JP4064917B2 - Al-based alloy with excellent heat resistance and wear resistance - Google Patents

Al-based alloy with excellent heat resistance and wear resistance Download PDF

Info

Publication number
JP4064917B2
JP4064917B2 JP2003430262A JP2003430262A JP4064917B2 JP 4064917 B2 JP4064917 B2 JP 4064917B2 JP 2003430262 A JP2003430262 A JP 2003430262A JP 2003430262 A JP2003430262 A JP 2003430262A JP 4064917 B2 JP4064917 B2 JP 4064917B2
Authority
JP
Japan
Prior art keywords
intermetallic compound
phase
compound phase
based alloy
intermetallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003430262A
Other languages
Japanese (ja)
Other versions
JP2005187876A (en
Inventor
桂 梶原
英雄 畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003430262A priority Critical patent/JP4064917B2/en
Publication of JP2005187876A publication Critical patent/JP2005187876A/en
Application granted granted Critical
Publication of JP4064917B2 publication Critical patent/JP4064917B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、高温強靱性(耐熱性)と耐摩耗性に優れており、自動車や航空機などのエンジン部品(ピストン、コンロッド)などのような、300〜400℃程度までの耐熱強度と軽量性を要求される機械部品に用いて好適なAl基合金に関するものである。   The present invention is excellent in high temperature toughness (heat resistance) and wear resistance, and has heat resistance strength and lightness up to about 300-400 ° C. such as engine parts (pistons, connecting rods) of automobiles and aircrafts. The present invention relates to an Al-based alloy suitable for use in required machine parts.

従来の溶解鋳造合金では、Al−Cu系合金(2618などの2000系Al合金)を始め、種々の耐熱合金が開発されているが、使用温度が150℃を超える高温下では、十分な高温強度を得ることができなかった。Al−Cu系合金では時効硬化による微細析出物で強度を確保しているため、使用温度が150℃を超えると、この析出物相が粗大化し、著しく強度が低下するからである。   Various heat-resistant alloys such as Al-Cu alloys (2000-series Al alloys such as 2618) have been developed as conventional melt-cast alloys, but sufficient high-temperature strength is achieved at high temperatures exceeding 150 ° C. Could not get. This is because Al—Cu-based alloys ensure strength with fine precipitates obtained by age hardening, and therefore, when the use temperature exceeds 150 ° C., the precipitate phase becomes coarse and the strength is significantly reduced.

そこで、従来から、急冷凝固法を適用したAl基合金が開発されてきた。急冷凝固法の一つである急冷粉末冶金法によれば、Fe、Cr、Mn、Ni、Ti、Zrなどの合金元素の添加量を、前記溶解鋳造Al合金よりも増すことができる。したがって、これら合金元素を多量に添加したAl合金を急冷凝固によって粉末化し、これを固化成型することで、使用温度が150℃を超える高温下でも、高温強度に優れたAl基合金を得ることができる(特許文献1、2参照)。これは、前記合金元素によって、高温でも安定なAlとの金属間化合物を組織中に分散させて、高温強度を高くしている。   Thus, conventionally, Al-based alloys to which the rapid solidification method is applied have been developed. According to the rapid powder metallurgy method, which is one of the rapid solidification methods, the amount of addition of alloy elements such as Fe, Cr, Mn, Ni, Ti, Zr, etc. can be increased as compared with the melt cast Al alloy. Therefore, an Al alloy containing a large amount of these alloy elements is pulverized by rapid solidification and solidified and molded to obtain an Al-based alloy having excellent high-temperature strength even at high temperatures exceeding 150 ° C. Yes (see Patent Documents 1 and 2). This is because the alloy element disperses an intermetallic compound with Al that is stable even at high temperatures in the structure, thereby increasing the high-temperature strength.

更に、前記金属間化合物の微細化により、金属間化合物の分率を増加させ、高強度化を図る技術も提案されている(特許文献3参照)。
特許2911708号公報 特公平7−62189号公報 特開平5−195130号公報
Furthermore, a technique for increasing the strength by increasing the fraction of the intermetallic compound by miniaturizing the intermetallic compound has been proposed (see Patent Document 3).
Japanese Patent No. 2911708 Japanese Examined Patent Publication No. 7-62189 JP-A-5-195130

また、急冷凝固法の一つであるスプレーフォーミング法による、Fe、V、Mo、Zr、Tiなどの合金元素を添加し、これら合金元素とAlとの金属間化合物を微細化させた、軽量化耐熱Al基合金も開発されており、過剰のSiを添加し、初晶のSiを微細化させて、耐磨耗性を兼備させた高強度Al基合金も開発されている(特許文献4参照)。
特開平9−125180号公報
In addition, alloying elements such as Fe, V, Mo, Zr, and Ti are added by spray forming, which is one of the rapid solidification methods, and the intermetallic compounds of these alloying elements and Al are refined to reduce weight. A heat-resistant Al-based alloy has also been developed, and a high-strength Al-based alloy that also has wear resistance has been developed by adding excess Si and refining primary crystal Si (see Patent Document 4). ).
JP 9-125180 A

前記特許文献1、2などの急冷粉末冶金法によれば、合金元素の添加量を増せば、Al基合金の高温強度を高くできる。しかし、合金元素の添加量を増加し過ぎると、金属間化合物の粗大化を招くため、300℃で300MPa程度の高温強度しか得られていない。これは、金属間化合物の微細化により、金属間化合物の分率を増加させた、前記特許文献3でも同様である。   According to the quenching powder metallurgy method such as Patent Documents 1 and 2, the high temperature strength of the Al-based alloy can be increased by increasing the addition amount of the alloy element. However, if the addition amount of the alloy element is excessively increased, the intermetallic compound is coarsened, so that only a high temperature strength of about 300 MPa at 300 ° C. is obtained. The same applies to Patent Document 3 in which the fraction of intermetallic compounds is increased by miniaturization of intermetallic compounds.

更に、前記特許文献4などのスプレーフォーミング法によるAl基合金でも、同様の高温強度しか得られていない。   Furthermore, even the Al-based alloy by the spray forming method described in Patent Document 4 and the like has only obtained the same high temperature strength.

本発明は、かかる問題に鑑みなされたもので、より高温強度(耐熱性)が高く、耐摩耗性にも優れているAl基合金を提供することを目的とする。   The present invention has been made in view of such a problem, and an object thereof is to provide an Al-based alloy having higher high-temperature strength (heat resistance) and excellent wear resistance.

この目的を達成するために、本発明の耐熱性と耐磨耗性とに優れたAl基合金の要旨は、質量%で、Cr:5〜30%、Fe:1〜20%、Ti:1〜15%を含むとともに、Cr、Fe、Tiの総和が15〜50%であり、残部がAl及び不可避的不純物からなる、急冷凝固法により得られたAl基合金であって、金属組織中に、Al−Cr系、Al−Fe系、Al−Ti系の金属間化合物相を各々有し、これら各金属間化合物相の平均サイズが7μm以下であるとともに、これら各金属間化合物相のいずれかに、当該金属間化合物を構成する元素以外のCr、Fe、Tiのいずれかが固溶しており、これら金属間化合物相に固溶したCr、Fe、Tiの含有量の総和が1質量%以上であることである。   In order to achieve this object, the gist of the Al-based alloy excellent in heat resistance and wear resistance of the present invention is mass%, Cr: 5 to 30%, Fe: 1 to 20%, Ti: 1 An Al-based alloy obtained by a rapid solidification method, containing 15 to 50%, the total of Cr, Fe and Ti is 15 to 50%, and the balance is made of Al and unavoidable impurities. , Al—Cr, Al—Fe, and Al—Ti intermetallic compound phases each having an average size of 7 μm or less, and any one of these intermetallic compound phases In addition, Cr, Fe, or Ti other than the elements constituting the intermetallic compound is in solid solution, and the total content of Cr, Fe, and Ti dissolved in the intermetallic compound phase is 1% by mass. That is all.

本発明に係るAl基合金は、金属Alマトリックスと金属間化合物相とで構成されている。前記金属間化合物相としては、金属Alを介在することなく、隣接する複数の金属間化合物粒子(集合体)で形成されているものが該当する。なお単独の金属間化合物粒子が金属間化合物相を形成していてもよい。   The Al-based alloy according to the present invention is composed of a metal Al matrix and an intermetallic compound phase. The intermetallic compound phase corresponds to those formed by a plurality of adjacent intermetallic compound particles (aggregates) without intervening metal Al. Single intermetallic compound particles may form an intermetallic compound phase.

本発明者らは、スプレーフォーミング法により作成されたAl基合金について検討した結果、Al基合金の金属組織中に存在する、Al−Cr系、Al−Fe系、Al−Ti系などの金属間化合物相のいずれかに、当該金属間化合物を構成する元素以外のCr、Fe、Tiのいずれかが各々更に固溶している場合があることを知見した。   As a result of studying an Al-based alloy prepared by a spray forming method, the present inventors have found that an Al-Cr-based, Al-Fe-based, Al-Ti-based, etc. It has been found that any of Cr, Fe, and Ti other than the elements constituting the intermetallic compound may be further dissolved in any of the compound phases.

そして、このように、金属間化合物相のいずれかに、当該金属間化合物を構成する元素以外の元素が更に固溶した場合、金属間化合物相に前記元素が更に固溶しない場合に比して、Al基合金の耐熱性と耐磨耗性とが著しく向上することを知見した。   As described above, when an element other than the element constituting the intermetallic compound further dissolves in any of the intermetallic compound phases, as compared with the case where the element does not further dissolve in the intermetallic compound phase. It has been found that the heat resistance and wear resistance of Al-based alloys are significantly improved.

このように、金属間化合物相に当該金属間化合物を構成する元素以外の元素が更に固溶した場合と、そうでない場合とは、金属間化合物相を構成する元素の組み合わせや、各元素量、そしてスプレーフォーミング法の冷却などの制作条件などの違いによって生じる。   As described above, when an element other than the element constituting the intermetallic compound is further dissolved in the intermetallic compound phase, and when not, the combination of the elements constituting the intermetallic compound phase, the amount of each element, This is caused by differences in production conditions such as cooling in the spray forming method.

本発明のように、金属間化合物相のいずれかに、当該金属間化合物を構成する元素以外の元素が更に固溶した場合には、後述する実施例の通り、例えば、300℃で480Hv(ビッカース硬度)以上の高温強度のAl基合金も得られる。この結果、Al基合金の高温用途に大きく道をひらく。   As in the present invention, when an element other than the element constituting the intermetallic compound further dissolves in any of the intermetallic compound phases, for example, 480 Hv (Vickers) at 300 ° C. An Al-based alloy having a high temperature strength equal to or higher than (hardness) can also be obtained. As a result, it opens the way for high-temperature applications of Al-based alloys.

(Al基合金組成)
本発明のAl基合金の化学成分組成(単位:質量%)について、各元素の限定理由を含めて、以下に説明する。
(Al-based alloy composition)
The chemical component composition (unit: mass%) of the Al-based alloy of the present invention will be described below, including reasons for limiting each element.

本発明Al基合金の基本的な化学成分組成は、質量%で、Cr:5〜30%、Fe:1〜20%、Ti:1〜15%を含むとともに、Cr、Fe、Tiの総和が15〜50%であり、残部がAl及び不可避的不純物からなるものとする。   The basic chemical composition of the Al-based alloy of the present invention is mass%, including Cr: 5-30%, Fe: 1-20%, Ti: 1-15%, and the total of Cr, Fe, Ti is 15 to 50%, and the balance is made of Al and inevitable impurities.

Cr、Fe、Tiは、Al−Cr系、Al−Fe系、Al−Ti系などの金属間化合物相を形成するとともに、これら金属間化合物相のいずれかに、当該金属間化合物を構成する元素以外のいずれかの元素が更に固溶して、Al基合金の耐熱性と耐磨耗性とを向上させる。   Cr, Fe, and Ti form an intermetallic compound phase such as Al—Cr, Al—Fe, and Al—Ti, and an element constituting the intermetallic compound in any of these intermetallic phases Any element other than the above further dissolves to improve the heat resistance and wear resistance of the Al-based alloy.

Cr、Fe、Tiの各含有量およびCr、Fe、Tiの含有量総和が、上記各下限未満では、Al−Cr系、Al−Fe系、Al−Ti系などの金属間化合物相と、これら各金属間化合物相に、当該金属間化合物を構成する元素以外のいずれかの元素の固溶量が各々不足する。このため、Al基合金の耐熱性と耐磨耗性とを向上させることができない。   If the total content of Cr, Fe, Ti and the total content of Cr, Fe, Ti are less than the above lower limits, the intermetallic compound phases such as Al-Cr, Al-Fe, and Al-Ti, and these Each intermetallic compound phase lacks the solid solution amount of any element other than the elements constituting the intermetallic compound. For this reason, the heat resistance and wear resistance of the Al-based alloy cannot be improved.

一方、Cr、Fe、Tiの各含有量およびCr、Fe、Tiの含有量総和が、上記各上限を超えた場合、上記金属間化合物相と、これら各金属間化合物相に、当該金属間化合物を構成する元素以外のいずれかの元素が固溶した組織が得られたとしても、靱性が低下して、却って、Al基合金の耐熱強度を低下させる。   On the other hand, when the total content of Cr, Fe, Ti and the total content of Cr, Fe, Ti exceed the above upper limits, the intermetallic compound phase and the intermetallic compound phase, Even if a structure in which any element other than the elements constituting the solid solution is obtained, the toughness is lowered, and instead, the heat resistance strength of the Al-based alloy is lowered.

したがって、Crは5〜30%、Feは1〜20%、Tiは1〜15%の各含有量範囲とし、Cr、Fe、Tiの含有量総和も15〜50%の範囲とする。   Accordingly, the Cr content ranges from 5 to 30%, Fe from 1 to 20%, and Ti from 1 to 15%. The total content of Cr, Fe, and Ti is also set from 15 to 50%.

(金属間化合物相の平均サイズ)
本発明では、金属組織中に、これらAl−Cr系、Al−Fe系、Al−Ti系の金属間化合物相を各々有するとともに、Al基合金の靱性を向上させるために、これら各金属間化合物相の平均サイズを7μm以下、好ましくは5 μm以下とする。Cr、Fe、Tiの含有量が多くなるほど、高温強度と耐磨耗性は向上するが、反面で、靱性は低下する傾向にある。これに対して靱性を保障するのが、各金属間化合物相の平均サイズであって、平均サイズが小さいほど、靱性は向上する。これら平均サイズが7μm、厳しくは5 μm以下を超えて大きくなった場合には、Al基合金の靱性を保障できない。
(Average size of intermetallic compound phase)
In the present invention, each of these intermetallic compounds has the Al—Cr, Al—Fe, and Al—Ti intermetallic compound phases in the metal structure and improves the toughness of the Al-based alloy. The average size of the phases is 7 μm or less, preferably 5 μm or less. As the content of Cr, Fe, and Ti increases, the high-temperature strength and wear resistance are improved, but on the other hand, the toughness tends to decrease. On the other hand, the toughness is guaranteed by the average size of each intermetallic compound phase, and the smaller the average size, the better the toughness. If the average size becomes larger than 7 μm, strictly exceeding 5 μm, the toughness of the Al-based alloy cannot be guaranteed.

金属間化合物の量が少ないときには、金属間化合物は単独で存在しているものが多いが、本発明Al基合金のように、金属間化合物の量を多くすると、複数の金属間化合物が、金属Al(マトリックス)を介在することなく互いに隣接して集合体(連続体)を形成しやすくなる。したがって、本発明Al基合金のように、金属間化合物の量を多い場合には、この金属間化合物相自体を微細化する必要性がより生じる。このため、本発明では、これら金属間化合物粒子の単独体及び集合体を、金属間化合物相と総称して、これら金属間化合物相の平均サイズを規定する。   When the amount of intermetallic compound is small, the intermetallic compound is often present alone, but when the amount of intermetallic compound is increased as in the Al-based alloy of the present invention, a plurality of intermetallic compounds are It becomes easy to form an aggregate (continuous body) adjacent to each other without interposing Al (matrix). Therefore, when the amount of intermetallic compound is large as in the case of the Al-based alloy of the present invention, the necessity to make the intermetallic compound phase itself finer arises. For this reason, in this invention, the single body and aggregate | assembly of these intermetallic compound particles are named generically, and the average size of these intermetallic compound phases is prescribed | regulated.

金属間化合物相の平均サイズの測定は、5000倍のTEMあるいはSEMにより、10視野程度のAl基合金の組織観察した際に、例えば写真撮影なり画像処理した視野内の組織に、無作為に100μmの長さの直線を5本引いて、これらの直線上にある、全ての金属間化合物粒子の連続体(金属間化合物相)の長さを測定して、平均化する。なお、組織観察は、金属間化合物相を明瞭に観察するため、反射電子により観察することが好ましい。この反射電子によれば、約0.05μmレベル以上の金属間化合物相の存在状態を確認できる。ただ、あまり観察倍率が高倍率になり過ぎると、観察箇所による金属間化合物相の疎密の差が大きく、試料全体の状態を表さなくなる。一方、低倍率になり過ぎると、サブμmレベルの金属間化合物相の存在状態を検知できなくなる。更に、鏡面研磨した試験材のSEM観察に際し、EDXを併用することで、金属間化合物相と金属Al相との区別がより容易となる。   Measurement of the average size of the intermetallic compound phase was performed by observing the structure of an Al-based alloy of about 10 fields of view with, for example, 5000 times of TEM or SEM. Are drawn, and the lengths of all the intermetallic compound particles (intermetallic compound phase) on these straight lines are measured and averaged. In order to clearly observe the intermetallic compound phase, it is preferable to observe the structure with reflected electrons. According to the reflected electrons, the existence state of the intermetallic compound phase of about 0.05 μm level or more can be confirmed. However, if the observation magnification becomes too high, the difference in density of the intermetallic compound phase depending on the observation location is large, and the state of the entire sample is not represented. On the other hand, if the magnification is too low, the presence state of the intermetallic compound phase at the sub-μm level cannot be detected. Furthermore, when SEM observation of the mirror-polished test material is performed, the use of EDX together makes it easier to distinguish between the intermetallic compound phase and the metal Al phase.

(金属間化合物相への固溶量)
金属間化合物相のいずれかに、当該金属間化合物を構成する元素以外のCr、Fe、Tiいずれかを固溶させ、これらが固溶した金属間化合物相における固溶したCr、Fe、Tiの含有量の総和を1質量%以上とすることで、当該金属間化合物およびAl基合金の強度、靱性、硬さ(耐熱強度、耐磨耗性)を向上させることができる。この効果を発揮させるためには、これらCr、Fe、Tiが固溶した金属間化合物相における、固溶したCr、Fe、Tiの固溶量(含有量)の総和を1質量%以上、好ましくは2質量%以上、より好ましくは3質量%以上とする。当該金属間化合物相における、これら固溶した各元素の含有量の総和が1質量%未満、厳しくは2質量%未満、より厳しくは3質量%未満では、前記急冷粉末冶金法により制作された金属間化合物相乃至Al基合金と大差なくなり、上記効果が実質的に得られない。
(Solubility amount in intermetallic compound phase)
In any of the intermetallic phases, Cr, Fe, or Ti other than the elements constituting the intermetallic compound is dissolved, and the solid solution of Cr, Fe, or Ti in the intermetallic phase in which they are dissolved By setting the total content to 1% by mass or more, the strength, toughness, and hardness (heat resistance strength, wear resistance) of the intermetallic compound and the Al-based alloy can be improved. In order to exert this effect, the total amount of solid solution (content) of solid solution Cr, Fe, Ti in the intermetallic compound phase in which Cr, Fe, Ti is dissolved is preferably 1% by mass or more, preferably Is 2% by mass or more, more preferably 3% by mass or more. If the total content of these dissolved elements in the intermetallic compound phase is less than 1% by mass, strictly less than 2% by mass, more strictly less than 3% by mass, the metal produced by the quenching powder metallurgy method. There is no great difference from the intermetallic phase or the Al-based alloy, and the above effect cannot be substantially obtained.

これら金属間化合物相の内でも、少なくともAl−Cr系金属間化合物相に、Fe、Tiのいずれか、また両方が固溶しており、これらFe、Tiの含有量の総和が1質量%以上であることが好ましい。Al−Cr金属間化合物相は、後述する通り、耐熱強度と耐磨耗性とのバランスに優れている。このため、他の金属間化合物に元素が固溶されているがAl−Cr金属間化合物相には元素が固溶されない場合に比して、Al基合金の強度、靱性、硬さを、一層向上させることができる。   Among these intermetallic compound phases, either Fe or Ti or both are in solid solution at least in the Al—Cr intermetallic phase, and the total content of these Fe and Ti is 1% by mass or more. It is preferable that As will be described later, the Al—Cr intermetallic compound phase has an excellent balance between heat resistance and wear resistance. For this reason, the strength, toughness, and hardness of the Al-based alloy are further increased compared to the case where the element is solid-dissolved in another intermetallic compound but the element is not solid-dissolved in the Al-Cr intermetallic compound phase. Can be improved.

なお、各金属間化合物相に、Cr、Fe、Ti以外の元素、例えばAl基合金に元々含まれる不純物元素が固溶することは、Al基合金の特性を阻害しない範囲で許容する。   It should be noted that the elements other than Cr, Fe, and Ti, such as impurity elements originally contained in the Al-based alloy, are allowed to dissolve in each intermetallic compound phase as long as the characteristics of the Al-based alloy are not impaired.

金属間化合物相のいずれかに固溶したCr、Fe、Tiなどの元素の固溶量の測定は、分析ビーム径を絞ることができるTEMおよびTEMに付随のEDX分析により、組織中の各金属間化合物相を分析し、最も含有量が高い元素によって、各金属間化合物相がいずれの金属間化合物か特定した後、それ以外の各元素の固溶量(含有量)を求める。なお、金属間化合物相の特定は、X線回折やTEMの電子線回折パターンから、金属間化合物相の結晶構造を解析して特定する。   Measurement of the solid solution amount of elements such as Cr, Fe, Ti, etc., dissolved in any of the intermetallic phases is performed by TEM that can narrow the analysis beam diameter and EDX analysis that accompanies TEM, and each metal in the structure. The intermetallic phase is analyzed, and the intermetallic compound phase is identified as an intermetallic compound by the element having the highest content, and then the solid solution amount (content) of each other element is determined. The intermetallic compound phase is identified by analyzing the crystal structure of the intermetallic compound phase from the X-ray diffraction or TEM electron diffraction pattern.

例えば、Al−Cr系、Al−Fe系、Al−Ti系の、2元系金属間化合物相以外に、実際には、例えば、Al−Cr−Fe系などの3元系以上の金属間化合物相が形成することも考えられる。この場合には、金属間化合物相を構成する以外の元素が、当該金属間化合物相に固溶しているのか、金属間化合物相を形成しているのか、が問題となる。   For example, in addition to the binary intermetallic compound phases of Al—Cr, Al—Fe, and Al—Ti, actually, for example, ternary or higher intermetallic compounds such as Al—Cr—Fe It is also possible that a phase forms. In this case, it becomes a problem whether an element other than that constituting the intermetallic compound phase is dissolved in the intermetallic compound phase or forms an intermetallic compound phase.

しかし、スプレーフォーミング法によれば、これら3元系以上の金属間化合物相は殆ど形成されず、例え形成されても、Al基合金の特性には影響を及ぼさずに、無視できる程度である。したがって、スプレーフォーミング法によれば、金属間化合物相を構成する以外の元素が、当該金属間化合物相に殆ど固溶しており、上記TEMおよびTEMに付随のEDX分析により、各金属間化合物相に固溶したCr、Fe、Tiなどの元素の固溶量の測定ができる。   However, according to the spray forming method, these ternary or higher intermetallic compound phases are hardly formed, and even if formed, the properties of the Al-based alloy are not affected and are negligible. Therefore, according to the spray forming method, elements other than those constituting the intermetallic compound phase are almost dissolved in the intermetallic compound phase, and each intermetallic compound phase is analyzed by EDX analysis accompanying the TEM and TEM. It is possible to measure the solid solution amount of elements such as Cr, Fe, Ti and the like dissolved in the solution.

また、このように、製法からの類推によらずとも、X線回折やTEMの電子線回折パターンを用いて、金属間化合物相を特定すれば、各金属間化合物相に、当該金属間化合物を構成する以外のCr、Fe、Tiなどの元素が固溶していることが裏付けられる。即ち、前記TEMおよびTEMに付随のEDXの視野内の各金属間化合物相を、X線回折およびTEMの電子線回折パターンから、金属間化合物相の結晶構造を解析し、各金属間化合物相が2元系の金属間化合物であるか、3元系以上の金属間化合物であるかを確認する。これらの結果、各金属間化合物相が2元系の金属間化合物であれば、当該金属間化合物相を構成する以外のCr、Fe、Tiなどの元素が、金属間化合物として晶出しているのではなく、当該金属間化合物相に固溶していることが裏付けられる。   In addition, as described above, if an intermetallic compound phase is specified by using an X-ray diffraction or a TEM electron diffraction pattern, without the analogy from the production method, the intermetallic compound is added to each intermetallic compound phase. It is supported that elements such as Cr, Fe, and Ti other than the constituents are dissolved. That is, the TEM and each intermetallic compound phase in the EDX field of view associated with the TEM are analyzed for the crystal structure of the intermetallic compound phase from the X-ray diffraction and TEM electron diffraction patterns. It is confirmed whether it is a binary intermetallic compound or a ternary intermetallic compound. As a result, if each intermetallic compound phase is a binary intermetallic compound, elements such as Cr, Fe, and Ti other than that constituting the intermetallic compound phase are crystallized as intermetallic compounds. Rather, it is confirmed that the solid phase is dissolved in the intermetallic compound phase.

(Al−Cr金属間化合物)
本発明Al基合金組織において、AlとCrは、例えば、Al13Cr2 、Al45Cr7 、Al112.3 Cr28.6、Al11Cr2 、Al8 Cr5 、Al16Cr9.5 、Al2 Crなどの金属間化合物を形成している。
(Al-Cr intermetallic compound)
In the Al-based alloy structure of the present invention, Al and Cr are, for example, Al 13 Cr 2 , Al 45 Cr 7 , Al 112.3 Cr 28.6 , Al 11 Cr 2 , Al 8 Cr 5 , Al 16 Cr 9.5 , Al 2 Cr, etc. Intermetallic compounds are formed.

これらAl−Cr金属間化合物相は、耐熱強度と耐磨耗性とのバランスに優れている。但し、Alの価数が高い金属間化合物相の方が低密度であり、軽量化の点では好ましい。上記した通り、少なくとも、これらAl−Cr金属間化合物相に、Cr以外のFeとTiのいずれか、あるいは両方を、FeとTiとの総和で1質量%以上の量を固溶させることで、固溶強化により、Al−Cr金属間化合物の強度、靱性、硬さを向上させることができる。   These Al—Cr intermetallic compound phases have an excellent balance between heat resistance strength and wear resistance. However, an intermetallic compound phase having a high Al valence has a lower density and is preferable in terms of weight reduction. As described above, at least in these Al-Cr intermetallic compound phases, by dissolving either Fe or Ti other than Cr, or both in an amount of 1% by mass or more in total of Fe and Ti, By solid solution strengthening, the strength, toughness and hardness of the Al—Cr intermetallic compound can be improved.

(Al−Fe金属間化合物)
また、AlとFeは、例えば、Al13Fe4 、Al3 Fe、Al2.8 Fe、Al5 Fe2 、Al2 Fe、AlFeなどの金属間化合物を形成している。
(Al-Fe intermetallic compound)
Al and Fe form intermetallic compounds such as Al 13 Fe 4 , Al 3 Fe, Al 2.8 Fe, Al 5 Fe 2 , Al 2 Fe, and AlFe.

これらAl−Fe金属間化合物相は、硬いため耐磨耗性に優れており、Al基合金の耐磨耗性を向上させる。但し、Alの価数が高い金属間化合物相の方が低密度であり、軽量化の点では好ましい。これらAl−Fe金属間化合物相に、Fe以外のCrとTiのいずれか、あるいは両方を、上記した通り、CrとTiとの総和で1質量%以上の量を固溶させることで、固溶強化により、Al−Fe金属間化合物の強度、靱性、硬さを向上させることができる。   Since these Al—Fe intermetallic compound phases are hard, they are excellent in wear resistance, and improve the wear resistance of the Al-based alloy. However, an intermetallic compound phase having a high Al valence has a lower density and is preferable in terms of weight reduction. In these Al—Fe intermetallic compound phases, either or both of Cr and Ti other than Fe are dissolved in a total amount of 1% by mass or more as a total of Cr and Ti as described above. By strengthening, the strength, toughness, and hardness of the Al—Fe intermetallic compound can be improved.

(Al−Ti金属間化合物)
更に、AlとTiは、例えば、Al3 Ti、Al2 Ti、TiAl、Ti3 Alなどの金属間化合物を形成している。
(Al-Ti intermetallic compound)
Furthermore, Al and Ti form an intermetallic compound such as Al 3 Ti, Al 2 Ti, TiAl, Ti 3 Al, for example.

これらAl−Ti金属間化合物相は、金属間化合物相自体を微細化し、金属間化合物相乃至Al基合金の強度と靱性を向上させる。したがって、後述する、溶解条件との組み合わせで、上記金属間化合物相の微細化のための効果をより発揮する。但し、Alの価数が高い金属間化合物相の方が低密度であり、軽量化の点では好ましい。これらAl−Ti金属間化合物相に、Ti以外のFeとCrのいずれか、あるいは両方を、上記した通り、FeとCrとの総和で1質量%以上の量を固溶させることで、固溶強化により、Al−Ti金属間化合物の強度、靱性、硬さを向上させることができる。   These Al—Ti intermetallic compound phases refine the intermetallic compound phase itself and improve the strength and toughness of the intermetallic compound phase or the Al-based alloy. Therefore, the effect for refinement | miniaturization of the said intermetallic compound phase is exhibited more in combination with the melt | dissolution conditions mentioned later. However, an intermetallic compound phase having a high Al valence has a lower density and is preferable in terms of weight reduction. In these Al-Ti intermetallic compound phases, either or both of Fe and Cr other than Ti, as described above, are dissolved in an amount of 1% by mass or more as a total of Fe and Cr. By strengthening, the strength, toughness, and hardness of the Al—Ti intermetallic compound can be improved.

(製造方法)
以下に、本発明Al基合金の製造方法を説明する。本発明Al基合金は、急冷凝固法のうち、急冷粉末冶金法によっても製造可能であるが、好適にはスプレーフォーミング法で製造される。
(Production method)
Below, the manufacturing method of this invention Al group alloy is demonstrated. The Al-based alloy of the present invention can be manufactured by a rapid powder metallurgy method among the rapid solidification methods, but is preferably manufactured by a spray forming method.

急冷凝固法の一つである急冷粉末冶金法によって、本発明Al基合金を製造する場合、上記本発明成分組成のAl合金のアトマイズ粉末の内、平均粒径が20μm以下、好ましくは10μm以下の微粒粉を分級して使用する。平均粒径が20μm以下の微粒粉のみをCIPやHIPで固化成型することで、本発明の、微細な金属間化合物相であって、Cr、Fe、Tiなどが金属間化合物相に強制固溶したAl基合金が得られる。平均粒径が20μmを越えるアトマイズ粉末は、冷却速度が遅いため、金属間化合物相が粗大化し、金属間化合物組成が平衡相に近づくため、Cr、Fe、Tiなどの金属間化合物相への固溶量を確保できない。このため、平均粒径が20μmを越えるアトマイズ粉末を使用した場合、本発明要件を満たすAl基合金を製造できない可能性が高い。   When producing the Al-based alloy of the present invention by the rapid powder metallurgy method, which is one of the rapid solidification methods, the average particle diameter of the atomized powder of the Al alloy having the composition of the present invention is 20 μm or less, preferably 10 μm or less. Classify and use fine powder. By solidifying and molding only fine particles having an average particle size of 20 μm or less with CIP or HIP, the fine intermetallic compound phase of the present invention, in which Cr, Fe, Ti, etc. are forcibly dissolved in the intermetallic compound phase An Al-based alloy is obtained. Atomized powder having an average particle size exceeding 20 μm has a slow cooling rate, so that the intermetallic compound phase becomes coarse and the intermetallic compound composition approaches the equilibrium phase. The amount of solution cannot be secured. For this reason, when an atomized powder having an average particle size exceeding 20 μm is used, there is a high possibility that an Al-based alloy that satisfies the requirements of the present invention cannot be produced.

スプレーフォーミング法は、通常の溶解鋳造法( インゴットメイキング) よりも、格段に速い冷却・凝固速度を有するために、Cr、Fe、Tiなどの各金属間化合物相に、当該金属間化合物を構成する元素以外の二つの元素を強制固溶させることができる。言い換えると、スプレーフォーミング法の冷却・凝固速度は、各金属間化合物相形成と、これへの上記元素の強制固溶とに適したものと言える。   Since the spray forming method has a much faster cooling and solidification rate than the ordinary melting and casting method (ingot making), the intermetallic compound is constituted in each intermetallic compound phase such as Cr, Fe, and Ti. Two elements other than elements can be forcibly dissolved. In other words, it can be said that the cooling / solidification rate of the spray forming method is suitable for the formation of each intermetallic compound phase and the forced solid solution of the above-described elements therein.

但し、スプレーフォーミング法によっても、後述する通り、その冷却・凝固速度を最適化しないと、各金属間化合物相への上記元素の強制固溶は生じないか、強制固溶しても、耐熱性と耐磨耗性とを向上させるに十分な量を固溶させられない。以下に、上記本発明Al基合金を得るための、スプレーフォーミング法による好ましい製造方法の態様について説明する。   However, the spray forming method does not cause forced solid solution of the above elements in each intermetallic compound phase unless the cooling / solidification rate is optimized as described later. And a sufficient amount to improve wear resistance cannot be dissolved. Below, the aspect of the preferable manufacturing method by the spray forming method for obtaining the said Al group alloy of this invention is demonstrated.

スプレーフォーミング法による好ましい態様は、上記本発明成分組成のAl合金を、溶解温度1250〜1600℃で溶製した後、この溶湯をスプレー開始温度まで100℃/h以上の冷却速度で冷却し、その後900〜1200℃でこの溶湯のスプレーを開始して、スプレーフォーミング法によりプリフォームを作製し、このプリフォームを、真空容器中に密封した状態で、HIP処理を行なうことである。   In a preferred embodiment by the spray forming method, the Al alloy having the composition of the present invention is melted at a melting temperature of 1250 to 1600 ° C., and then the molten metal is cooled to a spray start temperature at a cooling rate of 100 ° C./h or more. The spraying of the molten metal is started at 900 to 1200 ° C., a preform is produced by a spray forming method, and the HIP process is performed in a state where the preform is sealed in a vacuum container.

上記した、溶解温度1250〜1600℃で溶製した後、この溶湯をスプレー開始温度まで100℃/h以上の冷却速度で冷却するパターン制御によって、先ず、スプレー開始までに、金属間化合物の微細化に効果のあるAl−Ti金属間化合物をある程度晶出させ、これを核として、スプレー中に、他のAl−Cr系、Al−Fe系の金属間化合物を微細に晶出させる。このパターン制御を行なわないと、晶出する金属間化合物を微細化できない可能性が高い。   After melting at a melting temperature of 1250 to 1600 ° C., the molten metal is cooled to a spray start temperature at a cooling rate of 100 ° C./h or more, and first, the intermetallic compound is refined before the start of spraying. Al-Ti intermetallic compounds that are effective in crystallization are crystallized to some extent, and with this as a nucleus, other Al-Cr-based and Al-Fe-based intermetallic compounds are finely crystallized during spraying. If this pattern control is not performed, there is a high possibility that the intermetallic compound to be crystallized cannot be refined.

溶解温度を1250℃以上としたのは、上記本発明成分組成のAl合金において、各金属間化合物相を完全に溶解させるためである。また、各合金元素の含有量が多いほど、各金属間化合物相を完全に溶解させるためには、溶解温度を1250℃以上の高い温度とすることが好ましいが、1600℃を超える温度とする必要は無い。   The reason why the melting temperature is set to 1250 ° C. or more is to completely dissolve each intermetallic compound phase in the Al alloy having the composition of the present invention. Moreover, in order to completely dissolve each intermetallic compound phase as the content of each alloy element increases, the melting temperature is preferably set to a high temperature of 1250 ° C. or higher, but it is necessary to set the temperature above 1600 ° C. There is no.

また、溶湯のスプレー開始温度までの前記冷却速度が100℃/h未満では、上記した、スプレー開始までにAl−Ti金属間化合物をある程度晶出させることや、晶出したAl−Ti金属間化合物を核として、スプレーフォーミング中に、他のAl−Cr系、Al−Fe系の金属間化合物を微細に晶出させることができず、晶出する金属間化合物を微細化できない可能性が高い。   In addition, when the cooling rate to the spray start temperature of the molten metal is less than 100 ° C./h, the Al—Ti intermetallic compound is crystallized to some extent before the spray starts, or the crystallized Al—Ti intermetallic compound It is highly possible that other Al—Cr-based and Al—Fe-based intermetallic compounds cannot be crystallized finely during spray forming, and the crystallized intermetallic compounds cannot be refined.

溶湯のスプレー開始温度は、スプレー過程(スプレーフォーミング過程)における、冷却・晶出速度に影響する。即ち、溶湯のスプレー開始温度は、低温の方が冷却速度を速くしやすい。しかし、スプレー開始温度が900℃未満では、スプレー過程前に、溶湯中に金属間化合物が晶出してしまい、ノズルが閉塞しやすくなる。一方、スプレー開始温度が1200℃を超えると、スプレー過程中での冷却速度が遅くなり、スプレーフォーミング法により作製されたプリフォームの金属間化合物を微細化できない可能性が高い。   The spray start temperature of the molten metal affects the cooling and crystallization speed in the spray process (spray forming process). That is, it is easier to increase the cooling rate when the melt spray start temperature is lower. However, when the spray start temperature is less than 900 ° C., the intermetallic compound is crystallized in the molten metal before the spray process, and the nozzle is likely to be blocked. On the other hand, when the spray start temperature exceeds 1200 ° C., the cooling rate during the spray process becomes slow, and there is a high possibility that the intermetallic compound of the preform produced by the spray forming method cannot be miniaturized.

スプレー過程(スプレイフォーミング過程)では、冷却速度を十分に速くすることが重要となる。冷却速度を十分に速くすると、金属間化合物の晶出核生成頻度が多くなるために金属間化合物粒子の粗大化を防止でき、金属間化合物相を微細化できる。また、金属間化合物粒子が微細かされるために、隣接粒と接触する頻度も小さくなり、金属間化合物相の外郭寸法も小さくできる。   In the spray process (spray forming process), it is important to sufficiently increase the cooling rate. When the cooling rate is sufficiently high, the frequency of crystallization nucleation of the intermetallic compound increases, so that coarsening of the intermetallic compound particles can be prevented and the intermetallic compound phase can be refined. Further, since the intermetallic compound particles are made fine, the frequency of contact with adjacent grains is reduced, and the outer dimensions of the intermetallic compound phase can be reduced.

なお、一般のスプレイフォーミング法では、強度向上のためにプリフォームを緻密化する方向を重視している。このため、緻密なプリフォームを形成できる程度の緩い凝固状態を形成するために、冷却速度を遅くしている。この結果、一般のスプレイフォーミング法では、微細な金属間化合物相は形成され難い。例えば前記特許文献4のように、プリフォームの気孔率が1質量%以下となっているような場合には、明らかに、冷却速度が遅すぎ、必然的に本発明のような微細な金属間化合物相は得られず、金属間化合物相が粗大となっている。   In the general spray forming method, the direction of densifying the preform is emphasized in order to improve the strength. For this reason, in order to form a loose solidified state that can form a dense preform, the cooling rate is reduced. As a result, in a general spray forming method, a fine intermetallic compound phase is hardly formed. For example, in the case where the porosity of the preform is 1% by mass or less as in Patent Document 4, the cooling rate is obviously too slow and inevitably the fine metal interstices as in the present invention. The compound phase is not obtained, and the intermetallic compound phase is coarse.

スプレイフォーミングにおける(スプレー過程中の)冷却速度は、例えば、ガス/メタル比(G/M比:単位質量あたりの溶湯に吹き付けるガスの量)によって制御できる。本発明では、G/M比が高いほど、冷却速度を速くでき、本発明で規定するような微細な金属間化合物相が得られ、また、金属間化合物相に、前記した金属間化合物を構成する以外の元素を強制固溶させられる。   The cooling rate (during spraying) in spray forming can be controlled by, for example, the gas / metal ratio (G / M ratio: the amount of gas sprayed on the molten metal per unit mass). In the present invention, the higher the G / M ratio, the faster the cooling rate, and the fine intermetallic compound phase defined in the present invention can be obtained, and the above-described intermetallic compound is constituted in the intermetallic compound phase. It is possible to forcibly dissolve other elements.

G/M比が低過ぎると、冷却速度が不足し、金属間化合物相に、前記した金属間化合物を構成する以外の元素を強制固溶させられなくなる。また、金属間化合物相も粗大となる。但し、G/M比が高過ぎると、プリフォームの歩留まり(溶湯の堆積効率)が低下する。   If the G / M ratio is too low, the cooling rate is insufficient, and elements other than those constituting the intermetallic compound cannot be forcibly dissolved in the intermetallic compound phase. Also, the intermetallic compound phase becomes coarse. However, if the G / M ratio is too high, the yield of the preform (melt deposition efficiency) is lowered.

これらの条件を満足するG/M比の下限は、例えば、3Nm 3/kg以上、好ましくは5Nm 3/kg以上、さらに好ましくは6Nm3 /kg以上であり、G/M比の上限は、例えば、20Nm3 /kg以下、好ましくは15Nm3 /kg以下とすることが推奨される。 The lower limit of the G / M ratio that satisfies these conditions is, for example, 3 Nm 3 / kg or more, preferably 5 Nm 3 / kg or more, more preferably 6 Nm 3 / kg or more. The upper limit of the G / M ratio is, for example, 20 Nm 3 / kg or less, preferably 15 Nm 3 / kg or less is recommended.

なお、上記急冷条件でスプレイフォーミングを行うと、プリフォームの気孔率は、例えば10体積%以上となるため、プリフォームのままでは強靱性が不足しやすい。このため、プリフォームの空孔を圧潰して、プリフォームを緻密化することが好ましい。   When spray forming is performed under the above-described rapid cooling conditions, the porosity of the preform is, for example, 10% by volume or more, and thus the toughness tends to be insufficient with the preform as it is. For this reason, it is preferable to crush the pores of the preform to make the preform dense.

この圧潰手段は、特に限定されないが、プリフォームを略等方向的に加圧(プレス)する方法、特に熱間で該加圧をする方法(熱間静水圧プレス処理など)が推奨される。例えば、熱間静水圧プレス処理(HIP処理;Hot Isostatic Pressing)では、真空容器中にプリフォームを密封した状態で、例えば、温度450〜600℃、圧力80MPa(800気圧)以上、時間1〜10hrでの処理条件が推奨される。温度及び圧力が低すぎたり時間が短すぎると気孔が残留し易くなり、温度が高すぎたり時間が長すぎると、金属間化合物相が粗大化しやすくなるためである。好ましい温度範囲は、500〜600℃程度、特に550〜600℃程度である。好ましい圧力は、900MPa以上、特に1000MPa以上である。なお圧力の上限は特に限定されないが、圧力をかけすぎても効果が飽和するため、通常2000MPa以下とする。好ましい時間は、1〜5hr程度、特に1〜3hr程度である。   The crushing means is not particularly limited, but a method of pressing (pressing) the preform in a substantially isotropic direction, particularly a method of pressing the preform hot (such as hot isostatic pressing) is recommended. For example, in hot isostatic pressing (HIP processing), a preform is sealed in a vacuum vessel, for example, at a temperature of 450 to 600 ° C., a pressure of 80 MPa (800 atm) or more, and a time of 1 to 10 hours. The processing conditions at are recommended. This is because pores tend to remain if the temperature and pressure are too low or the time is too short, and if the temperature is too high or the time is too long, the intermetallic compound phase tends to become coarse. A preferred temperature range is about 500 to 600 ° C, particularly about 550 to 600 ° C. A preferable pressure is 900 MPa or more, particularly 1000 MPa or more. The upper limit of the pressure is not particularly limited, but the effect is saturated even if the pressure is excessively applied, and is usually 2000 MPa or less. A preferable time is about 1 to 5 hr, particularly about 1 to 3 hr.

このようにプリフォームの密度を上げられたAl基合金は、適宜機械加工されて、耐熱強度と軽量性を要求される、前記機械部品として用いられる。   The Al-based alloy whose preform density is increased in this manner is appropriately machined and used as the mechanical component that requires heat resistance and light weight.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

下記表1に示す成分組成のAl合金の溶湯を、1300〜1600℃の溶解温度で溶解し、この溶湯をスプレー開始温度まで100℃/h以上の冷却速度で冷却し、その後900〜1400℃でこの溶湯のスプレーを開始して、G/M比2〜10でスプレイフォーミング(使用ガス:N2 )し、種々のプリフォームを作製した。発明例、比較例の各例における、これらスプレイフォーミング条件も表2に示す。 The molten Al alloy having the composition shown in Table 1 below is melted at a melting temperature of 1300 to 1600 ° C., and the molten metal is cooled to a spray start temperature at a cooling rate of 100 ° C./h or more, and then 900 to 1400 ° C. Spraying of this molten metal was started, and spray forming was performed at a G / M ratio of 2 to 10 (used gas: N 2 ) to prepare various preforms. Table 2 also shows these spray forming conditions in each of the inventive examples and the comparative examples.

得られたプリフォームをSUS製の缶に装填し、13kPa(100Torr)以下に減圧した状態で、温度575℃で2時間保持して脱気し、缶を密封してカプセルを形成した。得られたカプセルをHIP処理[温度:550℃、圧力:100MPa(1000気圧)、保持時間:2時間]して、緻密なAl基合金(試験材)を得た。   The obtained preform was loaded into a SUS can, depressurized to 13 kPa (100 Torr) or less, kept at a temperature of 575 ° C. for 2 hours, and deaerated, and the can was sealed to form a capsule. The obtained capsule was subjected to HIP treatment [temperature: 550 ° C., pressure: 100 MPa (1000 atm), holding time: 2 hours] to obtain a dense Al-based alloy (test material).

この試験材の特性を以下のようにして評価した。これらの結果を各々表2に示す。なお、表2において、Al−Cr系金属間化合物相(Al−Cr相)中の固溶元素量(質量%)は、Al−Cr相中の固溶Feと固溶Tiの含有量の総和を示す。また、Al−Ti系金属間化合物相とAl−Fe系金属間化合物相(Al−Ti相、Al−Fe相)中の固溶元素量(質量%)は、Al−Ti相中とAl−Fe相中とにおける、各固溶Crと、各固溶Feおよび/または各固溶Tiの含有量の総和を示す。   The characteristics of this test material were evaluated as follows. These results are shown in Table 2, respectively. In Table 2, the amount of solid solution element (% by mass) in the Al—Cr intermetallic phase (Al—Cr phase) is the sum of the contents of solid solution Fe and solid solution Ti in the Al—Cr phase. Indicates. The amount of solid solution elements (mass%) in the Al-Ti intermetallic compound phase and the Al-Fe intermetallic compound phase (Al-Ti phase, Al-Fe phase) The total of the content of each solid solution Cr and each solid solution Fe and / or each solid solution Ti in the Fe phase is shown.

(金属間化合物相の平均サイズ)
金属間化合物相の平均サイズの測定は、試験材を鏡面研磨し、研磨面の組織を5000倍のTEM(日立製作所製:HF−2000電界放射型透過電子顕微鏡FE−TEM、加速電圧:200KV)および5000倍のSEM(日立製作所製:S4500型電界放出型走査電子顕微鏡FE−SEM:Field Emissionn Scanninng Electron Microscoppy)により、約20μm×約20μm程度の大きさの各10視野のAl基合金の組織観察した。そして前記した方法で平均サイズを測定した。なお、組織観察においては、SEM写真における金属Al相と金属間化合物相との区別を、EDXによって行った。また、金属間化合物相を明瞭に観察するため、反射電子により観察した。
(Average size of intermetallic compound phase)
The average size of the intermetallic compound phase was measured by mirror polishing the test material and polishing the texture of the polished surface by 5000 times TEM (Hitachi: HF-2000 field emission transmission electron microscope FE-TEM, acceleration voltage: 200 KV). And 5000 times SEM (Hitachi, Ltd .: S4500 type field emission scanning electron microscope FE-SEM: Field Emission Scanning Electron Microscoppy) observing the structure of Al-based alloy with 10 fields of about 20 μm × about 20 μm did. Then, the average size was measured by the method described above. In the structure observation, EDX was used to distinguish between the metallic Al phase and the intermetallic compound phase in the SEM photograph. Moreover, in order to observe the intermetallic compound phase clearly, it observed by the reflected electron.

(金属間化合物相に固溶した元素の固溶量)
各金属間化合物相に固溶したCr、Fe、Tiなどの元素の固溶量の測定は、上記TEMおよび、このTEMに付随の、45000倍のEDX(Kevex社製、Sigmaエネルギー分散型X線検出器:energy dispersive X- ray spectrometer)により、前記したように、視野内の各金属間化合物相を各々10点測定し、平均化した。
(Solution amount of element dissolved in intermetallic compound phase)
Measurement of the solid solution amount of elements such as Cr, Fe, Ti dissolved in each intermetallic compound phase is performed by measuring the above-mentioned TEM and 45,000 times EDX (Sigma Energy Dispersive X-ray, manufactured by Kevex) attached to this TEM. As described above, each of the intermetallic compound phases in the field of view was measured and averaged by a detector: energy dispersive X-ray spectrometer.

なお、前記視野内の各金属間化合物相を、X線回折およびTEMの電子線回折パターンから、金属間化合物相の結晶構造を解析し、各金属間化合物相が2元系の金属間化合物であり、3元系以上の金属間化合物は殆ど無いことを確認した。これらの結果から、当該金属間化合物を構成する以外のCr、Fe、Tiなどの元素が、金属間化合物として晶出しているのではなく、当該金属間化合物相に強制固溶していることが裏付けられる。   Each intermetallic compound phase in the field of view is analyzed from the X-ray diffraction and TEM electron diffraction patterns of the intermetallic compound phase, and each intermetallic compound phase is a binary intermetallic compound. It was confirmed that there was almost no intermetallic compound of a ternary system or higher. From these results, it is found that elements other than that constituting the intermetallic compound, such as Cr, Fe, and Ti, are not crystallized as an intermetallic compound but are forcibly dissolved in the intermetallic compound phase. It is supported.

(強靱性)
材料の強靱性は、一般にビッカース硬さと相関があるため、ビッカース硬さによって材料の室温強度および高温強度を評価した。すなわち室温と温度300℃におけるビッカース硬さを、荷重5kgf(室温の場合)および荷重1kgf(300℃の場合)の条件で測定した。ビッカース硬さは、温度300℃におけるビッカース硬さが150HV以上のものを耐熱性ありとして評価した。
(Toughness)
Since the toughness of the material is generally correlated with the Vickers hardness, the room temperature strength and the high temperature strength of the material were evaluated by the Vickers hardness. That is, the Vickers hardness at room temperature and a temperature of 300 ° C. was measured under conditions of a load of 5 kgf (in the case of room temperature) and a load of 1 kgf (in the case of 300 ° C.). The Vickers hardness was evaluated as having heat resistance when the Vickers hardness at a temperature of 300 ° C. was 150 HV or higher.

更に、300℃におけるビッカース硬さを測定した材料の、永久くぼみ(圧痕)をSEM観察(倍率:500倍)し、圧痕周囲の割れ発生の有無を調べ、材料の強靱性(耐熱性)を評価した。即ち、割れ発生がないものを強靱性(耐熱性)ありとして○と評価した。一方、割れ発生が有るものを強靱性(耐熱性)無しとして×と評価した。   Furthermore, permanent indentation (indentation) of the material measured for Vickers hardness at 300 ° C. is observed by SEM (magnification: 500 times), and the presence or absence of cracking around the indentation is examined to evaluate the toughness (heat resistance) of the material. did. That is, the case where no crack was generated was evaluated as “good” as having toughness (heat resistance). On the other hand, those having cracks were evaluated as x with no toughness (heat resistance).

(耐磨耗性)
耐磨耗性試験は、大越式回転円盤による磨耗試験機を使用し、相手材を鋳鉄として、磨耗速度0.1m/秒、荷重2.1kgの条件下での、比磨耗量(×10-7mm2 /kg)を測定した。
(Abrasion resistance)
Abrasion resistance test, using the abrasion tester by Okoshi rotating disc, the mating member as cast iron, wear rate 0.1m / sec, under conditions of a load 2.1 kg, the ratio amount of wear (× 10 - 7 mm 2 / kg) was measured.

表1〜2から明らかなように、発明例1〜6は、本発明で規定する、Cr、Fe、Tiの各成分範囲と、Cr、Fe、Ti含有量の総和の範囲をともに満足する。更に、Al基合金組織中に、Al−Cr系、Al−Fe系、Al−Ti系の金属間化合物相を各々有し、これら各金属間化合物相の平均サイズが7μm以下であるとともに、これら各金属間化合物相のいずれかに、当該金属間化合物を構成する元素以外のCr、Fe、Tiが固溶しており、これら固溶したCr、Fe、Tiの含有量の金属間化合物相における総和が1質量%以上である。なお、発明例3のみは、Al−Cr相中の固溶Feと固溶Tiとの含有量の総和が1%未満の場合(Al−Cr相中にFeとTiとが実質量固溶していない場合)を示す。   As is apparent from Tables 1 and 2, Invention Examples 1 to 6 satisfy both the component ranges of Cr, Fe, and Ti and the range of the total content of Cr, Fe, and Ti defined in the present invention. Further, the Al-based alloy structure has Al—Cr, Al—Fe, and Al—Ti intermetallic compound phases, and the average size of each of these intermetallic compound phases is 7 μm or less. In any one of the intermetallic compound phases, Cr, Fe, and Ti other than the elements constituting the intermetallic compound are dissolved, and in the intermetallic compound phase of the content of these dissolved Cr, Fe, and Ti The sum total is 1% by mass or more. In addition, only in Invention Example 3, when the total content of solute Fe and solute Ti in the Al—Cr phase is less than 1% (Fe and Ti are substantially dissolved in the Al—Cr phase). If not).

この結果、発明例1〜6は、表2から明らかなように、温度300℃におけるビッカース硬さが、最低でも180HV以上であり、更に、300℃におけるビッカース硬さ測定時の圧痕周囲の割れ発生がなく、高温強度乃至耐熱性に優れている。また。耐磨耗性試験における比磨耗量が最大でも2.8×10-7mm2 /kgであり、耐磨耗性にも優れている。 As a result, as is apparent from Table 2, Invention Examples 1 to 6 have a Vickers hardness of at least 180 HV at a temperature of 300 ° C., and the occurrence of cracks around the indentation at the time of measuring the Vickers hardness at 300 ° C. No high temperature strength or heat resistance. Also. The specific abrasion amount in the abrasion resistance test is 2.8 × 10 −7 mm 2 / kg at the maximum, and the abrasion resistance is excellent.

これに対して、比較例7〜14は、本発明で規定する、Cr、Fe、Tiの各成分範囲と、Cr、Fe、Ti含有量の総和の範囲、各金属間化合物相の平均サイズ、これら各金属間化合物相のCr、Fe、Ti固溶量総和、のいずれかが範囲から外れている。この結果、比較例7〜14は、表2から明らかなように、温度300℃におけるビッカース硬さ、300℃におけるビッカース硬さ測定時の圧痕周囲の割れ発生のいずれかまたは両方、あるいは耐磨耗性試験における比磨耗量が、発明例に比して著しく劣り、高温強度乃至耐熱性や耐磨耗性に劣っている。   On the other hand, Comparative Examples 7 to 14 are defined in the present invention, each component range of Cr, Fe, Ti, the range of the total of Cr, Fe, Ti content, the average size of each intermetallic compound phase, Any one of these Cr, Fe, and Ti solid solution sum of each intermetallic compound phase is out of the range. As a result, as is apparent from Table 2, Comparative Examples 7 to 14 are either or both of Vickers hardness at a temperature of 300 ° C., crack generation around the indentation at the time of measuring the Vickers hardness at 300 ° C., or wear resistance. The specific wear amount in the property test is remarkably inferior to that of the inventive example, and is inferior in high-temperature strength or heat resistance and wear resistance.

例えば、比較例7は、本発明で規定する成分組成を満足するものの、スプレイフォーミングの際のG/M比が低過ぎ、冷却速度が不足し、金属間化合物相に、前記した金属間化合物を構成する以外の元素を強制固溶させられなくなる。また、金属間化合物相も粗大となる。この結果、各金属間化合物相の平均サイズが10μmと、上限の7μmを越えている。また、各金属間化合物相のCr、Fe、Ti固溶量の総和が0.3質量%と、下限の1質量%を下回っている。このため、温度300℃におけるビッカース硬さが105HV程度で、このビッカース硬さ測定時の圧痕周囲の割れが発生しており、耐磨耗性試験における比磨耗量も3.7×10-7mm2 /kg程度と多い。 For example, although Comparative Example 7 satisfies the component composition defined in the present invention, the G / M ratio at the time of spray forming is too low, the cooling rate is insufficient, and the above-described intermetallic compound is added to the intermetallic compound phase. It becomes impossible to forcibly dissolve other elements than the constituents. Also, the intermetallic compound phase becomes coarse. As a result, the average size of each intermetallic compound phase is 10 μm, which exceeds the upper limit of 7 μm. Further, the total amount of Cr, Fe, Ti solid solution of each intermetallic compound phase is 0.3% by mass, which is lower than the lower limit of 1% by mass. For this reason, the Vickers hardness at a temperature of 300 ° C. is about 105 HV, cracks around the indentation at the time of measuring the Vickers hardness are generated, and the specific wear amount in the abrasion resistance test is also 3.7 × 10 −7 mm. 2 / kg and so on.

比較例8は、本発明で規定する成分組成を満足するものの、各金属間化合物相のCr、Fe、Ti固溶量の総和が0.8質量%と、下限の1質量%を下回っている。このため、温度300℃におけるビッカース硬さが130HV程度で、このビッカース硬さ測定時の圧痕周囲の割れが発生しており、耐磨耗性試験における比磨耗量も3.8×10-7mm2 /kg程度と多い。 Although the comparative example 8 satisfies the component composition prescribed | regulated by this invention, the sum total of the Cr, Fe, Ti solid solution amount of each intermetallic compound phase is 0.8 mass%, and is less than 1 mass% of a minimum. . For this reason, the Vickers hardness at a temperature of 300 ° C. is about 130 HV, cracks around the indentation at the time of measuring the Vickers hardness occur, and the specific wear amount in the wear resistance test is also 3.8 × 10 −7 mm. 2 / kg and so on.

比較例9は、Cr、Fe、Ti含有量の総和が13%と、下限の15%未満である。このため、各金属間化合物相のサイズやCr、Fe、Ti固溶量の総和は発明範囲を満足するものの、温度300℃におけるビッカース硬さが120HV程度で、耐磨耗性試験における比磨耗量も4.2×10-7mm2 /kg程度と多い。 In Comparative Example 9, the total content of Cr, Fe, and Ti is 13%, which is less than the lower limit of 15%. For this reason, the size of each intermetallic compound phase and the total amount of Cr, Fe, Ti solid solution satisfy the scope of the invention, but the Vickers hardness at a temperature of 300 ° C. is about 120 HV, and the specific wear amount in the wear resistance test. Is also about 4.2 × 10 −7 mm 2 / kg.

比較例10は、Cr、Fe、Ti含有量の総和が52%と、上限の50%を越える。このため、各金属間化合物相のサイズやCr、Fe、Ti固溶量の総和は発明範囲を満足し、温度300℃におけるビッカース硬さも341HV程度と高く、耐磨耗性試験における比磨耗量も2.1×10-7mm2 /kg程度と少ない。しかし、ビッカース硬さ測定時の圧痕周囲の割れが発生しており、高温での靱性に欠け、やはり耐熱性(耐熱強靱性)が劣る。 In Comparative Example 10, the total content of Cr, Fe, and Ti is 52%, exceeding the upper limit of 50%. For this reason, the size of each intermetallic compound phase and the total amount of Cr, Fe, Ti solid solution satisfy the invention range, the Vickers hardness at a temperature of 300 ° C. is as high as about 341 HV, and the specific wear amount in the wear resistance test is also high. It is as small as 2.1 × 10 −7 mm 2 / kg. However, cracks around the indentation at the time of measuring the Vickers hardness occur, lacking toughness at high temperature, and heat resistance (heat resistance toughness) is also inferior.

比較例11は、Cr含有量が3%と、下限の5%を下回る。このため、各金属間化合物相のサイズやCr、Fe、Ti固溶量の総和は発明範囲を満足しているものの、温度300℃におけるビッカース硬さが140HV程度で、耐磨耗性試験における比磨耗量も4.0×10-7mm2 /kg程度と多い。 In Comparative Example 11, the Cr content is 3%, which is lower than the lower limit of 5%. For this reason, the size of each intermetallic compound phase and the total amount of Cr, Fe, and Ti solid solution satisfy the scope of the invention, but the Vickers hardness at a temperature of 300 ° C. is about 140 HV, and the ratio in the wear resistance test. The amount of wear is as large as about 4.0 × 10 −7 mm 2 / kg.

比較例12は、Cr含有量が34%と、上限の30%を越える。このため、各金属間化合物相のサイズやCr、Fe、Ti固溶量の総和は発明範囲を満足し、温度300℃におけるビッカース硬さも405HV程度と高く、耐磨耗性試験における比磨耗量も2.3×10-7mm2 /kg程度と少ない。しかし、ビッカース硬さ測定時の圧痕周囲の割れが発生しており、高温での靱性に欠け、やはり耐熱性(耐熱強靱性)が劣る。 In Comparative Example 12, the Cr content is 34%, exceeding the upper limit of 30%. Therefore, the size of each intermetallic compound phase and the total amount of Cr, Fe, Ti solid solution satisfy the scope of the invention, the Vickers hardness at a temperature of 300 ° C. is as high as about 405 HV, and the specific wear amount in the wear resistance test is also high. It is as small as 2.3 × 10 −7 mm 2 / kg. However, cracks around the indentation at the time of measuring the Vickers hardness occur, lacking toughness at high temperature, and heat resistance (heat resistance toughness) is also inferior.

比較例13は、Fe含有量が25%と、上限の20%を越える。このため、各金属間化合物相のサイズやCr、Fe、Ti固溶量の総和は発明範囲を満足し、温度300℃におけるビッカース硬さも380HV程度と高く、耐磨耗性試験における比磨耗量も2.1×10-7mm2 /kg程度と少ない。しかし、ビッカース硬さ測定時の圧痕周囲の割れが発生しており、高温での靱性に欠け、やはり耐熱性(耐熱強靱性)が劣る。 In Comparative Example 13, the Fe content is 25%, exceeding the upper limit of 20%. Therefore, the size of each intermetallic compound phase and the total amount of Cr, Fe, Ti solid solution satisfy the scope of the invention, the Vickers hardness at a temperature of 300 ° C. is as high as about 380 HV, and the specific wear amount in the wear resistance test is also high. It is as small as 2.1 × 10 −7 mm 2 / kg. However, cracks around the indentation at the time of measuring the Vickers hardness occur, lacking toughness at high temperature, and heat resistance (heat resistance toughness) is also inferior.

比較例14は、Ti含有量が20%と、上限の15%を越える。このため、各金属間化合物相のサイズやCr、Fe、Ti固溶量の総和は発明範囲を満足し、温度300℃におけるビッカース硬さも360HV程度と高く、耐磨耗性試験における比磨耗量も2.2×10-7mm2 /kg程度と少ない。しかし、ビッカース硬さ測定時の圧痕周囲の割れが発生しており、高温での靱性に欠け、やはり耐熱性(耐熱強靱性)が劣る。 In Comparative Example 14, the Ti content is 20%, which exceeds the upper limit of 15%. Therefore, the size of each intermetallic compound phase and the total amount of Cr, Fe, Ti solid solution satisfy the invention range, the Vickers hardness at a temperature of 300 ° C. is as high as about 360 HV, and the specific wear amount in the abrasion resistance test is also high. As small as 2.2 × 10 −7 mm 2 / kg. However, cracks around the indentation at the time of measuring the Vickers hardness occur, lacking toughness at high temperature, and heat resistance (heat resistance toughness) is also inferior.

以上の結果から、本発明の各要件の臨界的な意義が分かる。
From the above results, the critical significance of each requirement of the present invention can be understood.

以上説明したように、本発明のAl合金基合金は、軽量であり、かつ高温強靱性や耐磨耗性に優れているため、耐熱強度が求められる種々の部品(例えば、ピストン、コンロッドなどのエンジン部品などのような温度300℃までの耐熱強度が求められる部品)を提供することができる。   As described above, the Al alloy-based alloy of the present invention is lightweight and excellent in high-temperature toughness and wear resistance. Therefore, various parts (for example, pistons, connecting rods, etc.) that require heat-resistant strength are required. Parts such as engine parts that are required to have heat resistance up to a temperature of 300 ° C. can be provided.

Claims (2)

質量%で、Cr:5〜30%、Fe:1〜20%、Ti:1〜15%を含むとともに、Cr、Fe、Tiの総和が15〜50%であり、残部がAl及び不可避的不純物からなる、急冷凝固法により得られたAl基合金であって、金属組織中に、Al−Cr系、Al−Fe系、Al−Ti系の金属間化合物相を各々有し、これら各金属間化合物相の平均サイズが7μm以下であるとともに、これら各金属間化合物相のいずれかに、当該金属間化合物を構成する元素以外のCr、Fe、Tiのいずれかが固溶しており、これら金属間化合物相に固溶したCr、Fe、Tiの含有量の総和が1質量%以上であることを特徴とする耐熱性と耐磨耗性とに優れたAl基合金。   In mass%, Cr: 5-30%, Fe: 1-20%, Ti: 1-15%, the total of Cr, Fe, Ti is 15-50%, the balance being Al and inevitable impurities An Al-based alloy obtained by a rapid solidification method, and having an intermetallic compound phase of Al-Cr, Al-Fe, and Al-Ti in the metal structure, The average size of the compound phase is 7 μm or less, and any one of these intermetallic compound phases contains any one of Cr, Fe, and Ti other than the elements constituting the intermetallic compound. An Al-based alloy excellent in heat resistance and wear resistance, characterized in that the total content of Cr, Fe, Ti dissolved in the intermetallic phase is 1% by mass or more. 前記金属間化合物相の内、少なくともAl−Cr系金属間化合物相に固溶したFe、Tiの含有量の総和が1質量%以上である請求項1に記載の耐熱性と耐磨耗性とに優れたAl基合金。
The heat resistance and wear resistance according to claim 1, wherein the total content of Fe and Ti dissolved in at least the Al-Cr intermetallic phase in the intermetallic compound phase is 1 mass% or more. Excellent Al-based alloy.
JP2003430262A 2003-12-25 2003-12-25 Al-based alloy with excellent heat resistance and wear resistance Expired - Fee Related JP4064917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003430262A JP4064917B2 (en) 2003-12-25 2003-12-25 Al-based alloy with excellent heat resistance and wear resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003430262A JP4064917B2 (en) 2003-12-25 2003-12-25 Al-based alloy with excellent heat resistance and wear resistance

Publications (2)

Publication Number Publication Date
JP2005187876A JP2005187876A (en) 2005-07-14
JP4064917B2 true JP4064917B2 (en) 2008-03-19

Family

ID=34788679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003430262A Expired - Fee Related JP4064917B2 (en) 2003-12-25 2003-12-25 Al-based alloy with excellent heat resistance and wear resistance

Country Status (1)

Country Link
JP (1) JP4064917B2 (en)

Also Published As

Publication number Publication date
JP2005187876A (en) 2005-07-14

Similar Documents

Publication Publication Date Title
Sharma et al. High-entropy alloys and metallic nanocomposites: Processing challenges, microstructure development and property enhancement
US20190309402A1 (en) Aluminum alloy products having fine eutectic-type structures, and methods for making the same
JP7314184B2 (en) Method for manufacturing parts made of aluminum alloy
US20170120386A1 (en) Aluminum alloy products, and methods of making the same
JP4923498B2 (en) High strength and low specific gravity aluminum alloy
US20220325384A1 (en) Heat-resistant aluminum powder material
Chandio et al. Silicon carbide effect as reinforcement on aluminium metal matrix composite
JP4764094B2 (en) Heat-resistant Al-based alloy
US20220213579A1 (en) Method for manufacturing an aluminum alloy part
Dash et al. Studies on synthesis of magnesium based metal matrix composites (MMCs)
JP7386819B2 (en) Method for manufacturing parts made of aluminum alloy
US20230160038A1 (en) Metal matrix composites and methods of making and use thereof
JP3987471B2 (en) Al alloy material
JP4064917B2 (en) Al-based alloy with excellent heat resistance and wear resistance
KR20230124691A (en) Powder material with high thermal conductivity
JP4704720B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties
WO2003080881A1 (en) Process for the production of al-fe-v-si alloys
Azadi et al. Preparation of various aluminium matrix composites reinforcing by nano-particles with different dispersion methods
JP4699786B2 (en) Al-based alloy with excellent workability and heat resistance
JP4704722B2 (en) Heat-resistant Al-based alloy with excellent wear resistance and workability
JP4704723B2 (en) Heat-resistant Al-based alloy with excellent high-temperature fatigue properties and vibration damping
JP4699787B2 (en) Heat-resistant Al-based alloy with excellent wear resistance and rigidity
Mahmouda et al. Microstructure and mechanical characterizations of lm6-al/al2o3 metal matrix composites produced by stir casting technique
Raichur A Study on Mechanical Behaviour of Hot Extruded Aluminium based MMC Reinforced with Varying Alumina Particles (A356-Al2O3)
WO2006040938A1 (en) HEAT RESISTANT Al BASE ALLOY EXCELLING IN HIGH-TEMPERATURE FATIGUE PROPERTY, DUMPING PROPERTY, ABRASION RESISTANCE AND WORKABILITY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071227

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees