the fifth means 5 has been described, but all or at least one of these values is normalized in advance. , Scramble, bit inversion, encryption, etc. are performed, stored in the fifth means 5, read out from the fifth means 5, and then de-standardized, descrambled, bit inversion, encryption / decryption, respectively. The effect of the present invention does not change even when the decoding process such as the above is used.

同様に、実施の形態3においては、第8の手段8により決定された最新の駆動電流または光出力電力j、最新のRF振幅k及び最新の素子温度lそのもの(生の値)を第9の手段9へ格納する場合について説明したが、これらの全てまたは少なくとも1つの値を前もって規格化、スクランブル、ビット反転、暗号化等の符号化処理を行って第9の手段9に格納しておき、第9の手段9から読み出した後にそれぞれ非規格化、デスクランブル、ビット反転、暗号復号化等の復号化処理を行ってから用いる場合についても、本発明の効果は変わらない。   Similarly, in the third embodiment, the latest drive current or optical output power j, the latest RF amplitude k, and the latest element temperature l itself (raw value) determined by the eighth means 8 are the ninth. Although the case of storing in the means 9 has been described, all or at least one of these values is subjected to encoding processing such as normalization, scramble, bit inversion, encryption and the like and stored in the ninth means 9 in advance. The effect of the present invention does not change even when the data is used after being read from the ninth means 9 and then subjected to decryption processing such as non-standardization, descrambling, bit inversion, and encryption / decryption.

また、実施の形態2、3においては、それぞれ手順(2−6)、(3−9)において、駆動電流を監視することとしたが、駆動電流の目標値あるいは平均値等からの変動量を監視することとしても、本発明の効果は変わらない。   In the second and third embodiments, the driving current is monitored in the steps (2-6) and (3-9), respectively. However, the fluctuation amount from the target value or average value of the driving current is changed. Even if it monitors, the effect of this invention does not change.

また、実施の形態1〜4においては、光出力電力を与えられた目標値に保つようフィードバック制御等により自動的に制御する第2の手段、即ち自動電力制御回路(APC)により直接的に光出力電力を制御する場合を例にとり説明したが、自動電流制御回路(ACC)を用いて間接的に光出力電力を制御する場合でも、本発明の効果は変わらない。   In the first to fourth embodiments, the second means for automatically controlling the optical output power by a feedback control or the like so as to keep the optical output power at a given target value, that is, the optical power directly by the automatic power control circuit (APC). The case of controlling the output power has been described as an example, but the effect of the present invention does not change even when the optical output power is indirectly controlled using an automatic current control circuit (ACC).

更に、実施の形態4においては、比較判定の実行及びその結果の出力は、光出力波長及び光出力電力の両方でも、どちらか一方でも、本発明の効果は変わらない。更に、光出力波長及び光出力電力のそれぞれについて、状態表示または異常警報の両方またはどちらか一方しか出力しない場合でも、本発明の効果は変わらない。   Furthermore, in the fourth embodiment, the effect of the present invention does not change whether the comparison determination is executed and the result output is either the optical output wavelength or the optical output power. Furthermore, even when only one or both of the status display and the abnormality alarm is output for each of the optical output wavelength and the optical output power, the effect of the present invention does not change.

また、実施の形態1における手順(1−2)と(1−3)と(1−4)、実施の形態2における手順(2−1)〜(2−2)と(2−3)〜(2−5)、同(2−4)と(2−5)、同(2−8)と(2−9)、実施の形態3における手順(3−4)〜(3−5)と(3−6)〜(3−8)、同(3−7)と(3−8)、同(3−11)と(3−12)、同(3−14)と(3−15)の実行順序をそれぞれ入れ替えても、本発明の効果は変わらない。   Further, the procedures (1-2), (1-3), and (1-4) in the first embodiment, and the procedures (2-1) to (2-2) and (2-3) in the second embodiment. (2-5), (2-4) and (2-5), (2-8) and (2-9), procedures (3-4) to (3-5) in Embodiment 3 (3-6) to (3-8), (3-7) and (3-8), (3-11) and (3-12), (3-14) and (3-15) The effect of the present invention does not change even if the execution order is changed.

加えて、実施の形態1〜4においては、発光素子の駆動電流の新たな目標値を明示的に与える場合について説明したが、自動電力制御回路(APC)を自律的に動作させて駆動電流に更に微調整を加える場合でも、本発明の効果は変わらない。   In addition, in the first to fourth embodiments, the case where a new target value of the drive current of the light emitting element is explicitly given has been described. However, the automatic power control circuit (APC) is autonomously operated to obtain the drive current. Even when fine adjustment is made, the effect of the present invention does not change.

また、実施の形態1〜4においては、発光素子のRF振幅の新たな目標値を明示的に与える場合について説明したが、自動バイアス制御回路(ABC)を自律的に動作させてRF振幅に更に微調整を加える場合でも、本発明の効果は変わらない。   In the first to fourth embodiments, the case where the new target value of the RF amplitude of the light emitting element is explicitly given has been described. However, the automatic bias control circuit (ABC) is operated autonomously to further increase the RF amplitude. Even when fine adjustment is made, the effect of the present invention does not change.

また、実施の形態1〜4においては、駆動電流変動時における所定の消光比及びアイマスク規定を満足する直接変調時の光出力電力の駆動電流及び素子温度に対する依存性は、駆動電流変動前における該依存性を、駆動電流の変動量に応じて平行移動したもので良く表されるとしたが、該依存性を表す特性面の方程式の駆動電流に関する項の係数、及び該方程式の素子温度に関する項の係数の両方もしくはどちらか一方を、駆動電流の変動量に応じて変換する等、該依存性を駆動電流の変動量に応じて変換したもので良く表される場合でも、本発明の効果は変わらない。 In the first to fourth embodiments, the dependency of the optical output power upon direct modulation that satisfies the predetermined extinction ratio and the eye mask specification when the driving current fluctuates on the driving current and the element temperature is the same as that before the driving current fluctuates. The dependency is well expressed by the parallel movement according to the fluctuation amount of the drive current, but the coefficient of the term relating to the drive current in the characteristic equation representing the dependency and the element temperature of the equation. Even when both or either of the terms are converted according to the amount of fluctuation of the driving current, such as by changing the coefficient according to the amount of fluctuation of the driving current, the effect of the present invention can be expressed. Will not change.

また、実施の形態1〜4においては、駆動電流変動時における所定の消光比及びアイマスク規定を満足する直接変調時のRF振幅の駆動電流及び素子温度に対する依存性は、駆動電流変動前における該依存性を、駆動電流の変動量に応じて平行移動したもので良く表されるとしたが、該依存性を表す特性面の方程式の駆動電流に関する項の係数、及び該方程式の素子温度に関する項の係数の両方もしくはどちらか一方を、駆動電流の変動量に応じて変換する等、該依存性を駆動電流の変動量に応じて変換したもので良く表される場合でも、本発明の効果は変わらない。 In the first to fourth embodiments, the dependency of the RF amplitude upon direct modulation that satisfies the predetermined extinction ratio and eye mask specification when the drive current fluctuates on the drive current and the element temperature is the same as that before the drive current fluctuates. Although the dependency is well expressed by the parallel movement according to the fluctuation amount of the drive current, the coefficient of the term relating to the drive current in the equation of the characteristic surface representing the dependency, and the term relating to the element temperature of the equation Even when the dependency is converted according to the amount of fluctuation of the drive current, such as by converting either or both of the coefficients according to the amount of fluctuation of the drive current, the effect of the present invention is effective. does not change.

[実施の形態5]
図23は、本発明の実施の形態5の方法を示したものである。本実施の形態は、発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長の駆動電流及び素子温度依存性、発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力電力の駆動電流及び素子温度依存性、及び発光素子の所定の消光比及びアイマスク規定を満足する直接変調時のRF振幅の駆動電流及び素子温度依存性を決定するための測定点を選定する方法を示す。
[Embodiment 5]
Figure 23 is a diagram illustrating the method of implementation of the present fifth invention. This embodiment satisfies the drive current and element temperature dependence of the light output wavelength during direct modulation that satisfies the predetermined extinction ratio and eye mask definition of the light emitting element, and satisfies the predetermined extinction ratio and eye mask definition of the light emitting element. Dependence of drive current and device temperature on optical output power during direct modulation, and drive current and device temperature dependence of RF amplitude during direct modulation satisfying predetermined extinction ratio and eye mask specification of light emitting device Shows how to select measurement points.

(5−1)では、第1の手段を構成する発光素子の別途指定された駆動電流iの動作範囲(i1≦i≦i2)及び素子温度Tの動作範囲(T1≦T≦T2)を入力する。 In (5-1), the operating range of the drive current i specified separately (i 1 ≦ i ≦ i 2 ) and the operating range of the element temperature T (T 1 ≦ T ≦ T) of the light-emitting elements constituting the first means. 2 ) Enter.

(5−2)では、任意のpの値(pは前記発光素子の駆動電流iの動作範囲の内分点の比座標であり、0<p<1を満たす実数)を用いて、図12(a)に示すように駆動電流と光出力波長を座標軸とする2次元平面上で、該指定された駆動電流iの動作範囲(i1≦i≦i2)をp:1−p及び1−p:pで内分してその内分点における駆動電流is1及びis2を求め、これより該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流の2次関数で表される光出力波長特性と、駆動電流の1次関数で近似された光出力波長特性との近似誤差の最小値及び最大値、即ち|δλ0i=i1 or i2及び|δλ0i=(i1+i2)/2を求め、これらが等しくなるようにpの値を決定し、この時の内分点を測定点としてその駆動電流is1及びis2を該測定点における駆動電流に決定する。 In (5-2), an arbitrary value of p (p is a ratio coordinate of the internal dividing point of the operating range of the driving current i of the light emitting element and is a real number satisfying 0 <p <1) is used. As shown in (a), the operation range (i 1 ≦ i ≦ i 2 ) of the designated drive current i is expressed as p: 1−p and 1 on a two-dimensional plane having the drive current and the optical output wavelength as coordinate axes. -P: The drive currents i s1 and i s2 at the internal dividing point obtained by dividing internally by p are obtained, and from this, the secondary of the drive current at the time of direct modulation satisfying the predetermined extinction ratio and eye mask definition of the light emitting element Minimum and maximum approximation errors between the optical output wavelength characteristic expressed by the function and the optical output wavelength characteristic approximated by the linear function of the drive current, that is, | δλ 0 | i = i1 or i2 and | δλ 0 I = (i1 + i2) / 2 is obtained, the value of p is determined so that they are equal, and the driving currents i s1 and i s2 are determined using the internal dividing point at this time as the measurement point. Is determined as the drive current at the measurement point.

(5−3)では、(5−2)の過程で決定したpの値を用いて、発光素子の素子温度Tの動作範囲(T1≦T≦T2)をp:1−p及び1−p:pで内分する素子温度を測定点における素子温度Ts1及びTs2として決定する。 In (5-3), using the value of p determined in the process of (5-2), the operating range of the element temperature T of the light emitting element (T 1 ≦ T ≦ T 2 ) is set to p: 1−p and 1 -P: The element temperature internally divided by p is determined as element temperatures T s1 and T s2 at the measurement point.

最後に、(5−4)では、(5−2)〜(5−3)の過程で決定された値の組み合わせからなる4つの測定点(is1,Ts1)、(is1,Ts2)、(is2,Ts1)、(is2,Ts2)のうち、任意の3点を所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性、光出力電力特性及びRF振幅特性の測定点として選定する。 Finally, in (5-4), four measurement points (i s1 , T s1 ), (i s1 , T s2 ) composed of combinations of values determined in the process of (5-2) to (5-3). ), (I s2 , T s1 ), (i s2 , T s2 ), arbitrary three points are optical output wavelength characteristics at the time of direct modulation satisfying a predetermined extinction ratio and eye mask regulations, optical output power characteristics, and Select as a measurement point for RF amplitude characteristics.

このようにして、直接変調型光通信用光源部内の発光素子に対して、所定の消光比及びアイマスク規定を満足する直接変調時の光出力電力の駆動電流及び素子温度依存性を決定するための測定点を選定することにより、光出力波長、RF振幅及び光出力電力の設定・制御時における光出力波長及び光出力電力の推定誤差を小さくすることができる。 In this way, for the light emitting element in the light source unit for direct modulation optical communication, the drive current and element temperature dependence of the optical output power at the time of direct modulation that satisfies the predetermined extinction ratio and eye mask specification are determined. By selecting these measurement points, it is possible to reduce the estimation error of the optical output wavelength and optical output power when setting and controlling the optical output wavelength, RF amplitude and optical output power.

[実施の形態6]
図24は、本発明の実施の形態6の方法を示したものである。図23に示した実施の形態5の方法との違いは、(6−1)、(6−4)の過程は実施の形態5における過程(5−1)、(5−4)とそれぞれ同様であるが、(6−2)〜(6−3)の過程が異なる。以下、図23の実施の形態5とは異なる部分について主に説明する。
[Embodiment 6]
Figure 24 is a view showing an actual method of facilities according to the sixth invention. The difference from the method of the fifth embodiment shown in FIG. 23 is that the steps (6-1) and (6-4) are the same as the steps (5-1) and (5-4) in the fifth embodiment, respectively. However, the processes (6-2) to (6-3) are different. In the following, portions different from the fifth embodiment in FIG. 23 will be mainly described.

(6−2)では、任意のqの値(qは前記発光素子の素子温度Tの動作範囲の内分点の比座標であり、0<q<1を満たす実数)を用いて、図12(b)に示すように素子温度と光出力波長を座標軸とする2次元平面上で、該指定された素子温度Tの動作範囲(T1≦T≦T2)をq:1−q及び1−q:qで内分してその内分点における素子温度Ts1及びTs2を求め、これより該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の素子温度の2次関数で表される光出力波長特性と、素子温度の1次関数で近似された光出力波長特性との近似誤差の最小値及び最大値、即ち|δλ0T=T1 or T2及び|δλ0T=(T1+T2)/2を求め、これらが等しくなるようにqの値を決定し、この時の内分点を測定点としてその素子温度Ts1及びTs2を該測定点における素子温度に決定する。 In (6-2), an arbitrary q value (q is a ratio coordinate of the internal dividing point of the operating range of the element temperature T of the light emitting element, and is a real number satisfying 0 <q <1) is used. As shown in (b), the operating range (T 1 ≦ T ≦ T 2 ) of the specified element temperature T is expressed as q: 1−q and 1 on a two-dimensional plane having the element temperature and the light output wavelength as coordinate axes. -Q: The element temperature T s1 and T s2 at the internal dividing point is obtained by dividing internally by q, and the second order element temperature during direct modulation satisfying a predetermined extinction ratio and eye mask definition of the light emitting element from this The minimum and maximum approximation errors between the optical output wavelength characteristic expressed by the function and the optical output wavelength characteristic approximated by the linear function of the element temperature, that is, | δλ 0 | T = T1 or T2 and | δλ 0 T = (T1 + T2) / 2 is determined, the value of q is determined so that they are equal, and the element temperatures T s1 and T s2 are measured using the internal dividing point at this time as the measurement point. Is determined as the element temperature at the measurement point.

(6−3)では、(6−2)の過程で決定したqの値を用いて、発光素子の駆動電流iの動作範囲(i1≦i≦i2)をq:1−q及び1−q:qで内分する駆動電流を測定点における駆動電流is1及びis2として決定する。 In (6-3), using the value of q determined in the process of (6-2), the operating range (i 1 ≦ i ≦ i 2 ) of the driving current i of the light emitting element is changed to q: 1-q and 1 -Q: The driving current divided internally by q is determined as the driving currents i s1 and i s2 at the measurement point.

以上、実施の形態5においては、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流の2次関数で表される光出力波長特性と、駆動電流の1次関数で近似された光出力波長特性との近似誤差を小さくするために、測定点における駆動電流を決定し、実施の形態6においては、所定の消光比及びアイマスク規定を満足する直接変調時の素子温度の2次関数で表される光出力波長特性と、素子温度の1次関数で近似された光出力波長特性との近似誤差を小さくするために、測定点における素子温度を決定したが、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流の2次関数で表される光出力電力特性と、駆動電流の1次関数で近似された光出力電力特性との近似誤差を小さくするために、測定点における駆動電流を決定しても、あるいは、所定の消光比及びアイマスク規定を満足する直接変調時の素子温度の2次関数で表される光出力電力特性と、素子温度の1次関数で近似された光出力電力特性との近似誤差を小さくするために、測定点における素子温度を決定しても、更に、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流の2次関数で表されるRF振幅特性と、駆動電流の1次関数で近似されたRF振幅特性との近似誤差を小さくするために、測定点における駆動電流を決定しても、あるいは、所定の消光比及びアイマスク規定を満足する直接変調時の素子温度の2次関数で表されるRF振幅特性と、素子温度の1次関数で近似されたRF振幅特性との近似誤差を小さくするために、測定点における素子温度を決定しても、同様の結果が得られるため、本発明の効果は変わらない。 As described above, in the fifth embodiment, the optical output wavelength characteristic represented by the quadratic function of the drive current at the time of direct modulation that satisfies the predetermined extinction ratio and the eye mask specification, and the linear function of the drive current are approximated. In order to reduce the approximation error with the optical output wavelength characteristic, the drive current at the measurement point is determined. In the sixth embodiment, the element temperature is second-order in direct modulation satisfying a predetermined extinction ratio and eye mask specification. and optical output wavelength characteristics expressed by the function, in order to reduce the approximation error between the optical output wavelength characteristics approximated by a linear function of the element temperature has been determined element temperature at the measuring point, predetermined extinction ratio and In order to reduce the approximation error between the optical output power characteristic represented by the quadratic function of the drive current during direct modulation that satisfies the eye mask specification and the optical output power characteristic approximated by the linear function of the drive current, Drive current at measurement point Be determined, or the optical output power characteristics expressed by the quadratic function of the element temperature of the direct modulation time satisfying the predetermined extinction ratio and eye mask requirement, the optical output which is approximated by a linear function of the device temperature Even if the element temperature at the measurement point is determined in order to reduce the approximation error with the power characteristic, it is further expressed by a quadratic function of the drive current at the time of direct modulation that satisfies a predetermined extinction ratio and eye mask specification. In order to reduce the approximation error between the RF amplitude characteristic and the RF amplitude characteristic approximated by a linear function of the drive current, even if the drive current at the measurement point is determined, or a predetermined extinction ratio and eye mask are specified. In order to reduce the approximation error between the RF amplitude characteristic represented by the quadratic function of the element temperature at the time of satisfying direct modulation and the RF amplitude characteristic approximated by the linear function of the element temperature, the element temperature at the measurement point is reduced. Even if decided Since the results obtained, the effect of the present invention is not changed.

また、実施の形態5及び6では、発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性、光出力電力特性及びRF振幅特性を、動作範囲内で駆動電流及び素子温度に対してそれぞれ2次の項まで考慮し(駆動電流及び素子温度の2次関数とし)、光出力波長、光出力電力及びRF振幅の実際の設定・制御時には、発光素子の光出力波長特性、光出力電力特性及びRF振幅特性の駆動電流依存性及び素子温度依存性が平面(駆動電流及び素子温度の1次関数)により近似される場合について説明したが、駆動電流及び素子温度の動作範囲を複数の領域に分割し、分割された複数の領域毎に、それぞれ平面近似される場合でも、同様の手順を用いて、それぞれの特性を表す関数の近似誤差の最大値と最小値の絶対値が等しくなる測定点の駆動電流及び素子温度を選定することが可能であるから、本発明の効果は変わらない。 In the fifth and sixth embodiments, the light output wavelength characteristic, the light output power characteristic, and the RF amplitude characteristic at the time of direct modulation satisfying the predetermined extinction ratio and the eye mask specification of the light emitting element are set within the operating range. Considering up to quadratic terms for each element temperature (as a quadratic function of the drive current and element temperature), the light output wavelength of the light-emitting element during the actual setting / control of the light output wavelength, light output power and RF amplitude The case where the drive current dependency and element temperature dependency of the characteristics, optical output power characteristics, and RF amplitude characteristics are approximated by a plane (linear function of drive current and element temperature) has been described. Even when the range is divided into multiple regions and each of the divided regions is approximated by a plane, the same procedure is used to calculate the maximum and minimum absolute values of the approximation error of the function representing each characteristic. value Since it is possible to select the equal drive current and device temperature of the measuring points, the effect of the present invention is not changed.

また、実施の形態5〜6においては、簡単のため、第1の手段が1つの発光素子で構成される場合について説明したが、第1の手段1が複数の発光素子により構成され、第2の手段2が各発光素子の駆動電流または光出力電力を、各々に対し与えられる目標値に保つよう自動的に制御し、第3の手段3が各発光素子の素子温度を、各々に対し与えられる目標値に保つよう自動的に制御し、第4の手段4が各発光素子のRF振幅を、各々に対し与えられる目標値に保つよう自動的に制御し、第5の手段5が第1の手段1を構成する各発光素子における、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力波長の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力電力の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対するRF振幅の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値とを格納し、第6の手段6が第5の手段5に格納された第1の手段1を構成する各発光素子に対する少なくとも1つの値により決まる、該各発光素子毎の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力波長との関係と、該各発光素子毎の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係とから、該各発光素子の光出力波長及び光出力電力の両方が別途指定された値となる駆動電流または光出力電力及び素子温度を決定すると共に、該各発光素子毎の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度とRF振幅との関係から、前記決定された駆動電流または光出力電力及び素子温度におけるRF振幅を決定する場合でも、また、第7の手段7が第1の手段1を構成する各発光素子の駆動電流を監視し、該各発光素子毎に別途指定される許容変動範囲内にあるか否かを比較判定し、許容変動範囲内にない発光素子に対しては、第5の手段5に格納された該発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係から、該発光素子の駆動電流変動時における駆動電流と素子温度と光出力電力との関係を予測し、第5の手段5に格納された該発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度とRF振幅との関係から、該発光素子の駆動電流変動時における駆動電流と素子温度とRF振幅との関係を予測し、第8の手段8が前記許容変動範囲内にない発光素子に対しては、第5の手段5に格納された該発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力波長との関係と、第7の手段7により予測された該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度と光出力電力との関係とから、該発光素子の駆動電流変動時における所定の消光及びアイマスク規定を満足する直接変調時の光出力波長及び光出力電力の両方が発光素子毎に別途指定される値となる最新の駆動電流または光出力電力及び最新の素子温度を予測すると共に、第7の手段7により予測された該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度とRF振幅との関係から、最新の駆動電流または光出力電力及び最新の素子温度における最新のRF振幅を予測する場合でも、また、第9の手段9が発光素子毎に第2の手段、第3の手段及び第4の手段にそれぞれ与えられた目標値の最新の値を格納する場合でも、更にまた、第10の手段10が第1の手段1を構成する各発光素子が発生する光出力を監視し、該光出力の光出力波長及び光出力電力の両方またはどちらか一方について、各々に対し別途指定された光出力波長範囲及び光出力電力範囲にあるか否かを比較判定し、その比較判定結果を出力する場合でも、各発光素子について実施の形態5または6の第1乃至第4の過程を実行することにより、第1の手段を構成する複数の発光素子の光出力波長特性、光出力電力特性及びRF振幅特性の測定点の選定が同様に可能であり、本発明の効果は変わらない。 In the fifth to sixth embodiments, the case where the first means is configured by one light emitting element has been described for the sake of simplicity. However, the first means 1 is configured by a plurality of light emitting elements, and the second Means 2 automatically controls the drive current or optical output power of each light emitting element to maintain the target value given to each, and the third means 3 gives the element temperature of each light emitting element to each. The fourth means 4 automatically controls the RF amplitude of each light emitting element to be kept at the target value given to each, and the fifth means 5 is the first control. in each light emitting device constituting the means 1, the predetermined extinction ratio and at least one value of the optical output wavelength for the drive current and device temperature direct modulation time satisfying the eye mask requirement, Oh Rui these 3's relationship At least one parameter value to be determined , At least one value of the optical output power for the drive current and device temperature direct modulation time satisfying the predetermined extinction ratio and eye mask requirement, Oh Rui at least one parameter value for determining the these three relations, a given at least one value of the RF amplitude for the extinction ratio and the drive current and device temperature of the direct modulation time satisfying the eye mask requirement, Oh Rui stores at least one parameter value for determining the these three relationships, the The sixth means 6 satisfies a predetermined extinction ratio and eye mask definition for each light emitting element, which is determined by at least one value for each light emitting element constituting the first means 1 stored in the fifth means 5. and the relationship between the drive current and device temperature and the optical output wavelength of the direct modulation time, the driving current of the direct modulation time satisfying the predetermined extinction ratio and eye mask requirement of each respective light emitting element and the element temperature From the relationship between the light output power and the light output power, the drive current or light output power and the device temperature at which both the light output wavelength and the light output power of each light emitting device are separately specified values are determined, and each light emitting device From the relationship between the drive current, the element temperature, and the RF amplitude at the time of direct current modulation satisfying a predetermined extinction ratio and eye mask definition for each, the determined drive current or optical output power and RF at the element temperature are determined. Even when the amplitude is determined, the seventh means 7 monitors the drive current of each light emitting element constituting the first means 1 and is within an allowable variation range separately designated for each light emitting element. A light-emitting element that is not within the allowable variation range is determined by at least one value for the light-emitting element stored in the fifth means 5 and a predetermined extinction ratio and eye of the light-emitting element. Mask rules A relationship between the drive current, the element temperature, and the optical output power when the drive current of the light emitting element varies is predicted from the relationship between the drive current, the element temperature, and the optical output power at the time of direct modulation that satisfies From the relationship between the drive current, the element temperature, and the RF amplitude at the time of direct modulation satisfying a predetermined extinction ratio of the light emitting element and an eye mask rule determined by at least one value for the light emitting element stored in 5 The relationship between the drive current, the element temperature, and the RF amplitude when the element drive current fluctuates is predicted, and the eighth means 8 is stored in the fifth means 5 for light emitting elements that are not within the allowable fluctuation range. The relationship between the drive current, the element temperature, and the light output wavelength during direct modulation satisfying a predetermined extinction ratio and eye mask definition of the light emitting element, which is determined by at least one value for the light emitting element, and seventh means 7 Due to And a relationship between the drive current and device temperature and the optical output power during the drive current fluctuation of the direct modulation at satisfying been a predetermined extinction ratio and eye mask requirement of the light emitting element, when the drive current fluctuation of the light emitting element Predicts the latest drive current or optical output power and latest device temperature at which both the optical output wavelength and optical output power during direct modulation satisfying the prescribed extinction and eye mask specifications are separately specified for each light emitting device In addition, from the relationship between the drive current, the element temperature, and the RF amplitude at the time of the drive current fluctuation at the time of direct modulation satisfying the predetermined extinction ratio of the light emitting element predicted by the seventh means 7 and the eye mask specification, the latest Even when the latest RF amplitude at the latest driving current or optical output power and the latest device temperature is predicted, the ninth means 9 is provided with the second means, the third means and the fourth means for each light emitting element. Even when the latest value of the target value given to each stage is stored, the tenth means 10 monitors the light output generated by each light-emitting element constituting the first means 1, and the light output When comparing and determining whether the optical output wavelength and / or optical output power are within the optical output wavelength range and optical output power range specified separately for each, and outputting the comparison determination result But, by the Turkey to perform the first through fourth processes of the fifth or sixth embodiment for each light-emitting element, the optical output wavelength characteristics of the plurality of the light emitting device constituting the first means, the optical output power characteristics and The measurement point of the RF amplitude characteristic can be selected similarly, and the effect of the present invention is not changed.

また、実施の形態5及び6においては、所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長及び光出力電力の設定・制御を行うために、発光素子の光出力波長の駆動電流及び素子温度依存性、発光素子の光出力電力の駆動電流及び素子温度依存性、発光素子のRF振幅の駆動電流及び素子温度依存性を決定するための測定点を選定しているが、光出力波長の監視のみを行うために、所定の消光比及びアイマスク規定を満足する直接変調時の発光素子の光出力波長の駆動電流及び素子温度依存性を決定するための測定点を選定する場合でも、本発明の効果は変わらない。 In Embodiments 5 and 6, in order to set and control the light output wavelength and the light output power during direct modulation that satisfy the predetermined extinction ratio and eye mask specification, the light output wavelength of the light emitting element is driven. Measurement points are selected to determine the current and element temperature dependence, the driving current and element temperature dependence of the light output power of the light emitting element, and the driving current and element temperature dependence of the RF amplitude of the light emitting element. When measuring points to determine the drive current and element temperature dependence of the light output wavelength of the light emitting element during direct modulation that satisfies the specified extinction ratio and eye mask regulations in order to monitor the output wavelength only However, the effect of the present invention does not change.

また、実施の形態5及び6においては、少なくとも1つの値そのもの(生の値)を第5の手段5へ格納しておく場合について説明したが、これらの全てまたは少なくとも1つの値を前もって規格化、スクランブル、ビット反転、暗号化等の符号化処理を行って第5の手段5に格納しておき、第5の手段5から読み出した後にそれぞれ非規格化、デスクランブル、ビット反転、暗号復号化等の復号化処理を行ってから用いる場合についても、本発明の効果は変わらない。   In the fifth and sixth embodiments, the case where at least one value itself (raw value) is stored in the fifth means 5 has been described. However, all or at least one of these values is normalized in advance. , Scramble, bit inversion, encryption, etc. are performed, stored in the fifth means 5, read out from the fifth means 5, and then de-standardized, descrambled, bit inversion, encryption / decryption, respectively. The effect of the present invention does not change even when the decoding process such as the above is used.

た、実施の形態5及び6においては、第8の手段8により決定された最新の駆動電流または光出力電力j、最新のRF振幅k及び最新の素子温度lそのもの(生の値)を第9の手段9へ格納する場合について説明したが、これらの全てまたは少なくとも1つの値を前もって規格化、スクランブル、ビット反転、暗号化等の符号化処理を行って第9の手段9に格納しておき、第9の手段9から読み出した後にそれぞれ非規格化、デスクランブル、ビット反転、暗号復号化等の復号化処理を行ってから用いる場合についても、本発明の効果は変わらない。 Also, in the fifth and sixth embodiments, the latest drive current or optical output power j determined by means 8 of the eighth, the latest RF amplitude k and the latest device temperature l itself (raw value) first Although the case where the data is stored in the ninth means 9 has been described, all or at least one of these values is subjected to encoding processing such as normalization, scramble, bit inversion, encryption, etc., and stored in the ninth means 9 in advance. In addition, the effect of the present invention does not change even when the data is read after being read from the ninth means 9 and then used after being subjected to decryption processing such as non-standardization, descrambling, bit inversion, and encryption / decryption.

また、実施の形態5及び6においては、光出力電力を与えられた目標値に保つようフィードバック制御等により自動的に制御する手段、即ち自動電力制御回路(APC)により直接的に制御する場合を例にとり説明したが、自動電流制御回路(ACC)を用いて制御する場合でも、本発明の効果は変わらない。   In the fifth and sixth embodiments, there is a case where the optical output power is automatically controlled by feedback control or the like so as to keep the optical output power at a given target value, that is, directly controlled by an automatic power control circuit (APC). Although described as an example, the effect of the present invention does not change even when control is performed using an automatic current control circuit (ACC).

また、実施の形態5及び6においては、発光素子のRF振幅の新たな目標値を明示的に与える場合について説明したが、自動バイアス制御回路(ABC)を自律的に動作させてRF振幅に更に微調整を加える場合でも、本発明の効果は変わらない。   In the fifth and sixth embodiments, the case where a new target value of the RF amplitude of the light emitting element is explicitly given has been described. However, the automatic bias control circuit (ABC) is operated autonomously to further increase the RF amplitude. Even when fine adjustment is made, the effect of the present invention does not change.

従来技術による光通信用光源部の一例を示す構成図Configuration diagram showing an example of a light source unit for optical communication according to the prior art 従来技術による光出力波長の設定・制御の概要を示す説明図Explanatory drawing showing the outline of setting and control of optical output wavelength by conventional technology 発光素子の駆動電流及び素子温度に対する光出力波長並びに光出力電力の関係を示す説明図(駆動電流変動前)Explanatory drawing which shows the relationship of the optical output wavelength with respect to the drive current and element temperature of a light emitting element, and optical output power (before drive current fluctuation) 発光素子の駆動電流及び素子温度に対する光出力波長並びに光出力電力の関係を示す説明図(駆動電流変動時)Explanatory drawing which shows the relationship of the optical output wavelength with respect to the drive current and element temperature of light emitting element, and optical output power (at the time of drive current fluctuation) 先願1に記載された光通信用光源部の一例を示す構成図Configuration diagram showing an example of a light source unit for optical communication described in the prior application 1 先願2に記載された光通信用光源部の一例を示す構成図The block diagram which shows an example of the light source part for optical communication described in the prior application 2 発光素子の動作範囲における光出力波長の近似誤差の説明図Illustration of approximate error of light output wavelength in the operating range of light emitting element 駆動電流動作範囲の内分点の比座標と光出力波長近似誤差の絶対値の比との関係を示す説明図Explanatory drawing which shows the relationship between the ratio coordinate of the internal dividing point of a drive current operation range, and the ratio of the absolute value of optical output wavelength approximation error 発光素子の動作範囲と光出力波長特性及び光出力電力特性の測定点との関係を示す説明図Explanatory drawing which shows the relationship between the operating range of a light emitting element, and the measurement point of optical output wavelength characteristic and optical output power characteristic 発光素子の直接変調時のアイパターンの測定例を示す説明図Explanatory drawing which shows the measurement example of the eye pattern at the time of direct modulation of a light emitting element 発光素子の所定の消光比・アイマスク規定を満足する直接変調時の駆動電流及び素子温度に対するRF振幅の関係を示す説明図Explanatory drawing which shows the relationship of the RF amplitude with respect to the drive current and element temperature at the time of the direct modulation which satisfy | fills predetermined extinction ratio and eye mask prescription | regulation of a light emitting element 発光素子の動作範囲における光出力波長の近似誤差の説明図Illustration of approximate error of light output wavelength in the operating range of light emitting element 発光素子の動作範囲における光出力電力もしくはRF振幅の近似誤差の説明図Explanatory drawing of approximate error of optical output power or RF amplitude in the operating range of light emitting element 発光素子の動作範囲と光出力波長特性、光出力電力特性及びRF振幅特性の測定点との関係を示す説明図Explanatory drawing which shows the relationship between the operating range of a light emitting element, and the measurement point of optical output wavelength characteristic, optical output power characteristic, and RF amplitude characteristic 本発明による直接変調型通信用光源部の実施の形態1を示す構成図1 is a block diagram showing a first embodiment of a direct modulation type communication light source unit according to the present invention. 実施の形態1の動作手順を示すフローチャートFlowchart showing the operation procedure of the first embodiment 本発明による直接変調型通信用光源部の実施の形態2を示す構成図The block diagram which shows Embodiment 2 of the light source part for direct modulation type communication by this invention 実施の形態2の動作手順を示すフローチャートFlowchart showing the operation procedure of the second embodiment 本発明による直接変調型通信用光源部の実施の形態3を示す構成図The block diagram which shows Embodiment 3 of the light source part for direct modulation | alteration type | molds by this invention 実施の形態3の動作手順を示すフローチャートA flowchart showing an operation procedure of the third embodiment. 本発明による直接変調型通信用光源部の実施の形態4を示す構成図The block diagram which shows Embodiment 4 of the light source part for direct modulation type communication by this invention 実施の形態4の動作手順を示すフローチャートThe flowchart which shows the operation | movement procedure of Embodiment 4. 本発明の実施の形態5の処理の手順を示すフローチャートThe flowchart which shows the procedure of the process of Embodiment 5 of this invention. 本発明の実施の形態6の処理の手順を示すフローチャートThe flowchart which shows the procedure of the process of Embodiment 6 of this invention.

符号の説明Explanation of symbols

1:第1の手段、2:第2の手段、3:第3の手段、4:第4の手段、5:第5の手段、6:第6の手段、7:第7の手段、8:第8の手段、9:第9の手段、10:第10の手段、a:第1の手段1からの光出力、b:指定された光出力波長及び光出力電力、c:第6の手段6により決定された駆動電流または光出力電力、d:第6の手段6により決定されたRF振幅、e:第6の手段6により決定された素子温度、f:第1の手段1を構成する発光素子の駆動電流、g:指定された駆動電流の許容変動範囲、h:第7の手段7により予測された発光素子の駆動電流変動時における駆動電流と素子温度と光出力電力との関係を決めるパラメータ値及び駆動電流と素子温度とRF振幅との関係を決めるパラメータ値、j:第8の手段8により決定された最新の駆動電流または光出力電力、k:第8の手段8により決定された最新のRF振幅、l:第8の手段8により決定された最新の素子温度、m:指定された光出力波長範囲及び光出力電力範囲の両方またはどちらか一方、n:比較判定結果。   1: first means, 2: second means, 3: third means, 4: fourth means, 5: fifth means, 6: sixth means, 7: seventh means, 8 : Eighth means, 9: ninth means, 10: tenth means, a: optical output from the first means 1, b: designated optical output wavelength and optical output power, c: sixth Drive current or optical output power determined by means 6, d: RF amplitude determined by sixth means 6, e: element temperature determined by sixth means 6, f: first means 1 is configured Driving current of the light emitting element to be operated, g: allowable fluctuation range of the designated driving current, h: relationship between the driving current, the element temperature, and the optical output power at the time of the driving current fluctuation of the light emitting element predicted by the seventh means 7 A parameter value that determines the relationship between drive current, element temperature, and RF amplitude, j: by the eighth means 8 The latest driving current or optical output power determined, k: latest RF amplitude determined by the eighth means 8, l: latest element temperature determined by the eighth means 8, m: designated light Output wavelength range and / or optical output power range, n: Comparison determination result.

Claims (12)

発光素子により構成され、光出力を発生する第1の手段と、該第1の手段を構成する発光素子の駆動電流または光出力電力を、与えられる目標値に保つよう自動的に制御する第2の手段と、該第1の手段を構成する発光素子の素子温度を、与えられる目標値に保つよう自動的に制御する第3の手段と、該第1の手段を構成する発光素子のRF振幅を、与えられる目標値に保つよう自動的に制御する第4の手段とを有する直接変調型光通信用光源部であって、
前記第1の手段を構成する発光素子に対し、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力波長の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力電力の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対するRF振幅の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値とを格納しておく第5の手段と、
該第5の手段に格納された前記発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力波長との関係と、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係とから、該発光素子の光出力波長及び光出力電力の両方が別途指定された値となる駆動電流または光出力電力及び素子温度を決定すると共に、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度とRF振幅との関係から、前記決定された駆動電流または光出力電力及び素子温度におけるRF振幅を決定する第6の手段とを備え、
該第6の手段により決定された前記発光素子の駆動電流または光出力電力、素子温度及びRF振幅を、それぞれ前記第2の手段、第3の手段及び第4の手段における該発光素子に対する目標値として与える直接変調型光通信用光源部における、第5の手段に格納される前記第1の手段を構成する発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性、光出力電力特性及びRF振幅特性の測定点(駆動電流、素子温度)の選定方法であって、
前記発光素子の別途指定された駆動電流iの動作範囲(i1≦i≦i2)及び素子温度Tの動作範囲(T1≦T≦T2)を入力する第1の過程と、
任意のpの値(pは前記発光素子の駆動電流iの動作範囲の内分点の比座標であり、0<p<1を満たす実数)を用いて、該指定された駆動電流iの動作範囲(i1≦i≦i2)をp:1−p及び1−p:pで内分してその内分点における駆動電流is1及びis2を求め、これより該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流に対する光出力波長特性と、駆動電流の1次関数で近似された光出力波長特性との近似誤差の最小値|δλ0i=i1 or i2及び最大値|δλ0i=(i1+i2)/2を求め、これらが等しくなるようにpの値を決定し、あるいはこれより該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流に対する光出力電力特性と、駆動電流の1次関数で近似された光出力電力特性との近似誤差の最小値|δP0i=i1 or i2及び最大値|δP0i=(i1+i2)/2を求め、これらが等しくなるようにpの値を決定し、もしくはこれより該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流に対するRF振幅特性と、駆動電流の1次関数で近似されたRF振幅特性との近似誤差の最小値|δiRF0i=i1 or i2及び最大値|δiRF0i=(i1+i2)/2を求め、これらが等しくなるようにpの値を決定し、この時の内分点を測定点としてその駆動電流is1及びis2を該測定点における駆動電流に決定する第2の過程と、
該指定された素子温度Tの動作範囲(T1≦T≦T2)を該決定されたpの値を用いてp:1−p及び1−p:pで内分する素子温度を測定点における素子温度Ts1及びTs2として決定する第3の過程と、
該決定された値の組み合わせからなる4つの測定点(is1,Ts1)、(is1,Ts2)、(is2,Ts1)、(is2,Ts2)のうち、任意の3点を所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性、光出力電力特性及びRF振幅特性の測定点として選定する第4の過程とを含む
ことを特徴とする光出力波長特性、光出力電力特性及びRF振幅特性の測定点の選定方法。
A first means configured to generate a light output, and a second means for automatically controlling the driving current or the light output power of the light emitting element constituting the first means to be kept at a given target value. Means, a third means for automatically controlling the element temperature of the light emitting element constituting the first means to maintain a given target value, and the RF amplitude of the light emitting element constituting the first means And a light source unit for direct modulation optical communication having a fourth means for automatically controlling to maintain a given target value,
To the light emitting elements constituting the first means, at least one value of the optical output wavelength for the drive current and device temperature direct modulation time satisfying the predetermined extinction ratio and eye mask requirement, Oh Rui of these three at least one parameter value for determining the relationship, the predetermined at least one value of the extinction ratio and optical output power for the drive current and device temperature direct modulation time satisfying the eye mask requirement, Oh Rui of these three related at least one parameter value determining, at least to determine the predetermined extinction ratio and at least one value of the RF amplitude for the drive current and device temperature direct modulation time satisfying the eye mask requirement, Oh Rui of these three related Fifth means for storing one parameter value;
A drive current, element temperature, and light output wavelength at the time of direct modulation satisfying a predetermined extinction ratio of the light emitting element and an eye mask specification determined by at least one value for the light emitting element stored in the fifth means Both the light output wavelength and the light output power of the light emitting element from the relationship and the relationship between the drive current, the element temperature and the light output power during direct modulation satisfying the predetermined extinction ratio and eye mask specification of the light emitting element. Determines the driving current or optical output power and element temperature at which the value of the light emitting element is separately designated, and the driving current and the element when the driving current fluctuates during direct modulation satisfying the predetermined extinction ratio and eye mask specification of the light emitting element A sixth means for determining the determined drive current or optical output power and the RF amplitude at the element temperature from the relationship between the temperature and the RF amplitude;
The driving current or optical output power of the light emitting element, the element temperature and the RF amplitude determined by the sixth means are the target values for the light emitting element in the second means, third means and fourth means, respectively. in direct modulation type optical communication light source unit Ru provided as a predetermined extinction ratio and direct modulation at the optical output that satisfies the eye mask requirement of the light emitting device constituting the first means to be stored in the fifth means A method for selecting measurement points (drive current, element temperature) of wavelength characteristics, optical output power characteristics and RF amplitude characteristics,
A first step of inputting an operation range (i 1 ≦ i ≦ i 2 ) of a separately designated drive current i and an operation range (T 1 ≦ T ≦ T 2 ) of the element temperature T;
Using an arbitrary value of p (p is a ratio coordinate of the internal dividing point of the operating range of the driving current i of the light emitting element, and a real number satisfying 0 <p <1), the operation of the designated driving current i The range (i 1 ≦ i ≦ i 2 ) is internally divided by p: 1-p and 1-p: p to determine drive currents i s1 and i s2 at the internal dividing points, and from this, a predetermined value of the light emitting element is determined. Minimum value of the approximation error between the optical output wavelength characteristic with respect to the driving current during direct modulation that satisfies the extinction ratio and the eye mask specification, and the optical output wavelength characteristic approximated by a linear function of the driving current | δλ 0 | i = i1 or i2 and the maximum value | δλ 0 | i = (i1 + i2) / 2 , and determine the value of p so that they are equal to each other, or from this, a predetermined extinction ratio and eye mask definition of the light emitting element Nearly satisfied optical output power characteristics with respect to drive current during direct modulation and optical output power characteristics approximated by a linear function of drive current The minimum value | δP 0 | i = i1 or i2 and the maximum value | δP 0 | i = (i1 + i2) / 2 of the similar error are obtained, and the value of p is determined so that they are equal, or from this Minimum value of approximation error between RF amplitude characteristic with respect to drive current during direct modulation satisfying predetermined extinction ratio and eye mask definition of light emitting element and RF amplitude characteristic approximated by linear function of drive current | δi RF0 | i = i1 or i2 and the maximum value | δi RF0 | i = (i1 + i2) / 2 are determined, and the value of p is determined so that they are equal. a second step of determining i s1 and i s2 as drive currents at the measurement points;
A measuring point is an element temperature at which the operating range of the specified element temperature T (T 1 ≦ T ≦ T 2 ) is internally divided by p: 1−p and 1−p: p using the determined value of p. A third step of determining as element temperatures T s1 and T s2 at
Of the four measurement points (i s1 , T s1 ), (i s1 , T s2 ), (i s2 , T s1 ), (i s2 , T s2 ) composed of the determined value combinations, any 3 And a fourth process of selecting a point as a measurement point of the optical output wavelength characteristic, optical output power characteristic and RF amplitude characteristic at the time of direct modulation satisfying a predetermined extinction ratio and eye mask specification. A method for selecting measurement points for wavelength characteristics, optical output power characteristics, and RF amplitude characteristics.
発光素子により構成され、光出力を発生する第1の手段と、該第1の手段を構成する発光素子の駆動電流または光出力電力を、与えられる目標値に保つよう自動的に制御する第2の手段と、該第1の手段を構成する発光素子の素子温度を、与えられる目標値に保つよう自動的に制御する第3の手段と、該第1の手段を構成する発光素子のRF振幅を、与えられる目標値に保つよう自動的に制御する第4の手段とを有する直接変調型光通信用光源部であって、
前記第1の手段を構成する発光素子に対し、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力波長の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力電力の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対するRF振幅の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値とを格納しておく第5の手段と、
該第5の手段に格納された前記発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力波長との関係と、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係とから、該発光素子の光出力波長及び光出力電力の両方が別途指定された値となる駆動電流または光出力電力及び素子温度を決定すると共に、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度とRF振幅との関係から、前記決定された駆動電流または光出力電力及び素子温度におけるRF振幅を決定する第6の手段とを備え、
該第6の手段により決定された前記発光素子の駆動電流または光出力電力、素子温度及びRF振幅を、それぞれ前記第2の手段、第3の手段及び第4の手段における該発光素子に対する目標値として与える直接変調型光通信用光源部における、第5の手段に格納される前記第1の手段を構成する発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性、光出力電力特性及びRF振幅特性の測定点(駆動電流、素子温度)の選定方法であって、
前記発光素子の別途指定された駆動電流iの動作範囲(i1≦i≦i2)及び素子温度Tの動作範囲(T1≦T≦T2)を入力する第1の過程と、
任意のqの値(qは前記発光素子の素子温度Tの動作範囲の内分点の比座標であり、0<q<1を満たす実数)を用いて、該指定された素子温度Tの動作範囲(T1≦T≦T2)をq:1−q及び1−q:qで内分してその内分点における素子温度Ts1及びTs2を求め、これより該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の素子温度に対する光出力波長特性と、素子温度の1次関数で近似された光出力波長特性との近似誤差の最小値|δλ0T=T1 or T2及び最大値|δλ0T=(T1+T2)/2を求め、これらが等しくなるようにqの値を決定し、あるいはこれより該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の素子温度に対する光出力電力特性と、素子温度の1次関数で近似された光出力電力特性との近似誤差の最小値|δP0T=T1 or T2及び最大値|δP0T=(T1+T2)/2を求め、これらが等しくなるようにqの値を決定し、もしくはこれより該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の素子温度に対するRF振幅特性と、素子温度の1次関数で近似されたRF振幅特性との近似誤差の最小値|δiRF0T=T1 or T2及び最大値|δiRF0T=(T1+T2)/2を求め、これらが等しくなるようにqの値を決定し、この時の内分点を測定点としてその素子温度Ts1及びTs2を該測定点における素子温度に決定する第5の過程と、
該指定された駆動電流iの動作範囲(i1≦i≦i2)を該決定されたqの値を用いてq:1−q及び1−q:qで内分する駆動電流を測定点における駆動電流is1及びis2として決定する第6の過程と、
該決定された値の組み合わせからなる4つの測定点(is1,Ts1)、(is1,Ts2)、(is2,Ts1)、(is2,Ts2)のうち、任意の3点を所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性、光出力電力特性及びRF振幅特性の測定点として選定する第4の過程とを含む
ことを特徴とする光出力波長特性、光出力電力特性及びRF振幅特性の測定点の選定方法。
A first means configured to generate a light output, and a second means for automatically controlling the driving current or the light output power of the light emitting element constituting the first means to be kept at a given target value. Means, a third means for automatically controlling the element temperature of the light emitting element constituting the first means to maintain a given target value, and the RF amplitude of the light emitting element constituting the first means And a light source unit for direct modulation optical communication having a fourth means for automatically controlling to maintain a given target value,
To the light emitting elements constituting the first means, at least one value of the optical output wavelength for the drive current and device temperature direct modulation time satisfying the predetermined extinction ratio and eye mask requirement, Oh Rui of these three at least one parameter value for determining the relationship, the predetermined at least one value of the extinction ratio and optical output power for the drive current and device temperature direct modulation time satisfying the eye mask requirement, Oh Rui of these three related at least one parameter value determining, at least to determine the predetermined extinction ratio and at least one value of the RF amplitude for the drive current and device temperature direct modulation time satisfying the eye mask requirement, Oh Rui of these three related Fifth means for storing one parameter value;
A drive current, element temperature, and light output wavelength at the time of direct modulation satisfying a predetermined extinction ratio of the light emitting element and an eye mask specification determined by at least one value for the light emitting element stored in the fifth means Both the light output wavelength and the light output power of the light emitting element from the relationship and the relationship between the drive current, the element temperature and the light output power during direct modulation satisfying the predetermined extinction ratio and eye mask specification of the light emitting element. Determines the driving current or optical output power and element temperature at which the value of the light emitting element is separately designated, and the driving current and the element when the driving current fluctuates during direct modulation satisfying the predetermined extinction ratio and eye mask specification of the light emitting element A sixth means for determining the determined drive current or optical output power and the RF amplitude at the element temperature from the relationship between the temperature and the RF amplitude;
The driving current or optical output power of the light emitting element, the element temperature and the RF amplitude determined by the sixth means are the target values for the light emitting element in the second means, third means and fourth means, respectively. in direct modulation type optical communication light source unit Ru provided as a predetermined extinction ratio and direct modulation at the optical output that satisfies the eye mask requirement of the light emitting device constituting the first means to be stored in the fifth means A method for selecting measurement points (drive current, element temperature) of wavelength characteristics, optical output power characteristics and RF amplitude characteristics,
A first step of inputting an operation range (i 1 ≦ i ≦ i 2 ) of a separately designated drive current i and an operation range (T 1 ≦ T ≦ T 2 ) of the element temperature T;
Using an arbitrary value of q (q is a ratio coordinate of an internal dividing point of the operating range of the element temperature T of the light emitting element, and a real number satisfying 0 <q <1), the operation at the specified element temperature T is performed. The range (T 1 ≦ T ≦ T 2 ) is internally divided by q: 1-q and 1-q: q to obtain element temperatures T s1 and T s2 at the internal dividing points, from which a predetermined value of the light emitting element is obtained. Minimum value of approximation error between the optical output wavelength characteristic with respect to the element temperature during direct modulation that satisfies the extinction ratio and the eye mask specification, and the optical output wavelength characteristic approximated by a linear function of the element temperature | δλ 0 | T = T1 or T2 and the maximum value | δλ 0 | T = (T1 + T2) / 2 and determine the value of q so that they are equal to each other, or from this, the predetermined extinction ratio and eye mask definition of the light emitting element are determined. Nearly satisfactory optical output power characteristics with respect to element temperature during direct modulation and optical output power characteristics approximated by a linear function of element temperature The minimum value | δP 0 | T = T1 or T2 and the maximum value | δP 0 | T = (T1 + T2) / 2 are determined, and the value of q is determined so that they are equal, or Minimum value of approximation error between RF amplitude characteristic with respect to element temperature at the time of direct modulation satisfying a predetermined extinction ratio and eye mask specification of the light emitting element and RF amplitude characteristic approximated by a linear function of element temperature | δi RF0 | T = T1 or T2 and the maximum value | δi RF0 | T = (T1 + T2) / 2 is determined, the q value is determined so that they are equal, and the element temperature at this time is taken as the measurement point. A fifth step of determining T s1 and T s2 as element temperatures at the measurement points;
A measuring point is a driving current that internally divides the operating range (i 1 ≦ i ≦ i 2 ) of the designated driving current i by q: 1-q and 1-q: q using the determined q value. A sixth step of determining as drive currents i s1 and i s2 in
Of the four measurement points (i s1 , T s1 ), (i s1 , T s2 ), (i s2 , T s1 ), (i s2 , T s2 ) composed of the determined value combinations, any 3 And a fourth process of selecting a point as a measurement point of the optical output wavelength characteristic, optical output power characteristic and RF amplitude characteristic at the time of direct modulation satisfying a predetermined extinction ratio and eye mask specification. A method for selecting measurement points for wavelength characteristics, optical output power characteristics, and RF amplitude characteristics.
発光素子により構成され、光出力を発生する第1の手段と、該第1の手段を構成する発光素子の駆動電流または光出力電力を、与えられる目標値に保つよう自動的に制御する第2の手段と、該第1の手段を構成する発光素子の素子温度を、与えられる目標値に保つよう自動的に制御する第3の手段と、該第1の手段を構成する発光素子のRF振幅を、与えられる目標値に保つよう自動的に制御する第4の手段とを有する直接変調型光通信用光源部であって、
前記第1の手段を構成する発光素子に対し、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力波長の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力電力の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対するRF振幅の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値とを格納しておく第5の手段と、
前記第1の手段を構成する発光素子の駆動電流を監視し、別途指定される許容変動範囲内にあるか否かを比較判定し、許容変動範囲内にない場合は、前記第5の手段に格納された該発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係から、該発光素子の駆動電流変動時における駆動電流と素子温度と光出力電力との関係を予測し、前記第5の手段に格納された該発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度とRF振幅との関係から、該発光素子の駆動電流変動時における駆動電流と素子温度とRF振幅との関係を予測する第7の手段と、
前記第5の手段に格納された前記発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力波長との関係と、前記第7の手段により予測された該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度と光出力電力との関係とから、該発光素子の駆動電流変動時における所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長及び光出力電力の両方が別途指定される値となる最新の駆動電流または光出力電力及び最新の素子温度を予測すると共に、前記第7の手段により予測された該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度とRF振幅との関係から、最新の駆動電流または光出力電力及び最新の素子温度における最新のRF振幅を予測する第8の手段とを備え、
該第8の手段により予測された前記発光素子の最新の駆動電流または光出力電力、最新の素子温度及び最新のRF振幅を、それぞれ前記第2の手段、第3の手段及び第4の手段における該発光素子に対する新たな目標値として与える直接変調型光通信用光源部における、第5の手段に格納される前記第1の手段を構成する発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性、光出力電力特性及びRF振幅特性の測定点(駆動電流、素子温度)の選定方法であって、
前記発光素子の別途指定された駆動電流iの動作範囲(i1≦i≦i2)及び素子温度Tの動作範囲(T1≦T≦T2)を入力する第1の過程と、
任意のpの値(pは前記発光素子の駆動電流iの動作範囲の内分点の比座標であり、0<p<1を満たす実数)を用いて、該指定された駆動電流iの動作範囲(i1≦i≦i2)をp:1−p及び1−p:pで内分してその内分点における駆動電流is1及びis2を求め、これより該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流に対する光出力波長特性と、駆動電流の1次関数で近似された光出力波長特性との近似誤差の最小値|δλ0i=i1 or i2及び最大値|δλ0i=(i1+i2)/2を求め、これらが等しくなるようにpの値を決定し、あるいはこれより該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流に対する光出力電力特性と、駆動電流の1次関数で近似された光出力電力特性との近似誤差の最小値|δP0i=i1 or i2及び最大値|δP0i=(i1+i2)/2を求め、これらが等しくなるようにpの値を決定し、もしくはこれより該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流に対するRF振幅特性と、駆動電流の1次関数で近似されたRF振幅特性との近似誤差の最小値|δiRF0i=i1 or i2及び最大値|δiRF0i=(i1+i2)/2を求め、これらが等しくなるようにpの値を決定し、この時の内分点を測定点としてその駆動電流is1及びis2を該測定点における駆動電流に決定する第2の過程と、
該指定された素子温度Tの動作範囲(T1≦T≦T2)を該決定されたpの値を用いてp:1−p及び1−p:pで内分する素子温度を測定点における素子温度Ts1及びTs2として決定する第3の過程と、
該決定された値の組み合わせからなる4つの測定点(is1,Ts1)、(is1,Ts2)、(is2,Ts1)、(is2,Ts2)のうち、任意の3点を所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性、光出力電力特性及びRF振幅特性の測定点として選定する第4の過程とを含む
ことを特徴とする光出力波長特性、光出力電力特性及びRF振幅特性の測定点の選定方法。
A first means configured to generate a light output, and a second means for automatically controlling the driving current or the light output power of the light emitting element constituting the first means to be kept at a given target value. Means, a third means for automatically controlling the element temperature of the light emitting element constituting the first means to maintain a given target value, and the RF amplitude of the light emitting element constituting the first means And a light source unit for direct modulation optical communication having a fourth means for automatically controlling to maintain a given target value,
To the light emitting elements constituting the first means, at least one value of the optical output wavelength for the drive current and device temperature direct modulation time satisfying the predetermined extinction ratio and eye mask requirement, Oh Rui of these three at least one parameter value for determining the relationship, the predetermined at least one value of the extinction ratio and optical output power for the drive current and device temperature direct modulation time satisfying the eye mask requirement, Oh Rui of these three related at least one parameter value determining, at least to determine the predetermined extinction ratio and at least one value of the RF amplitude for the drive current and device temperature direct modulation time satisfying the eye mask requirement, Oh Rui of these three related Fifth means for storing one parameter value;
The drive current of the light emitting element constituting the first means is monitored, and it is determined whether or not it is within an allowable fluctuation range specified separately. If not within the allowable fluctuation range, the fifth means From the relationship between the drive current, the element temperature, and the optical output power at the time of direct modulation satisfying a predetermined extinction ratio of the light emitting element and an eye mask defined by at least one value for the stored light emitting element, the light emitting element A predetermined extinction ratio of the light-emitting element determined by at least one value for the light-emitting element stored in the fifth means by predicting a relationship between the drive current, the element temperature, and the optical output power when the drive current fluctuates and the seventh to predict the relationship between the drive current and device temperature and the RF amplitude of the direct modulation time, the relationship between the drive current and device temperature and the RF amplitude during the driving current fluctuation of the light emitting element to satisfy the eye mask requirement And means,
A drive current, element temperature, and light output wavelength at the time of direct modulation satisfying a predetermined extinction ratio and eye mask definition of the light emitting element, which are determined by at least one value for the light emitting element stored in the fifth means And the relationship between the drive current, the device temperature, and the optical output power when the drive current fluctuates during direct modulation that satisfies the predetermined extinction ratio and eye mask specification of the light emitting device predicted by the seventh means The latest driving current or optical output power in which both the optical output wavelength and optical output power during direct modulation satisfying a predetermined extinction ratio and eye mask regulations when the driving current of the light emitting element varies are separately specified values and thereby predicting the latest device temperature, put in driving current fluctuation of direct modulation time satisfying the predetermined extinction ratio and eye mask requirement of the expected light emitting element by the seventh means From the relationship between the drive current and device temperature and the RF amplitude, and a eighth means for predicting the latest RF amplitude in the latest drive current or optical output power and the latest device temperature,
The latest driving current or optical output power of the light emitting element predicted by the eighth means, the latest element temperature, and the latest RF amplitude are respectively obtained in the second means, the third means, and the fourth means. in direct modulation type optical communication light source unit Ru provided as a new target value for the light emitting element, predetermined extinction ratio of the light emitting device constituting the first means to be stored in the fifth means and the eye mask requirement A method of selecting measurement points (drive current, element temperature) for satisfying optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics during direct modulation,
A first step of inputting an operation range (i 1 ≦ i ≦ i 2 ) of a separately designated drive current i and an operation range (T 1 ≦ T ≦ T 2 ) of the element temperature T;
Using an arbitrary value of p (p is a ratio coordinate of the internal dividing point of the operating range of the driving current i of the light emitting element, and a real number satisfying 0 <p <1), the operation of the designated driving current i The range (i 1 ≦ i ≦ i 2 ) is internally divided by p: 1-p and 1-p: p to determine drive currents i s1 and i s2 at the internal dividing points, and from this, a predetermined value of the light emitting element is determined. Minimum value of the approximation error between the optical output wavelength characteristic with respect to the driving current during direct modulation that satisfies the extinction ratio and the eye mask specification, and the optical output wavelength characteristic approximated by a linear function of the driving current | δλ 0 | i = i1 or i2 and the maximum value | δλ 0 | i = (i1 + i2) / 2 , and determine the value of p so that they are equal to each other, or from this, a predetermined extinction ratio and eye mask definition of the light emitting element Nearly satisfied optical output power characteristics with respect to drive current during direct modulation and optical output power characteristics approximated by a linear function of drive current The minimum value | δP 0 | i = i1 or i2 and the maximum value | δP 0 | i = (i1 + i2) / 2 of the similar error are obtained, and the value of p is determined so that they are equal, or from this Minimum value of approximation error between RF amplitude characteristic with respect to drive current during direct modulation satisfying predetermined extinction ratio and eye mask definition of light emitting element and RF amplitude characteristic approximated by linear function of drive current | δi RF0 | i = i1 or i2 and the maximum value | δi RF0 | i = (i1 + i2) / 2 are determined, and the value of p is determined so that they are equal. a second step of determining i s1 and i s2 as drive currents at the measurement points;
A measuring point is an element temperature at which the operating range of the specified element temperature T (T 1 ≦ T ≦ T 2 ) is internally divided by p: 1−p and 1−p: p using the determined value of p. A third step of determining as element temperatures T s1 and T s2 at
Of the four measurement points (i s1 , T s1 ), (i s1 , T s2 ), (i s2 , T s1 ), (i s2 , T s2 ) composed of the determined value combinations, any 3 And a fourth process of selecting a point as a measurement point of the optical output wavelength characteristic, optical output power characteristic and RF amplitude characteristic at the time of direct modulation satisfying a predetermined extinction ratio and eye mask specification. A method for selecting measurement points for wavelength characteristics, optical output power characteristics, and RF amplitude characteristics.
発光素子により構成され、光出力を発生する第1の手段と、該第1の手段を構成する発光素子の駆動電流または光出力電力を、与えられる目標値に保つよう自動的に制御する第2の手段と、該第1の手段を構成する発光素子の素子温度を、与えられる目標値に保つよう自動的に制御する第3の手段と、該第1の手段を構成する発光素子のRF振幅を、与えられる目標値に保つよう自動的に制御する第4の手段とを有する直接変調型光通信用光源部であって、
前記第1の手段を構成する発光素子に対し、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力波長の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力電力の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対するRF振幅の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値とを格納しておく第5の手段と、
前記第1の手段を構成する発光素子の駆動電流を監視し、別途指定される許容変動範囲内にあるか否かを比較判定し、許容変動範囲内にない場合は、前記第5の手段に格納された該発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係から、該発光素子の駆動電流変動時における駆動電流と素子温度と光出力電力との関係を予測し、前記第5の手段に格納された該発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度とRF振幅との関係から、該発光素子の駆動電流変動時における駆動電流と素子温度とRF振幅との関係を予測する第7の手段と、
前記第5の手段に格納された前記発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力波長との関係と、前記第7の手段により予測された該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度と光出力電力との関係とから、該発光素子の駆動電流変動時における所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長及び光出力電力の両方が別途指定される値となる最新の駆動電流または光出力電力及び最新の素子温度を予測すると共に、前記第7の手段により予測された該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度とRF振幅との関係から、最新の駆動電流または光出力電力及び最新の素子温度における最新のRF振幅を予測する第8の手段とを備え、
該第8の手段により予測された前記発光素子の最新の駆動電流または光出力電力、最新の素子温度及び最新のRF振幅を、それぞれ前記第2の手段、第3の手段及び第4の手段における該発光素子に対する新たな目標値として与える直接変調型光通信用光源部における、第5の手段に格納される前記第1の手段を構成する発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性、光出力電力特性及びRF振幅特性の測定点(駆動電流、素子温度)の選定方法であって、
前記発光素子の別途指定された駆動電流iの動作範囲(i1≦i≦i2)及び素子温度Tの動作範囲(T1≦T≦T2)を入力する第1の過程と、
任意のqの値(qは前記発光素子の素子温度Tの動作範囲の内分点の比座標であり、0<q<1を満たす実数)を用いて、該指定された素子温度Tの動作範囲(T1≦T≦T2)をq:1−q及び1−q:qで内分してその内分点における素子温度Ts1及びTs2を求め、これより該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の素子温度に対する光出力波長特性と、素子温度の1次関数で近似された光出力波長特性との近似誤差の最小値|δλ0T=T1 or T2及び最大値|δλ0T=(T1+T2)/2を求め、これらが等しくなるようにqの値を決定し、あるいはこれより該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の素子温度に対する光出力電力特性と、素子温度の1次関数で近似された光出力電力特性との近似誤差の最小値|δP0T=T1 or T2及び最大値|δP0T=(T1+T2)/2を求め、これらが等しくなるようにqの値を決定し、もしくはこれより該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の素子温度に対するRF振幅特性と、素子温度の1次関数で近似されたRF振幅特性との近似誤差の最小値|δiRF0T=T1 or T2及び最大値|δiRF0T=(T1+T2)/2を求め、これらが等しくなるようにqの値を決定し、この時の内分点を測定点としてその素子温度Ts1及びTs2を該測定点における素子温度に決定する第5の過程と、
該指定された駆動電流iの動作範囲(i1≦i≦i2)を該決定されたqの値を用いてq:1−q及び1−q:qで内分する駆動電流を測定点における駆動電流is1及びis2として決定する第6の過程と、
該決定された値の組み合わせからなる4つの測定点(is1,Ts1)、(is1,Ts2)、(is2,Ts1)、(is2,Ts2)のうち、任意の3点を所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性、光出力電力特性及びRF振幅特性の測定点として選定する第4の過程とを含む
ことを特徴とする光出力波長特性、光出力電力特性及びRF振幅特性の測定点の選定方法。
A first means configured to generate a light output, and a second means for automatically controlling the driving current or the light output power of the light emitting element constituting the first means to be kept at a given target value. Means, a third means for automatically controlling the element temperature of the light emitting element constituting the first means to maintain a given target value, and the RF amplitude of the light emitting element constituting the first means And a light source unit for direct modulation optical communication having a fourth means for automatically controlling to maintain a given target value,
To the light emitting elements constituting the first means, at least one value of the optical output wavelength for the drive current and device temperature direct modulation time satisfying the predetermined extinction ratio and eye mask requirement, Oh Rui of these three at least one parameter value for determining the relationship, the predetermined at least one value of the extinction ratio and optical output power for the drive current and device temperature direct modulation time satisfying the eye mask requirement, Oh Rui of these three related at least one parameter value determining, at least to determine the predetermined extinction ratio and at least one value of the RF amplitude for the drive current and device temperature direct modulation time satisfying the eye mask requirement, Oh Rui of these three related Fifth means for storing one parameter value;
The drive current of the light emitting element constituting the first means is monitored, and it is determined whether or not it is within an allowable fluctuation range specified separately. If not within the allowable fluctuation range, the fifth means From the relationship between the drive current, the element temperature, and the optical output power at the time of direct modulation satisfying a predetermined extinction ratio of the light emitting element and an eye mask defined by at least one value for the stored light emitting element, the light emitting element A predetermined extinction ratio of the light-emitting element determined by at least one value for the light-emitting element stored in the fifth means by predicting a relationship between the drive current, the element temperature, and the optical output power when the drive current fluctuates and the seventh to predict the relationship between the drive current and device temperature and the RF amplitude of the direct modulation time, the relationship between the drive current and device temperature and the RF amplitude during the driving current fluctuation of the light emitting element to satisfy the eye mask requirement And means,
A drive current, element temperature, and light output wavelength at the time of direct modulation satisfying a predetermined extinction ratio and eye mask definition of the light emitting element, which are determined by at least one value for the light emitting element stored in the fifth means And the relationship between the drive current, the device temperature, and the optical output power when the drive current fluctuates during direct modulation that satisfies the predetermined extinction ratio and eye mask specification of the light emitting device predicted by the seventh means The latest driving current or optical output power in which both the optical output wavelength and optical output power during direct modulation satisfying a predetermined extinction ratio and eye mask regulations when the driving current of the light emitting element varies are separately specified values and thereby predicting the latest device temperature, put in driving current fluctuation of direct modulation time satisfying the predetermined extinction ratio and eye mask requirement of the expected light emitting element by the seventh means From the relationship between the drive current and device temperature and the RF amplitude, and a eighth means for predicting the latest RF amplitude in the latest drive current or optical output power and the latest device temperature,
The latest driving current or optical output power of the light emitting element predicted by the eighth means, the latest element temperature, and the latest RF amplitude are respectively obtained in the second means, the third means, and the fourth means. in direct modulation type optical communication light source unit Ru provided as a new target value for the light emitting element, predetermined extinction ratio of the light emitting device constituting the first means to be stored in the fifth means and the eye mask requirement A method of selecting measurement points (drive current, element temperature) for satisfying optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics during direct modulation,
A first step of inputting an operation range (i 1 ≦ i ≦ i 2 ) of a separately designated drive current i and an operation range (T 1 ≦ T ≦ T 2 ) of the element temperature T;
Using an arbitrary value of q (q is a ratio coordinate of an internal dividing point of the operating range of the element temperature T of the light emitting element, and a real number satisfying 0 <q <1), the operation at the specified element temperature T is performed. The range (T 1 ≦ T ≦ T 2 ) is internally divided by q: 1-q and 1-q: q to obtain element temperatures T s1 and T s2 at the internal dividing points, from which a predetermined value of the light emitting element is obtained. Minimum value of approximation error between the optical output wavelength characteristic with respect to the element temperature during direct modulation that satisfies the extinction ratio and the eye mask specification, and the optical output wavelength characteristic approximated by a linear function of the element temperature | δλ 0 | T = T1 or T2 and the maximum value | δλ 0 | T = (T1 + T2) / 2 and determine the value of q so that they are equal to each other, or from this, the predetermined extinction ratio and eye mask definition of the light emitting element are determined. Nearly satisfactory optical output power characteristics with respect to element temperature during direct modulation and optical output power characteristics approximated by a linear function of element temperature The minimum value | δP 0 | T = T1 or T2 and the maximum value | δP 0 | T = (T1 + T2) / 2 are determined, and the value of q is determined so that they are equal, or Minimum value of approximation error between RF amplitude characteristic with respect to element temperature at the time of direct modulation satisfying a predetermined extinction ratio and eye mask specification of the light emitting element and RF amplitude characteristic approximated by a linear function of element temperature | δi RF0 | T = T1 or T2 and the maximum value | δi RF0 | T = (T1 + T2) / 2 is determined, the q value is determined so that they are equal, and the element temperature at this time is taken as the measurement point. A fifth step of determining T s1 and T s2 as element temperatures at the measurement points;
A measuring point is a driving current that internally divides the operating range (i 1 ≦ i ≦ i 2 ) of the designated driving current i by q: 1-q and 1-q: q using the determined q value. A sixth step of determining as drive currents i s1 and i s2 in
Of the four measurement points (i s1 , T s1 ), (i s1 , T s2 ), (i s2 , T s1 ), (i s2 , T s2 ) composed of the determined value combinations, any 3 And a fourth process of selecting a point as a measurement point of the optical output wavelength characteristic, optical output power characteristic and RF amplitude characteristic at the time of direct modulation satisfying a predetermined extinction ratio and eye mask specification. A method for selecting measurement points for wavelength characteristics, optical output power characteristics, and RF amplitude characteristics.
請求項1乃至4いずれかに記載の光出力波長特性、光出力電力特性及びRF振幅特性の測定点の選定方法において、
第2の手段、第3の手段及び第4の手段にそれぞれ与えられた目標値の最新の値を格納しておく第9の手段を備え、
ウォーム・スタート時等の該第9の手段に格納されている値を使用する場合には、前記発光素子の第2の手段、第3の手段及び第4の手段に対する目標値の最新の値を該第9の手段から読み出し、それぞれ第2の手段、第3の手段及び第4の手段における目標値として与える
ことを特徴とする光出力波長特性、光出力電力特性及びRF振幅特性の測定点の選定方法
In the selection method of the measurement point of the optical output wavelength characteristic, optical output power characteristic, and RF amplitude characteristic in any one of Claims 1 thru | or 4,
A ninth means for storing the latest values of the target values respectively given to the second means, the third means, and the fourth means;
When using the value stored in the ninth means such as at the time of warm start, the latest value of the target value for the second means, the third means and the fourth means of the light emitting element is set. Read out from the ninth means and give as target values in the second means, third means and fourth means, respectively, the measurement points of the optical output wavelength characteristic, optical output power characteristic and RF amplitude characteristic Selection method .
請求項1乃至5いずれかに記載の光出力波長特性、光出力電力特性及びRF振幅特性の測定点の選定方法において、
第1の手段を構成する発光素子が発生する光出力を監視し、該光出力の光出力波長及び光出力電力の両方またはどちらか一方について、別途指定された光出力波長範囲及び光出力電力範囲にあるか否かを比較判定し、その比較判定結果を出力する第10の手段を備えた
ことを特徴とする光出力波長特性、光出力電力特性及びRF振幅特性の測定点の選定方法
In the selection method of the measurement point of the optical output wavelength characteristic, the optical output power characteristic, and the RF amplitude characteristic according to any one of claims 1 to 5,
The light output generated by the light emitting element constituting the first means is monitored, and the light output wavelength range and the light output power range specified separately for the light output wavelength and / or the light output power of the light output. A method of selecting measurement points for optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics, comprising: a tenth means for comparing and determining whether or not the optical output wavelength characteristics are present ;
複数の発光素子により構成され、複数の光出力を発生する第1の手段と、該第1の手段を構成する各発光素子の駆動電流または光出力電力を、各々に対し与えられる目標値に保つよう自動的に制御する第2の手段と、該第1の手段を構成する各発光素子の素子温度を、各々に対し与えられる目標値に保つよう自動的に制御する第3の手段と、該第1の手段を構成する各発光素子のRF振幅を、各々に対し与えられる目標値に保つよう自動的に制御する第4の手段とを有する直接変調型光通信用光源部であって、
前記第1の手段を構成する各発光素子に対し、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力波長の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力電力の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対するRF振幅の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値とを格納しておく第5の手段と、
該第5の手段に格納された前記各発光素子に対する少なくとも1つの値により決まる、該各発光素子毎の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力波長との関係と、該各発光素子毎の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係とから、該各発光素子の光出力波長及び光出力電力の両方が別途指定された値となる駆動電流または光出力電力及び素子温度を決定すると共に、該各発光素子毎の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度とRF振幅との関係から、前記決定された駆動電流または光出力電力及び素子温度におけるRF振幅を決定する第6の手段とを備え、
該第6の手段により決定された前記各発光素子毎の駆動電流または光出力電力、素子温度及びRF振幅を、それぞれ前記第2の手段、第3の手段及び第4の手段における該各発光素子に対する目標値として与える直接変調型光通信用光源部における、第5の手段に格納される前記第1の手段を構成する各発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性、光出力電力特性及びRF振幅特性の測定点(駆動電流、素子温度)の選定方法であって、
前記各発光素子の別途指定された駆動電流iの動作範囲(i1≦i≦i2)及び素子温度Tの動作範囲(T1≦T≦T2)を入力する第1の過程と、
任意のpの値(pは前記各発光素子の駆動電流iの動作範囲の内分点の比座標であり、0<p<1を満たす実数)を用いて、各発光素子の該指定された駆動電流iの動作範囲(i1≦i≦i2)をp:1−p及び1−p:pで内分して発光素子毎の内分点における駆動電流is1及びis2を求め、これより該各発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流に対する光出力波長特性と、駆動電流の1次関数で近似された光出力波長特性との近似誤差の最小値|δλ0i=i1 or i2及び最大値|δλ0i=(i1+i2)/2を求め、これらが等しくなるようにpの値を決定し、あるいはこれより該各発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流に対する光出力電力特性と、駆動電流の1次関数で近似された光出力電力特性との近似誤差の最小値|δP0i=i1 or i2及び最大値|δP0i=(i1+i2)/2を求め、これらが等しくなるようにpの値を決定し、もしくはこれより該各発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流に対するRF振幅特性と、駆動電流の1次関数で近似されたRF振幅特性との近似誤差の最小値|δiRF0i=i1 or i2及び最大値|δiRF0i=(i1+i2)/2を求め、これらが等しくなるようにpの値を決定し、この時の発光素子毎の内分点を測定点としてそれらの駆動電流is1及びis2を該発光素子毎の測定点における駆動電流に決定する第2の過程と、
各発光素子の該指定された素子温度Tの動作範囲(T1≦T≦T2)を該決定されたpの値を用いてp:1−p及び1−p:pで内分する素子温度を該発光素子毎の測定点における素子温度Ts1及びTs2として決定する第3の過程と、
該決定された値の組み合わせからなる該発光素子毎の4つの測定点(is1,Ts1)、(is1,Ts2)、(is2,Ts1)、(is2,Ts2)のうち、任意の3点を所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性、光出力電力特性及びRF振幅特性の測定点として選定する第4の過程とを含む
ことを特徴とする光出力波長特性、光出力電力特性及びRF振幅特性の測定点の選定方法。
The first means configured to include a plurality of light emitting elements and generate a plurality of light outputs, and the driving current or the light output power of each light emitting element constituting the first means is maintained at a target value given to each. A second means for automatically controlling, a third means for automatically controlling the element temperature of each light-emitting element constituting the first means to maintain a target value given thereto, A light source unit for direct modulation optical communication having a fourth means for automatically controlling the RF amplitude of each light emitting element constituting the first means so as to maintain a target value given to each;
For each light emitting device constituting the first means, at least one value of the optical output wavelength for the drive current and device temperature direct modulation time satisfying the predetermined extinction ratio and eye mask requirement, Oh Rui these three at least one parameter value and at least one value of the optical output power for a given extinction ratio and the drive current and device temperature of the direct modulation time satisfying the eye mask requirement to determine the relationship, Oh Rui these three relationships at least one parameter value and at least one value of the RF amplitude for a given extinction ratio and the drive current and device temperature of the direct modulation time satisfying the eye mask requirement determining, the Oh Rui determining these three relationships Fifth means for storing at least one parameter value;
Driving current, element temperature, and light output during direct modulation satisfying a predetermined extinction ratio and eye mask definition for each light emitting element determined by at least one value for each light emitting element stored in the fifth means The light output wavelength of each light emitting element from the relationship between the wavelength and the relationship between the drive current, element temperature, and light output power during direct modulation that satisfies the predetermined extinction ratio and eye mask specification for each light emitting element Driving current or optical output power and device temperature at which both the optical output power and the optical output power are separately specified, and driving at the time of direct modulation satisfying a predetermined extinction ratio and eye mask specification for each light emitting device A sixth means for determining the determined drive current or optical output power and the RF amplitude at the element temperature from the relationship between the drive current at the time of current fluctuation, the element temperature, and the RF amplitude;
The driving current or optical output power, element temperature, and RF amplitude for each light emitting element determined by the sixth means are set to the light emitting elements in the second means, third means, and fourth means, respectively. in direct modulation type optical communication light source unit Ru provided as a target value for a predetermined extinction ratio of each light emitting device constituting the first means to be stored in the fifth means and the direct modulation satisfying the eye mask requirement A method of selecting measurement points (driving current, element temperature) of optical output wavelength characteristics, optical output power characteristics and RF amplitude characteristics at the time,
A first step of inputting an operation range (i 1 ≦ i ≦ i 2 ) of a separately designated drive current i and an operation range (T 1 ≦ T ≦ T 2 ) of the element temperature T of each of the light emitting elements;
An arbitrary value of p (p is a ratio coordinate of an internal dividing point of the operating range of the driving current i of each light emitting element, and a real number satisfying 0 <p <1) is used to specify the specified value of each light emitting element. The operating range (i 1 ≦ i ≦ i 2 ) of the driving current i is internally divided by p: 1-p and 1-p: p to obtain the driving currents i s1 and i s2 at the internal dividing point for each light emitting element, As a result, the approximate error between the optical output wavelength characteristic with respect to the drive current during direct modulation that satisfies the predetermined extinction ratio and eye mask specification of each light emitting element and the optical output wavelength characteristic approximated by a linear function of the drive current The minimum value | δλ 0 | i = i1 or i2 and the maximum value | δλ 0 | i = (i1 + i2) / 2 are obtained, and the value of p is determined so that they are equal to each other. Approximate the optical output power characteristics with respect to the drive current during direct modulation that satisfies the specified extinction ratio and eye mask specification, and a linear function of the drive current The minimum value | δP 0 | i = i1 or i2 and the maximum value | δP 0 | i = (i1 + i2) / 2 are obtained and the value of p is set so that these are equal. Or an amplitude amplitude characteristic approximated by a linear function of the driving current, and an RF amplitude characteristic approximated by a linear function of the driving current, which satisfies the predetermined extinction ratio and eye mask specification of each light emitting element. Approximate error minimum value | δi RF0 | i = i1 or i2 and maximum value | δi RF0 | i = (i1 + i2) / 2 are determined, and the value of p is determined so that they are equal to each other. A second step of determining the drive currents i s1 and i s2 as the drive current at the measurement point for each light-emitting element by using the internal dividing point for each element as the measurement point;
An element that internally divides the operating range (T 1 ≦ T ≦ T 2 ) of the specified element temperature T of each light emitting element by p: 1-p and 1-p: p using the determined value of p A third step of determining the temperature as the element temperature T s1 and T s2 at the measurement point for each light emitting element;
Of the four measurement points (i s1 , T s1 ), (i s1 , T s2 ), (i s2 , T s1 ), (i s2 , T s2 ) for each light-emitting element comprising the combination of the determined values. Among them, a fourth process of selecting any three points as measurement points for optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics at the time of direct modulation satisfying a predetermined extinction ratio and eye mask specification is included. A method of selecting measurement points for characteristic optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics.
複数の発光素子により構成され、複数の光出力を発生する第1の手段と、該第1の手段を構成する各発光素子の駆動電流または光出力電力を、各々に対し与えられる目標値に保つよう自動的に制御する第2の手段と、該第1の手段を構成する各発光素子の素子温度を、各々に対し与えられる目標値に保つよう自動的に制御する第3の手段と、該第1の手段を構成する各発光素子のRF振幅を、各々に対し与えられる目標値に保つよう自動的に制御する第4の手段とを有する直接変調型光通信用光源部であって、
前記第1の手段を構成する各発光素子に対し、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力波長の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力電力の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対するRF振幅の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値とを格納しておく第5の手段と、
該第5の手段に格納された前記各発光素子に対する少なくとも1つの値により決まる、該各発光素子毎の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力波長との関係と、該各発光素子毎の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係とから、該各発光素子の光出力波長及び光出力電力の両方が別途指定された値となる駆動電流または光出力電力及び素子温度を決定すると共に、該各発光素子毎の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度とRF振幅との関係から、前記決定された駆動電流または光出力電力及び素子温度におけるRF振幅を決定する第6の手段とを備え、
該第6の手段により決定された前記各発光素子毎の駆動電流または光出力電力、素子温度及びRF振幅を、それぞれ前記第2の手段、第3の手段及び第4の手段における該各発光素子に対する目標値として与える直接変調型光通信用光源部における、第5の手段に格納される前記第1の手段を構成する各発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性、光出力電力特性及びRF振幅特性の測定点(駆動電流、素子温度)の選定方法であって、
前記各発光素子の別途指定された駆動電流iの動作範囲(i1≦i≦i2)及び素子温度Tの動作範囲(T1≦T≦T2)を入力する第1の過程と、
任意のqの値(qは前記各発光素子の素子温度Tの動作範囲の内分点の比座標であり、0<q<1を満たす実数)を用いて、各発光素子の該指定された素子温度Tの動作範囲(T1≦T≦T2)をq:1−q及び1−q:qで内分して発光素子毎の内分点における素子温度Ts1及びTs2を求め、これより該各発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の素子温度に対する光出力波長特性と、素子温度の1次関数で近似された光出力波長特性との近似誤差の最小値|δλ0T=T1 or T2及び最大値|δλ0T=(T1+T2)/2を求め、これらが等しくなるようにqの値を決定し、あるいはこれより該各発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の素子温度に対する光出力電力特性と、素子温度の1次関数で近似された光出力電力特性との近似誤差の最小値|δP0T=T1 or T2及び最大値|δP0T=(T1+T2)/2を求め、これらが等しくなるようにqの値を決定し、もしくはこれより該各発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の素子温度に対するRF振幅特性と、素子温度の1次関数で近似されたRF振幅特性との近似誤差の最小値|δiRF0T=T1 or T2及び最大値|δiRF0T=(T1+T2)/2を求め、これらが等しくなるようにqの値を決定し、この時の発光素子毎の内分点を測定点としてそれらの素子温度Ts1及びTs2を該発光素子毎の測定点における素子温度に決定する第5の過程と、
各発光素子の該指定された駆動電流iの動作範囲(i1≦i≦i2)を該決定されたqの値を用いてq:1−q及び1−q:qで内分する駆動電流を該発光素子毎の測定点における駆動電流is1及びis2として決定する第6の過程と、
該決定された値の組み合わせからなる該発光素子毎の4つの測定点(is1,Ts1)、(is1,Ts2)、(is2,Ts1)、(is2,Ts2)のうち、任意の3点を所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性、光出力電力特性及びRF振幅特性の測定点として選定する第4の過程とを含む
ことを特徴とする光出力波長特性、光出力電力特性及びRF振幅特性の測定点の選定方法。
The first means configured to include a plurality of light emitting elements and generate a plurality of light outputs, and the driving current or the light output power of each light emitting element constituting the first means is maintained at a target value given to each. A second means for automatically controlling, a third means for automatically controlling the element temperature of each light-emitting element constituting the first means to maintain a target value given thereto, A light source unit for direct modulation optical communication having a fourth means for automatically controlling the RF amplitude of each light emitting element constituting the first means so as to maintain a target value given to each;
For each light emitting device constituting the first means, at least one value of the optical output wavelength for the drive current and device temperature direct modulation time satisfying the predetermined extinction ratio and eye mask requirement, Oh Rui these three at least one parameter value and at least one value of the optical output power for a given extinction ratio and the drive current and device temperature of the direct modulation time satisfying the eye mask requirement to determine the relationship, Oh Rui these three relationships at least one parameter value and at least one value of the RF amplitude for a given extinction ratio and the drive current and device temperature of the direct modulation time satisfying the eye mask requirement determining, the Oh Rui determining these three relationships Fifth means for storing at least one parameter value;
Driving current, element temperature, and light output during direct modulation satisfying a predetermined extinction ratio and eye mask definition for each light emitting element determined by at least one value for each light emitting element stored in the fifth means The light output wavelength of each light emitting element from the relationship between the wavelength and the relationship between the drive current, element temperature, and light output power during direct modulation that satisfies the predetermined extinction ratio and eye mask specification for each light emitting element Driving current or optical output power and device temperature at which both the optical output power and the optical output power are separately specified, and driving at the time of direct modulation satisfying a predetermined extinction ratio and eye mask specification for each light emitting device A sixth means for determining the determined drive current or optical output power and the RF amplitude at the element temperature from the relationship between the drive current at the time of current fluctuation, the element temperature, and the RF amplitude;
The driving current or optical output power, element temperature, and RF amplitude for each light emitting element determined by the sixth means are set to the light emitting elements in the second means, third means, and fourth means, respectively. in direct modulation type optical communication light source unit Ru provided as a target value for a predetermined extinction ratio of each light emitting device constituting the first means to be stored in the fifth means and the direct modulation satisfying the eye mask requirement A method of selecting measurement points (driving current, element temperature) of optical output wavelength characteristics, optical output power characteristics and RF amplitude characteristics at the time,
A first step of inputting an operation range (i 1 ≦ i ≦ i 2 ) of a separately designated drive current i and an operation range (T 1 ≦ T ≦ T 2 ) of the element temperature T of each of the light emitting elements;
An arbitrary value of q (q is a ratio coordinate of an internal dividing point of the operating range of the element temperature T of each light emitting element, and a real number satisfying 0 <q <1) is used to specify the specified value of each light emitting element. The operating range (T 1 ≦ T ≦ T 2 ) of the element temperature T is internally divided by q: 1-q and 1-q: q to obtain element temperatures T s1 and T s2 at the internal dividing point for each light emitting element, As a result, the approximate error between the light output wavelength characteristic with respect to the element temperature during direct modulation that satisfies the predetermined extinction ratio and eye mask specification of each light emitting element, and the light output wavelength characteristic approximated by a linear function of the element temperature. The minimum value | δλ 0 | T = T1 or T2 and the maximum value | δλ 0 | T = (T1 + T2) / 2 are obtained, and the value of q is determined so that they are equal to each other. Approximate the optical output power characteristics with respect to the element temperature during direct modulation that satisfies the specified extinction ratio and eye mask specification, and a linear function of the element temperature The minimum value of the approximation error with respect to the optical output power characteristics thus determined | δP 0 | T = T1 or T2 and the maximum value | δP 0 | T = (T1 + T2) / 2, and the value of q so that these are equal Or an RF amplitude characteristic with respect to the element temperature at the time of direct modulation that satisfies the predetermined extinction ratio and eye mask definition of each light emitting element, and an RF amplitude characteristic approximated by a linear function of the element temperature. Approximate error minimum value | δi RF0 | T = T1 or T2 and maximum value | δi RF0 | T = (T1 + T2) / 2 are determined, and the value of q is determined so that they are equal, and light emission at this time A fifth step of determining the element temperature T s1 and T s2 as the element temperature at the measurement point for each light emitting element by using the internal dividing point for each element as the measurement point;
Driving that divides the operating range (i 1 ≤ i ≤ i 2 ) of the designated driving current i of each light emitting element into q: 1-q and 1-q: q using the determined q value. A sixth step of determining the current as the drive currents i s1 and i s2 at the measurement point for each light emitting element;
Of the four measurement points (i s1 , T s1 ), (i s1 , T s2 ), (i s2 , T s1 ), (i s2 , T s2 ) for each light-emitting element comprising the combination of the determined values. Among them, a fourth process of selecting any three points as measurement points for optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics at the time of direct modulation satisfying a predetermined extinction ratio and eye mask specification is included. A method of selecting measurement points for characteristic optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics.
複数の発光素子により構成され、複数の光出力を発生する第1の手段と、該第1の手段を構成する各発光素子の駆動電流または光出力電力を、各々に対し与えられる目標値に保つよう自動的に制御する第2の手段と、該第1の手段を構成する各発光素子の素子温度を、各々に対し与えられる目標値に保つよう自動的に制御する第3の手段と、該第1の手段を構成する各発光素子のRF振幅を、各々に対し与えられる目標値に保つよう自動的に制御する第4の手段とを有する直接変調型光通信用光源部であって、
前記第1の手段を構成する各発光素子に対し、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力波長の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力電力の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対するRF振幅の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値とを格納しておく第5の手段と、
前記第1の手段を構成する各発光素子の駆動電流を監視し、該各発光素子毎に別途指定される許容変動範囲内にあるか否かを比較判定し、許容変動範囲内にない発光素子に対しては、前記第5の手段に格納された該発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係から、該発光素子の駆動電流変動時における駆動電流と素子温度と光出力電力との関係を予測し、前記第5の手段に格納された該発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度とRF振幅との関係から、該発光素子の駆動電流変動時における駆動電流と素子温度とRF振幅との関係を予測する第7の手段と、
前記許容変動範囲内にない発光素子に対しては、前記第5の手段に格納された該発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力波長との関係と、前記第7の手段により予測された該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度と光出力電力との関係とから、該発光素子の駆動電流変動時における所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長及び光出力電力の両方が発光素子毎に別途指定される値となる最新の駆動電流または光出力電力及び最新の素子温度を予測すると共に、前記第7の手段により予測された該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度とRF振幅との関係から、最新の駆動電流または光出力電力及び最新の素子温度における最新のRF振幅を予測する第8の手段とを備え、
該第8の手段により予測された前記許容変動範囲内にない発光素子毎の最新の駆動電流または光出力電力、最新の素子温度及び最新のRF振幅を、それぞれ前記第2の手段、第3の手段及び第4の手段における該発光素子に対する新たな目標値として与える直接変調型光通信用光源部における、第5の手段に格納される前記第1の手段を構成する各発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性、光出力電力特性及びRF振幅特性の測定点(駆動電流、素子温度)の選定方法であって、
前記各発光素子の別途指定された駆動電流iの動作範囲(i1≦i≦i2)及び素子温度Tの動作範囲(T1≦T≦T2)を入力する第1の過程と、
任意のpの値(pは前記各発光素子の駆動電流iの動作範囲の内分点の比座標であり、0<p<1を満たす実数)を用いて、各発光素子の該指定された駆動電流iの動作範囲(i1≦i≦i2)をp:1−p及び1−p:pで内分して発光素子毎の内分点における駆動電流is1及びis2を求め、これより該各発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流に対する光出力波長特性と、駆動電流の1次関数で近似された光出力波長特性との近似誤差の最小値|δλ0i=i1 or i2及び最大値|δλ0i=(i1+i2)/2を求め、これらが等しくなるようにpの値を決定し、あるいはこれより該各発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流に対する光出力電力特性と、駆動電流の1次関数で近似された光出力電力特性との近似誤差の最小値|δP0i=i1 or i2及び最大値|δP0i=(i1+i2)/2を求め、これらが等しくなるようにpの値を決定し、もしくはこれより該各発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流に対するRF振幅特性と、駆動電流の1次関数で近似されたRF振幅特性との近似誤差の最小値|δiRF0i=i1 or i2及び最大値|δiRF0i=(i1+i2)/2を求め、これらが等しくなるようにpの値を決定し、この時の発光素子毎の内分点を測定点としてそれらの駆動電流is1及びis2を該発光素子毎の測定点における駆動電流に決定する第2の過程と、
各発光素子の該指定された素子温度Tの動作範囲(T1≦T≦T2)を該決定されたpの値を用いてp:1−p及び1−p:pで内分する素子温度を該発光素子毎の測定点における素子温度Ts1及びTs2として決定する第3の過程と、
該決定された値の組み合わせからなる該発光素子毎の4つの測定点(is1,Ts1)、(is1,Ts2)、(is2,Ts1)、(is2,Ts2)のうち、任意の3点を所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性、光出力電力特性及びRF振幅特性の測定点として選定する第4の過程とを含む
ことを特徴とする光出力波長特性、光出力電力特性及びRF振幅特性の測定点の選定方法。
The first means configured to include a plurality of light emitting elements and generate a plurality of light outputs, and the driving current or the light output power of each light emitting element constituting the first means is maintained at a target value given to each. A second means for automatically controlling, a third means for automatically controlling the element temperature of each light-emitting element constituting the first means to maintain a target value given thereto, A light source unit for direct modulation optical communication having a fourth means for automatically controlling the RF amplitude of each light emitting element constituting the first means so as to maintain a target value given to each;
For each light emitting device constituting the first means, at least one value of the optical output wavelength for the drive current and device temperature direct modulation time satisfying the predetermined extinction ratio and eye mask requirement, Oh Rui these three at least one parameter value and at least one value of the optical output power for a given extinction ratio and the drive current and device temperature of the direct modulation time satisfying the eye mask requirement to determine the relationship, Oh Rui these three relationships at least one parameter value and at least one value of the RF amplitude for a given extinction ratio and the drive current and device temperature of the direct modulation time satisfying the eye mask requirement determining, the Oh Rui determining these three relationships Fifth means for storing at least one parameter value;
The drive current of each light emitting element constituting the first means is monitored, and it is determined whether or not the light emitting element is within an allowable fluctuation range separately designated for each light emitting element, and the light emitting element that is not within the allowable fluctuation range For the above, the drive current and element temperature during direct modulation satisfying a predetermined extinction ratio and eye mask definition of the light emitting element, which are determined by at least one value for the light emitting element stored in the fifth means, At least one value for the light emitting element stored in the fifth means is predicted from the relationship with the light output power by predicting the relationship between the drive current, the element temperature and the light output power when the drive current of the light emitting element varies. the determined from the relationship between the drive current and device temperature and the RF amplitude of the direct modulation time satisfying the predetermined extinction ratio and eye mask requirement of the light emitting element, the drive current during the drive current fluctuation of the light emitting element and the element temperature A seventh means for predicting the relationship between the F amplitude,
For light-emitting elements that are not within the allowable variation range, the light-emitting elements that are determined by at least one value for the light-emitting elements stored in the fifth means directly satisfy the predetermined extinction ratio and eye mask specification of the light-emitting elements. The relationship between the drive current at the time of modulation, the element temperature, and the light output wavelength, and the fluctuation of the drive current at the time of direct modulation that satisfies the predetermined extinction ratio and eye mask specification of the light emitting element predicted by the seventh means Based on the relationship between the drive current, element temperature, and optical output power, both the optical output wavelength and optical output power during direct modulation that satisfy the specified extinction ratio and eye mask specification when the drive current of the light emitting element fluctuates are emitted. with predicting the latest drive current or optical output power and the latest device temperature to be the value that is specified separately for each element, predetermined extinction ratio and a predicted light emitting element by the seventh means The latest driving current or optical output power and the latest RF amplitude at the latest element temperature are predicted from the relationship between the driving current, the element temperature, and the RF amplitude when the driving current fluctuates during direct modulation that satisfies the mask specification. With the means of
The latest drive current or optical output power, the latest element temperature, and the latest RF amplitude for each light emitting element that are not within the allowable variation range predicted by the eighth means are respectively set as the second means, given the respective light emitting elements constituting the unit, and fourth means direct modulation type optical communication light source unit Ru provided as a new target value for the light emitting element in the, said first means is stored in the fifth means A method of selecting measurement points (drive current, element temperature) of optical output wavelength characteristics, optical output power characteristics and RF amplitude characteristics at the time of direct modulation satisfying the extinction ratio and eye mask specification,
A first step of inputting an operation range (i 1 ≦ i ≦ i 2 ) of a separately designated drive current i and an operation range (T 1 ≦ T ≦ T 2 ) of the element temperature T of each of the light emitting elements;
An arbitrary value of p (p is a ratio coordinate of an internal dividing point of the operating range of the driving current i of each light emitting element, and a real number satisfying 0 <p <1) is used to specify the specified value of each light emitting element. The operating range (i 1 ≦ i ≦ i 2 ) of the driving current i is internally divided by p: 1-p and 1-p: p to obtain the driving currents i s1 and i s2 at the internal dividing point for each light emitting element, As a result, the approximate error between the optical output wavelength characteristic with respect to the drive current during direct modulation that satisfies the predetermined extinction ratio and eye mask specification of each light emitting element and the optical output wavelength characteristic approximated by a linear function of the drive current The minimum value | δλ 0 | i = i1 or i2 and the maximum value | δλ 0 | i = (i1 + i2) / 2 are obtained, and the value of p is determined so that they are equal to each other. Approximate the optical output power characteristics with respect to the drive current during direct modulation that satisfies the specified extinction ratio and eye mask specification, and a linear function of the drive current The minimum value | δP 0 | i = i1 or i2 and the maximum value | δP 0 | i = (i1 + i2) / 2 are obtained and the value of p is set so that these are equal. Or an amplitude amplitude characteristic approximated by a linear function of the driving current, and an RF amplitude characteristic approximated by a linear function of the driving current, which satisfies the predetermined extinction ratio and eye mask specification of each light emitting element. Approximate error minimum value | δi RF0 | i = i1 or i2 and maximum value | δi RF0 | i = (i1 + i2) / 2 are determined, and the value of p is determined so that they are equal to each other. A second step of determining the drive currents i s1 and i s2 as the drive current at the measurement point for each light-emitting element by using the internal dividing point for each element as the measurement point;
An element that internally divides the operating range (T 1 ≦ T ≦ T 2 ) of the specified element temperature T of each light emitting element by p: 1-p and 1-p: p using the determined value of p A third step of determining the temperature as the element temperature T s1 and T s2 at the measurement point for each light emitting element;
Of the four measurement points (i s1 , T s1 ), (i s1 , T s2 ), (i s2 , T s1 ), (i s2 , T s2 ) for each light-emitting element comprising the combination of the determined values. Among them, a fourth process of selecting any three points as measurement points for optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics at the time of direct modulation satisfying a predetermined extinction ratio and eye mask specification is included. A method of selecting measurement points for characteristic optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics.
複数の発光素子により構成され、複数の光出力を発生する第1の手段と、該第1の手段を構成する各発光素子の駆動電流または光出力電力を、各々に対し与えられる目標値に保つよう自動的に制御する第2の手段と、該第1の手段を構成する各発光素子の素子温度を、各々に対し与えられる目標値に保つよう自動的に制御する第3の手段と、該第1の手段を構成する各発光素子のRF振幅を、各々に対し与えられる目標値に保つよう自動的に制御する第4の手段とを有する直接変調型光通信用光源部であって、
前記第1の手段を構成する各発光素子に対し、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力波長の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対する光出力電力の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値と、所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度に対するRF振幅の少なくとも1つの値、あるいはこれら3者の関係を決定する少なくとも1つのパラメータ値とを格納しておく第5の手段と、
前記第1の手段を構成する各発光素子の駆動電流を監視し、該各発光素子毎に別途指定される許容変動範囲内にあるか否かを比較判定し、許容変動範囲内にない発光素子に対しては、前記第5の手段に格納された該発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力電力との関係から、該発光素子の駆動電流変動時における駆動電流と素子温度と光出力電力との関係を予測し、前記第5の手段に格納された該発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度とRF振幅との関係から、該発光素子の駆動電流変動時における駆動電流と素子温度とRF振幅との関係を予測する第7の手段と、
前記許容変動範囲内にない発光素子に対しては、前記第5の手段に格納された該発光素子に対する少なくとも1つの値により決まる、該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流と素子温度と光出力波長との関係と、前記第7の手段により予測された該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度と光出力電力との関係とから、該発光素子の駆動電流変動時における所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長及び光出力電力の両方が発光素子毎に別途指定される値となる最新の駆動電流または光出力電力及び最新の素子温度を予測すると共に、前記第7の手段により予測された該発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の駆動電流変動時における駆動電流と素子温度とRF振幅との関係から、最新の駆動電流または光出力電力及び最新の素子温度における最新のRF振幅を予測する第8の手段とを備え、
該第8の手段により予測された前記許容変動範囲内にない発光素子毎の最新の駆動電流または光出力電力、最新の素子温度及び最新のRF振幅を、それぞれ前記第2の手段、第3の手段及び第4の手段における該発光素子に対する新たな目標値として与える直接変調型光通信用光源部における、第5の手段に格納される前記第1の手段を構成する各発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性、光出力電力特性及びRF振幅特性の測定点(駆動電流、素子温度)の選定方法であって、
前記各発光素子の別途指定された駆動電流iの動作範囲(i1≦i≦i2)及び素子温度Tの動作範囲(T1≦T≦T2)を入力する第1の過程と、
任意のqの値(qは前記各発光素子の素子温度Tの動作範囲の内分点の比座標であり、0<q<1を満たす実数)を用いて、各発光素子の該指定された素子温度Tの動作範囲(T1≦T≦T2)をq:1−q及び1−q:qで内分して発光素子毎の内分点における素子温度Ts1及びTs2を求め、これより該各発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の素子温度に対する光出力波長特性と、素子温度の1次関数で近似された光出力波長特性との近似誤差の最小値|δλ0T=T1 or T2及び最大値|δλ0T=(T1+T2)/2を求め、これらが等しくなるようにqの値を決定し、あるいはこれより該各発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の素子温度に対する光出力電力特性と、素子温度の1次関数で近似された光出力電力特性との近似誤差の最小値|δP0T=T1 or T2及び最大値|δP0T=(T1+T2)/2を求め、これらが等しくなるようにqの値を決定し、もしくはこれより該各発光素子の所定の消光比及びアイマスク規定を満足する直接変調時の素子温度に対するRF振幅特性と、素子温度の1次関数で近似されたRF振幅特性との近似誤差の最小値|δiRF0T=T1 or T2及び最大値|δiRF0T=(T1+T2)/2を求め、これらが等しくなるようにqの値を決定し、この時の発光素子毎の内分点を測定点としてそれらの素子温度Ts1及びTs2を該発光素子毎の測定点における素子温度に決定する第5の過程と、
各発光素子の該指定された駆動電流iの動作範囲(i1≦i≦i2)を該決定されたqの値を用いてq:1−q及び1−q:qで内分する駆動電流を該発光素子毎の測定点における駆動電流is1及びis2として決定する第6の過程と、
該決定された値の組み合わせからなる該発光素子毎の4つの測定点(is1,Ts1)、(is1,Ts2)、(is2,Ts1)、(is2,Ts2)のうち、任意の3点を所定の消光比及びアイマスク規定を満足する直接変調時の光出力波長特性、光出力電力特性及びRF振幅特性の測定点として選定する第4の過程とを含む
ことを特徴とする光出力波長特性、光出力電力特性及びRF振幅特性の測定点の選定方法。
The first means configured to include a plurality of light emitting elements and generate a plurality of light outputs, and the driving current or the light output power of each light emitting element constituting the first means is maintained at a target value given to each. A second means for automatically controlling, a third means for automatically controlling the element temperature of each light-emitting element constituting the first means to maintain a target value given thereto, A light source unit for direct modulation optical communication having a fourth means for automatically controlling the RF amplitude of each light emitting element constituting the first means so as to maintain a target value given to each;
For each light emitting device constituting the first means, at least one value of the optical output wavelength for the drive current and device temperature direct modulation time satisfying the predetermined extinction ratio and eye mask requirement, Oh Rui these three at least one parameter value and at least one value of the optical output power for a given extinction ratio and the drive current and device temperature of the direct modulation time satisfying the eye mask requirement to determine the relationship, Oh Rui these three relationships at least one parameter value and at least one value of the RF amplitude for a given extinction ratio and the drive current and device temperature of the direct modulation time satisfying the eye mask requirement determining, the Oh Rui determining these three relationships Fifth means for storing at least one parameter value;
The drive current of each light emitting element constituting the first means is monitored, and it is determined whether or not the light emitting element is within an allowable fluctuation range separately designated for each light emitting element, and the light emitting element that is not within the allowable fluctuation range For the above, the drive current and element temperature during direct modulation satisfying a predetermined extinction ratio and eye mask definition of the light emitting element, which are determined by at least one value for the light emitting element stored in the fifth means, At least one value for the light emitting element stored in the fifth means is predicted from the relationship with the light output power by predicting the relationship between the drive current, the element temperature and the light output power when the drive current of the light emitting element varies. the determined from the relationship between the drive current and device temperature and the RF amplitude of the direct modulation time satisfying the predetermined extinction ratio and eye mask requirement of the light emitting element, the drive current during the drive current fluctuation of the light emitting element and the element temperature A seventh means for predicting the relationship between the F amplitude,
For light-emitting elements that are not within the allowable variation range, the light-emitting elements that are determined by at least one value for the light-emitting elements stored in the fifth means directly satisfy the predetermined extinction ratio and eye mask specification of the light-emitting elements. The relationship between the drive current at the time of modulation, the element temperature, and the light output wavelength, and the fluctuation of the drive current at the time of direct modulation that satisfies the predetermined extinction ratio and eye mask specification of the light emitting element predicted by the seventh means Based on the relationship between the drive current, element temperature, and optical output power, both the optical output wavelength and optical output power during direct modulation that satisfy the specified extinction ratio and eye mask specification when the drive current of the light emitting element fluctuates are emitted. with predicting the latest drive current or optical output power and the latest device temperature to be the value that is specified separately for each element, predetermined extinction ratio and a predicted light emitting element by the seventh means The latest driving current or optical output power and the latest RF amplitude at the latest element temperature are predicted from the relationship between the driving current, the element temperature, and the RF amplitude when the driving current fluctuates during direct modulation that satisfies the mask specification. With the means of
The latest drive current or optical output power, the latest element temperature, and the latest RF amplitude for each light emitting element that are not within the allowable variation range predicted by the eighth means are respectively set as the second means, given the respective light emitting elements constituting the unit, and fourth means direct modulation type optical communication light source unit Ru provided as a new target value for the light emitting element in the, said first means is stored in the fifth means A method of selecting measurement points (drive current, element temperature) of optical output wavelength characteristics, optical output power characteristics and RF amplitude characteristics at the time of direct modulation satisfying the extinction ratio and eye mask specification,
A first step of inputting an operation range (i 1 ≦ i ≦ i 2 ) of a separately designated drive current i and an operation range (T 1 ≦ T ≦ T 2 ) of the element temperature T of each of the light emitting elements;
An arbitrary value of q (q is a ratio coordinate of an internal dividing point of the operating range of the element temperature T of each light emitting element, and a real number satisfying 0 <q <1) is used to specify the specified value of each light emitting element. The operating range (T 1 ≦ T ≦ T 2 ) of the element temperature T is internally divided by q: 1-q and 1-q: q to obtain element temperatures T s1 and T s2 at the internal dividing point for each light emitting element, As a result, the approximate error between the light output wavelength characteristic with respect to the element temperature during direct modulation that satisfies the predetermined extinction ratio and eye mask specification of each light emitting element, and the light output wavelength characteristic approximated by a linear function of the element temperature. The minimum value | δλ 0 | T = T1 or T2 and the maximum value | δλ 0 | T = (T1 + T2) / 2 are obtained, and the value of q is determined so that they are equal to each other. Approximate the optical output power characteristics with respect to the element temperature during direct modulation that satisfies the specified extinction ratio and eye mask specification, and a linear function of the element temperature The minimum value of the approximation error with respect to the optical output power characteristics thus determined | δP 0 | T = T1 or T2 and the maximum value | δP 0 | T = (T1 + T2) / 2, and the value of q so that these are equal Or an RF amplitude characteristic with respect to the element temperature at the time of direct modulation that satisfies the predetermined extinction ratio and eye mask definition of each light emitting element, and an RF amplitude characteristic approximated by a linear function of the element temperature. Approximate error minimum value | δi RF0 | T = T1 or T2 and maximum value | δi RF0 | T = (T1 + T2) / 2 are determined, and the value of q is determined so that they are equal, and light emission at this time A fifth step of determining the element temperature T s1 and T s2 as the element temperature at the measurement point for each light emitting element by using the internal dividing point for each element as the measurement point;
Driving that divides the operating range (i 1 ≤ i ≤ i 2 ) of the designated driving current i of each light emitting element into q: 1-q and 1-q: q using the determined q value. A sixth step of determining the current as the drive currents i s1 and i s2 at the measurement point for each light emitting element;
Of the four measurement points (i s1 , T s1 ), (i s1 , T s2 ), (i s2 , T s1 ), (i s2 , T s2 ) for each light-emitting element comprising the combination of the determined values. Among them, a fourth process of selecting any three points as measurement points for optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics at the time of direct modulation satisfying a predetermined extinction ratio and eye mask specification is included. A method of selecting measurement points for characteristic optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics.
請求項7乃至10いずれかに記載の光出力波長特性、光出力電力特性及びRF振幅特性の測定点の選定方法において、
発光素子毎に第2の手段、第3の手段及び第4の手段にそれぞれ与えられた目標値の最新の値を格納しておく第9の手段を備え、
ウォーム・スタート時等の該第9の手段に格納されている値を使用する場合には、前記発光素子毎の第2の手段、第3の手段及び第4の手段に対する目標値の最新の値を該第9の手段から読み出し、それぞれ第2の手段、第3の手段及び第4の手段における各発光素子に対する目標値として与える
ことを特徴とする光出力波長特性、光出力電力特性及びRF振幅特性の測定点の選定方法
In the selection method of the measurement point of the optical output wavelength characteristic, optical output power characteristic, and RF amplitude characteristic in any one of Claims 7 thru | or 10,
A ninth means for storing the latest values of the target values respectively given to the second means, the third means and the fourth means for each light emitting element;
When using the value stored in the ninth means such as at the time of warm start, the latest value of the target value for the second means, the third means and the fourth means for each light emitting element. Is output from the ninth means and given as a target value for each light emitting element in the second means, the third means, and the fourth means, respectively, and the optical output wavelength characteristic, optical output power characteristic, and RF amplitude How to select characteristic measurement points .
請求項7乃至11いずれかに記載の光出力波長特性、光出力電力特性及びRF振幅特性の測定点の選定方法において、
第1の手段を構成する各発光素子が発生する光出力を監視し、該光出力の光出力波長及び光出力電力の両方またはどちらか一方について、各々に対し別途指定された光出力波長範囲及び光出力電力範囲にあるか否かを各発光素子毎に比較判定し、その比較判定結果を出力する第10の手段を備えた
ことを特徴とする光出力波長特性、光出力電力特性及びRF振幅特性の測定点の選定方法
The method for selecting measurement points of the optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics according to any one of claims 7 to 11,
The light output generated by each light-emitting element constituting the first means is monitored, and the light output wavelength range specified separately for each of the light output wavelength and / or light output power of the light output, and A light output wavelength characteristic, a light output power characteristic, and an RF amplitude, characterized by comprising: a tenth means for comparing and determining for each light emitting element whether or not the light output power range is present, and outputting the result of the comparison and determination How to select characteristic measurement points .
JP2005236375A 2005-03-16 2005-08-17 Method for selecting measurement points for optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics Expired - Fee Related JP4064986B2 (en)

Priority Applications (16)

Application Number Priority Date Filing Date Title
JP2005236375A JP4064986B2 (en) 2005-08-17 2005-08-17 Method for selecting measurement points for optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics
EP09014055A EP2146408B1 (en) 2005-03-16 2006-02-02 Optical communication light source unit and wavelength control method
CA2592373A CA2592373C (en) 2005-03-16 2006-02-02 Optical communication light source unit and wavelength monitoring control method
EP08018484A EP2043208B1 (en) 2005-03-16 2006-02-02 Optical communication light source unit and wavelength monitoring control method
CN 200810145183 CN101383484B (en) 2005-03-16 2006-02-02 Light source for optical communication and its wavelength monitoring/controlling method
DE602006011692T DE602006011692D1 (en) 2005-03-16 2006-02-02 LIGHT SOURCE FOR OPTICAL COMMUNICATION AND METHOD FOR MONITORING / CONTROLLING THEIR WAVELENGTH
CA002560143A CA2560143C (en) 2005-03-16 2006-02-02 Optical communication light source unit and wavelength monitoring control method
CN2010101639298A CN101867152B (en) 2005-03-16 2006-02-02 Light source for optical communication and its wavelength monitoring/controlling method
PCT/JP2006/301803 WO2006098094A1 (en) 2005-03-16 2006-02-02 Light source for optical communication and its wavelength monitoring/controlling method
KR1020067021872A KR100865428B1 (en) 2005-03-16 2006-02-02 Light source for optical communication and its wavelength monitoring/controlling method
EP06712946A EP1772932B1 (en) 2005-03-16 2006-02-02 Light source for optical communication and its wavelength monitoring/controlling method
CA2592479A CA2592479C (en) 2005-03-16 2006-02-02 Optical communication light source unit and wavelength monitoring control method
EP12002642.2A EP2479854B1 (en) 2005-03-16 2006-02-02 Optical communication light source unit
EP09014056.7A EP2146409B1 (en) 2005-03-16 2006-02-02 Optical communication light source unit
US11/568,109 US7869717B2 (en) 2005-03-16 2006-02-02 Optical communication light source unit and wavelength monitoring control method
CA2592318A CA2592318C (en) 2005-03-16 2006-02-02 Optical communication light source unit and wavelength monitoring control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005236375A JP4064986B2 (en) 2005-08-17 2005-08-17 Method for selecting measurement points for optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics

Publications (2)

Publication Number Publication Date
JP2007053184A JP2007053184A (en) 2007-03-01
JP4064986B2 true JP4064986B2 (en) 2008-03-19

Family

ID=37917435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005236375A Expired - Fee Related JP4064986B2 (en) 2005-03-16 2005-08-17 Method for selecting measurement points for optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics

Country Status (1)

Country Link
JP (1) JP4064986B2 (en)

Also Published As

Publication number Publication date
JP2007053184A (en) 2007-03-01

Similar Documents

Publication Publication Date Title
US7701984B2 (en) Laser module and method of controlling wavelength of external cavity laser
EP1624543B1 (en) Optical module and method for monitoring and controlling wavelength
CA2313610A1 (en) Method and apparatus for active numeric temperature compensation of an etalon in a wavelength stabilized laser
US20090080904A1 (en) Optical transmitting apparatus and setting-value determining method
US10461500B2 (en) System and method for creating and utilizing multivariate paths for ongoing simultaneous multi-dimensional control to attain single mode sweep operation in an electromagnetic radiation source
EP1772932B1 (en) Light source for optical communication and its wavelength monitoring/controlling method
US20150063384A1 (en) Method for controlling tunable wavelength laser
JP4064986B2 (en) Method for selecting measurement points for optical output wavelength characteristics, optical output power characteristics, and RF amplitude characteristics
US20070133634A1 (en) Apparatus and method for maintaining constant extinction ratio of laser diode
US10673205B2 (en) Wavelength tunable laser module and method of controlling wavelength thereof
JP4081095B2 (en) Method of selecting measurement points for optical output wavelength characteristics and optical output power characteristics stored in light source for optical communication
EP1109335A2 (en) Method to actively assure correct channel selection in a wavelength stabilized control system
JP2006080235A (en) Light source for optical communication
CA2592373C (en) Optical communication light source unit and wavelength monitoring control method
US20150116801A1 (en) Single longitudinal mode diode laser module with external resonator
Barcaya et al. C-band tunable laser control for wdm optical communications networks
Dernaika et al. Single facet semiconductor laser with deep etched v-notch reflectors integrated with an active multimode interference reflector
US7167493B2 (en) Method for automatically revising wavelength of electro-absorption modulator integrated laser diode
WO2022215240A1 (en) Laser device and control method for same
Feies et al. Design of two-section DBR laser operating at ITU frequencies only by grating current tuning

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071227

R150 Certificate of patent or registration of utility model

Ref document number: 4064986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees