JP4061395B2 - Rapidly solidified bulk material and manufacturing method thereof - Google Patents

Rapidly solidified bulk material and manufacturing method thereof Download PDF

Info

Publication number
JP4061395B2
JP4061395B2 JP03554595A JP3554595A JP4061395B2 JP 4061395 B2 JP4061395 B2 JP 4061395B2 JP 03554595 A JP03554595 A JP 03554595A JP 3554595 A JP3554595 A JP 3554595A JP 4061395 B2 JP4061395 B2 JP 4061395B2
Authority
JP
Japan
Prior art keywords
alloy
particles
rapidly solidified
raw material
bulk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03554595A
Other languages
Japanese (ja)
Other versions
JPH08232050A (en
Inventor
崎 公 洋 尾
林 慶 三 小
尾 敏 幸 西
原 照 男 榛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP03554595A priority Critical patent/JP4061395B2/en
Publication of JPH08232050A publication Critical patent/JPH08232050A/en
Application granted granted Critical
Publication of JP4061395B2 publication Critical patent/JP4061395B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、急冷凝固バルク材料およびその製造法に関するものであり、急冷凝固工程を必要とするバルクアモルファス合金などの急冷凝固材料の製造に利用される。
【0002】
【従来の技術】
アモルファス合金は、その磁気特性を利用した磁性材料とか、硬度改善効果を利用した耐磨耗材料として利用されている。また、高強度材料、高靭性材料、高耐食材料としての応用も期待されている。
アモルファス合金の製造方法としては、溶融した合金を急速に冷却して過冷させ、その構造を凍結させてアモルファスとする急冷凝固法が最も一般的に利用されている。
【0003】
従来、急冷凝固法によるアモルファス合金の製造方法としては、合金などの溶融原料を銅製水冷ロール等の固体冷却媒体で急冷し薄帯を得る方法、スプレー等で微粉化し冷却板あるいは液体の冷却媒体で急冷し粉末を得る方法、および液中紡糸により細線を得る方法が一般的である。したがって、得られるアモルファス合金は、薄帯状、粉末状、細線状に限られていた。
【0004】
一部実験室規模であるが高圧ダイヤキャスト法、すなわち水冷銅の鋳型に高圧力で溶融試料を押し込み成形し、棒状のアモルファス合金を得る方法、が東北大学で試みられている。しかし、バルク状のアモルファス合金を得る方法は従来から存在していない。また、薄帯状または粉末状のアモルファス合金を低融点金属等のバインダーで固めて複合化しても良い特性は得られないのが現状である。
【0005】
急冷凝固法によりアモルファス化が起こるかどうかは冷却速度に依存し、合金の種類によってアモルファス化に必要な臨界冷却速度が存在する。合金が完全にアモルファス化する大きさは、合金組成と冷却条件により決まる。アモルファス化する大きさを越えるバルク材を作製しようとすると、急冷凝固時に凝固材の内部伝熱律速および凝固に伴う潜熱開放により、表面をいかに急冷しても凝固材内部の冷却速度が低下し、アモルファス化される領域が限られてしまう。
【0006】
また、別の観点から、急冷凝固材中に別種の粒子を添加した複合化急冷凝固材の研究が行なわれているが、これは粒子との複合効果により耐摩耗製改善等を狙ったもので、前記薄帯製造に関してのみ研究されている。
【0007】
【発明が解決しようとする課題】
本発明は、従来得られなかったバルク状のアモルファス合金材料およびその製造方法を提供し、アモルファス合金の応用範囲を広げることを目的とする。
【0008】
【課題を解決するための手段】
本発明は、下記の事項をその要旨としている。
)急冷凝固合金法により原料合金に粒子を分散させて合金のアモルファス化を促進させたバルク状のアモルファス合金複合材料を製造する方法であって、1)原料合金に該原料合金よりも高い融点を有する粒子を添加し、複合化することにより、該粒子と合金金属を、急冷凝固体中に微細分散させる、2)それにより、急冷凝固体中にアモルファス相を分散させ、アモルファス化率を向上させる、3)形状がバルク状の急冷凝固バルクアモルファス合金複合材料を製造する、ことを特徴とする、急冷凝固バルク材料の製造方法。
)添加粒子として、比重が溶融原料に近く、かつ溶融原料とのぬれ性が良好なものを用いる、前記()に記載の、急冷凝固バルク材料の製造方法。
)急冷凝固法において、原料合金に粒子を分散させて合金のアモルファス化を向上させたバルク状のアモルファス合金複合材料であって、1)原料合金より高い融点を有する粒子と合金結晶が、急冷凝固体中に微細に分散されている、2)アモルファス化率が向上し、試料内部にまでアモルファス相が発現している、3)形状がバルク状である、4)原料合金がLa−Al−Ni系合金であり、粒子がTiB またはTiCである、あるいは原料合金がLa−Al−Cu系合金であり、粒子がTiB またはTiCである、ことを特徴とする、急冷凝固バルクアモルファス合金複合材料。
)原料合金より高い融点を有する粒子がマトリックス中に分散し、急冷凝固体中に複合化することにより機械的特性を高めた、前記()に記載の、急冷凝固バルクアモルファス合金複合材料。
)試料中心部の断面のアモルファス化率が少なくとも60%である、前記()に記載の、急冷凝固バルクアモルファス合金複合材料。
(6)原料合金より高い融点を有する粒子が10〜40μmの粒径を有するTiBまたはTiCである前記(3)に記載の、急冷凝固バルクアモルファス合金複合材料。
【0009】
以下に、本発明を詳細に説明する。
本発明は、急冷時の表面冷却速度が同じでもアモルファス化する領域を内部まで分散し拡大することで、バルクアモルファス合金の製造を可能にする方法である。
【0010】
本発明は、原料合金に該原料合金よりも融点が高く、かつ溶融原料合金と反応しない粒子を添加し、複合化させた急冷凝固体を作製することを特徴とするものである。
粒子を添加することによって奏される効果についてのメカニズムは不明であるが、本発明の方法により、粒子と合金結晶が微細分散したバルクアモルファス複合材料が得られる。すなわち、従来においては、ある急冷条件で粒子添加なしで急冷凝固バルク材試料を作製した際、試料の表面付近だけアモルファス化され、試料内部に完全な結晶相が残ってしまう。しかし、本発明のように、粒子を添加することにより同じ冷却条件においても試料内部にまでアモルファス相を発現させることができるので、大きい寸法のバルク材が得られる。
【0011】
添加粒子としては、溶融原料中に容易に分散するように、比重が溶融原料に近く、かつ溶融原料とのぬれ性が良好なもの程望ましい。粒子の最適添加量は、粒子の種類、粒径により異る。添加量が少なすぎると十分なアモルファス化の促進効果が得られず、一方、多すぎると添加粒子が凝集する割合が大きくなり効果に限界がある。
【0012】
以上説明した通り、本発明の方法により、粒子と結晶が微細に分散し、かつアモルファス化が向上したバルクアモルファス材が得られる。
【0013】
【実施例】
以下に、本発明を実施例によりさらに説明する。
実施例1
素材として供したLa−Al−Ni系合金は、モル比で、La55%、Al25%、Ni20%になるように塊状La、板状Al、粉末Niを調製して作った。試料としては、このLa−Al−Ni系合金4gに対し、10〜40μmのTiB粒子を、重量比で、0,2,5,10%の割合で添加した4種の材料を用いた。
【0014】
試料片は、直径12mm×厚さ6mmのものを、水急冷により得た。
【0015】
得られた急冷凝固試料の試料中心部の断面のアモルファス化率の分布は、光学顕微鏡像の画像解析処理により得られた。図1は、試料片の形状を試料深さ方向のアモルファス相の分布を概略的に示したものであり、測定結果を、図2に示す。
【0016】
図2から分るように、TiB粒子の添加がない場合は、試料の表面から約1.5mmまでがアモルファス化し、中心部は完全に結晶化している。これに対し、TiB粒子を添加したものは、中心部までアモルファス相が存在しており、全体のアモルファス化率も向上している。
また、本実施例におけるTiB粒子の添加量2〜10重量%の範囲においては、TiB粒子添加量の増加に伴ってアモルファス化率も向上している。
【0017】
得られた試料のビッカース硬度の測定結果を、図3に示す。
図3から分るように、TiB添加量の増加に伴って、ビッカース硬度が高くなっている。
【0018】
実施例2
実施例1と同様に、モル比で、La:Al:Ni=55:25:20になるように、塊状La、板状Al、粉末Niを調整して、La−Al−Ni系合金を作った。試料としては、このLa−Al−Ni系合金4gに対してTiC粒子を、重量比で、5%添加した材料を用いた。TiC粒子の粒径は、10〜40μmであった。
【0019】
試料片は、直径12mm×厚さ6mmの寸法とし、水急冷により得られた。この試料中心部の断面のアモルファス化の分布およびビッカース硬度を測定した。その結果は、実施例1と同様に、TiC粒子の添加によりアモルファス化率が向上し、硬度も高くなっている。
【0020】
実施例3
モル比で、La:Al:Cu=55:25:20になるように、塊状La、板状Al、粉末Cuを調整して、La−Al−Cu系合金を作った。試料は、このLa−Al−Cu系合金4gに対してTiB粒子(10〜40μm)を、重量比で、5%添加した材料を用いた。
【0021】
試料中心部の断面のアモルファス化の分布および硬度の測定結果は、実施例2と同様の効果が得られた。すなわち、TiB粒子の添加によりアモルファス化率が向上し、硬度も増加した。
【0022】
【発明の効果】
本発明により、従来得られなかったバルク状であって、粒子と結晶が微細に分散したアモルファス合金の作成が可能となり、これによりバルクアモルファス合金の大型化が計れるためアモルファス合金の応用範囲が格段に広がった。
【図面の簡単な説明】
【図1】試料片の形状と試料深さ方向のアモルファス相の分布を概略的に示した図である。
【図2】本発明の急冷凝固材の断面のアモルファス化率を示したグラフである。
【図3】TiB粒子添加量と急冷凝固材断面のビッカース硬度との関係を示したグラフである。
[0001]
[Industrial application fields]
The present invention relates to a rapidly solidified bulk material and a method for producing the same, and is used for producing a rapidly solidified material such as a bulk amorphous alloy that requires a rapid solidification process.
[0002]
[Prior art]
Amorphous alloys are used as magnetic materials that utilize their magnetic properties, or as wear-resistant materials that utilize the effect of improving hardness. In addition, applications as high strength materials, high toughness materials, and high corrosion resistance materials are also expected.
The most commonly used method for producing an amorphous alloy is a rapid solidification method in which a molten alloy is rapidly cooled and supercooled, and the structure is frozen to be amorphous.
[0003]
Conventionally, as a method for producing an amorphous alloy by a rapid solidification method, a molten raw material such as an alloy is rapidly cooled with a solid cooling medium such as a copper water-cooled roll to obtain a thin strip, or a fine plate is pulverized by a spray or the like, or a cooling plate or a liquid cooling medium A method of obtaining a powder by quenching and a method of obtaining a fine line by in-spin spinning are common. Therefore, the obtained amorphous alloy was limited to a thin ribbon shape, a powder shape, and a fine wire shape.
[0004]
Although it is partially laboratory scale, Tohoku University has attempted a high-pressure diamond casting method, that is, a method of obtaining a rod-shaped amorphous alloy by pressing a molten sample into a water-cooled copper mold at a high pressure. However, there is no conventional method for obtaining a bulk amorphous alloy. Further, at present, it is not possible to obtain characteristics that may be obtained by solidifying a ribbon-like or powdery amorphous alloy with a binder such as a low melting point metal to form a composite.
[0005]
Whether or not amorphization occurs by the rapid solidification method depends on the cooling rate, and there is a critical cooling rate necessary for amorphization depending on the type of alloy. The size at which the alloy becomes completely amorphous depends on the alloy composition and cooling conditions. If you try to make a bulk material that exceeds the size to be amorphized, the cooling rate inside the solidified material will decrease regardless of how rapidly the surface is cooled, due to the internal heat transfer rate control of the solidified material and the release of latent heat accompanying solidification during rapid solidification. The region to be amorphous is limited.
[0006]
From another point of view, research has been conducted on composite rapidly solidified materials in which different types of particles are added to rapidly solidified materials. This is intended to improve wear resistance due to the combined effect with the particles. It has been studied only for the production of the ribbon.
[0007]
[Problems to be solved by the invention]
An object of the present invention is to provide a bulk amorphous alloy material and a method for producing the same that have not been obtained so far, and to expand the application range of the amorphous alloy.
[0008]
[Means for Solving the Problems]
The gist of the present invention is as follows.
( 1 ) A method for producing a bulk amorphous alloy composite material in which particles are dispersed in a raw material alloy by a rapidly solidified alloy method to promote the amorphization of the alloy, and 1) the raw material alloy is higher than the raw material alloy By adding particles having a melting point and compositing, the particles and the alloy metal are finely dispersed in the rapidly solidified body. 2) Thereby, the amorphous phase is dispersed in the rapidly solidified body, and the amorphization rate is increased. 3) A method for producing a rapidly solidified bulk material, characterized in that 3) a rapidly solidified bulk amorphous alloy composite material having a bulk shape is produced.
( 2 ) The method for producing a rapidly solidified bulk material as described in ( 1 ) above, wherein the additive particles have specific gravity close to that of the molten raw material and good wettability with the molten raw material.
( 3 ) In the rapid solidification method, a bulk amorphous alloy composite material in which particles are dispersed in a raw material alloy to improve the amorphization of the alloy, and 1) particles and alloy crystals having a higher melting point than the raw material alloy, It is finely dispersed in the rapidly solidified body, 2) the amorphization rate is improved, and the amorphous phase is developed even inside the sample. 3) The shape is bulky. 4) The raw material alloy is La-Al. A rapidly solidified bulk amorphous alloy, characterized in that the alloy is a Ni-based alloy, the particles are TiB 2 or TiC, or the raw material alloy is a La-Al-Cu alloy, and the particles are TiB 2 or TiC Composite material.
( 4 ) The rapidly solidified bulk amorphous alloy composite material according to ( 3 ), in which particles having a melting point higher than that of the raw material alloy are dispersed in the matrix and are composited in the rapidly solidified body to improve mechanical properties. .
( 5 ) The rapidly solidified bulk amorphous alloy composite material according to ( 3 ), wherein the ratio of amorphization of the cross section of the sample center is at least 60%.
(6) The rapidly solidified bulk amorphous alloy composite material according to (3 ) , wherein the particles having a melting point higher than that of the raw material alloy are TiB 2 or TiC having a particle size of 10 to 40 μm.
[0009]
The present invention is described in detail below.
The present invention is a method that enables the production of a bulk amorphous alloy by dispersing and expanding the region to be amorphized to the inside even if the surface cooling rate during rapid cooling is the same.
[0010]
The present invention is characterized in that a rapidly solidified solidified body is prepared by adding particles having a melting point higher than that of the raw material alloy and not reacting with the molten raw material alloy to the raw material alloy.
Although the mechanism about the effect produced by adding particles is unknown, a bulk amorphous composite material in which particles and alloy crystals are finely dispersed can be obtained by the method of the present invention. That is, conventionally, when a rapidly solidified bulk material sample is prepared without adding particles under a certain quenching condition, the sample is amorphized only near the surface of the sample, and a complete crystal phase remains inside the sample. However, as in the present invention, by adding particles, an amorphous phase can be developed even inside the sample even under the same cooling conditions, so that a bulk material having a large size can be obtained.
[0011]
As the additive particles, those having a specific gravity close to that of the molten raw material and good wettability with the molten raw material are desirable so that they are easily dispersed in the molten raw material. The optimum addition amount of particles varies depending on the kind and particle size of the particles. If the amount added is too small, a sufficient effect of promoting amorphization cannot be obtained. On the other hand, if the amount added is too large, the proportion of the aggregated particles becomes large and the effect is limited.
[0012]
As described above, according to the method of the present invention, a bulk amorphous material in which particles and crystals are finely dispersed and amorphization is improved can be obtained.
[0013]
【Example】
In the following, the present invention is further illustrated by examples.
Example 1
The La—Al—Ni alloy used as a raw material was prepared by preparing massive La, plate-like Al, and powdered Ni so that the molar ratio was La 55%, Al 25%, and Ni 20%. As samples, 4 types of materials in which 10 to 40 μm of TiB 2 particles were added at a weight ratio of 0, 2, 5, 10% to 4 g of this La—Al—Ni alloy were used.
[0014]
A sample piece having a diameter of 12 mm and a thickness of 6 mm was obtained by water quenching.
[0015]
The distribution of the amorphization rate of the cross section of the sample center portion of the obtained rapidly solidified sample was obtained by image analysis processing of an optical microscope image. FIG. 1 schematically shows the shape of a sample piece and the distribution of an amorphous phase in the sample depth direction, and the measurement results are shown in FIG.
[0016]
As can be seen from FIG. 2, when TiB 2 particles are not added, the portion from the surface of the sample to about 1.5 mm is amorphized, and the central portion is completely crystallized. On the other hand, in the case of adding TiB 2 particles, an amorphous phase exists up to the center, and the overall amorphization rate is also improved.
Further, in the range of 2 to 10% by weight of TiB 2 particles added in the present example, the amorphization rate is improved as the amount of TiB 2 particles added is increased.
[0017]
The measurement result of the Vickers hardness of the obtained sample is shown in FIG.
As can be seen from FIG. 3, the Vickers hardness increases as the TiB 2 addition amount increases.
[0018]
Example 2
In the same manner as in Example 1, La-Al-Ni-based alloy is prepared by adjusting lump La, plate-like Al, and powder Ni so that the molar ratio is La: Al: Ni = 55: 25: 20. It was. As a sample, a material obtained by adding 5% by weight of TiC particles to 4 g of this La—Al—Ni alloy was used. The particle size of the TiC particles was 10 to 40 μm.
[0019]
The sample piece had a diameter of 12 mm × thickness of 6 mm, and was obtained by water quenching. The distribution of amorphization and Vickers hardness of the cross section at the center of the sample were measured. As a result, like Example 1, the addition of TiC particles improves the amorphization rate and increases the hardness.
[0020]
Example 3
Lumped La, plate-like Al, and powder Cu were adjusted so that the molar ratio was La: Al: Cu = 55: 25: 20, and a La—Al—Cu alloy was prepared. As a sample, a material obtained by adding 5% by weight of TiB 2 particles (10 to 40 μm) to 4 g of the La—Al—Cu alloy was used.
[0021]
The measurement result of the amorphization distribution and the hardness of the cross section of the sample central part obtained the same effect as in Example 2. That is, the addition of TiB 2 particles improved the amorphization rate and increased the hardness.
[0022]
【The invention's effect】
According to the present invention, it has become possible to create an amorphous alloy that has not been obtained in the past and has a finely dispersed particle and crystal, and this makes it possible to increase the size of the bulk amorphous alloy. Spread.
[Brief description of the drawings]
FIG. 1 is a diagram schematically showing the shape of a sample piece and the distribution of an amorphous phase in the sample depth direction.
FIG. 2 is a graph showing the amorphization rate of the cross-section of the rapidly solidified material of the present invention.
FIG. 3 is a graph showing the relationship between the added amount of TiB 2 particles and the Vickers hardness of the cross-section of the rapidly solidified material.

Claims (6)

急冷凝固合金法により原料合金に粒子を分散させて合金のアモルファス化を促進させたバルク状のアモルファス合金複合材料を製造する方法であって、(1)原料合金に該原料合金よりも高い融点を有する粒子を添加し、複合化することにより、該粒子と合金金属を、急冷凝固体中に微細分散させる、(2)それにより、急冷凝固体中にアモルファス相を分散させ、アモルファス化率を向上させる、(3)形状がバルク状の急冷凝固バルクアモルファス合金複合材料を製造する、ことを特徴とする、急冷凝固バルク材料の製造方法。  A method for producing a bulk amorphous alloy composite material in which particles are dispersed in a raw material alloy by a rapid solidification alloy method to promote the amorphization of the alloy, and (1) the raw material alloy has a higher melting point than the raw material alloy. By adding particles and making them composite, the particles and the alloy metal are finely dispersed in the rapidly solidified body. (2) Thereby, the amorphous phase is dispersed in the rapidly solidified body and the amorphization rate is improved. (3) A method for producing a rapidly solidified bulk material, characterized in that a rapidly solidified bulk amorphous alloy composite material having a bulk shape is produced. 添加粒子として、比重が溶融原料に近く、かつ溶融原料とのぬれ性が良好なものを用いる、請求項に記載の、急冷凝固バルク材料の製造方法。The method for producing a rapidly solidified bulk material according to claim 1 , wherein the additive particles have specific gravity close to that of the molten raw material and good wettability with the molten raw material. 急冷凝固法において、原料合金に粒子を分散させて合金のアモルファス化を向上させたバルク状のアモルファス合金複合材料であって、(1)原料合金より高い融点を有する粒子と合金結晶が、急冷凝固体中に微細に分散されている、(2)アモルファス化率が向上し、試料内部にまでアモルファス相が発現している、(3)形状がバルク状である、(4)原料合金がLa−Al−Ni系合金であり、粒子がTiB またはTiCである、あるいは原料合金がLa−Al−Cu系合金であり、粒子がTiB またはTiCである、ことを特徴とする、急冷凝固バルクアモルファス合金複合材料。In a rapid solidification method, a bulk amorphous alloy composite material in which particles are dispersed in a raw material alloy to improve the amorphization of the alloy. (1) Particles and alloy crystals having a melting point higher than that of the raw material alloy are rapidly solidified. It is finely dispersed in a solid, (2) the amorphization rate is improved, and an amorphous phase is developed even inside the sample, (3) the shape is bulk, (4) the raw material alloy is La- A rapidly solidified bulk amorphous material characterized in that it is an Al-Ni alloy and the particles are TiB 2 or TiC, or the raw material alloy is a La-Al-Cu alloy and the particles are TiB 2 or TiC. Alloy composite material. 原料合金より高い融点を有する粒子がマトリックス中に分散し、急冷凝固体中に複合化することにより機械的特性を高めた、請求項に記載の、急冷凝固バルクアモルファス合金複合材料。The rapidly solidified bulk amorphous alloy composite material according to claim 3 , wherein particles having a melting point higher than that of the raw material alloy are dispersed in the matrix and are composited in the rapidly solidified body to improve mechanical properties. 試料中心部の断面のアモルファス化率が少なくとも60%である、請求項に記載の、急冷凝固バルクアモルファス合金複合材料。The rapidly solidified bulk amorphous alloy composite material according to claim 3 , wherein the amorphization ratio of the cross section of the sample center is at least 60%. 原料合金より高い融点を有する粒子が10〜40μmの粒径を有するTiBまたはTiCである請求項3に記載の、急冷凝固バルクアモルファス合金複合材料。Particles having a higher material alloy having a melting point of TiB 2 or TiC having a particle size of 10 to 40 [mu] m, according to claim 3, rapidly solidified bulk amorphous alloy composite material.
JP03554595A 1995-02-23 1995-02-23 Rapidly solidified bulk material and manufacturing method thereof Expired - Lifetime JP4061395B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03554595A JP4061395B2 (en) 1995-02-23 1995-02-23 Rapidly solidified bulk material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03554595A JP4061395B2 (en) 1995-02-23 1995-02-23 Rapidly solidified bulk material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH08232050A JPH08232050A (en) 1996-09-10
JP4061395B2 true JP4061395B2 (en) 2008-03-19

Family

ID=12444708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03554595A Expired - Lifetime JP4061395B2 (en) 1995-02-23 1995-02-23 Rapidly solidified bulk material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4061395B2 (en)

Also Published As

Publication number Publication date
JPH08232050A (en) 1996-09-10

Similar Documents

Publication Publication Date Title
US5074935A (en) Amorphous alloys superior in mechanical strength, corrosion resistance and formability
Zhu et al. The effects of varying Mg and Si levels on the microstructural inhomogeneity and eutectic Mg 2 Si morphology in die-cast Al–Mg–Si alloys
Jayalakshmi et al. Development of novel Mg–Ni60Nb40 amorphous particle reinforced composites with enhanced hardness and compressive response
JPH07122120B2 (en) Amorphous alloy with excellent workability
KR930000846B1 (en) High strength magnesium-based amorphous alloy
JPS6032704B2 (en) Alloy with ultra-fine homogeneously dispersed crystalline phase
JP2004091868A (en) Cu-BASED AMORPHOUS ALLOY
US4410490A (en) Nickel and cobalt alloys which contain tungsten aand carbon and have been processed by rapid solidification process and method
EP0819778B1 (en) High-strength aluminium-based alloy
US5693897A (en) Compacted consolidated high strength, heat resistant aluminum-based alloy
JP2000026944A (en) Amorphous alloy excellent in bending strength and impact strength, and its production
JP2004099941A (en) Magnesium-base alloy and production method
JP2705996B2 (en) High strength magnesium based alloy
EP0564814B1 (en) Compacted and consolidated material of a high-strength, heat-resistant aluminum-based alloy and process for producing the same
JPH0153342B2 (en)
JP4061395B2 (en) Rapidly solidified bulk material and manufacturing method thereof
US4402745A (en) New iron-aluminum-copper alloys which contain boron and have been processed by rapid solidification process and method
NO156117B (en) PROCEDURE FOR THE MANUFACTURE OF METAL POWDER.
US4404028A (en) Nickel base alloys which contain boron and have been processed by rapid solidification process
Muumbo et al. Processing of semi-solid gray cast iron using the cooling plate technique
EP0577944A1 (en) High-strength aluminum-based alloy, and compacted and consolidated material thereof
JPS5913609A (en) Flaky nitride ceramics and its manufacture
CN1031865A (en) Amorphous alloy powder
JP2004099940A (en) Method for producing magnesium based alloy
Muumbo et al. Mechanical properties and microstructure of semi-solid processed cast iron

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20051118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term