JP4061770B2 - Purification method of ethane dichloride - Google Patents

Purification method of ethane dichloride Download PDF

Info

Publication number
JP4061770B2
JP4061770B2 JP08551099A JP8551099A JP4061770B2 JP 4061770 B2 JP4061770 B2 JP 4061770B2 JP 08551099 A JP08551099 A JP 08551099A JP 8551099 A JP8551099 A JP 8551099A JP 4061770 B2 JP4061770 B2 JP 4061770B2
Authority
JP
Japan
Prior art keywords
ethane dichloride
ethane
dichloride
column
stage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08551099A
Other languages
Japanese (ja)
Other versions
JP2000281601A (en
Inventor
晋仁 山本
和年 糸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP08551099A priority Critical patent/JP4061770B2/en
Publication of JP2000281601A publication Critical patent/JP2000281601A/en
Application granted granted Critical
Publication of JP4061770B2 publication Critical patent/JP4061770B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、由来を異にするいくつかの二塩化エタンを、同一の蒸留塔で同時に蒸留する方法に関するものである。特に本発明は、二塩化エタンの熱分解により塩化ビニルを製造するに際し、熱分解反応に供する二塩化エタンをエネルギー効率よく蒸留精製する方法に関するものである。
【0002】
【従来の技術】
二塩化エタンを熱分解して塩化ビニルを製造する方法は、塩化ビニルの代表的な製造法であり、大規模に行われている。熱分解工程での二塩化エタンの分解率は50〜60%程度であり、分解しなかった二塩化エタンは回収して熱分解工程に循環される。また副生した塩化水素はオキシクロリネーション法によりエチレンと反応させて、OC−二塩化エタンに転換して熱分解工程に循環される。このOC−二塩化エタンは微量の塩化水素その他の不純物を含んでいるので、水洗−脱水を経て精製してから熱分解反応に供給されている。熱分解工程から流出する分解生成ガスからの塩化ビニル、塩化水素及び未分解の二塩化エタンの代表的な回収法の1例を図−1に示す。分解生成ガスは先ずクエンチ塔(1)で冷却する。クエンチ塔の塔頂から留出する塩化水素及び塩化ビニルに富むガスは、HCl塔(2)に導入する。クエンチ塔の塔底から流出するコーク等の固形物を含む液は、分離装置(3)で固形物を除去したのち、主に塩化ビニル及び二塩化エタンから成る気相と高沸点物の多い液相とに分離し、気相はHCl塔(2)に導入する。液相も多量の二塩化エタンを含有しているので、種々の手段によりこれから二塩化エタンを回収して熱分解工程に循環する。例えばこの液相を、後述する高沸点塔の塔底液と一緒に回収塔で蒸留し、塔頂から二塩化エタンを留出させて高沸点塔に導入する。なお、クエンチ塔の塔底液から固形物を除いたものを、そのままHCl塔に導入することもできる。HCl塔の塔頂から留出する塩化水素は、オキシクロリネーション工程に送られる。HCl塔の塔底から流出する液はVCM塔(4)に導入し、塔頂から塩化ビニルを留出させる。これは所望により更に精製して製品の塩化ビニルとして出荷される。VCM塔の塔底から流出するのはブタジエンやクロロプレンその他の不純物を含む二塩化エタンであり、これは所望によりブタジエンやクロロプレンなどを減少させる処理を行ったのち、未分解二塩化エタンとして熱分解工程に循環される。
【0003】
熱分解工程に供給される二塩化エタンには、更にエチレンと塩素とを反応させて製造される二塩化エタンがある。この反応で生成する二塩化エタンには、両者を高温で反応させ、生成した二塩化エタンを蒸発させて取出す、いわゆる反応蒸留方式により製造された反応蒸留二塩化エタンと、両者を低温で反応させて生成した二塩化エタンを液状で取出す低温反応二塩化エタンとがある。このうち、前者の反応蒸留二塩化エタンは、微量の塩素を含んでいるが高沸点物は殆んど含んでいない。これに対し、後者の低温反応二塩化エタンは不純物を多量に含んでいるので、OC−二塩化エタンと同じく、水洗−脱水工程を経由して出荷される。従ってオキシクロリネーション法による二塩化エタン製造装置と、エチレンと塩素とを低温反応させる二塩化エタン製造装置との両方の装置を有している工場では、両方の装置で製造された二塩化エタンを一緒にして、水洗−脱水することもある。
【0004】
前述のように、熱分解工程での二塩化エタンの分解率は50〜60%程度なので、熱分解工程に供給される二塩化エタンは、平均して未分解二塩化エタンが約45%、OC−二塩化エタンが約25%であり、残りの大部分は系外から供給されるエチレンと塩素との反応による二塩化エタンである。これらの二塩化エタンは種々の不純物を含んでおり、高沸点不純物のなかには熱分解反応を阻害するものもあるので、蒸留して高沸点物を除去したのち熱分解反応に供給されている。
【0005】
【発明が解決しようとする課題】
従来、これらの由来を異にする二塩化エタンは、高沸点塔と称する蒸留塔に集めて蒸留精製していた。また、この高沸点塔には、この塔の塔底液を回収塔で蒸留して得た二塩化エタンや、前述のクエンチ塔(1)の塔底液から得られる高沸点物の多い液から回収された二塩化エタンなども導入される。この高沸点塔に導入される二塩化エタンは、製品として取得される塩化ビニルの3重量倍以上にも達する量であり、かつその大部分を塔頂から留出させるので、この高沸点塔でのエネルギー消費量は極めて大きく、その削減が求められていた。従って本発明はこの要求に応えようとするものである。
【0006】
【課題を解決するための手段】
本発明によれば、エチレンと塩素とを高温で反応させ、生成した二塩化エタンを蒸発させて取出す反応蒸留方式により製造された反応蒸留二塩化エタン、エチレンと塩化水素とからオキシクロリネーション反応により製造されたOC−二塩化エタン、及び二塩化エタンの熱分解により塩化ビニルを製造する工程から回収された未分解二塩化エタンの少なくとも3種類の二塩化エタンを同一の蒸留塔に供給して蒸留し、塔頂から熱分解工程に供給するための精製された二塩化エタンを留出させ、塔底から高沸点物の濃縮された液を流出させる二塩化エタンの精製方法において、反応蒸留二塩化エタンを塔頂付近に供給し、未分解二塩化エタンはその下方に供給し、OC−二塩化エタンは更にその下方に供給することにより、エネルギー効率よく蒸留を行うことができる。
【0007】
【発明の実施の形態】
本発明は、熱分解に供するために由来を異にする種々の二塩化エタンを高沸点塔で蒸留するに際し、それぞれの二塩化エタンを、除去すべき不純物の含有量に応じて、高沸点塔の異なる段に導入することにより、蒸留に要するエネルギー量を削減しようとするものである。二塩化エタン中には種々の高沸点不純物が含まれているが、本発明者らの検討によれば、その主なものの一つは1,1,2−トリクロロエタンであり、かつ熱分解に悪影響を与えるものとして除去すべき不純物もこれで代表させることができる。そして二塩化エタンは、その由来により、この1,1,2−トリクロロエタンの含有量が大きく異なっている。前述の如く、高沸点塔に導入される二塩化エタンは、平均して未分解二塩化エタンが約45%、OC−二塩化エタンが約25%を占めるが、未分解二塩化エタンの1,1,2−トリクロロエタンの含有率は例えば400〜1000wtppm前後であるのに対し、OC−二塩化エタンは通常は5,000wtppm程度にも達する1,1,2−トリクロロエタンを含んでいる。また、反応蒸留二塩化エタンの1,1,2−トリクロロエタン含有率は極めて小さい。従って、これらの二塩化エタンを一緒にして高沸点塔に導入するのは蒸留効率上不利であり、1,1,2−トリクロロエタン含有率の相対的に小さい未分解二塩化エタンは塔の上方の段に、1,1,2−トリクロロエタン含有率の相対的に大きいOC−二塩化エタンは下方の段に導入することにより、蒸留に要するエネルギー消費量を節減することができ、ひいてはリボイラーを増強せずに蒸留塔の処理量を増加させることができる。未分解二塩化エタンとOC−二塩化エタンとの導入段をどの程度離すべきかは、蒸留塔の全段数(実段数)や両者の1,1,2−トリクロロエタンの含有率により決定されるが、高沸点塔の多くは通常は30〜40段程度の蒸留塔なので、このような蒸留塔であれば未分解二塩化エタンの導入段よりも5〜20段、好ましくは10〜16段下方にOC−二塩化エタンを導入すればよい。
【0008】
本発明では未分解二塩化エタンよりも更に上方に反応蒸留二塩化エタンを導入する。反応蒸留二塩化エタンの1,1,2−トリクロロエタンの含有率は極めて小さいが、この二塩化エタンは微量の塩素を含んでおり、これをそのまま熱分解反応に供すると、塩素に起因する障害が起るおそれがある。一方、未分解二塩化エタン中には、塩化ビニルや熱分解反応で副生したブタジエンやクロロプレンなどの反応性に富む不飽和化合物が存在している。これらは二塩化エタンよりも沸点が低いので、高沸点塔では塔頂付近に濃縮されている。従ってこの部分に反応蒸留二塩化エタンを供給すると、その中の塩素がこれらの不飽和化合物と反応して消費されるので、塩素が熱分解反応系に流入するのを防止することができる。反応蒸留二塩化エタンは蒸留精製する必要はなく、塩素の反応に必要な滞留時間を与えるだけでよいので、最上段ないしは最上段から4段下までの間に導入するのが好ましい。所望ならば塔頂の還流系に供給して高沸点塔内に導入することもできる。
【0009】
本発明は、上述のように二塩化エタンをその1,1,2−トリクロロエタンの含有率が大きいほど、高沸点塔の下方に導入することにより、蒸留効率を向上させようとするものである。従って低温度反応二塩化エタンや回収塔で回収される二塩化エタンなども、その1,1,2−トリクロロエタンの含有率に応じて、導入段を決定するのが好ましいが、設備の都合上などで個別に取扱うのが困難な場合には、他の二塩化エタンと一緒にして高沸点塔に導入してもよい。例えば低温反応二塩化エタンは、前述の如くOC−二塩化エタンと一緒にして水洗−脱水されることがあるが、この場合にはOC−二塩化エタンの一部として高沸点塔に導入されることになる。
【0010】
本発明方法による二塩化エタンの蒸留例について説明すると、表−1の二塩化エタンを、段数30段の蒸留塔を用いて、塔頂圧力0.25kg/cm2 G、塔底温度97.3℃、塔頂温度89.8℃で蒸留して1,1,2−トリクロロエタン250wtppmの精製された二塩化エタンを取得する。この場合、全ての二塩化エタンを一緒にして塔底から14段目に導入した場合に比して、OC−二塩化エタンを塔底から8段目、未分解二塩化エタンを22段目、回収塔からの二塩化エタンを28段目、反応蒸留二塩化エタンを還流配管にそれぞれ分割して導入した場合には、リボイラー消費熱量は約77%に減少する。また還流比は前者の場合が0.42であるのに対し、後者の場合は0.11に低下する。なお、前者の場合には14段目に導入するのがエネルギー消費が最も少ない。
【0011】
【表1】

Figure 0004061770
【0012】
また、回収塔からの二塩化エタンとして1,1,2−トリクロロエタン濃度が8240wtppmのものを用い、かつこれを塔底から4段目に導入する以外は上記と同様に分割して導入した場合には、蒸留塔に導入される1,1,2−トリクロロエタンが相当増加するにもかかわらず、還流比は0.16であり、リボイラー消費熱量は約81%に減少する。なお、つけ加えれば、回収塔からの二塩化エタンの1,1,2−トリクロロエタン濃度が8240wtppmの場合には、全部を一緒にして供給するならば12段目に供給するのが、エネルギー消費が最も少なくなる。
【図面の簡単な説明】
【図1】二塩化エタンの熱分解生成ガスから、塩化水素、塩化ビニル及び未分解二塩化エタンを取得するプロセスの1例である。
【符号の説明】
1 クエンチ塔
2 HCl塔
3 分離装置
4 VCM塔[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for simultaneously distilling several ethane dichlorides of different origins in the same distillation column. In particular, the present invention relates to a method for distilling and purifying ethane dichloride to be subjected to a thermal decomposition reaction in an energy efficient manner in producing vinyl chloride by thermal decomposition of ethane dichloride.
[0002]
[Prior art]
The method for producing vinyl chloride by thermally decomposing ethane dichloride is a typical method for producing vinyl chloride and is carried out on a large scale. The decomposition rate of ethane dichloride in the pyrolysis process is about 50 to 60%, and ethane dichloride that has not been decomposed is recovered and circulated in the pyrolysis process. The by-produced hydrogen chloride is reacted with ethylene by the oxychlorination method, converted to OC-ethane dichloride and circulated in the thermal decomposition step. Since this OC-ethane dichloride contains a trace amount of hydrogen chloride and other impurities, it is purified through water washing and dehydration before being supplied to the thermal decomposition reaction. An example of a typical recovery method of vinyl chloride, hydrogen chloride, and undecomposed ethane dichloride from the decomposition product gas flowing out from the thermal decomposition step is shown in FIG. The cracked product gas is first cooled in the quench tower (1). A gas rich in hydrogen chloride and vinyl chloride distilled from the top of the quench tower is introduced into the HCl tower (2). The liquid containing coke and other solids flowing out from the bottom of the quench tower is removed with the separation device (3), and then the liquid mainly composed of vinyl chloride and ethane dichloride and containing many high-boiling substances. The phases are separated and the gas phase is introduced into the HCl tower (2). Since the liquid phase also contains a large amount of ethane dichloride, ethane dichloride is recovered from this by various means and recycled to the pyrolysis step. For example, this liquid phase is distilled in a recovery tower together with the bottom liquid of a high-boiling tower described later, and ethane dichloride is distilled from the top of the tower and introduced into the high-boiling tower. In addition, what remove | excluding the solid substance from the tower bottom liquid of a quench tower can also be introduce | transduced into an HCl tower as it is. Hydrogen chloride distilled from the top of the HCl tower is sent to an oxychlorination process. The liquid flowing out from the bottom of the HCl tower is introduced into the VCM tower (4), and vinyl chloride is distilled from the top of the tower. This is further purified if desired and shipped as the product vinyl chloride. The ethane dichloride containing butadiene, chloroprene and other impurities flows out from the bottom of the VCM tower, which is subjected to a treatment to reduce butadiene, chloroprene, etc., if desired, and then pyrolyzed as undecomposed ethane dichloride. It is circulated to.
[0003]
The ethane dichloride supplied to the pyrolysis process includes ethane dichloride produced by further reacting ethylene and chlorine. The ethane dichloride produced by this reaction is reacted at a high temperature with the reaction distilled ethane dichloride produced by the so-called reactive distillation method, in which both are reacted at a high temperature and the produced ethane dichloride is removed by evaporation. There is a low-temperature reaction ethane dichloride which takes out ethane dichloride produced in the liquid state. Among them, the former reactive distilled ethane dichloride contains a trace amount of chlorine but hardly contains high-boiling substances. On the other hand, since the latter low-temperature reaction ethane dichloride contains a large amount of impurities, it is shipped through a water washing-dehydration step in the same manner as OC-ethane dichloride. Therefore, in a factory that has both ethane dichloride production equipment using the oxychlorination method and ethane dichloride production equipment that reacts ethylene and chlorine at a low temperature, the ethane dichloride produced by both equipment is Together, it may be washed with water and dehydrated.
[0004]
As described above, since the decomposition rate of ethane dichloride in the pyrolysis step is about 50 to 60%, the ethane dichloride supplied to the pyrolysis step averages about 45% undecomposed ethane dichloride and OC. -Ethane dichloride is about 25%, most of the remainder being ethane dichloride by reaction of ethylene and chlorine supplied from outside the system. These ethane dichlorides contain various impurities, and some of the high boiling point impurities inhibit the thermal decomposition reaction. Therefore, the high boiling point substances are removed by distillation and then supplied to the thermal decomposition reaction.
[0005]
[Problems to be solved by the invention]
Conventionally, ethane dichlorides having different origins have been collected in a distillation column called a high boiling column and purified by distillation. In addition, the high boiling point tower includes ethane dichloride obtained by distilling the bottom liquid of the tower in the recovery tower and a liquid having a high boiling point obtained from the bottom liquid of the quench tower (1). The recovered ethane dichloride is also introduced. The amount of ethane dichloride introduced into this high boiling column is more than 3 times the weight of vinyl chloride obtained as a product, and most of it is distilled from the top of the column. Energy consumption is extremely large, and its reduction has been demanded. Accordingly, the present invention seeks to meet this need.
[0006]
[Means for Solving the Problems]
According to the present invention, reactive distillation of ethane dichloride produced by a reactive distillation system in which ethylene and chlorine are reacted at a high temperature and the produced ethane dichloride is evaporated and taken out by oxychlorination reaction from ethylene and hydrogen chloride. Distillation by supplying at least three kinds of ethane dichloride of the produced OC-ethane dichloride and undecomposed ethane dichloride recovered from the process of producing vinyl chloride by thermal decomposition of ethane dichloride to the same distillation column In the method of purifying ethane dichloride, distilling purified ethane dichloride to be supplied to the pyrolysis process from the top of the column and discharging the concentrated liquid of high boilers from the bottom of the column. By supplying ethane to the top of the tower, supplying undecomposed ethane dichloride below it, and supplying OC-ethane dichloride further below it, it is energy efficient. Distillation can be carried out.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, when distilling various ethane dichlorides having different origins to be subjected to thermal decomposition in a high boiling column, each ethane dichloride is converted into a high boiling column depending on the content of impurities to be removed. The amount of energy required for distillation is reduced by introducing it in different stages. Ethane dichloride contains various high-boiling impurities, but according to the study by the present inventors, one of the main ones is 1,1,2-trichloroethane and has an adverse effect on thermal decomposition. The impurities to be removed can be represented by this. And the content of 1,1,2-trichloroethane varies greatly depending on the origin of ethane dichloride. As described above, the ethane dichloride introduced into the high-boiling column averages about 45% of undecomposed ethane dichloride and about 25% of OC-ethane dichloride. The content of 1,2-trichloroethane is, for example, around 400 to 1000 wtppm, whereas OC-ethane dichloride contains 1,1,2-trichloroethane which usually reaches about 5,000 wtppm. Further, the 1,1,2-trichloroethane content of reactive distilled ethane dichloride is extremely small. Therefore, it is disadvantageous in terms of distillation efficiency to introduce these ethane dichlorides together into a high boiling column, and undecomposed ethane dichloride having a relatively low 1,1,2-trichloroethane content is higher in the upper part of the column. In the stage, OC-dichloride ethane having a relatively high content of 1,1,2-trichloroethane can be introduced into the lower stage to reduce the energy consumption required for distillation and thus enhance the reboiler. Without increasing the throughput of the distillation column. How far the introduction stage of undecomposed ethane dichloride and OC-ethane dichloride should be separated is determined by the total number of stages (actual stage number) of the distillation column and the content of 1,1,2-trichloroethane in both. Since most of the high-boiling columns are usually about 30 to 40 distillation columns, such a distillation column is 5 to 20 stages below the introduction stage of undecomposed ethane dichloride, preferably 10 to 16 stages below. OC-ethane dichloride may be introduced.
[0008]
In the present invention, reactive distilled ethane dichloride is introduced further above the undecomposed ethane dichloride. The content of 1,1,2-trichloroethane in reactive distilled ethane dichloride is very small, but this ethane dichloride contains a trace amount of chlorine. May happen. On the other hand, undecomposed ethane dichloride contains unsaturated compounds having high reactivity such as vinyl chloride, butadiene and chloroprene by-produced by thermal decomposition reaction. Since these have lower boiling points than ethane dichloride, they are concentrated near the top of the high boiling column. Therefore, when reactive distilled ethane dichloride is supplied to this portion, chlorine in the reaction reacts with these unsaturated compounds and is consumed, so that it is possible to prevent chlorine from flowing into the thermal decomposition reaction system. Reactive distilled ethane dichloride does not need to be purified by distillation, and only gives the residence time required for the reaction of chlorine. Therefore, it is preferably introduced between the uppermost stage or the uppermost stage to the fourth stage. If desired, it can be supplied to the reflux system at the top of the column and introduced into the high boiling point column.
[0009]
The present invention is intended to improve the distillation efficiency by introducing ethane dichloride into the lower portion of the high boiling column as the content of 1,1,2-trichloroethane increases as described above. Therefore, it is preferable to determine the introduction stage of low-temperature reaction ethane dichloride or ethane dichloride recovered in the recovery tower depending on the content of 1,1,2-trichloroethane. If it is difficult to handle individually, it may be introduced into a high-boiling column together with other ethane dichloride. For example, low-temperature reaction ethane dichloride may be washed and dehydrated together with OC-ethane dichloride as described above. In this case, it is introduced into the high-boiling column as a part of OC-ethane dichloride. It will be.
[0010]
An example of distillation of ethane dichloride according to the method of the present invention will be described. The ethane dichloride shown in Table 1 was subjected to a tower top pressure of 0.25 kg / cm 2 G and a tower bottom temperature of 97.3 using a distillation tower having 30 stages. At a temperature of 89.8 [deg.] C. to obtain purified 1,2-trichloroethane 250 wtppm of purified ethane dichloride. In this case, OC-ethane dichloride is in the eighth stage from the bottom of the column, and undecomposed ethane dichloride is in the twenty-second stage, compared to the case where all the ethane dichloride is introduced into the 14th stage from the bottom. When the ethane dichloride from the recovery tower is introduced into the 28th stage and the reactive distilled ethane dichloride is introduced separately into the reflux pipe, the reboiler heat consumption is reduced to about 77%. In addition, the reflux ratio is 0.42 in the former case, but decreases to 0.11 in the latter case. In the former case, introduction of energy into the 14th stage has the lowest energy consumption.
[0011]
[Table 1]
Figure 0004061770
[0012]
In addition, when 1,2,2-trichloroethane having a concentration of 8240 wtppm is used as ethane dichloride from the recovery tower and it is introduced in the same manner as above except that it is introduced into the fourth stage from the bottom of the tower. Despite a considerable increase in 1,1,2-trichloroethane introduced into the distillation column, the reflux ratio is 0.16 and the reboiler heat consumption is reduced to about 81%. In addition, when the 1,1,2-trichloroethane concentration of ethane dichloride from the recovery tower is 8240 wtppm, if all are fed together, the 12th stage will supply the most energy. Less.
[Brief description of the drawings]
FIG. 1 is an example of a process for obtaining hydrogen chloride, vinyl chloride and undecomposed ethane dichloride from ethane dichloride pyrolysis product gas.
[Explanation of symbols]
1 Quench tower 2 HCl tower 3 Separation device 4 VCM tower

Claims (3)

エチレンと塩素とを高温で反応させ、生成した二塩化エタンを蒸発させて取出す反応蒸留方式により製造された反応蒸留二塩化エタン、エチレンと塩化水素とからオキシクロリネーション反応により製造されたOC−二塩化エタン、及び二塩化エタンの熱分解により塩化ビニルを製造する工程から回収された未分解二塩化エタンの少なくとも3種類の二塩化エタンを同一の蒸留塔に供給して蒸留し、塔頂から熱分解工程に供給するための精製された二塩化エタンを留出させ、塔底から高沸点物の濃縮された液を流出させる二塩化エタンの精製方法において、反応蒸留二塩化エタンを塔頂付近に供給し、未分解二塩化エタンはその下方に供給し、OC−二塩化エタンは更にその下方に供給することを特徴とする方法。Reactive distillation ethane dichloride produced by a reactive distillation system in which ethylene and chlorine are reacted at a high temperature and the produced ethane dichloride is removed by evaporation, OC-2 produced by oxychlorination reaction from ethylene and hydrogen chloride At least three kinds of ethane dichloride recovered from the process of producing vinyl chloride by thermal decomposition of ethane chloride and ethane dichloride are fed to the same distillation column for distillation and heated from the top of the column. In a method for purifying ethane dichloride by distilling purified ethane dichloride to be supplied to the cracking step and discharging a concentrated liquid of high boilers from the bottom of the column, reactive distilled ethane dichloride is placed near the top of the column. Feeding, undecomposed ethane dichloride is fed below, and OC-ethane dichloride is fed further below. 反応蒸留二塩化エタンを、蒸留塔の最上段ないしは最上段から4段下までの間に供給することを特徴とする請求項1記載の方法。2. The process according to claim 1, wherein the reactive distilled ethane dichloride is fed from the uppermost stage of the distillation column or from the uppermost stage to the lower stage of the fourth stage. OC−二塩化エタンを未分解二塩化エタンの供給段よりも5〜20段下方の段に供給することを特徴とする請求項1又は2記載の方法。The method according to claim 1 or 2, wherein OC-ethane dichloride is fed to a stage 5 to 20 stages below the stage for feeding undecomposed ethane dichloride.
JP08551099A 1999-03-29 1999-03-29 Purification method of ethane dichloride Expired - Fee Related JP4061770B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08551099A JP4061770B2 (en) 1999-03-29 1999-03-29 Purification method of ethane dichloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08551099A JP4061770B2 (en) 1999-03-29 1999-03-29 Purification method of ethane dichloride

Publications (2)

Publication Number Publication Date
JP2000281601A JP2000281601A (en) 2000-10-10
JP4061770B2 true JP4061770B2 (en) 2008-03-19

Family

ID=13860936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08551099A Expired - Fee Related JP4061770B2 (en) 1999-03-29 1999-03-29 Purification method of ethane dichloride

Country Status (1)

Country Link
JP (1) JP4061770B2 (en)

Also Published As

Publication number Publication date
JP2000281601A (en) 2000-10-10

Similar Documents

Publication Publication Date Title
JP4620694B2 (en) Method for producing high purity trichlorosilane
KR101292545B1 (en) Apparatus for purifying trichlorosilane and method of purifying trichlorosilane
US20040179987A1 (en) Method of chlorine purification and process for producing 1,2-dichloroethane
JP2020040967A (en) Method for making 1,1,3,3-tetrachloropropene
JPS5874624A (en) Manufacture and purification of 1,2-dichloroethane
KR20090025333A (en) Process for the manufacture of 1,2-dichloroethane
JP4859084B2 (en) Method and apparatus utilizing reaction heat generated when producing 1,2-dichloroethane
US20100036180A1 (en) Method of obtaining 1,2-dichloroethane by direct chlorination with a step of separation from the catalyst by direct evaporation, and facility for the implementation thereof
US2478741A (en) Manufacture of chloral
JP5114408B2 (en) Distillation tower operation and combined caustic soda evaporative concentration method for the purification of 1,2-dichloroethane
NO783876L (en) PROCEDURE FOR THE PRODUCTION OF VINYL CHLORIDE
JP4061770B2 (en) Purification method of ethane dichloride
US3059035A (en) Continuous process for producing methyl chloroform
JPH0819014B2 (en) Method for producing ethane dichloride
JP2716520B2 (en) 1.2 Method for removing chloroprene from dichloroethane
JP3128809B2 (en) Heat recovery method in distillation operation
US4060460A (en) Removal of chloroprenes from ethylene dichloride
JPS5940369B2 (en) 1.2 Purification method of dichloroethane
JPS6163519A (en) Production of monosilane
JP2003509480A (en) Method and apparatus for utilizing heat in producing 1,2-dichloroethane
US2762850A (en) Vinyl chloride production
JP2000136154A (en) Purification of 1,2-dichloroethane
US6979754B2 (en) Method for obtaining polymerizable vinyl chloride from a raw product derived from the pyrolysis of 1,2-dichloroethane
JP2001261581A (en) Method for distilling vinyl chloride from thermal decomposition product of 1,2-dichloroethane
JPH0986901A (en) Production of anhydrous hydrochloric acid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees