JP4063610B2 - Splitting method for brittle rings - Google Patents

Splitting method for brittle rings Download PDF

Info

Publication number
JP4063610B2
JP4063610B2 JP2002235222A JP2002235222A JP4063610B2 JP 4063610 B2 JP4063610 B2 JP 4063610B2 JP 2002235222 A JP2002235222 A JP 2002235222A JP 2002235222 A JP2002235222 A JP 2002235222A JP 4063610 B2 JP4063610 B2 JP 4063610B2
Authority
JP
Japan
Prior art keywords
ring
groove
peripheral surface
brittle material
crack
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002235222A
Other languages
Japanese (ja)
Other versions
JP2004076818A (en
Inventor
寿夫 福井
繁行 藤永
正樹 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2002235222A priority Critical patent/JP4063610B2/en
Publication of JP2004076818A publication Critical patent/JP2004076818A/en
Application granted granted Critical
Publication of JP4063610B2 publication Critical patent/JP4063610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、メカニカルシール用密封環を二分割させるための分割方法に関するものである。
【0002】
【従来の技術】
従来からも、シールケース側に設けた密封環と回転軸側に設けた密封環とをこれらの対向端面である密封端面で相対回転摺接させることにより、その相対回転摺接部分の内外周側領域である機内領域と機外領域とをシールするように構成されたメカニカルシールにあって、密封端面の摩耗損傷等による密封環の交換,修理等のメンテナンス作業を容易ならしめるべく、少なくとも一方の密封環を径方向に二分割しておくことが提案されている。
【0003】
而して、このような分割形の密封環は、一般に、図11及び図12に示す如く、半円状の密封環構成部分21,22を個々に製作することによって得るようにしているのが普通である。すなわち、図12に示す如く、両端部に所定量δの研磨代21b,22bを設けた円弧状素材21a,22aを製作した上、これら円弧状素材21a,22aの研磨代21b,22bを研磨(ラップ,ポリッシング等)除去することによって、密封環構成部分21,22は製作される。研磨代21b,22bの研磨は、図11に示す如く、密封環構成部分21,22の研磨面21c,22c同士を衝合させることにより所望する密封環20が構築されるように行われる。
【0004】
【発明が解決しようとする課題】
しかし、このような分割形の密封環20は、各密封環構成部分21,22を個々に製作することによって得られるものであるため、円弧状素材21a,22aの研磨に高度の熟練を要する。すなわち、研磨面21c,22cの精度が低い場合には、密封環構成部分21,22が適正な円環状をなして衝合することができず、密封環20が不良品となる。したがって、作業者が高度の熟練者でない場合、不良品発生率が高くなり、製作効率も頗る悪い。また、メカニカルシール用密封環の構成材としてはカーボン,セラミックス,超硬合金等の高価な脆性材料が使用されるが、円弧状素材21a,22aを研磨して密封環構成部分21,22を得ることから、材料の歩留まりが頗る悪く、製作コストが高くなる。さらに、密封環構成部分21,22の衝合面21c,22cが平滑な平面(研磨面)であることから、密封環20としてメカニカルシールに組み込んだ場合、圧力変動等により衝合面21c,22cにズレを生じて、衝合面21c,22c間から漏れを生じる等、良好なシール機能を発揮し難い。
【0005】
本発明は、上記したメカニカルシール用密封環を容易且つ安価に製作することができる脆性材製リングの分割方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、カーボン、セラミックス又は超硬合金で構成された脆性材製リングを周方向に二分割することにより分割形のメカニカルシール用密封環を製作する方法であって、脆性材製リングの内外周面に、一つの直径線上の二箇所において、軸線方向に延びる微小な切欠溝を形成する共に、密封端面として機能させないリング裏面に、前記直径線上に位置する直線状の微小な切欠溝であって内周面側の切欠溝と外周面側の切欠溝とを連結する亀裂誘導溝を形成した上、当該リングに、これを前記直径線に直交する方向に拡径させる外力を付与して、内周面側の切欠溝と亀裂誘導溝との連結点を起点として亀裂誘導溝に沿ってリング外周面側及びリング表面側へと亀裂を進行させることにより、当該リングを、その分割面が不規則且つ微細な凹凸面となるように二分割させるものであり、脆性材製リングへの前記外力の付与は、物理的な衝撃によることなく、前記直径線を挟んで対向し且つリング内周面に当接する一対の押圧治具を介して行われ、脆性材製リングを、密封端面として機能させるリング表面を下に向けた状態で、平滑な水平面上に載置させた上、両押圧治具の対向面間を、当該対向面間に装填させた下窄まり状のカム体を押圧下降させることにより、前記直径線に直交する方向に徐々に押し広げるようにすることを特徴とする脆性材製リングの分割方法を提案する。
【0008】
また、当該リングの構成材としては、前記外力により剪断可能な脆性を有するものであればよく、当該リングの使用条件に応じて適宜に選択することができる。例えば、カーボン、SiC,Al等のセラミックス又はWC,TiC等の超硬合金等を使用することができる。
【0009】
また、本発明の方法は、特に、冒頭で述べた分割形のメカニカルシール用密封環を製作する場合に好適するものである。この場合、脆性材製リングを、その一側端面(以下「リング表面」という)における切欠溝が形成される内外周縁部分を除く環状部分が密封端面として機能するものとしておくことが好ましく、この密封端面は分割前において形成(表面研磨)しておく。また、このような密封環の分割を行う場合、脆性材製リングへの前記外力の付与を、当該リングの他側端面(以下「リング裏面」という)つまり密封端面が形成されない端面を水平面上に載置させず、密封端面が形成されているリング表面を当該水平面上に載置させておく。この場合、当該水平面が平滑且つ低摩擦性のものとしておくことが好ましい。当該水平面がこのような低摩擦性の平滑面である場合には、リング分割に伴う密封端面と当該水平面との相対摺接運動によっても密封端面が損傷するようなことがないからである。
【0010】
また、分割時においてリング内周面に形成した切欠溝からリング外周面に形成した切欠溝への亀裂進行をより確実且つ正確に行わしめるために、上記した如く、脆性材製リングの他側端面(リング裏面)に、前記直径線上に位置する直線状の微小な切欠溝であって内周面側の切欠溝とこれに対向する外周面側の切欠溝とを連結する亀裂誘導溝を形成しておく。すなわち、脆性材製リングの内外周面に、一つの直径線上の二箇所において、軸線方向に延びる微小な切欠溝を形成すると共に、リング裏面に、内周面側の切欠溝と外周面側の切欠溝とを連結する直線状の微小な亀裂誘導溝を形成した上、当該リングに、これを前記直径線に直交する方向に拡径させる外力を付与して、内周面側の切欠溝から外周面側の切欠溝へと亀裂誘導溝に沿って亀裂を進行させることにより、当該リングを、その分割面が不規則且つ微細な凹凸面となるように二分割させるようにするのである。また、リング裏面にのみ亀裂誘導溝を形成する場合にあって、前記した押圧治具を使用する場合には、亀裂誘導溝が形成されていない面(リング表面)を前記水平面上に載置させるようにしておく。また、当該リングが前記した密封環である場合、亀裂誘導溝を密封端面が形成されないリング裏面にのみ形成しておくが、この場合、密封端面が形成されたリング表面を載置する水平面は、前記した如く、分割時における水平面とリング表面との相対摺動運動により密封端面が損傷しないように、平滑且つ低摩擦性のものとしておくことが好ましい。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を図1〜図10に基づいて説明する。
【0012】
図1〜図6は第1の実施の形態を示しており、この実施の形態は、本発明の分割方法により図3に示す脆性材製リング1を分割して、図5及び図6に示す分割形のメカニカルシール用密封環10を製作する例に係る。
【0013】
第1の実施の形態にあって、本発明の分割方法を実施するに当たっては、まず、所望する密封環10の完成形態(後述する半円状の密封環構成部分10a,10bを、図5に示す如く、適正な円環状に衝合させた形態)に合致する形状の脆性材製リング(以下「被分割リング」という)1を製作する。この被分割リング1の内外周面1a,1bには、図3及び図4に示す如く、一つの直径線2上の二箇所において、内外周面1a,1bの全幅(軸線方向における全幅)に亘って軸線方向に延びる切欠溝(ノッチ)3a,3bが形成されている。各切欠溝3a,3bは、溝幅及び溝深さが微小且つ一定のV字溝(図3(A))又はU字溝(同図(B))である。また、被分割リング1の一側端面であるリング表面1cは、軸線に直交する平滑面(鏡面)に表面研磨されており、リング表面1cにおける切欠溝3a,3bが形成される内外周縁部分を除く所定幅(シール面幅)Wの環状部分は、当該密封環10をメカニカルシールに組み込んだ場合に相手密封環に摺接する密封端面10cとして機能するものである。なお、被分割リング1の構成材としては、当該密封環10が組み込まれるメカニカルシールの使用目的,機能や相手密封環の材質等の条件に応じた脆性材が使用される。具体的には、カーボン、SiC,Al等のセラミックス又はWC,TiC等の超硬合金等が使用される。
【0014】
そして、図1及び図2に示す如く、上記の如く構成された被分割リング1に、これを前記直径線2に直交する方向に拡径させる外力F,Fを付与することによって、当該リング1を半円状の密封環構成部分10a,10bに二分割させて、所望する分割形の密封環10を得るのである。
【0015】
すなわち、まず、図1(A)及び図2(A)(B)に示す如く、被分割リング1を水平な載置台4に載置保持させると共にリング内周面1aに一対の押圧治具5,5を当接させる。ところで、被分割リング1の載置台4への載置形態は、一側端面(密封端面10cが形成される側の端面)であるリング表面1cを下に向けた形態(図2(A)に示す形態)であっても、他側端面(密封端面10cが形成されない側の端面)であるリング裏面1dを下に向けた形態(同図(B)に示す形態)であっても、何れでもよいが、後述する分割作用時における当該リング1の被摺接面(リング表面1c又はリング裏面1d)と載置台4の上面(載置面)4aとの相対摺接運動により被摺接面が損傷しないように、載置面4aは、ポリテトラフルオロエチレン(PTFE)等の低摩擦性材をコーティングする等により低摩擦性の平滑な水平面に構成しておくことが好ましい。両押圧治具5,5は、切欠溝3a,3bが位置する前記直径線2を挟んで対向するように、被分割リング1内に装填されたものであり、当該直径線2に対して対称の円弧形状をなす。各押圧治具5は、図1及び図2に示す如く、外周面5aをリング内周面1aに密接する円弧面(リング内周面1aと同一径をなす)に構成すると共に、内周面5bを曲率半径が下方向に漸次小さくなる円弧状のテーパ面に構成したものであり、下端面が載置面4aに接触され且つ外周面5aがリング内周面1aにその上下方向全幅に亘って当接する状態で、被分割リング1内に配置されている。
【0016】
次に、図1(A)及び図2(A)(B)に示す如く、下窄まり状のカム体6の下端部を両押圧治具5,5の対向面5b,5b間に装填させた上、このカム体6を、これに適宜の押圧手段(プレス機等)により下方への押圧力Pを作用させて、押し下げる。カム体6の外周面6aは、当該カム体6を下降させるに従って両押圧治具5,5の対向面5b,5b間を前記直径線に直交する方向に押し広げるように、押圧治具5,5のテーパ面5b,5bに対して機能しうる下窄まり状のカム面に構成されている。
【0017】
而して、カム体を下方に押圧させると、被分割リング1に、押圧治具5,5を介して、当該リング1を前記直径線2に直交する方向に拡径させる外力F,Fが付与される。したがって、カム体が下降されるに従って、被分割リング1には、内周面側の切欠溝3aを起点とする亀裂が生じ、爾後、この亀裂が当該切欠溝3aから外周面側の切欠溝3bへと進行して、図1(B)及び図2(C)示す如く、当該リング1が半円状の密封環構成部分10a,10bに二分割される。
【0018】
このとき、外力F,Fが切欠溝3a,3bを通過する直径線2に直交する方向に作用することから、上記亀裂が内周面側の切欠溝3aから外周面側の切欠溝3bへと確実に進行することになる。したがって、切欠溝3a,3bが形成された箇所以外の箇所において亀裂が発生したり、局部的な欠損を生じたりすることがなく、被分割リング1を予定された直径線2上の箇所で適正に分割することができる。したがって、分割不良品の発生する割合が極めて低く、脆性材製リング1の分割を極めて経済的に行うことができる。また、被分割リング1への外力F,Fの付与をリング内周面1aに当接させた円弧状の押圧治具5,5を介して行うから、リング内周面1aにピンポイントで直接的に外力F,Fを付与させる場合(直径線2に直交する直径線上のリング内周面部分のみに外力F,Fを作用させる場合)のように被分割リング1が切欠溝3a,3bが形成された部分以外で折損したり亀裂を生じたりすることがなく、上記した適正な分割が確実に行われる。
【0019】
また、被分割リング1が低摩擦性の平滑水平面(載置面)4a上に載置されていることから、外力F,Fによる当該リング1の水平方向への分断作用(剪断作用)が載置面4aとこれに接触するリング表面1c(図2(A)参照)又はリング裏面1d(同図(B)参照)との間の摩擦抵抗(及び載置面4aと治具5,5の下面との間の摩擦抵抗)によって妨げられる虞れがなく、円滑且つ良好なリング分割が行われる。そして、この場合、当該リング1を、図2(B)に示す如く、密封端面10cが形成されているリング表面1cを上にした状態で載置面4a上に載置させている場合には勿論、同図(A)に示す如く、リング表面1cを下にした状態で載置面4a上に載置させている場合にも、載置面4aを前記した如き低摩擦性の平滑水平面としておくことにより、分割時における両面1c,4aの相対摺接運動により密封端面10cが損傷する虞れはない。
【0020】
ところで、被分割リング1を加熱した上で急冷することにより、当該リング1を熱衝撃により分割する方法や被分割リング1をこれに直接に物理的な衝撃を与えることにより分割(剪断)させる方法も考えられるが、前者の方法によれば、内周面側の切欠溝3aを起点として亀裂が発生しても、その亀裂の終点が外周面側の切欠溝3bとなるか否か不明であり、正確なリング分割を行い得ないし、加熱,急冷により分割部分10a,10bに不測の歪が生じる虞れもある。また、後者の方法によれば、亀裂が切欠溝3a,3bの形成されていない箇所で生じる虞れがあり、リング欠損が生じ易く、不良品発生率が極めて高くなる。しかし、上記した分割方法によれば、このような問題を生じることがなく、被分割リング1を切欠溝3a,3bを結ぶライン上で確実に分割することができる。
【0021】
そして、以上のようにして被分割リング1を二分割して得られた密封環構成部分10a,10bの衝合面つまり密封環10の分割面10d,10eは、図6に示す如く、微細且つ不規則な凹凸面となり、当該分割面10d,10eに平行する方向(密封環10の軸線方向及び径方向)に相対スライドを生じない状態で凹凸係合することになる。したがって、密封環10をメカニカルシールに組み込んだ場合、分割面10d,10eの凹凸係合により密封環構成部分10a,10bの軸線方向及び径方向への相対変位(ズレ)が生じず、密封環10を適正な円環状体に保持させておくことができ、分割面10d,10eからの漏れを生じたりすることなく、良好なシール機能が発揮される。また、密封環構成部分10a,10bの衝合時の位置決めつまり分割面10d,10eの適正な衝合も容易に行うことができ、密封環10のメカニカルシールへの組み込みを適正且つ容易に行うことができる。
【0022】
また、冒頭で述べた如く密封環構成部分21,22を各別に製作する場合と異なって、密封環10の完成形態と同一形状に製作された被分割リング1を二分割させるため、材料の歩留まりがよく、高度の熟練を必要とすることなく、分割形密封環10を容易且つ安価に製作することができる。
【0023】
また、図7〜図10は第2の実施の形態を示しており、この実施の形態も、第1の実施の形態と同様に、本発明の分割方法により図9に示す脆性材製リング1を分割して、図5及び図6に示す分割形のメカニカルシール用密封環10を製作する例に係る。
【0024】
すなわち、第2の実施の形態にあっては、本発明の分割方法を実施するに当たって、第1の実施の形態と同様に、まず、所望する密封環10の完成形態(半円状の密封環構成部分10a,10bを、図5に示す如く、適正な円環状に衝合させた形態)に合致する形状の脆性材製リングたる被分割リング1を製作するが、この被分割リング1は、図9及び図10に示す如く、内外周面1a,1bに、一つの直径線2上の二箇所において、内外周面1a,1bの全幅(軸線方向における全幅)に亘って軸線方向に延びる微小な切欠溝(ノッチ)3a,3bを形成すると共に、密封端面10cが形成されないリング裏面1dに、直径線2上に位置する直線状の微小な切欠溝(ノッチ)であって内周面側の切欠溝3aとこれに対向する外周面側の切欠溝3bとを連結する亀裂誘導溝3cを形成したものである。各切欠溝3a,3b,3cは、溝幅及び溝深さが微小且つ一定のV字溝(図9(A)参照)又はU字溝(同図(B)参照)である。なお、被分割リング1は、リング裏面1dに一対の亀裂誘導溝3c,3cを形成した点を除いて、第1の実施の形態と同一のものである。また、後述する載置台4、押圧治具5,5及びカム体6も、第1の実施の形態と同一のものが使用される。
【0025】
そして、図7(A)及び図8(A)に示す如く、当該リング1を、亀裂誘導溝3c,3cが形成されたリング裏面1dを上にした状態で、載置面4a上に載置保持させ、リング内周面1aに一対の押圧治具5,5を当接させると共にカム体6の下端部を両押圧治具5,5の対向面5b,5b間に装填させた上、このカム体6を、これに適宜の押圧手段(プレス機等)を使用して押し下げる。
【0026】
而して、カム体を下方に押圧させると、被分割リング1に、押圧治具5,5を介して、当該リング1を前記直径線2に直交する方向に拡径させる外力F,Fが付与され、カム体が下降されるに従って、被分割リング1には、内周面側の切欠溝3aを起点とする亀裂が生じ、爾後、この亀裂が当該切欠溝3aから外周面側の切欠溝3bへと進行して、図7(B)及び図8(B)示す如く、当該リング1が半円状の密封環構成部分10a,10bに二分割され、図5及び図6に示す分割形の密封環10が得られる。
【0027】
このとき、外力F,Fが切欠溝3a,3bを通過する直径線2に直交する方向に作用することから、第1の実施の形態におけると同様に、上記亀裂が内周面側の切欠溝3aから外周面側の切欠溝3bへと進行することになるが、第2の実施の形態にあっては、両切欠溝3a,3b間が直線状の亀裂誘導溝3cで連結されていることから、当該亀裂が亀裂誘導溝3cに沿って進行することになる。すなわち、カム体の下降に伴って、当該亀裂は、内周面側の切欠溝3aと亀裂誘導溝3cとの連結点を起点として、亀裂誘導溝3cに沿ってリング外周面1b側及びリング表面1c側へと漸次進行していくことになる。したがって、亀裂が、内周面側の切欠溝3aから外周面側の切欠溝3bへと、より確実且つ正確に形成されることになり、切欠溝3a,3bが形成された箇所以外の箇所において亀裂が発生したり、局部的な欠損を生じたりすることがなく、第1の実施の形態における場合に比して、予定された直径線2上の箇所でのリング分割をより確実且つ正確に行うことができる。なお、分割時において密封端面10cが形成されたリング表面1cが載置面4aと相対摺接運動することになるが、載置面4aを前記した如き低摩擦性の平滑水平面としておくことにより、密封端面10cを含むリング表面1cが載置面4aとの接触により損傷する虞れはない。
【0028】
なお、本発明は上記した実施の形態に限定されるものではなく、本発明の基本原理を逸脱しない範囲において適宜に改良,変更することができる。例えば、切欠溝3a,3b及び亀裂誘導溝3cの形状は、図3(A)又は図8(A)に示すV字溝や図3(B)又は図8(B)に示すU字溝に限定されず、外力F,Fにより発生する亀裂の起点ないし終点及び両点間の誘導ラインとして機能しうるものであればよい。また、外力F,Fを付与する手段も、上記したカム手段5b,6aに限定されず、例えば、押圧治具5,5を油圧シリンダ等の伸縮手段で連結して、これを伸張させることにより、治具5,5を直径線2に直交する方向に離間動作させるようなものでもよい。また、リング表面1cに密封端面10cが形成されるような場合を除いて、亀裂誘導溝3cはリング裏面1dのみならずリング表面1cにも形成しておくことができる。
【0029】
【発明の効果】
以上の説明から容易に理解されるように、本発明の脆性材製リングの分割方法によれば、冒頭で述べた如き分割形のメカニカルシール用密封環を、高度の熟練を必要とすることなく、容易且つ安価に製作することができる。しかも、分割面が不規則且つ微細な凹凸面であることから、分割リングの衝合形態を適正に確保,維持することができ、当該分割リングの機能を良好に発揮させることができる。
【図面の簡単な説明】
【図1】本発明に係る方法の第1の実施の形態を示す横断平面図(断面は図2のI−I線に沿う)であり、(A)図は分割開始状態を示しており、(B)図は分割完了状態を示している。
【図2】図1のII−II線に沿う縦断正面図であり、(A)図は分割開始状態を示しており、(B)図は被分割リングを(A)図と異なる形態(リング裏面を下にした形態)に載置保持させた場合の分割開始状態を示しており、(C)図は分割完了状態を示している。
【図3】図1(A)の要部(被分割リング)を取り出して示す平面図である。
【図4】図3のIV−IV線に沿う縦断側面図である。
【図5】分割された脆性材製リング(メカニカルシール用密封環)を示す平面図である。
【図6】図5の要部を拡大して示す詳細図である。
【図7】本発明に係る方法の第2の実施の形態を示す横断平面図(断面は図8のVII − VII線に沿う)であり、(A)図は分割開始状態を示しており、(B)図は分割完了状態を示している。
【図8】図7のVIII−VIII線に沿う縦断正面図であり、(A)図は分割開始状態を示しており、(B)図は分割完了状態を示している。
【図9】図7(A)の要部(被分割リング)を取り出して示す平面図である。
【図10】図9のX−X線に沿う縦断側面図である。
【図11】従来方法により製作されたメカニカルシール用密封環を示す平面図である。
【図12】同密封環の構成素材を示す平面図である。
【符号の説明】
1…被分割リング(脆性材製リング)、1a…内周面、1b…外周面、2…直径線、3a…内周面側の切欠溝、3b…外周面側の切欠溝、3c…亀裂誘導溝、4…載置台、4a…載置面(水平面)、5…押圧治具、5a…押圧治具の外周面、5b…押圧治具の内周面(対向面)、6…カム体、6a…カム面、10…密封環、10a,10b…密封環構成部分、10c…密封端面、10d,10e…衝合面(分割面)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dividing method for dividing a sealing ring for a mechanical seal into two.
[0002]
[Prior art]
Conventionally, the sealing ring provided on the seal case side and the sealing ring provided on the rotating shaft side are relatively rotationally slidably contacted with each other at the sealing end surface which is the opposite end surface thereof, so that the inner and outer peripheral sides of the relative rotating slidable contact portion are provided. In order to facilitate maintenance work such as replacement and repair of the seal ring due to wear damage on the sealing end surface, etc. It has been proposed to divide the sealing ring in the radial direction.
[0003]
Thus, such a split seal ring is generally obtained by individually manufacturing semicircular seal ring components 21, 22 as shown in FIGS. It is normal. That is, as shown in FIG. 12, arc-shaped materials 21a and 22a having a predetermined amount δ of polishing allowances 21b and 22b at both ends are manufactured, and the polishing allowances 21b and 22b of these arc-shaped materials 21a and 22a are polished ( By removing (wrapping, polishing, etc.), the sealing ring components 21, 22 are produced. As shown in FIG. 11, the polishing allowances 21 b and 22 b are polished so that the desired sealing rings 20 are constructed by bringing the polishing surfaces 21 c and 22 c of the sealing ring components 21 and 22 into contact with each other.
[0004]
[Problems to be solved by the invention]
However, since such a split seal ring 20 is obtained by individually manufacturing each of the seal ring components 21 and 22, a high level of skill is required for polishing the arcuate materials 21a and 22a. In other words, when the accuracy of the polishing surfaces 21c and 22c is low, the sealing ring components 21 and 22 cannot form an appropriate annular shape and cannot make contact with each other, and the sealing ring 20 becomes a defective product. Therefore, when the worker is not a highly skilled worker, the defective product generation rate is high and the production efficiency is also poor. Further, expensive brittle materials such as carbon, ceramics, cemented carbide and the like are used as the constituent material of the seal ring for the mechanical seal, but the arc-shaped materials 21a and 22a are polished to obtain the seal ring constituent parts 21 and 22. For this reason, the yield of the material is bad and the manufacturing cost is high. Furthermore, since the abutting surfaces 21c and 22c of the sealing ring component parts 21 and 22 are smooth flat surfaces (polished surfaces), when the sealing ring 20 is incorporated in a mechanical seal, the abutting surfaces 21c and 22c are caused by pressure fluctuations or the like. It is difficult to exhibit a good sealing function such as causing a gap between the abutting surfaces 21c and 22c.
[0005]
An object of the present invention is to provide a method for dividing a brittle material ring by which the sealing ring for mechanical seal described above can be manufactured easily and inexpensively.
[0006]
[Means for Solving the Problems]
The present invention relates to a method of manufacturing a split ring for mechanical seal by dividing a brittle material ring made of carbon, ceramics or cemented carbide in the circumferential direction, the inner and outer sides of the brittle material ring. On the peripheral surface, minute notch grooves extending in the axial direction are formed at two locations on one diameter line, and linear minute notch grooves positioned on the diameter line are formed on the back surface of the ring that does not function as a sealing end surface. In addition to forming a crack-inducing groove that connects the notch groove on the inner peripheral surface side and the notch groove on the outer peripheral surface side, an external force is applied to the ring to expand the diameter in a direction perpendicular to the diameter line, By making the crack progress along the crack guide groove from the connection point between the notch groove on the inner peripheral surface side and the crack guide groove to the ring outer peripheral surface side and the ring surface side , the split surface of the ring is not Regular and fine concave Is intended to bisected such that the surface, application of the external force to the brittle material-made ring without by physical impact, opposed and the pair in contact with the ring inner peripheral surface across the diameter line Placed on a smooth horizontal surface with the ring surface that faces the brittle material ring functioning as a sealing end face facing downward, and between the opposing surfaces of both pressing jigs. A method of splitting a brittle material ring, characterized in that, by pressing and lowering a constricted cam body loaded between the facing surfaces, the cam body is gradually expanded in a direction orthogonal to the diameter line. Propose.
[0008]
Moreover, the constituent material of the ring may be any material as long as it has brittleness that can be sheared by the external force, and can be appropriately selected according to the use conditions of the ring. For example, ceramics such as carbon, SiC, and Al 2 O 3 or cemented carbide such as WC and TiC can be used.
[0009]
In addition, the method of the present invention is particularly suitable for manufacturing the split type sealing ring for mechanical seal described at the beginning. In this case, it is preferable that the brittle material ring has an annular portion that functions as a sealing end surface except for inner and outer peripheral edge portions where notched grooves are formed in one side end surface (hereinafter referred to as “ring surface”). The end face is formed (surface polishing) before division. In addition, when such a sealing ring is divided, the external force is applied to the brittle ring, and the other end face of the ring (hereinafter referred to as “ring back face”), that is, the end face where the sealing end face is not formed is on a horizontal plane. not placed, the ring surface of the seal end faces are formed by placing on the horizontal plane Contact Ku. In this case, it is preferable that the horizontal plane is smooth and has low friction. This is because, when the horizontal surface is such a low frictional smooth surface, the sealing end surface is not damaged even by the relative sliding movement between the sealing end surface and the horizontal surface due to the ring division.
[0010]
In addition, as described above , the other side end face of the brittle material ring is used to more reliably and accurately progress the crack from the notch groove formed on the inner peripheral surface of the ring to the notch groove formed on the outer peripheral surface of the ring when divided. A crack-inducing groove is formed on the (back surface of the ring ), which is a linear minute notch groove located on the diameter line, connecting the notch groove on the inner peripheral surface side and the notch groove on the outer peripheral surface side facing this. Contact Ku Te. That is, the inner peripheral surface of the brittle material-made ring, the two points of one diameter line, to form a small notch groove extending in the axial direction, the re Nguura surface, the notch groove and the outer peripheral surface of the inner peripheral surface side Forming a linear minute crack-inducing groove that connects with the cut-out groove on the side, and applying an external force to the ring in the direction perpendicular to the diameter line to provide a cut-out on the inner peripheral surface side By making the crack progress along the crack induction groove from the groove to the cutout groove on the outer peripheral surface side, the ring is divided into two so that the divided surface becomes an irregular and fine uneven surface. . Further, in the case of forming cracks guide grooves only in the ring rear surface, the above-mentioned when using a pressing jig, placing a surface crack guide groove is not formed (a ring table surface) on the horizontal plane All clauses so as to. Further, when a seal ring to which the ring described above, the crack inducing grooves are only formed in the ring back side sealing end face is not formed Contact Kuge, in this case, a horizontal plane for placing the ring surface sealing end faces are formed As described above, it is preferable that the sealing end face is smooth and has a low friction so that the sealing end face is not damaged by the relative sliding movement between the horizontal plane and the ring surface at the time of division.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0012]
1 to 6 show a first embodiment. This embodiment is shown in FIGS. 5 and 6 by dividing the brittle material ring 1 shown in FIG. 3 by the dividing method of the present invention. The present invention relates to an example of manufacturing a split-type sealing ring 10 for a mechanical seal.
[0013]
In carrying out the dividing method of the present invention in the first embodiment, first, a completed form of a desired seal ring 10 (semicircular seal ring components 10a and 10b described later are shown in FIG. As shown in the drawing, a brittle material ring (hereinafter referred to as “divided ring”) 1 having a shape matching a proper annular shape is manufactured. As shown in FIGS. 3 and 4, the inner and outer peripheral surfaces 1 a and 1 b of the ring 1 to be split have the full width of the inner and outer peripheral surfaces 1 a and 1 b (full width in the axial direction) at two locations on one diameter line 2. Notch grooves (notches) 3a and 3b extending in the axial direction are formed. Each of the cutout grooves 3a and 3b is a V-shaped groove (FIG. 3A) or a U-shaped groove (FIG. 3B) having a small and constant groove width and groove depth. Further, the ring surface 1c, which is one side end face of the ring 1 to be split, is polished to a smooth surface (mirror surface) orthogonal to the axis, and the inner and outer peripheral edge portions where the notched grooves 3a and 3b are formed on the ring surface 1c. The annular portion having a predetermined width (seal surface width) W that functions as a seal functions as a sealing end surface 10c that is in sliding contact with the mating sealing ring when the sealing ring 10 is incorporated into a mechanical seal. In addition, as a constituent material of the ring 1 to be divided, a brittle material is used according to conditions such as the purpose and function of the mechanical seal in which the seal ring 10 is incorporated and the material of the mating seal ring. Specifically, carbon, ceramics such as SiC and Al 2 O 3 or cemented carbide such as WC and TiC are used.
[0014]
Then, as shown in FIGS. 1 and 2, by applying external forces F and F that expand the ring 1 in the direction perpendicular to the diameter line 2 to the split ring 1 configured as described above, the ring 1 Is divided into semicircular seal ring components 10a and 10b to obtain a desired split seal ring 10.
[0015]
That is, first, as shown in FIGS. 1 (A), 2 (A), and 2 (B), the split ring 1 is placed and held on a horizontal placing table 4 and a pair of pressing jigs 5 on the ring inner peripheral surface 1a. , 5 are brought into contact with each other. By the way, the mounting form of the split ring 1 on the mounting table 4 is such that the ring surface 1c which is one side end face (end face on the side where the sealing end face 10c is formed) faces downward (FIG. 2A). Even if it is the form (form shown in the figure (B)) which turned down the ring back surface 1d which is the other side end surface (end surface in which the sealing end surface 10c is not formed). Although the sliding contact surface of the ring 1 (ring surface 1c or ring back surface 1d) and the upper surface (mounting surface) 4a of the mounting table 4 at the time of the split action described later are relatively sliding, In order to prevent damage, the mounting surface 4a is preferably formed on a smooth horizontal surface with low friction by coating a low friction material such as polytetrafluoroethylene (PTFE). Both pressing jigs 5 and 5 are loaded in the split ring 1 so as to face each other across the diameter line 2 where the notched grooves 3a and 3b are located, and are symmetrical with respect to the diameter line 2. The arc shape. As shown in FIGS. 1 and 2, each pressing jig 5 is configured so that the outer peripheral surface 5a is an arcuate surface (having the same diameter as the ring inner peripheral surface 1a) that is in close contact with the ring inner peripheral surface 1a. 5b is formed as an arc-shaped tapered surface whose radius of curvature gradually decreases in the downward direction, the lower end surface is in contact with the mounting surface 4a, and the outer peripheral surface 5a spans the ring inner peripheral surface 1a over its entire vertical width. In a state where they are in contact with each other.
[0016]
Next, as shown in FIGS. 1 (A) and 2 (A) (B), the lower end portion of the cam member 6 having a narrowed shape is loaded between the opposing surfaces 5b, 5b of the pressing jigs 5, 5. In addition, the cam body 6 is pushed down by applying a downward pressing force P to the cam body 6 by an appropriate pressing means (press machine or the like). The outer circumferential surface 6a of the cam body 6 pushes the space between the opposing surfaces 5b, 5b of the pressing jigs 5, 5 in a direction perpendicular to the diameter line as the cam body 6 is lowered. 5 is formed as a constricted cam surface that can function with respect to the five tapered surfaces 5b, 5b.
[0017]
Thus, when the cam body 6 is pressed downward, external forces F and F that cause the ring 1 to be split to expand in the direction perpendicular to the diameter line 2 via the pressing jigs 5 and 5. Is granted. Therefore, as the cam body 6 is lowered, a crack is generated in the split ring 1 starting from the notch groove 3a on the inner peripheral surface side. After the crack, the crack is cut from the notch groove 3a to the notch groove on the outer peripheral surface side. Proceeding to 3b, as shown in FIG. 1 (B) and FIG. 2 (C), the ring 1 is divided into two semicircular sealing ring components 10a and 10b.
[0018]
At this time, since the external forces F and F act in a direction perpendicular to the diameter line 2 passing through the cutout grooves 3a and 3b, the cracks from the cutout groove 3a on the inner peripheral surface side to the cutout groove 3b on the outer peripheral surface side. It will surely proceed. Therefore, the split ring 1 does not cause cracks or local defects other than the portions where the notched grooves 3a and 3b are formed, and the split ring 1 is properly positioned on the planned diameter line 2. Can be divided into Therefore, the ratio of occurrence of poorly divided products is extremely low, and the brittle material ring 1 can be divided very economically. Further, since the external forces F and F are applied to the split ring 1 through the arc-shaped pressing jigs 5 and 5 in contact with the ring inner peripheral surface 1a, the ring inner peripheral surface 1a is directly pinpointed. When the external forces F and F are applied, the split ring 1 has the notched grooves 3a and 3b as in the case where the external forces F and F are applied only to the inner peripheral surface of the ring on the diameter line orthogonal to the diameter line 2. The above-described proper division is performed reliably without causing breakage or cracking at portions other than the formed portion.
[0019]
Further, since the split ring 1 is placed on the low friction smooth horizontal surface (mounting surface) 4a, the ring 1 is horizontally divided by the external forces F and F (shearing action). Friction resistance between the mounting surface 4a and the ring surface 1c (see FIG. 2 (A)) or the ring back surface 1d (see FIG. 2 (B)) in contact with the mounting surface 4a (and the mounting surface 4a and the jigs 5 and 5) There is no fear of being hindered by the frictional resistance between the lower surface and the ring division is smooth and satisfactory. In this case, when the ring 1 is placed on the placement surface 4a with the ring surface 1c on which the sealed end face 10c is formed facing up, as shown in FIG. Of course, as shown in FIG. 5A, when the ring surface 1c is placed on the placement surface 4a with the ring surface 1c facing down, the placement surface 4a is a smooth horizontal surface having low friction as described above. Therefore, there is no possibility that the sealed end face 10c is damaged by the relative sliding movement of the both faces 1c and 4a at the time of division.
[0020]
By the way, the ring 1 to be divided is heated and then rapidly cooled to divide the ring 1 by a thermal shock, or the ring 1 to be divided (sheared) by directly applying a physical impact thereto. However, according to the former method, even if a crack occurs starting from the notch groove 3a on the inner peripheral surface side, it is unclear whether the end point of the crack becomes the notch groove 3b on the outer peripheral surface side. Therefore, accurate ring division cannot be performed, and unexpected distortion may occur in the divided portions 10a and 10b due to heating and rapid cooling. Further, according to the latter method, there is a possibility that a crack may occur in a portion where the notch grooves 3a and 3b are not formed, ring defects are likely to occur, and the defective product occurrence rate becomes extremely high. However, according to the dividing method described above, such a problem does not occur, and the ring 1 to be divided can be reliably divided on the line connecting the cutout grooves 3a and 3b.
[0021]
The abutting surfaces of the sealing ring components 10a and 10b obtained by dividing the ring 1 to be divided into two as described above, that is, the dividing surfaces 10d and 10e of the sealing ring 10 are fine and as shown in FIG. It becomes an irregular uneven surface, and the uneven engagement is performed in a state in which relative sliding does not occur in the direction parallel to the divided surfaces 10d and 10e (the axial direction and the radial direction of the sealing ring 10). Therefore, when the seal ring 10 is incorporated into a mechanical seal, the relative engagement (displacement) in the axial direction and the radial direction of the seal ring components 10a and 10b does not occur due to the concave and convex engagement of the dividing surfaces 10d and 10e. Can be held in an appropriate annular body, and a good sealing function is exhibited without causing leakage from the divided surfaces 10d and 10e. Moreover, positioning at the time of abutting of the sealing ring components 10a and 10b, that is, proper abutting of the divided surfaces 10d and 10e can be easily performed, and the sealing ring 10 can be incorporated into the mechanical seal appropriately and easily. Can do.
[0022]
Further, unlike the case where the sealing ring components 21 and 22 are manufactured separately as described at the beginning, the split ring 1 manufactured in the same shape as the completed form of the sealing ring 10 is divided into two parts, so that the material yield is increased. The split seal ring 10 can be easily and inexpensively manufactured without requiring a high degree of skill.
[0023]
7 to 10 show a second embodiment, and this embodiment is also made of a brittle material ring 1 shown in FIG. 9 by the dividing method of the present invention, similarly to the first embodiment. Is divided to produce the split-type sealing ring 10 for a mechanical seal shown in FIGS. 5 and 6.
[0024]
That is, in the second embodiment, in carrying out the dividing method of the present invention, as in the first embodiment, first, a completed form of a desired sealing ring 10 (semi-circular sealing ring). As shown in FIG. 5, the split ring 1 is manufactured as a brittle ring having a shape matching the shape of the components 10 a and 10 b that are in a suitable annular shape. As shown in FIGS. 9 and 10, the inner and outer peripheral surfaces 1a and 1b are minutely extended in the axial direction over the entire width (the entire width in the axial direction) of the inner and outer peripheral surfaces 1a and 1b at two locations on one diameter line 2. In addition to forming the notch grooves (notches) 3a and 3b, a linear minute notch groove (notch) located on the diameter line 2 is formed on the inner surface of the ring back surface 1d where the sealing end face 10c is not formed. Notch groove 3a and notch on the outer peripheral surface facing this Crack guide grooves 3c for coupling the 3b is obtained by the formation. Each of the cutout grooves 3a, 3b, and 3c is a V-shaped groove (see FIG. 9A) or a U-shaped groove (see FIG. 9B) having a small and constant groove width and groove depth. The split ring 1 is the same as that of the first embodiment except that a pair of crack induction grooves 3c, 3c is formed on the ring back surface 1d. Further, the mounting table 4, the pressing jigs 5 and 5, and the cam body 6, which will be described later, are the same as those in the first embodiment.
[0025]
Then, as shown in FIGS. 7A and 8A, the ring 1 is mounted on the mounting surface 4a with the ring back surface 1d on which the crack induction grooves 3c and 3c are formed facing up. The pair of pressing jigs 5 and 5 are brought into contact with the inner circumferential surface 1a of the ring and the lower end portion of the cam body 6 is loaded between the opposing surfaces 5b and 5b of the pressing jigs 5 and 5, The cam body 6 is pushed down by using an appropriate pressing means (press machine or the like).
[0026]
Thus, when the cam body 6 is pressed downward, external forces F and F that cause the ring 1 to be split to expand in the direction perpendicular to the diameter line 2 via the pressing jigs 5 and 5. When the cam body 6 is lowered, a crack is generated in the split ring 1 starting from the notch groove 3a on the inner peripheral surface side. After cracking, the crack is removed from the notch groove 3a on the outer peripheral surface side. Proceeding into the cutout groove 3b, as shown in FIGS. 7B and 8B, the ring 1 is divided into two semicircular sealing ring components 10a and 10b, which are shown in FIGS. A split seal ring 10 is obtained.
[0027]
At this time, since the external forces F and F act in a direction perpendicular to the diameter line 2 passing through the notch grooves 3a and 3b, the crack is notched on the inner peripheral surface side as in the first embodiment. Although it progresses from 3a to the notch groove 3b on the outer peripheral surface side, in the second embodiment, both the notch grooves 3a and 3b are connected by a linear crack guide groove 3c. Therefore, the crack proceeds along the crack induction groove 3c. That is, as the cam body 6 descends, the crack starts from the connection point between the notch groove 3a on the inner peripheral surface side and the crack induction groove 3c, and the ring outer peripheral surface 1b side and the ring along the crack induction groove 3c. It progresses gradually toward the surface 1c side. Therefore, the crack is more reliably and accurately formed from the notch groove 3a on the inner peripheral surface side to the notch groove 3b on the outer peripheral surface side, and at a place other than the place where the notch grooves 3a and 3b are formed. There is no occurrence of cracks or local defects, and the ring division at a predetermined location on the diameter line 2 is more reliably and accurately compared to the case of the first embodiment. It can be carried out. In addition, the ring surface 1c on which the sealing end face 10c is formed at the time of the division is in sliding contact with the mounting surface 4a, but by placing the mounting surface 4a as a smooth surface with low friction as described above, There is no possibility that the ring surface 1c including the sealing end face 10c is damaged by contact with the mounting surface 4a.
[0028]
It should be noted that the present invention is not limited to the above-described embodiment, and can be appropriately improved and changed without departing from the basic principle of the present invention. For example, the shape of the cutout grooves 3a and 3b and the crack induction groove 3c is the same as the V-shaped groove shown in FIG. 3 (A) or FIG. 8 (A) or the U-shaped groove shown in FIG. 3 (B) or FIG. 8 (B). It is not limited, and any material may be used as long as it can function as a starting point or an end point of a crack generated by the external forces F and F and a guide line between the two points. Further, the means for applying the external force F, F is not limited to the above-described cam means 5b, 6a. For example, the pressing jigs 5, 5 are connected by expansion / contraction means such as a hydraulic cylinder, and are extended. The jigs 5 and 5 may be moved apart in the direction perpendicular to the diameter line 2 . Also, except where such sealing end face 10c is formed on the ring surface 1c, cracks guide groove 3c can keep also formed not without ring surface 1c ring back surface 1d only.
[0029]
【The invention's effect】
As can be easily understood from the above description, according to the brittle material ring splitting method of the present invention, the split type sealing ring for mechanical seal as described at the beginning can be obtained without requiring a high degree of skill. It can be manufactured easily and inexpensively. Moreover, since the dividing surface is an irregular and fine uneven surface, the abutting form of the dividing ring can be appropriately secured and maintained, and the function of the dividing ring can be exhibited well.
[Brief description of the drawings]
FIG. 1 is a cross-sectional plan view showing a first embodiment of a method according to the present invention (the cross section is taken along the line II in FIG. 2), and FIG. 1 (A) shows a division start state; (B) The figure shows the division completion state.
FIG. 2 is a longitudinal front view taken along line II-II in FIG. 1, (A) shows a split start state, and (B) shows a different form of ring to be split (ring) from FIG. The form of division start when placed and held on the back side down) is shown, and FIG.
FIG. 3 is a plan view showing a main part (ring to be divided) in FIG.
4 is a longitudinal side view taken along the line IV-IV in FIG. 3;
FIG. 5 is a plan view showing a split brittle material ring (a sealing ring for mechanical seal).
6 is an enlarged detailed view showing a main part of FIG.
FIG. 7 is a cross-sectional plan view showing a second embodiment of the method according to the present invention (the cross section is taken along the line VII-VII in FIG. 8), and FIG. (B) The figure shows the division completion state.
8 is a longitudinal sectional front view taken along line VIII-VIII in FIG. 7. FIG. 8A shows a division start state, and FIG. 8B shows a division completion state.
FIG. 9 is a plan view showing the main part (ring to be divided) of FIG.
10 is a longitudinal side view taken along line XX of FIG.
FIG. 11 is a plan view showing a sealing ring for a mechanical seal manufactured by a conventional method.
FIG. 12 is a plan view showing a constituent material of the sealing ring.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Ring to be split (brittle material ring), 1a ... Inner peripheral surface, 1b ... Outer peripheral surface, 2 ... Diameter line, 3a ... Notch groove on inner peripheral surface side, 3b ... Notch groove on outer peripheral surface side, 3c ... Crack Guide groove, 4 ... mounting table, 4a ... mounting surface (horizontal plane), 5 ... pressing jig, 5a ... outer peripheral surface of pressing jig, 5b ... inner peripheral surface (opposing surface) of pressing jig, 6 ... cam body , 6a ... cam surface, 10 ... sealing ring, 10a, 10b ... sealing ring component, 10c ... sealing end surface, 10d, 10e ... abutting surface (divided surface).

Claims (2)

カーボン、セラミックス又は超硬合金で構成された脆性材製リング(1)を周方向に二分割することにより分割形のメカニカルシール用密封環(10)を製作する方法であって、
脆性材製リング(1)の内外周面(1a,1b)に、一つの直径線(2)上の二箇所において、当該内外周面(1a,1b)の全幅に亘って軸線方向に延びる微小な切欠溝(3a,3b)を形成する共に、密封端面(10c)として機能させないリング裏面(1d)に、前記直径線(2)上に位置する直線状の微小な切欠溝であって内周面側の切欠溝(3a)と外周面側の切欠溝(3b)とを連結する亀裂誘導溝(3c)を形成した上、当該リング(1)に、これを前記直径線(2)に直交する方向に拡径させる外力(F,F)を付与して、内周面側の切欠溝(3a)と亀裂誘導溝(3c)との連結点を起点として亀裂誘導溝(3c)に沿ってリング外周面(1b)側及びリング表面(1c)側へと亀裂を進行させることにより、当該リング(1)を、その分割面(10d,10e)が不規則且つ微細な凹凸面となるように二分割させるものであり、脆性材製リング(1)への前記外力(F,F)の付与は、物理的な衝撃によることなく、前記直径線(2)を挟んで対向し且つリング内周面(1a)に当接する一対の押圧治具(5,5)を介して行われ、脆性材製リング(1)を、密封端面(10c)として機能させるリング表面(1c)を下に向けた状態で、平滑な水平面(4)上に載置させた上、両押圧治具(5,5)の対向面間(5b,5b)を、当該対向面(5b,5b)間に装填させた下窄まり状のカム体(6)を押圧下降させることにより、前記直径線(2)に直交する方向に徐々に押し広げるようにすることを特徴とする脆性材製リングの分割方法。
A method of manufacturing a split seal ring (10) for a mechanical seal by dividing a brittle material ring (1) made of carbon, ceramics or cemented carbide into two in the circumferential direction,
On the inner and outer peripheral surfaces (1a, 1b) of the brittle material ring (1), at two locations on one diameter line (2), a minute extending in the axial direction over the entire width of the inner and outer peripheral surfaces (1a, 1b). Are formed on the back surface (1d) of the ring that does not function as the sealing end face (10c), and is formed by a linear minute notch groove located on the diameter line (2). A crack-inducing groove (3c) that connects the cut-out groove (3a) on the surface side and the cut-out groove (3b) on the outer peripheral surface side is formed, and the ring (1) is orthogonal to the diameter line (2). An external force (F, F) for expanding the diameter in the direction to be applied is applied, and along the crack guide groove (3c) starting from the connection point between the notch groove (3a) on the inner peripheral surface side and the crack guide groove (3c). by advancing crack to ring outer peripheral surface (1b) side and the ring surface (1c) side, the ring 1), the dividing plane (10d, 10e) is one which bisected such that the irregular and fine concavo-convex surface, application of the external force to the brittle material-made ring (1) (F, F) is It is carried out through a pair of pressing jigs (5, 5) that face each other across the diameter line (2) and abut against the ring inner peripheral surface (1a) without being subjected to a physical impact, and made of a brittle material The ring (1) is placed on a smooth horizontal surface (4) with the ring surface (1c) that functions as a sealing end surface (10c) facing down, and both pressing jigs (5, 5) Between the opposite surfaces (5b, 5b) by pushing down the constricted cam body (6) loaded between the opposite surfaces (5b, 5b), thereby orthogonal to the diameter line (2). A method of dividing a brittle material ring characterized by gradually spreading in the direction .
水平面(4)が低摩擦性の平滑面に構成されていることを特徴とする、請求項1に記載する脆性材製リングの分割方法。 The method for dividing a brittle material ring according to claim 1, characterized in that the horizontal surface (4) is a smooth surface having low friction .
JP2002235222A 2002-08-12 2002-08-12 Splitting method for brittle rings Expired - Lifetime JP4063610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235222A JP4063610B2 (en) 2002-08-12 2002-08-12 Splitting method for brittle rings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235222A JP4063610B2 (en) 2002-08-12 2002-08-12 Splitting method for brittle rings

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007253193A Division JP2008008493A (en) 2007-09-28 2007-09-28 Manufacturing method of sealing ring for separate-type mechanical seal

Publications (2)

Publication Number Publication Date
JP2004076818A JP2004076818A (en) 2004-03-11
JP4063610B2 true JP4063610B2 (en) 2008-03-19

Family

ID=32019797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235222A Expired - Lifetime JP4063610B2 (en) 2002-08-12 2002-08-12 Splitting method for brittle rings

Country Status (1)

Country Link
JP (1) JP4063610B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018052887A1 (en) * 2016-09-16 2018-03-22 Flowserve Management Company Radially and axially self-aligning split seal ring
US10935140B2 (en) 2017-01-12 2021-03-02 Flowserve Management Company Mechanism for assembling split seal rings

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4576621B2 (en) * 2003-09-03 2010-11-10 学校法人日本大学 Method for dividing ceramic cylindrical body
JP4728413B2 (en) * 2009-03-23 2011-07-20 日本ピラー工業株式会社 Method for dividing seal ring for mechanical seal
US10443435B2 (en) 2014-12-15 2019-10-15 United Technologies Corporation Slots for turbomachine structures
DE102018000853A1 (en) * 2018-02-02 2019-08-08 Carl Freudenberg Kg Sealing ring and method for its production

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018052887A1 (en) * 2016-09-16 2018-03-22 Flowserve Management Company Radially and axially self-aligning split seal ring
US10975967B2 (en) 2016-09-16 2021-04-13 Flowserve Management Company Radially and axially self-aligning split seal ring
US10935140B2 (en) 2017-01-12 2021-03-02 Flowserve Management Company Mechanism for assembling split seal rings

Also Published As

Publication number Publication date
JP2004076818A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
US4350215A (en) Drill bit and method of manufacture
US9346128B2 (en) Method for producing a pattern of depressions in the friction surface of a friction component and a friction component for a frictionally operating device having such a pattern of depressions
JP4043644B2 (en) Method for manufacturing hydrodynamic bearing device
US4054772A (en) Positioning system for rock bit welding
KR101356590B1 (en) Method of and device for butt welding without weld filler materials thin metal sheets using clamping pressing devices, at least one pressing element being suitable for applying two or more distinct pressure levels
EP2739426B1 (en) Resistance weld repairing of casing flange holes
JP2001113358A (en) Method for repairing super alloy casting by using metallurgically combined plug with taper
WO2009087995A1 (en) Mechanical seal sliding member, and mechanical seal
JP4063610B2 (en) Splitting method for brittle rings
GB2099044A (en) Metallurgical and mechanical holding of cutters in a drill bit
KR19980042275A (en) Rotor blade replacement method and integrated blade type rotor manufacturing method
KR20030083574A (en) Friction welding apparatus
EP0458630B1 (en) Friction bonding
WO2015158493A1 (en) A method of and a device for the compaction of a powder into a cutting insert green body
JP2008008493A (en) Manufacturing method of sealing ring for separate-type mechanical seal
JP4728413B2 (en) Method for dividing seal ring for mechanical seal
JP5741138B2 (en) Manufacturing method of flange-integrated corrugated pipe, flange-integrated corrugated pipe, and cutting apparatus for corrugated pipe used in the manufacturing method
US3492716A (en) Production of extruder heads
JP4576621B2 (en) Method for dividing ceramic cylindrical body
JPH04507222A (en) Cutting roller or punching cylinder and its manufacturing method
JP4686099B2 (en) Camshaft and manufacturing method thereof
KR101631244B1 (en) Tool and manufacturing method of the same
JP2016529123A (en) Carbon fiber reinforced plastic saw blade
JP2007278339A (en) Brittle material ring splitting method
JP4349093B2 (en) Apparatus and method for machining oil pits on bore inner surface of cylinder block

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040403

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060814

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060815

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071225

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4063610

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140111

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term