JP4064974B2 - Optical deflection element, optical deflection apparatus, and method of manufacturing optical deflection element - Google Patents

Optical deflection element, optical deflection apparatus, and method of manufacturing optical deflection element Download PDF

Info

Publication number
JP4064974B2
JP4064974B2 JP2005097900A JP2005097900A JP4064974B2 JP 4064974 B2 JP4064974 B2 JP 4064974B2 JP 2005097900 A JP2005097900 A JP 2005097900A JP 2005097900 A JP2005097900 A JP 2005097900A JP 4064974 B2 JP4064974 B2 JP 4064974B2
Authority
JP
Japan
Prior art keywords
optical
deflection element
optical deflection
wiring
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005097900A
Other languages
Japanese (ja)
Other versions
JP2006276653A (en
Inventor
規裕 淺田
Original Assignee
マイクロプレシジョン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マイクロプレシジョン株式会社 filed Critical マイクロプレシジョン株式会社
Priority to JP2005097900A priority Critical patent/JP4064974B2/en
Publication of JP2006276653A publication Critical patent/JP2006276653A/en
Application granted granted Critical
Publication of JP4064974B2 publication Critical patent/JP4064974B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Mechanical Optical Scanning Systems (AREA)
  • Micromachines (AREA)

Description

本発明は、光走査などに用いる光偏向素子に関し、特にその配置、結線に関するものである。なお、説明の都合上、特許請求の範囲および明細書では、ミラーおよびその周辺部分を光偏向子といい、この光偏向子の他に電極、配線を含む場合は光偏向素子という。   The present invention relates to an optical deflection element used for optical scanning and the like, and more particularly to its arrangement and connection. For convenience of explanation, in the claims and the specification, the mirror and its peripheral portion are referred to as an optical deflector, and when an electrode and wiring are included in addition to the optical deflector, they are referred to as an optical deflection element.

マイクロマシニング技術を用いた小型光偏向素子は種々の提案がなされ、試作・実用化が進んでいる。動作原理も静電方式、電磁方式、その他の方式等様々な種類のデバイスが存在する。たとえば、ガルバノメータの原理(可動コイル型電磁駆動)で動作する光偏向素子(ガルバノミラーともいう)は種々提案されており(特許文献1、2)、これらの光偏向素子チップは、半導体デバイス製造技術を流用したマイクロマシニング製造技術で製造されている。そして、これらの光偏向素子は、たとえば図5に示すように、光学ベース上で45度の角度に配置して使用することがある(特許文献3)。   Various proposals have been made for compact optical deflection elements using micromachining technology, and trial manufacture and practical application are progressing. There are various types of devices such as electrostatic, electromagnetic, and other operating principles. For example, various optical deflection elements (also referred to as galvanometer mirrors) that operate on the principle of galvanometers (moving coil electromagnetic drive) have been proposed (Patent Documents 1 and 2), and these optical deflection element chips are based on semiconductor device manufacturing technology. It is manufactured with the micromachining manufacturing technology that diverts the. These optical deflection elements are sometimes used by being disposed at an angle of 45 degrees on the optical base as shown in FIG. 5, for example (Patent Document 3).

ところが、現状では、光学ベース上の45度の斜面に、マイクロマシニング製造技術を使用して、光偏向素子チップを形成することは不可能である。したがって、たとえば、超小型光偏向素子をパッケージに実装した後、光学ベースに45度の角度で実装しており、小型化に限界がある。   However, at present, it is impossible to form an optical deflection element chip on a 45-degree slope on the optical base using a micromachining manufacturing technique. Therefore, for example, after the ultra-small optical deflection element is mounted on the package, it is mounted on the optical base at an angle of 45 degrees, and there is a limit to downsizing.

また、図6、7に示すように、従来の光偏向素子をベアチップのまま実装すると、斜面からの電極の取出しとなり、ワイヤボンディングマシンが使えず、大量生産の際の結線には困難を極める。   As shown in FIGS. 6 and 7, when the conventional optical deflection element is mounted as a bare chip, the electrode is taken out from the inclined surface, the wire bonding machine cannot be used, and it is extremely difficult to connect in mass production.

現状では、光偏向素子は、シリコンウェハーを水平な面に配置し、ホトリソを施して、パターンを形成して製造しており、実装時の電極取出しもまた水平な面からの取出しにしか対応できていない。   At present, the optical deflection element is manufactured by placing a silicon wafer on a horizontal surface, applying photolithography, forming a pattern, and taking out the electrodes at the time of mounting can only take out from the horizontal surface. Not.

したがって、光偏向素子はパッケージングされた後しかるべき角度で実装され、コネクター等を介して電極が取出されており、作業性が悪く小型化にも適していない。
特開平7−175005号公報 特開2002−228951号公報 特開2003−21800号公報
Therefore, the optical deflection element is mounted at an appropriate angle after being packaged, and the electrode is taken out via a connector or the like, so that workability is poor and it is not suitable for miniaturization.
JP-A-7-175005 JP 2002-228951 A JP 2003-21800 A

マイクロマシニング製造技術は精度を維持するために、水平面で行うことが重要である。そのため、シリコンウェハーを主材料とする超小型光偏向素子の製造において、マイクロマシニング製造技術では、斜面にホトリソを施してパターンを焼き付けることは困難であり、光偏向素子を形成することはもちろん、斜面に実装された光偏向素子からの電極の取出しも極めて困難である。また、一部壁面にホトリソを施してパターニングする技術も開発されてはいるものの、超小型光偏向素子のような複雑な構造体を作成することはできない。   It is important to perform the micromachining manufacturing technique on a horizontal plane in order to maintain accuracy. Therefore, in the manufacture of ultra-compact optical deflection elements that use silicon wafers as the main material, it is difficult to burn a pattern by applying photolitho to the slopes with micromachining manufacturing technology. It is also extremely difficult to take out the electrode from the optical deflection element mounted on the board. In addition, although a technique for patterning by applying photolithography to a part of the wall surface has been developed, a complicated structure such as an ultra-compact optical deflection element cannot be created.

しかし、45度に配置する要求は強く、半導体レーザーと組み合わせた光学系の小型化が急務となっている。   However, there is a strong demand for the arrangement at 45 degrees, and there is an urgent need to reduce the size of the optical system combined with the semiconductor laser.

本発明は、このような状況のもとでなされたもので、マイクロマシニング製造技術で製造でき、斜面に光偏向子を配置しても電極取出しが容易な光偏向素子,光偏向装置を提供することを課題とするものである。   The present invention has been made under such circumstances, and provides an optical deflector and an optical deflector that can be manufactured by a micromachining manufacturing technique and can be easily taken out even if an optical deflector is disposed on a slope. This is a problem.

前記課題を解決するため、本発明では、光偏向素子を次の(1)、()、()のとおりに構成し、光偏向装置を次の(2)、()のとおりに構成し、光偏向素子の製造方法を次の(3)のとおりに構成する
(1)シリコンウェハー上に柔軟な樹脂を被覆した素材の表面における一方のエリアから他方のエリアにかけて、可動コイル型電磁駆動の光偏向子部と、該光偏向子部の可動コイルに接続された配線と、該配線に接続された電極部とを形成した後に、
前記光偏向子部と前記電極部の間の前記配線部分でシリコンウェハー部分を取り除き屈曲させた光偏向素子。
(2)前記(1)に記載の光偏向素子を、底面に対し傾斜する面と平行する面を有するパッケージに収納した光偏向装置であって、
前記傾斜する面に光偏向子部を固着し、前記平行する面に前記電極部を固着した光偏向装置。
(3)シリコンウェハー上に柔軟な樹脂を被覆した素材を形成するステップAと、前記ステップAで形成した素材の表面における一方のエリアから他方のエリアにかけて、可動コイル型電磁駆動の光偏向子部と、該光偏向子部の可動コイルに接続された配線と、該配線に接続された電極部とを形成するステップBと、前記ステップBで形成した前記光偏向子部と前記電極部の間の前記配線部分でシリコンウェハー部分を取り除き屈曲させるステップCとを備えた光偏向素子の製造方法。
)前記(2)に記載の光偏向装置において、
前記パッケージは前記底面に対し平行する面をさらに有し、該平行する面に半導体レーザーチップを固着した光偏向装置。
)前記(1)に記載の光偏向素子において、
前記柔軟な樹脂としてポリイミドを用いた光偏向素子。
)前記(1)に記載の光偏向素子において、
前記柔軟な樹脂としてシリコーンゴムを用いた光偏向素子。
In order to solve the above-described problems, in the present invention, the optical deflection element is configured as in the following (1), ( 5 ), and ( 6 ), and the optical deflection device is configured as in the following (2) and ( 4 ). configured to form a manufacturing method of the optical deflection element as shown in the following (3).
(1) over a flexible resin on the silicon wafer from one area in the coated material surface of the other areas, and the light deflectors portion of the moving-coil electromagnetic driving, it is connected to the moving coil of the optical deflector portion After forming the wiring and the electrode portion connected to the wiring,
An optical deflection element in which a silicon wafer part is removed and bent at the wiring part between the optical deflector part and the electrode part.
(2) An optical deflection device in which the optical deflection element according to (1) is housed in a package having a surface parallel to a surface inclined with respect to the bottom surface.
An optical deflecting device in which an optical deflector portion is fixed to the inclined surface and the electrode portion is fixed to the parallel surface.
(3) a step A of forming a material coated with a flexible resin on a silicon wafer, subjected to one from the area other area in the surface of the material formed in step A, the light deflector portion of the moving-coil electromagnetic driving Step B for forming a wiring connected to the movable coil of the optical deflector part and an electrode part connected to the wiring, and between the optical deflector part and the electrode part formed in Step B And a step C of removing and bending the silicon wafer portion at the wiring portion.
( 4 ) In the optical deflecting device according to (2),
The package further includes a surface parallel to the bottom surface, and a semiconductor laser chip is fixed to the parallel surface.
( 5 ) In the optical deflection element according to (1),
An optical deflection element using polyimide as the flexible resin.
( 6 ) In the optical deflection element according to (1),
An optical deflection element using silicone rubber as the flexible resin.

本発明によれば、マイクロマシニング製造技術で製造でき、斜面に光偏向子を配置しても電極取出しが容易な光偏向素子,光偏向装置を提供することができる。   According to the present invention, it is possible to provide an optical deflecting element and an optical deflecting device that can be manufactured by a micromachining manufacturing technique and can be easily taken out even if an optical deflector is disposed on a slope.

以下本発明を実施するための最良の形態を実施例により詳しく説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail by way of examples.

図1は実施例1である“光偏向装置”の構成を示す断面図であり、図2は光偏向装置に用いられるガルバノミラータイプの光偏向素子の構成を示す図である。   FIG. 1 is a cross-sectional view showing a configuration of an “optical deflecting device” according to the first embodiment, and FIG. 2 is a diagram showing a configuration of a galvano mirror type optical deflecting element used in the optical deflecting device.

図2に示す光偏向素子1は、シリコンウェハー9−1上に柔軟な特性を持つポリイミド,シリコーンゴム等の樹脂9−2を回転塗布(被覆)した素材9から、マイクロマシニング技術で製造される。前記素材9の一方に光偏向子部2が、他方に電極部3が形成されるが、その形成法は特許文献1などに示すようによく知れているので、ここでの詳細説明は省略する。   The optical deflection element 1 shown in FIG. 2 is manufactured by a micromachining technique from a material 9 obtained by spin-coating (coating) a resin 9-2 such as polyimide or silicone rubber having flexible characteristics on a silicon wafer 9-1. . The optical deflector portion 2 is formed on one of the materials 9 and the electrode portion 3 is formed on the other. The formation method is well known as shown in Patent Document 1 and the like, and detailed description thereof is omitted here. .

ただし、シリコンウェハー9−1上に樹脂9−2が被覆された素材9を使用するので、シリコンウェハー9−1の加工はシリコンウェハー側から実施する、ミラー4、ミラー4を駆動するコイル5、電極6、コイル5と電極6間の配線7は樹脂9−2表面に形成することとなる。   However, since the material 9 in which the resin 9-2 is coated on the silicon wafer 9-1 is used, the processing of the silicon wafer 9-1 is performed from the silicon wafer side, the mirror 4, the coil 5 that drives the mirror 4, The electrode 6 and the wiring 7 between the coil 5 and the electrode 6 are formed on the surface of the resin 9-2.

このようにマイクロマシニング技術で、前記素材9の一方に光偏向子部2を形成し、他方に電極部3を形成して、光偏向子部2と電極部3が機械的かつ電気的に一体的に結合された状態において、光偏向子部2と電極部3の間のシリコンウェハー部分8を取り除いても一体であることに変わりはなく、かつ光偏向子部2と電極部3との間が屈曲可能で、両者の位置関係に自由度を持たせる構造とすることができる。   Thus, by the micromachining technology, the optical deflector portion 2 is formed on one of the materials 9 and the electrode portion 3 is formed on the other, and the optical deflector portion 2 and the electrode portion 3 are mechanically and electrically integrated. If the silicon wafer portion 8 between the optical deflector portion 2 and the electrode portion 3 is removed in the state where the optical deflector portion 2 and the electrode portion 3 are removed, the silicon wafer portion 8 remains integrated. Can be bent, and the positional relationship between them can be made flexible.

製造された図2に示す光偏向素子1を、図1に示すように、パッケージ10における、底面に対し傾斜する面11に光偏向子部2を固着し、底面に対し平行する面12に電極部3を固着する。また、光偏向子部2のミラーと所要の距離をおいた凹部13にレンズ14を固着し、レンズ14と所要の距離をおいた底面に対し平行する面15に半導体レーザーチップ15を固着する。   The manufactured optical deflection element 1 shown in FIG. 2 has an optical deflector portion 2 fixed to a surface 11 inclined with respect to the bottom surface of the package 10 as shown in FIG. The part 3 is fixed. In addition, a lens 14 is fixed to the concave portion 13 having a predetermined distance from the mirror of the optical deflector 2, and a semiconductor laser chip 15 is fixed to a surface 15 parallel to the bottom surface having a predetermined distance from the lens 14.

このように、パッケージ10に光偏向素子1、レンズ14、半導体レーザーチップ16を実装すれば、レーザー光学系と走査系をコンパクトに一体化できかつ、電極の取出しもパッケージの底面と平行な上面でワイヤボンディングマシンにより容易に行うことができる。   As described above, if the light deflecting element 1, the lens 14, and the semiconductor laser chip 16 are mounted on the package 10, the laser optical system and the scanning system can be integrated in a compact manner, and the electrodes can be taken out on the top surface parallel to the bottom surface of the package. It can be easily performed by a wire bonding machine.

以上説明したように、本実施例によれば、素材を水平面において加工できるので,従来のマイクロマシニング技術で光偏向素子が製造でき、光偏向子部と電極部との間が屈曲可能で両者の位置関係に自由度を持たせた構造なので、光偏向子の斜め実装が容易であるともに電極の取出しも容易であり、ベアチップでの実装が可能となるため、超小型光偏向子を含んだレーザー光学系の超小型化が容易に実現できる。また、レーザー光学系と走査系をコンパクトに一体化できる。   As described above, according to the present embodiment, since the material can be processed in a horizontal plane, an optical deflection element can be manufactured by a conventional micromachining technology, and the optical deflector portion and the electrode portion can be bent, and both of them can be bent. Since the structure has a degree of freedom in positional relationship, it is easy to mount the optical deflector diagonally and it is easy to take out the electrode, and it can be mounted on the bare chip. An ultra-compact optical system can be easily realized. In addition, the laser optical system and the scanning system can be integrated in a compact manner.

図3、4は参考のための構成を示す図で、実施例のようにシリコンウェハーの一部を取り除き屈曲可能に構成していないので、電極取出しにワイヤボンディングマシンが使用できず、大量生産に向かない構成である。   FIGS. 3 and 4 are diagrams showing a configuration for reference, and since a part of the silicon wafer is not removed and bent as in the embodiment, a wire bonding machine cannot be used for taking out the electrode, and mass production is possible. The configuration is not suitable.

実施例1の構成を示す断面図Sectional drawing which shows the structure of Example 1 実施例1で用いる光偏向素子の構成を示す図The figure which shows the structure of the optical deflection | deviation element used in Example 1. FIG. 参考図Reference diagram 参考図Reference diagram 光偏向素子の使用例を示す図The figure which shows the usage example of the optical deflection element 従来例の構成を示す図Diagram showing the configuration of a conventional example 従来例の構成を示す図Diagram showing the configuration of a conventional example

符号の説明Explanation of symbols

1 光偏向素子
2 光偏向子部
3 電極部
8 光偏向子部と電極部との間のシリコンウェハー部分
9 素材
9−1 シリコンウェハー
9−2 樹脂
DESCRIPTION OF SYMBOLS 1 Optical deflection element 2 Optical deflector part 3 Electrode part 8 Silicon wafer part 9 between optical deflector part and electrode part 9 Material 9-1 Silicon wafer 9-2 Resin

Claims (6)

シリコンウェハー上に柔軟な樹脂を被覆した素材の表面における一方のエリアから他方のエリアにかけて、可動コイル型電磁駆動の光偏向子部と、該光偏向子部の可動コイルに接続された配線と、該配線に接続された電極部とを形成した後に、
前記光偏向子部と前記電極部の間の前記配線部分でシリコンウェハー部分を取り除き屈曲させたことを特徴とする光偏向素子。
A flexible resin on the silicon wafer from one area in the coated material surface over the other areas, and the light deflectors portion of the moving-coil electromagnetic driving, and wiring connected to the moving coil of the optical deflector unit, After forming the electrode portion connected to the wiring,
A light deflection element, wherein a silicon wafer portion is removed and bent at the wiring portion between the light deflector portion and the electrode portion.
請求項1に記載の光偏向素子を、底面に対し傾斜する面と平行する面を有するパッケージに収納した光偏向装置であって、
前記傾斜する面に光偏向子部を固着し、前記平行する面に前記電極部を固着したことを特徴とする光偏向装置。
An optical deflection device in which the optical deflection element according to claim 1 is housed in a package having a surface parallel to a surface inclined with respect to the bottom surface,
An optical deflector comprising: an optical deflector portion fixed to the inclined surface; and the electrode portion fixed to the parallel surface.
シリコンウェハー上に柔軟な樹脂を被覆した素材を形成するステップAと、前記ステップAで形成した素材の表面における一方のエリアから他方のエリアにかけて、可動コイル型電磁駆動の光偏向子部と、該光偏向子部の可動コイルに接続された配線と、該配線に接続された電極部とを形成するステップBと、前記ステップBで形成した前記光偏向子部と前記電極部の間の前記配線部分でシリコンウェハー部分を取り除き屈曲させるステップCとを備えたことを特徴とする光偏向素子の製造方法。 A step A of forming a material coated with a flexible resin on silicon wafers, over from one area on the surface of the material formed in step A to the other area, and the light deflectors portion of the moving-coil electromagnetic drive, the Step B for forming a wiring connected to the movable coil of the optical deflector part and an electrode part connected to the wiring, and the wiring between the optical deflector part and the electrode part formed in Step B And a step C of removing the silicon wafer portion at the portion and bending the portion. 請求項2に記載の光偏向装置において、
前記パッケージは前記底面に対し平行する面をさらに有し、該平行する面に半導体レーザーチップを固着したことを特徴とする光偏向装置。
The optical deflection apparatus according to claim 2, wherein
The light deflection apparatus, wherein the package further has a surface parallel to the bottom surface, and a semiconductor laser chip is fixed to the parallel surface.
請求項1に記載の光偏向素子において、
前記柔軟な樹脂としてポリイミドを用いたことを特徴とする光偏向素子。
The light deflection element according to claim 1,
An optical deflection element using polyimide as the flexible resin.
請求項1に記載の光偏向素子において、
前記柔軟な樹脂としてシリコーンゴムを用いたことを特徴とする光偏向素子。
The light deflection element according to claim 1,
A light deflection element using silicone rubber as the flexible resin.
JP2005097900A 2005-03-30 2005-03-30 Optical deflection element, optical deflection apparatus, and method of manufacturing optical deflection element Expired - Fee Related JP4064974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005097900A JP4064974B2 (en) 2005-03-30 2005-03-30 Optical deflection element, optical deflection apparatus, and method of manufacturing optical deflection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005097900A JP4064974B2 (en) 2005-03-30 2005-03-30 Optical deflection element, optical deflection apparatus, and method of manufacturing optical deflection element

Publications (2)

Publication Number Publication Date
JP2006276653A JP2006276653A (en) 2006-10-12
JP4064974B2 true JP4064974B2 (en) 2008-03-19

Family

ID=37211461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005097900A Expired - Fee Related JP4064974B2 (en) 2005-03-30 2005-03-30 Optical deflection element, optical deflection apparatus, and method of manufacturing optical deflection element

Country Status (1)

Country Link
JP (1) JP4064974B2 (en)

Also Published As

Publication number Publication date
JP2006276653A (en) 2006-10-12

Similar Documents

Publication Publication Date Title
US7466474B2 (en) Micromechanical device with tilted electrodes
US10649202B2 (en) Micro-electro-mechanical device with a movable structure, in particular micromirror, and manufacturing process thereof
JP4949254B2 (en) Actuator
US7901969B2 (en) Micromirror manufacturing method
JP5899382B2 (en) IMAGING MODULE, ELECTRONIC DEVICE HAVING THE SAME, AND METHOD FOR MANUFACTURING IMAGING MODULE
JP2007034309A (en) Micro-mirror element package and method for fabricating the same
KR101158200B1 (en) Optical Image Stabilizer and Method of manufacturing the same
US8790936B2 (en) Method for manufacturing optical deflector for forming dicing street with double etching
CN102556940A (en) Structure
US6888656B2 (en) Optical deflector
JPWO2009060906A1 (en) Microactuator, optical device, display device, exposure apparatus, and device manufacturing method
US11644664B2 (en) Light deflector, optical scanning system, image projection device, image forming apparatus, and lidar device
EP3276393A1 (en) Light deflector, optical scanning device, image forming apparatus, image projection apparatus, and method for manufacturing the light deflector
WO2015145943A1 (en) Optical scanning device
JP2008194813A (en) Moving element and method of manufacturing the same
JP2008039810A (en) Optical reflecting element
JP4064974B2 (en) Optical deflection element, optical deflection apparatus, and method of manufacturing optical deflection element
JP2009154264A (en) Mems module
JP6069970B2 (en) MEMS device, optical deflector, optical scanning device, image forming apparatus, and image projection apparatus
JP5618681B2 (en) Structure having holder part and device part and fixing method thereof
JP6217145B2 (en) Gripping device, electromechanical device, and housing
JP2008185385A (en) Angular velocity sensor and electronic apparatus
JP2010060689A (en) Optical reflection element unit
JP7131336B2 (en) Optical deflection device, distance measuring device, and moving body
JP3942621B2 (en) Electrostatic drive type optical deflection element

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20061218

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070807

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees