JP4061561B2 - Material for organic molecular alignment thin film and method for producing organic molecular alignment thin film - Google Patents

Material for organic molecular alignment thin film and method for producing organic molecular alignment thin film Download PDF

Info

Publication number
JP4061561B2
JP4061561B2 JP30014998A JP30014998A JP4061561B2 JP 4061561 B2 JP4061561 B2 JP 4061561B2 JP 30014998 A JP30014998 A JP 30014998A JP 30014998 A JP30014998 A JP 30014998A JP 4061561 B2 JP4061561 B2 JP 4061561B2
Authority
JP
Japan
Prior art keywords
thin film
organic molecular
molecular alignment
alignment thin
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30014998A
Other languages
Japanese (ja)
Other versions
JP2000122068A (en
Inventor
克紀 鈴木
昌美 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP30014998A priority Critical patent/JP4061561B2/en
Publication of JP2000122068A publication Critical patent/JP2000122068A/en
Application granted granted Critical
Publication of JP4061561B2 publication Critical patent/JP4061561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom

Description

【0001】
【発明の属する技術分野】
本発明は、光導波路、光非線形素子、発光素子、薄膜トランジスター、光学フィルターなどの多くの光、電子、光電子デバイスなどに用いられる有機分子配向薄膜用材料およびそれを用いた有機分子配向薄膜の製造方法に関する。
【0002】
【従来の技術】
光導波路、光非線形素子、発光素子、薄膜トランジスター、光学フィルターなどへの応用が期待されるものとして、擬一次元的な共役系を有する有機半導体であるπ共役系オリゴマーの研究が近年活発に行われている。
【0003】
また、これらの薄膜に関する研究も、近年活発に行われている。これらを精密に配列させることができれば、光非線型性及びキャリア移動度の非常に大きい薄膜が作製できる可能性がある。したがって、高度に配向した有機配向薄膜からなる光、電子、光電子デバイスの実現が期待されている。
【0004】
【発明が解決しようとする課題】
しかしながら、有機分子はファンデルワールス力により結合するものであり、その相互作用が非常に小さいために、高度に配向した薄膜を得ることは困難であった。
【0005】
有機分子を用いた配向膜作製の例として、チオフェン6量体配向薄膜の作製を有機分子線蒸着法によって行う試みが、Jpn.J.Appl.Phys.33,L1031(1994)に記載されている。ここで、有機分子線蒸着法とは、通常の真空蒸着装置では到達できない10−6Pa以下の真空度で、0.1nm/minのオーダー以下の速度で蒸着を行う方法である。この方法を用いると高度に配向した薄膜は得られるが、蒸着速度を非常に遅くする必要があるため、配向膜の作製に時間がかかるとともに、高真空を実現するために高価な装置を用いなければならず、コスト高になってしまうという問題があった。
【0006】
また、最近、ペンタセン(IEEE Electron Device Lett.18,87(1997))およびジチエノチオフェン(Appl.Phys.Lett.71,3871(1997))などの芳香族多環及び複素環を持つ構造において、配向性の高い薄膜が得られたとの報告がなされた。これらの薄膜のキャリア移動度は、0.03〜0.7cm/V・sと、有機膜の中では非常に大きな値である。しかしながら、a−Si(アモルファス・シリコン)の移動度に追いつくには、さらに1〜2桁程度高い移動度を実現させる必要があり、そのためには分子の配向性をより向上させることにより分子間の相互作用を大きくし、分子間のキャリア移動を高速化する必要がある。
【0007】
この発明は上述の点に鑑みてなされ、その目的は、有機分子線蒸着法によらず、通常の真空蒸着法によって、高度に配向した有機分子配向薄膜を作製することを可能にする材料を提供するとともに、その材料を用いて安価で量産性に優れた有機分子配向薄膜の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明の有機分子配向薄膜用材料は、下記一般式(IV)、

Figure 0004061561
(式中、R37およびR38は夫々同一かまたは異なり、水素原子、炭素数1〜8のアルキル基であり、XおよびXは、下記式、
Figure 0004061561
で表わされる二価の置換基であって、YおよびYは、硫黄原子である。)で示されるπ共役系分子からなることを特徴とする。
【0012】
また、本発明の有機分子配向薄膜用材料は、下記一般式(V)、
Figure 0004061561
(式中、R37およびR38は前記と同じものであり、X〜Xは、下記式、
Figure 0004061561
で表わされる二価の置換基であって、YおよびYは前記と同じものである。)で示されるπ共役系分子からなることを特徴とする。
【0013】
さらに、本発明の有機分子配向薄膜用材料は、下記一般式(VI)、
Figure 0004061561
(式中、R37およびR38は前記と同じものであり、X〜Xは、下記式、
Figure 0004061561
で表わされる二価の置換基であって、YおよびYは前記と同じものである。)で示されるπ共役系分子からなることを特徴とする。
【0014】
また、上記課題を解決するために、本発明の有機分子配向薄膜の製造方法は、上記π共役系オリゴマー又はπ共役系分子のいずれかからなる有機分子配向薄膜用材料を用いて真空蒸着法により成膜することを特徴とする。
【0015】
【発明の実施の形態】
本発明の有機分子配向薄膜用材料のπ共役系オリゴマー又はπ共役系分子を、下記化学式(I−1〜20)、(II−1〜10)、(III−1〜12)、(IV−1〜11)、(V−1〜4)及び(VI−1、2)に具体的に示す。
【0016】
Figure 0004061561
【0017】
Figure 0004061561
【0018】
Figure 0004061561
【0019】
Figure 0004061561
Figure 0004061561
【0020】
Figure 0004061561
Figure 0004061561
【0021】
Figure 0004061561
Figure 0004061561
【0022】
Figure 0004061561
【0023】
本発明の有機分子配向薄膜の製造方法においては、上記π共役系オリゴマー又はπ共役系分子を用いて、真空蒸着法により成膜する。かかる真空蒸着法は、例えば石英等の基板を抵抗加熱蒸着装置内に戴置し、真空槽内を、好ましくは1×10−7〜5×10−3Paに減圧する。また、成長速度が、好ましくは0.05〜2nm/sとなるようるつぼの温度を加熱する。膜厚は、好ましくは0.5〜300nmの範囲内である。
【0024】
【実施例】
参考例1
石英を基板とし、抵抗加熱蒸着装置内に戴置し、前記化学式(I−11)の化合物分子を成膜させた。成膜に際して真空槽内は5×10−4Paまで減圧した。成長速度が0.3nm/sとなるようるつぼの温度を加熱し、50nmの厚さに成膜した。
【0025】
参考例2
参考例1の式(I−11)の化合物を式(II−1)の化合物に代えた以外は、参考例1と同様にして、有機薄膜を作製した。
【0026】
参考例3
参考例1の式(I−11)の化合物を式(III−1)の化合物に代えた以外は、参考例1と同様にして、有機薄膜を作製した。
【0027】
実施例1
参考例1の式(I−11)の化合物を式(IV−1)の化合物に代えた以外は、参考例1と同様にして、有機薄膜を作製した。
【0028】
実施例2
参考例1の式(I−11)の化合物を式(V−1)の化合物に代えた以外は、参考例1と同様にして、有機薄膜を作製した。
【0029】
実施例3
参考例1の式(I−11)の化合物を式(VI−1)の化合物に代えた以外は、参考例1と同様にして、有機薄膜を作製した。
【0030】
比較例1
参考例1の式(I−11)の化合物を次式(VII−1)、
Figure 0004061561
で表される化合物に代えた以外は、参考例1と同様にして、有機薄膜を作製した。
【0031】
比較例2
参考例1の式(I−11)の化合物を次式(VII−2)、
Figure 0004061561
の化合物に代えた以外は、参考例1と同様にして、有機薄膜を作製した。
【0032】
比較例3
参考例1の式(I−11)の化合物を次式(VII−3)、
Figure 0004061561
の化合物に代えた以外は、参考例1と同様にして、有機薄膜を作製した。
【0033】
比較例4
参考例1の式(I−11)の化合物を次式(VII−4)、
Figure 0004061561
の化合物に代えた以外は、参考例1と同様にして、有機薄膜を作製した。
【0034】
比較例5
参考例1の式(I−11)の化合物を次式(VII−5)、
Figure 0004061561
の化合物に代えた以外は、参考例1と同様にして、有機薄膜を作製した。
【0035】
比較例6
参考例1の式(I−11)の化合物を次式(VII−6)、
Figure 0004061561
の化合物に代えた以外は、参考例1と同様にして、有機薄膜を作製した。
【0036】
上述のようにして得られた有機薄膜の配向性の評価を偏光吸収測定により行った。測定されたp偏光時の吸収量対s偏光時の吸収量の比Ip/Isを参考例1〜3、実施例1〜3及び比較例1〜6について夫々下記の表1、2に示す。
【0037】
Figure 0004061561
【0038】
【表2】
Figure 0004061561
【0039】
表1及び2から、対応する番号の実施例と比較例とを夫々比較すると、各比較例のIp/Is比の値に対し、その分子内にビニレン基を挟み込んだ構造を有する各実施例の比の値が明らかに大きくなっていることがわかる。これは、オリゴマー、芳香族多環及び芳香族複素環の間にビニレン構造を挟み込むことにより、分子が非常に高度に配向し、その結果会合状態を形成していることを示唆している。
【0040】
また、溶液中での吸収ピークを比較すると、参考例1〜3および実施例1〜3と対応する比較例1〜6とでは、各実施例の吸収ピークはそれぞれ各比較例の吸収ピークよりも長波長側に存在していた。これはすなわち、ビニレン基を分子内に挟み込むことにより、分子の共役長が増大したことを示している。
【0041】
また、半経験的分子軌道計算(MOPAC93:富士通、Stewartによる)を用いたチオフェンのねじれ角に対する生成エネルギーの値を図1に示すが、この結果より、隣接するチオフェンのねじれにくさは、ビニレン基>チオフェン基>フェニレン基の順番であった。一方、室温(300K)における熱エネルギーは、0.6kcal/molに相当する。したがって図1より、チオフェン基又はフェニレン基を挟み込んだ場合には室温でも回転が起こり得るが、ビニレン基を挟み込んだ場合には回転はほとんど起こり得ないことが分かる。これはすなわち、ビニレン基を挟み込んだ分子構造が、他の構造と比較してねじれ角が変化しにくいということを意味する。
【0042】
さらに、ビニレン基を結合した分子構造についての生成エネルギーがねじれ角が0度の時に最も小さいことから、この構造はもともとねじれが少ない状態で安定であることが分かる。すなわち、ビニレン基を挟み込んだ分子構造は、平坦性の非常によい分子骨格を持ち、したがって、上記構造は蒸着時においても分子が配列しやすく、分子配向膜を作製するのに適した構造といえる。
【0043】
以上の結果より、ビニレン基を分子内に挟み込むことにより、分子の共役長を増大させつつ、高度に配向した結晶性薄膜を得ることができ、本発明の優位性は明らかである。
【0044】
なお、前記化学式(I−1〜10、12〜20)、(II−2〜10)、(III−2〜12)、(IV−2〜11)、(V−2〜4)、(VI−2)に示す分子構造の有機分子においても同等の効果が得られた。
【0045】
【発明の効果】
本発明の、チオフェンオリゴマー誘導体、フェニレンオリゴマー誘導体、芳香族多環及び芳香族複素環の間にビニレン基を挟み込んだ有機分子配向薄膜用材料により、分子の共役系を増大させつつ、通常の真空蒸着法を用いても、高度に配向した配向薄膜を得ることが可能となる。
【0046】
また、分子を配向させるとキャリアの移動度が大きくなることが明らかになっており(例えばJ.Am.Chem.Soc.115,8716(1993))、本発明に係る分子配向膜を薄膜トランジスターの活性層に使用することにより、非常に高いキャリア移動度が達成できることが期待される。
【0047】
さらに、本発明の有機分子配向薄膜用材料を用いることにより、基板温度が室温であっても、また通常の真空蒸着で用いる程度の真空度及び蒸着速度においても、高度に配向した薄膜を、大面積で均一に作製することができる。したがって、低コストで量産性に優れた有機分子配向薄膜の作製が可能となる。
【図面の簡単な説明】
【図1】本発明の実施例に係る、(a)ビニレン基、(b)チオフェン基、(c)フェニレン基を、チオフェン2量体間に挟み込んだ構造の生成エネルギーの、隣接チオフェンとのねじれ角依存性を示す説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a material for an organic molecular alignment thin film used for many light, electronic, optoelectronic devices and the like such as an optical waveguide, an optical nonlinear element, a light emitting element, a thin film transistor, and an optical filter, and production of an organic molecular alignment thin film using the same. Regarding the method.
[0002]
[Prior art]
In recent years, research on π-conjugated oligomers, which are organic semiconductors with quasi-one-dimensional conjugated systems, has been actively conducted as expected applications for optical waveguides, optical nonlinear elements, light-emitting elements, thin film transistors, optical filters, etc. It has been broken.
[0003]
In addition, research on these thin films has been actively conducted in recent years. If these can be arranged precisely, a thin film with very high optical nonlinearity and carrier mobility may be produced. Therefore, realization of optical, electronic, and optoelectronic devices composed of highly oriented organic alignment thin films is expected.
[0004]
[Problems to be solved by the invention]
However, organic molecules are bonded by van der Waals forces, and their interaction is very small, so it is difficult to obtain a highly oriented thin film.
[0005]
As an example of preparation of an alignment film using organic molecules, an attempt to prepare a thiophene hexamer alignment thin film by an organic molecular beam deposition method is described in Jpn. J. Appl. Phys. 33, L1031 (1994). . Here, the organic molecular beam vapor deposition method is a method of performing vapor deposition at a speed of the order of 0.1 nm / min or less at a degree of vacuum of 10 −6 Pa or less that cannot be achieved by a normal vacuum deposition apparatus. Using this method, a highly oriented thin film can be obtained, but the deposition rate must be very slow, so it takes time to produce the oriented film and an expensive apparatus must be used to achieve a high vacuum. There was a problem that it became expensive.
[0006]
Recently, in structures having aromatic polycycles and heterocycles such as pentacene (IEEE Electron Device Lett. 18, 87 (1997)) and dithienothiophene (Appl. Phys. Lett. 71,3871 (1997)), It was reported that a highly oriented thin film was obtained. The carrier mobility of these thin films is 0.03 to 0.7 cm 2 / V · s, which is a very large value in the organic film. However, in order to catch up with the mobility of a-Si (amorphous silicon), it is necessary to realize a mobility that is about 1 to 2 orders of magnitude higher. For this purpose, the molecular orientation is further improved to improve the intermolecular mobility. It is necessary to increase the interaction and speed up the carrier movement between molecules.
[0007]
The present invention has been made in view of the above points, and an object of the present invention is to provide a material that makes it possible to produce a highly oriented organic molecular alignment thin film by an ordinary vacuum evaporation method, not by an organic molecular beam evaporation method. In addition, an object of the present invention is to provide a method for producing an organic molecular alignment thin film that is inexpensive and excellent in mass productivity using the material.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the organic molecular alignment thin film material of the present invention has the following general formula (IV),
Figure 0004061561
(Wherein R 37 and R 38 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and X 1 and X 2 are represented by the following formulas:
Figure 0004061561
In which Y 1 and Y 2 are sulfur atoms. It is characterized by comprising a π-conjugated molecule represented by
[0012]
The organic molecular alignment thin film material of the present invention has the following general formula (V),
Figure 0004061561
(In the formula, R 37 and R 38 are the same as described above, and X 3 to X 5 are the following formulas,
Figure 0004061561
Y 1 and Y 2 are the same as described above. It is characterized by comprising a π-conjugated molecule represented by
[0013]
Furthermore, the organic molecular alignment thin film material of the present invention has the following general formula (VI),
Figure 0004061561
(In the formula, R 37 and R 38 are the same as described above, and X 6 to X 9 are the following formulas,
Figure 0004061561
Y 1 and Y 2 are the same as described above. It is characterized by comprising a π-conjugated molecule represented by
[0014]
In order to solve the above-mentioned problems, the method for producing an organic molecular alignment thin film of the present invention is performed by a vacuum vapor deposition method using the organic molecular alignment thin film material comprising either the π-conjugated oligomer or the π-conjugated molecule. It is characterized by forming a film.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The π-conjugated oligomer or π-conjugated molecule of the organic molecular alignment thin film material of the present invention is represented by the following chemical formulas (I-1 to 20), (II-1 to 10), (III-1 to 12), (IV- 1 to 11), (V-1 to 4) and (VI-1 and 2) are specifically shown.
[0016]
Figure 0004061561
[0017]
Figure 0004061561
[0018]
Figure 0004061561
[0019]
Figure 0004061561
Figure 0004061561
[0020]
Figure 0004061561
Figure 0004061561
[0021]
Figure 0004061561
Figure 0004061561
[0022]
Figure 0004061561
[0023]
In the method for producing an organic molecularly oriented thin film of the present invention, a film is formed by vacuum vapor deposition using the π-conjugated oligomer or π-conjugated molecule. In such a vacuum deposition method, for example, a substrate such as quartz is placed in a resistance heating deposition apparatus, and the inside of the vacuum chamber is preferably decompressed to 1 × 10 −7 to 5 × 10 −3 Pa. Further, the temperature of the crucible is heated so that the growth rate is preferably 0.05 to 2 nm / s. The film thickness is preferably in the range of 0.5 to 300 nm.
[0024]
【Example】
Reference example 1
Quartz was used as a substrate and placed in a resistance heating vapor deposition apparatus to form a compound molecule of the chemical formula (I-11). The vacuum chamber was depressurized to 5 × 10 −4 Pa during film formation. The temperature of the crucible was heated so that the growth rate was 0.3 nm / s, and a film was formed to a thickness of 50 nm.
[0025]
Reference example 2
An organic thin film was produced in the same manner as in Reference Example 1 except that the compound of Formula (I-11) in Reference Example 1 was replaced with the compound of Formula (II-1).
[0026]
Reference example 3
An organic thin film was produced in the same manner as in Reference Example 1 except that the compound of Formula (I-11) in Reference Example 1 was replaced with the compound of Formula (III-1).
[0027]
Example 1
An organic thin film was produced in the same manner as in Reference Example 1 except that the compound of Formula (I-11) in Reference Example 1 was replaced with the compound of Formula (IV-1).
[0028]
Example 2
An organic thin film was produced in the same manner as in Reference Example 1 except that the compound of Formula (I-11) in Reference Example 1 was replaced with the compound of Formula (V-1).
[0029]
Example 3
An organic thin film was produced in the same manner as in Reference Example 1 except that the compound of Formula (I-11) in Reference Example 1 was replaced with the compound of Formula (VI-1).
[0030]
Comparative Example 1
The compound of the formula (I-11) of Reference Example 1 is represented by the following formula (VII-1),
Figure 0004061561
An organic thin film was produced in the same manner as in Reference Example 1 except that the compound represented by
[0031]
Comparative Example 2
The compound of the formula (I-11) of Reference Example 1 is represented by the following formula (VII-2),
Figure 0004061561
An organic thin film was prepared in the same manner as in Reference Example 1 except that the above compound was used.
[0032]
Comparative Example 3
The compound of the formula (I-11) of Reference Example 1 is represented by the following formula (VII-3),
Figure 0004061561
An organic thin film was prepared in the same manner as in Reference Example 1 except that the above compound was used.
[0033]
Comparative Example 4
The compound of the formula (I-11) of Reference Example 1 is represented by the following formula (VII-4),
Figure 0004061561
An organic thin film was prepared in the same manner as in Reference Example 1 except that the above compound was used.
[0034]
Comparative Example 5
The compound of the formula (I-11) of Reference Example 1 is represented by the following formula (VII-5),
Figure 0004061561
An organic thin film was prepared in the same manner as in Reference Example 1 except that the above compound was used.
[0035]
Comparative Example 6
The compound of the formula (I-11) of Reference Example 1 is represented by the following formula (VII-6),
Figure 0004061561
An organic thin film was prepared in the same manner as in Reference Example 1 except that the above compound was used.
[0036]
The orientation of the organic thin film obtained as described above was evaluated by polarization absorption measurement. The measured ratios Ip / Is of absorption at the time of p-polarization to absorption at the time of s-polarization are shown in Tables 1 and 2 below for Reference Examples 1 to 3, Examples 1 to 3, and Comparative Examples 1 to 6, respectively.
[0037]
Figure 0004061561
[0038]
[Table 2]
Figure 0004061561
[0039]
From Tables 1 and 2, when Examples and Comparative Examples with corresponding numbers are respectively compared, the values of each Example having a structure in which a vinylene group is sandwiched in the molecule with respect to the Ip / Is ratio value of each Comparative Example. It can be seen that the ratio value is clearly increased. This suggests that the vinylene structure is sandwiched between oligomers, aromatic polycycles and aromatic heterocycles, so that the molecules are very highly oriented and consequently form an associated state.
[0040]
Moreover, when the absorption peak in a solution is compared, in Comparative Examples 1-6 corresponding to Reference Examples 1-3 and Examples 1-3, the absorption peak of each Example is respectively larger than the absorption peak of each Comparative Example. It existed on the long wavelength side. This indicates that the conjugation length of the molecule is increased by inserting the vinylene group into the molecule.
[0041]
In addition, the value of the generation energy with respect to the twist angle of thiophene using semiempirical molecular orbital calculation (MOPAC93: Fujitsu, Stewart) is shown in FIG. The order was> thiophene group> phenylene group. On the other hand, the thermal energy at room temperature (300 K) corresponds to 0.6 kcal / mol. Accordingly, it can be seen from FIG. 1 that when a thiophene group or a phenylene group is sandwiched, rotation can occur even at room temperature, but when a vinylene group is sandwiched, rotation hardly occurs. This means that the molecular structure sandwiching the vinylene group is less likely to change the twist angle compared to other structures.
[0042]
Furthermore, since the generation energy of the molecular structure bonded with the vinylene group is the smallest when the twist angle is 0 degree, it can be seen that this structure is originally stable with little twist. That is, the molecular structure sandwiching the vinylene group has a molecular skeleton with very good flatness. Therefore, the above structure can be said to be a structure suitable for producing a molecular alignment film because molecules are easily arranged even during vapor deposition. .
[0043]
From the above results, a highly oriented crystalline thin film can be obtained while increasing the conjugate length of the molecule by sandwiching the vinylene group in the molecule, and the superiority of the present invention is clear.
[0044]
The chemical formulas (I-1 to 10, 12 to 20), (II-2 to 10), (III-2 to 12), (IV-2 to 11), (V-2 to 4), (VI The same effect was also obtained with organic molecules having the molecular structure shown in -2).
[0045]
【The invention's effect】
Normal vacuum deposition while increasing the conjugated system of molecules by the organic molecular alignment thin film material in which a vinylene group is sandwiched between thiophene oligomer derivatives, phenylene oligomer derivatives, aromatic polycycles and aromatic heterocycles of the present invention. Even using the method, it is possible to obtain a highly oriented alignment thin film.
[0046]
Further, it has been clarified that when the molecules are oriented, the mobility of carriers increases (for example, J. Am. Chem. Soc. 115, 8716 (1993)). By using it in the active layer, it is expected that very high carrier mobility can be achieved.
[0047]
Furthermore, by using the organic molecular alignment thin film material of the present invention, a highly oriented thin film can be obtained even at a substrate temperature of room temperature or at a degree of vacuum and a vapor deposition rate that are used in normal vacuum vapor deposition. It can be produced uniformly in area. Therefore, it is possible to produce an organic molecular alignment thin film that is low in cost and excellent in mass productivity.
[Brief description of the drawings]
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 shows the torsion between adjacent thiophenes and the formation energy of a structure in which (a) vinylene group, (b) thiophene group, and (c) phenylene group are sandwiched between thiophene dimers according to an embodiment of the present invention. It is explanatory drawing which shows angle dependence.

Claims (4)

下記一般式(IV)、
Figure 0004061561
(式中、R37およびR38は夫々同一かまたは異なり、水素原子、炭素数1〜8のアルキル基であり、XおよびX は、下記式、
Figure 0004061561
で表わされる二価の置換基であって、Y およびY 硫黄原子ある。)で示されるπ共役系分子からなることを特徴とする有機分子配向薄膜用材料。
The following general formula (IV),
Figure 0004061561
(Wherein R 37 and R 38 are the same or different and each represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and X 1 and X 2 are represented by the following formulas:
Figure 0004061561
In a divalent substituent represented, Y 1 and Y 2 are sulfur atoms. An organic molecular alignment thin film material characterized by comprising a π-conjugated molecule represented by
下記一般式(V)、
Figure 0004061561
(式中、R37およびR38は前記と同じものであり、X〜X は、下記式、
Figure 0004061561
で表わされる二価の置換基であって、Y およびY は前記と同じものである。)で示されるπ共役系分子からなることを特徴とする有機分子配向薄膜用材料。
The following general formula (V),
Figure 0004061561
(In the formula, R 37 and R 38 are the same as described above, and X 3 to X 5 are the following formulas,
Figure 0004061561
Y 1 and Y 2 are the same as described above. An organic molecular alignment thin film material characterized by comprising a π-conjugated molecule represented by
下記一般式(VI)、
Figure 0004061561
(式中、R37およびR38は前記と同じものであり、X〜X は、下記式、
Figure 0004061561
で表わされる二価の置換基であって、Y およびY は前記と同じものである。)で示されるπ共役系分子からなることを特徴とする有機分子配向薄膜用材料。
The following general formula (VI),
Figure 0004061561
(In the formula, R 37 and R 38 are the same as described above, and X 6 to X 9 are the following formulas,
Figure 0004061561
Y 1 and Y 2 are the same as described above. An organic molecular alignment thin film material characterized by comprising a π-conjugated molecule represented by
請求項1〜3のうちいずれか一項記載の有機分子配向薄膜用材料を用いた有機分子配向薄膜の製造方法において、真空蒸着法により成膜することを特徴とする有機分子配向薄膜の製造方法。  In the manufacturing method of the organic molecular alignment thin film using the organic molecular alignment thin film material as described in any one of Claims 1-3, it forms into a film by a vacuum evaporation method, The manufacturing method of the organic molecular alignment thin film characterized by the above-mentioned. .
JP30014998A 1998-10-21 1998-10-21 Material for organic molecular alignment thin film and method for producing organic molecular alignment thin film Expired - Lifetime JP4061561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30014998A JP4061561B2 (en) 1998-10-21 1998-10-21 Material for organic molecular alignment thin film and method for producing organic molecular alignment thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30014998A JP4061561B2 (en) 1998-10-21 1998-10-21 Material for organic molecular alignment thin film and method for producing organic molecular alignment thin film

Publications (2)

Publication Number Publication Date
JP2000122068A JP2000122068A (en) 2000-04-28
JP4061561B2 true JP4061561B2 (en) 2008-03-19

Family

ID=17881345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30014998A Expired - Lifetime JP4061561B2 (en) 1998-10-21 1998-10-21 Material for organic molecular alignment thin film and method for producing organic molecular alignment thin film

Country Status (1)

Country Link
JP (1) JP4061561B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873515B2 (en) * 2001-03-08 2012-02-08 独立行政法人科学技術振興機構 Oriented growth method of organic semiconductor crystal and organic laser device using it
JP2003177052A (en) 2001-12-13 2003-06-27 Takata Corp Apparatus for measuring sheet weight
DE50309671D1 (en) * 2002-09-13 2008-06-05 Starck H C Gmbh Organic compounds with core-shell structure
ATE446961T1 (en) * 2004-05-18 2009-11-15 Merck Patent Gmbh MONO-, OLIGO- AND POLYTHIENOÄ3,2-BUTHIOPHENE
EP1753768A1 (en) * 2004-06-09 2007-02-21 Merck Patent GmbH POLYMERISABLE THIENO¬3,2-b|THIOPHENES
JP2006028054A (en) * 2004-07-14 2006-02-02 Konica Minolta Holdings Inc Organic thin film transistor material, organic thin film transistor, field effect transistor and swichintg device
JP5155852B2 (en) * 2005-04-15 2013-03-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Aryl-ethylene substituted aromatic compounds and their use as organic semiconductors
US8148720B2 (en) * 2006-11-24 2012-04-03 Idemitsu Kosan Co., Ltd. Organic thin film transistor and organic thin film light-emitting transistor
US8330147B2 (en) * 2006-12-04 2012-12-11 Idemitsu Kosan, Co., Ltd. Organic thin film transistor and organic thin film light emitting transistor having organic semiconductor compound with divalent aromatic hydrocarbon group and divalent aromatic heterocyclic group
US7718998B2 (en) * 2006-12-14 2010-05-18 Xerox Corporation Thiophene electronic devices
WO2009125704A1 (en) * 2008-04-10 2009-10-15 出光興産株式会社 Compound for organic thin-film transistor and organic thin-film transistor using the compound
CN112159418B (en) * 2020-09-11 2024-04-05 中国科学院宁波材料技术与工程研究所 Conjugated organic molecule and organic solar cell

Also Published As

Publication number Publication date
JP2000122068A (en) 2000-04-28

Similar Documents

Publication Publication Date Title
Chen et al. Morphological and transistor studies of organic molecular semiconductors with anisotropic electrical characteristics
JP4061561B2 (en) Material for organic molecular alignment thin film and method for producing organic molecular alignment thin film
US5936259A (en) Thin film transistor and organic semiconductor material thereof
US5546889A (en) Method of manufacturing organic oriented film and method of manufacturing electronic device
Garnier et al. Dihexylquaterthiophene, a two-dimensional liquid crystal-like organic semiconductor with high transport properties
US8241946B2 (en) Method of forming an organic semiconducting device by a melt technique
JP2001515933A (en) Compounds for electronic devices
US7977670B2 (en) Organic transistor
Afzali et al. An efficient synthesis of symmetrical oligothiophenes: Synthesis and transport properties of a soluble sexithiophene derivative
JP2007116115A (en) Organic semiconductor material and organic field-effect transistor
JP4911486B2 (en) Organic transistor
JP3959530B2 (en) Vertical organic FET
Katz et al. Mesophase transitions, surface functionalization, and growth mechanism of semiconducting 6PTTP6 films from solution
Vogel et al. Sub-nanometer control of the interlayer spacing in thin films of intercalated rodlike conjugated molecules
US20100136741A1 (en) Branched phenylene-terminated thiophene oligomers
JP5635407B2 (en) Thin film formation method using organic semiconductor material molecules
JP2008078247A (en) Organic transistor
Sitter et al. Hot-wall-epitaxy-the method of choice for the growth of highly ordered organic epilayers
US10862040B2 (en) Methods and compositions for enhancing processability and charge transport of polymer semiconductors and devices made therefrom
JP3992203B2 (en) Oriented molecular thin film
JP3105169B2 (en) Organic nonlinear optical material, organic conductive material and method of manufacturing the same
Wantz et al. Layered organic film growth by substrate temperature tuning for efficiency-enhanced OLEDs
KR102376439B1 (en) Molecular doping polymer and use thereof
Yang et al. Organic field-effect transistors with solution-processible thiophene/phenylene based-oligomer derivative films
JP5403578B2 (en) Organic semiconductor thin film and organic thin film transistor using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120111

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130111

Year of fee payment: 5

EXPY Cancellation because of completion of term