JP4061375B2 - Photo-oxidation catalyst for sulfur compounds in fuel oil - Google Patents

Photo-oxidation catalyst for sulfur compounds in fuel oil Download PDF

Info

Publication number
JP4061375B2
JP4061375B2 JP2003102380A JP2003102380A JP4061375B2 JP 4061375 B2 JP4061375 B2 JP 4061375B2 JP 2003102380 A JP2003102380 A JP 2003102380A JP 2003102380 A JP2003102380 A JP 2003102380A JP 4061375 B2 JP4061375 B2 JP 4061375B2
Authority
JP
Japan
Prior art keywords
fuel oil
sulfur
compound
catalyst according
photooxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003102380A
Other languages
Japanese (ja)
Other versions
JP2004305888A (en
Inventor
久男 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003102380A priority Critical patent/JP4061375B2/en
Publication of JP2004305888A publication Critical patent/JP2004305888A/en
Application granted granted Critical
Publication of JP4061375B2 publication Critical patent/JP4061375B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料油に含まれる硫黄化合物の光酸化触媒及び該触媒を用いた燃料油の光酸化脱硫方法に関する。
【0002】
【従来の技術】
一般に、石油、石炭などの化石資源を原料とする燃料油中には有機硫黄化合物が含有されている。これらの硫黄化合物は燃焼に際して、人体に悪影響を及ぼすガス(SOX)を発生させたり、酸性雨等の原因となるため、大気環境汚染防止のためには、化石燃料資源の利用の前後において硫黄化合物の除去が必要とされている。そのため、現在精油所では、触媒の存在下(Co、Mo系)高温、高圧にて水素化処理を行う水素化脱硫法が行われている。
【0003】
また、大都市地域において、光化学オキシダント、酸性雨等の大気汚染が深刻化してきており、原因としてディーゼル車の排出ガス中に含まれる窒素酸化物、粒子状物質(パティキュレート)、および炭化水素があげられている。軽油中の硫黄分は、ディーゼル車の排出ガス対策として期待されている、酸化触媒、窒素酸化物還元触媒、および排気微粒子除去フィルター等の排気処理装置の信頼性や耐久性に悪影響を及ぼす懸念がある為、規制強化の対象とされている。
【0004】
そのため、世界中で軽油中の硫黄分の規制が強化されてきており、欧州では、1994年から軽油中の硫黄分を欧州統一軽油規格として0.2wt%以下、さらに1996年から0.05wt%以下に低減している。また、2000年から硫黄分を350ppm以下、2005年から50ppmの厳しい規制値が導入される予定である。米国では、1993年から硫黄分500ppmに規制されている。さらに2000年には米国環境保護庁(EPA)が軽油中の硫黄分15ppmの案を提示して、議論の対象になっている。我が国においても、軽油中に含まれる硫黄分を現在の規制値である硫黄分500ppmから、2005年には50ppm以下へと規制の強化を図る方針としており、この意味においても軽油中に含まれる硫黄分に対してその低減が強く要請されている。
【0005】
現在、燃料油の脱硫方法としては、一般的には水素化脱硫によって燃料油の脱硫が行われている。しかし、水素化脱硫では、燃料油中に含まれている有機硫黄化合物、特に硫黄原子周辺にアルキル基などの立体障害性の置換基を持つアルキル置換ジベンゾチオフェン類、特に4,6-ジメチルジベンゾチオフェンを50ppm以下の超深度に除去することが困難であった。
そこで、超深度脱硫達成のためには、このような難除去性硫黄化合物を有効に除去することができる新たな脱硫法の開発が急務とされている。
【0006】
新たな脱硫法としては、前記の硫黄化合物を酸化することにより燃料油から除去する酸化脱硫が有効であるとされている。
このような酸化脱硫法としては、たとえば、光増感剤を用いて光酸化させる方法(特許文献1)や、過酸化水素とヘテロポリ酸を含有させて加熱する方法(特許文献2)等が提案されている。
しかしこれらの方法ではアセトニトリル等の、高価かつ後処理も面倒な有機溶剤を使用しないと反応が進行せず、しかもジベンゾチオフェンとりわけ立体障害のため反応活性部位である硫黄原子への反応試剤の到達が困難であるとされている難除去性の4,6-ジメチルジベンゾチオフェンの除去が有効に行われないといった欠点を依然として包含するものであった。
【0007】
このようなことから、高価かつ後処理も面倒な有機溶剤を使用することなく、燃料油に含まれる硫黄化合物、特にジベンゾチオフェン類の含有量の低減を図ることのできる、酸化脱硫法の開発が強く要請されているのが現状である。
【0008】
【特許文献1】
特開2001−151748号公報
【特許文献2】
特開2001−354978号公報
【0009】
【発明が解決しようとする課題】
本発明は、硫黄化合物特に燃料油に含まれるジベンゾチオフェン類等の難除去性有機硫黄化合物を効率的に光酸化・除去できる工業的に有利な硫黄化合物の光酸化触媒及びこの触媒を用いる燃料油の効率的な脱硫方法を提供することを目的とする。
【0010】
【課題を解決しようとする手段】
本発明者は、上記課題を解決するために鋭意検討した結果、4,6-ジメチルジベンゾチオフェン等の硫黄化合物を含有する燃料油にポリ酸化合物(水溶性光触媒)を含む水溶液と接触させ、酸素含有ガスの存在下で2層を混合しながら光照射を行うと、当該硫黄化合物はそのメチル基が酸化されて燃料油層に不溶のカルボン酸誘導体となって、燃料油層から簡単に除去できることを知見した。本発明はこのような知見に基づいてなされたものである。
すなわち、この出願によれば、以下の発明が提供される。
〈1〉下記一般式(1)で示されるケギン構造を有するヘテロポリ酸化合物を含有することを特徴とする、燃料油に含まれる硫黄化合物の光酸化触媒。
【化1】
[A]3+[PW12O40]3- (1)
(式中、 [A] 3+ はヘテロポリ酸アニオンの対イオンを形成する原子もしくは原子団である)。
〈2〉へテロポリ酸化合物が、H3PW12O40又はその水和物であることを特徴とする〈1〉に記載の光酸化触媒。
〈3〉硫黄化合物が、有機硫黄化合物であることを特徴とする〈1〉又は〈2〉に記載の光酸化触媒。
〈4〉有機硫黄化合物が、ジベンゾチオフェン類であることを特徴とする〈3〉に記載の光酸化触媒。
〈5〉ジベンゾチオフェン類が、そのモノアルキル又はジアルキル置換体であることを特徴とする〈4〉に記載の光酸化触媒。
〈6〉ジベンゾチオフェン類のジアルキル置換体が、4,6−ジメチル−ジベンゾチオフェンであることを特徴とする〈5〉に記載の光酸化触媒。
〈7〉硫黄化合物を含む燃料油を、〈1〉乃至〈6〉何れかに記載の光酸化触媒の存在下、光照射下で酸素又は酸素含有ガスにより酸化することを特徴とする燃料油の光酸化脱硫方法。
【0011】
【発明の実施の形態】
本発明の対象となる燃料油は、化石燃料由来の燃料油を意味し、石油に限らず、石炭、オイルサンド、オイルシェール、及びオリマルジョン等の有機化石資源由来の燃料油であっても差し支えない。この具体例をあげると、石油系としては、脂肪族炭化水素、芳香族炭化水素、脂環式炭化水素、縮合多環式化合物などの炭化水素を主成分とするガソリン、灯油、軽油、重油等の特定の留分からなる蒸留生成物及び原油等が、石炭系としてはコールタール、液化油等が、石油類似資源では、オイルサンド、オイルシェール、オリマルジョン等からの抽出物、及び精製油等の液体化されているものである。
【0012】
これに含まれる硫黄化合物としては、無機硫黄化合物および有機硫黄化合物が挙げられる。有機硫黄化合物としては、脂肪族炭化水素を構成する炭素鎖中に硫黄原子を含有する化合物、例えば、チオール類、チオエーテル類等、芳香族炭化水素の置換基として、炭素鎖中に硫黄原子を含有する基を有する化合物、例えば、チオフェノール類、チオアニソール類等、および、骨格中に硫黄原子を含有する複素環化合物、例えば、チオフェン類、ベンゾチオフェン類、ジベンゾチオフェン類等を挙げることができる。
【0013】
ジベンゾチオフェン類に含まれる化合物としては、ジベンゾチオフェン、ジベンゾチオフェンのモノアルキル体又は4,6-ジメチルジベンゾチオフェンなどのジアルキル体等のアルキル化誘導体、さらに分子内にジベンゾチオフェン骨格を有する化合物が挙げられる。
【0014】
一般に、前記した骨格中に硫黄原子を含有する複素環化合物、特に硫黄原子周辺にアルキル基などの置換基を持つ4,6-ジメチルジベンゾチオフェンなどは、従来の方法では4,6-ジメチルジベンゾチオフェンの2つのメチル基が立体障害となって硫黄原子が攻撃を受けにくいのに対し、本法ではメチル基そのものが酸化されて対応するカルボン酸を生成する。この生成物は極性が高く燃料油層には難溶性であるため油層から効果的に除去することができる。
また、ジベンゾチオフェンの場合は硫黄原子が攻撃を受け硫黄原子に酸素原子が1つあるいは2つ付加し、これらの生成物も極性が高いので油層には難溶性であるため、簡単に分離除去することができる。
したがって、本発明に係る光酸化触媒によれば、前述の硫黄化合物一般を燃料油中から有効に光酸化除去することができるが、特にジベンゾチオフェン類への適用が効果的である。
【0015】
本発明の対象となる燃料油はこれらの各成分適宜含有する混合物であってもよい。さらに、これらの燃料油は、特定の脱硫操作を施した後の、有機硫黄化合物を含有する混合物であっても差し支えない。
燃料油中に含まれる硫黄化合物の割合は、適宜選択することができるが、通常、有機硫黄化合物の含有量は、1×10−4(1ppm)〜10重量%であることが好ましい。
【0016】
本発明の光酸化触媒としては、下記一般式(1)で示されるヘテロポリ酸化合物が用いられる。
【化1】
[A]3+[PW12O40]3- (1)
(式中、 [A] 3+ はヘテロポリ酸アニオンの対イオンを形成する原子もしくは原子団である)。
【0017】
ここで、 [A] 3+ は、ヘテロポリ酸アニオンの対イオンであり、水素イオン、ナトリウムイオン、カリウムイオン、アンモニウムイオン等が挙げられる。
【0018】
本発明で好ましく使用されるヘテロポリ酸化合物は水溶性で光触媒作用を呈するヘテロポリ酸であり、この中でも高い酸化力および耐久性等の観点からみて、H3PW12O40またはその水和物を用いることが更に好ましい。
【0019】
ここで、光触媒作用とは、光吸収して励起されたヘテロポリ酸化合物が硫黄化合物分子と酸化還元反応を起こして電子を少なくとも一つ受け取ることができ、生成したヘテロポリ酸化合物還元体は共存酸素により再酸化されて元の状態に戻ることができる機能を意味する。
【0020】
前記光酸化触媒と燃料油中の硫黄化合物の量的関係は、反応の難易度によって適宜定められるが、通常水溶液の光触媒濃度は0.0001-100mol/L、望ましくは0.001-10mol/Lである。
燃料油中の硫黄化合物濃度は水溶液中の光触媒の濃度の0.001-10000倍、望ましくは0.01-500倍である。
【0021】
本発明で用いる酸素含有ガスとしては、酸素単独ガスの他、空気のような酸素の他に窒素などの不活性ガスを含むガスを用いることができる。本発明で好ましく使用される酸素含有ガスは、酸素単独ガスである。
【0022】
本発明の光照射条件は特に制約されないが、照射する光の波長は、使用する光触媒の電荷移動吸収領域に一致しておくことが望ましく、通常200〜800nm好ましくは250〜400nmである。光源に種類は特に制約されず、水銀灯、キセノンランプ、重水素ランプ、太陽光等を光の波長に応じて適宜使用すればよい。
光照射時間も特に制約されず、1時間〜24時間程度で十分である。
【0023】
本発明の前記水溶性光触媒を用いて燃料油に含まれる硫黄化合物を光酸化反応させて当該硫黄化合物を光酸化するには、たとえば次のようにすればよい。
まず、光照射可能な反応容器の底部に前記水溶性光触媒を溶解させた水を入れる。ここに硫黄化合物を含有する燃料油を入れる。さらに酸素を導入する。この酸素導入法に特に制限はなく、酸素ガスを常圧下でバブリングするか、反応容器内を酸素で1MPa程度に満たしても良い。ついで、水層と燃料油層の2層を混合しながら一定時間光を照射した後、静置し、反応容器内の燃料油層を回収すればよい。
反応容器に付属している光を導入するための窓材としては、水溶性光触媒の光吸収を阻害しないものを選ぶことが望ましく、石英、サファイア等がよい。
反応温度は、反応原料が液状を保持できる温度であれば適宜設定することができる。このようなことから一般的には−100℃〜120℃、好ましくは−50℃〜90℃で行うことができるが、常温付近で十分である。なお、反応は界面で起こるため2層を攪拌等により十分接触させることが好ましい。
【0024】
反応の再現性を達成するためには、反応器を上記温度範囲に保つための温度調節が有効である。温度調節のための加熱および除熱は、たとえば反応器外壁より、熱媒体を用いて行うことができる。場合によっては、温度調節装置を反応器内に直接設置することも可能である。反応器は流通系でも、回分式でも、また、半回分式でも行うことができる。
【0025】
また、本発明においては、反応終了後、燃料油中から酸化反応生成物を分離するが、本法では従来難除去性とされていた、硫黄原子周辺にアルキル基などの置換基を持つ4,6-ジメチルジベンゾチオフェンなどのジベンゾチオフェン類は、そのメチル基そのものが酸化されて対応するカルボン酸を生成する。しかもこの生成物は燃料油層には難溶性であるため油層から効果的に除去することができる。分液後の燃料油は、更なる抽出および吸着操作等によりさらに精製することができる。
【0026】
カルボキシル基などの誘導体に変換された有機硫黄化合物を除去した燃料油は、そのまま有機硫黄化合物が除去されたものとして、目的とする用途に使用することができる。また、一部を反応原料に再循環することもできる。
【0027】
【実施例】
以下に、本発明の内容を実施例により具体的に説明する。しかしながら、以下に示す実施例は一例であり、本発明はこれらの実施例により限定されるものではない。
【0028】
実施例1
ヘテロポリ酸化合物の一種である12タングストリン酸6水和物(H3PW12O40・6H2O)を水(2 mL)に溶解した(濃度:6.7mM)。一方、4,6-ジメチルジベンゾチオフェンをオクタン(2 mL)に溶解した(濃度:2.0mM)。この2種の溶液を石英製ビーカー(25 mL)にいれ、それを円柱型インコネル製耐圧反応容器(内容量200mL)の底部に入れた。ここに全圧が1 MPaになるまで酸素ガスを導入した。これをマグネチュックスターラーで攪拌しながら25℃で高圧水銀ランプにより250nm以上の光を上部のサファイア窓を通して0〜4時間照射した。照射後、常圧に戻しオクタン層を回収し、高速液体クロマトグラフィーで4,6-ジメチルジベンゾチオフェン濃度を測定した。光照射によるオクタン中の4,6-ジメチルジベンゾチオフェン濃度の減少の様子を図1のAに示す。
また、水層中のポリ酸化合物の劣化の有無をラマンスペクトル、紫外―可視吸収スペクトルおよびP-NMRで測定したところ、いかなる劣化や濃度減少の兆候も見られなかった。
【0029】
実施例2
実施例1において4,6-ジメチルジベンゾチオフェンの代わりにジベンゾチオフェンを用いて光反応を0〜12時間行った。光照射によるオクタン中のジベンゾチオフェン濃度の減少の様子を図1のBに示す。
【0030】
比較例1
実施例1においてポリ酸化合物を添加しないで光照射を行った。オクタン中の4,6-ジメチルジベンゾチオフェン濃度は照射前と変化しなかった。
【0031】
実施例3
実施例1において4,6-ジメチルジベンゾチオフェンのオクタン溶液の代わりに市販の軽油硫黄分標準物質(硫黄分500ppm)を用いて18時間光照射した。照射後軽油中の全硫黄濃度を微量電量適定式酸化法により測定したところ、5ppmであった。
【0032】
【発明の効果】
本発明の光酸化触媒によれば、硫黄化合物特に有機硫黄化合物を含有する燃料油を、光照射下、酸素を含むガスにより酸化することにより、有機硫黄化合物を他の分離し易い有機硫黄酸化物に変換し、燃料油中から脱硫除去することができる。すなわち、この光触媒を用いる光酸化脱硫法では、従来難除去性とされていた、硫黄原子周辺にアルキル基などの置換基を持つ4,6-ジメチルジベンゾチオフェンなどのジベンゾチオフェン類は、そのメチル基そのものが酸化を受け燃料油層には難溶性のカルボン酸誘導体に変換されることから、該油層から効果的に除去することができる。したがって、本発明によれば、燃料中に含まれる有機硫黄化合物特に4,6-ジメチルジベンゾチオフェンを50ppm以下の超深度に脱硫することが可能となる。
【図面の簡単な説明】
【図1】 実施例1及び実施例2の光酸化触媒を用いた場合の硫黄化合物濃度の変化を表すグラフ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a photo-oxidation catalyst for sulfur compounds contained in fuel oil and a method for photo-oxidation desulfurization of fuel oil using the catalyst.
[0002]
[Prior art]
Generally, an organic sulfur compound is contained in fuel oil made from fossil resources such as petroleum and coal. These sulfur compounds generate gases (SO X ) that adversely affect the human body during combustion and cause acid rain, etc., so sulfur pollution before and after the use of fossil fuel resources can be avoided to prevent air pollution. There is a need for removal of the compound. Therefore, at present refineries, hydrodesulfurization methods are being performed in which hydrotreating is performed at high temperature and high pressure in the presence of a catalyst (Co, Mo system).
[0003]
Also, in urban areas, air pollution such as photochemical oxidants and acid rain has become serious, which is caused by nitrogen oxides, particulate matter (particulates), and hydrocarbons contained in exhaust gas from diesel vehicles. It is given. There is a concern that the sulfur content in diesel oil will adversely affect the reliability and durability of exhaust treatment equipment such as oxidation catalysts, nitrogen oxide reduction catalysts, and exhaust particulate removal filters that are expected as a countermeasure against exhaust emissions from diesel vehicles. For this reason, it is subject to stricter regulations.
[0004]
For this reason, regulations on the sulfur content in diesel oil have been tightened around the world. In Europe, the sulfur content in diesel oil has been reduced to 0.2 wt% or less as the European standard for diesel oil since 1994, and 0.05 wt% or less since 1996. Reduced. In 2000, strict regulation values of sulfur content of 350 ppm or less and 50 ppm from 2005 are scheduled to be introduced. In the United States, the sulfur content has been regulated to 500 ppm since 1993. Furthermore, in 2000, the US Environmental Protection Agency (EPA) presented a proposal for a sulfur content of 15 ppm in diesel oil and is under discussion. In Japan, the policy is to strengthen the regulation of sulfur contained in diesel oil from the current regulation value of 500 ppm to 50 ppm or less in 2005. There is a strong demand for reduction of the minute.
[0005]
Currently, as a desulfurization method for fuel oil, desulfurization of fuel oil is generally performed by hydrodesulfurization. However, in hydrodesulfurization, organic sulfur compounds contained in fuel oil, especially alkyl-substituted dibenzothiophenes having sterically hindered substituents such as alkyl groups around the sulfur atom, especially 4,6-dimethyldibenzothiophene. It was difficult to remove at a deep depth of 50 ppm or less.
Therefore, in order to achieve ultra-deep desulfurization, there is an urgent need to develop a new desulfurization method that can effectively remove such difficult-to-removable sulfur compounds.
[0006]
As a new desulfurization method, oxidative desulfurization in which the sulfur compound is removed from the fuel oil by oxidation is considered to be effective.
As such an oxidative desulfurization method, for example, a method of photooxidation using a photosensitizer (Patent Document 1), a method of heating containing hydrogen peroxide and a heteropolyacid (Patent Document 2), etc. are proposed. Has been.
However, in these methods, the reaction does not proceed unless an organic solvent such as acetonitrile, which is expensive and troublesome in post-treatment, is used, and the reaction reagent reaches the sulfur atom which is the active site of reaction due to steric hindrance. The removal of 4,6-dimethyldibenzothiophene, which is considered to be difficult, was still difficult to remove.
[0007]
For this reason, the development of an oxidative desulfurization method that can reduce the content of sulfur compounds, particularly dibenzothiophenes, contained in fuel oil without using an expensive and troublesome organic solvent. The current situation is strongly demanded.
[0008]
[Patent Document 1]
JP 2001-151748 A [Patent Document 2]
JP 2001-354978 A [0009]
[Problems to be solved by the invention]
The present invention relates to an industrially advantageous sulfur compound photo-oxidation catalyst capable of efficiently photo-oxidizing and removing sulfur compounds, particularly difficult-to-removable organic sulfur compounds such as dibenzothiophenes contained in fuel oil, and fuel oil using the catalyst An object of the present invention is to provide an efficient desulfurization method.
[0010]
[Means to solve the problem]
As a result of intensive studies to solve the above-mentioned problems, the present inventors brought fuel oil containing a sulfur compound such as 4,6-dimethyldibenzothiophene into contact with an aqueous solution containing a polyacid compound (water-soluble photocatalyst), and oxygen It is found that, when light irradiation is performed while mixing two layers in the presence of the contained gas, the sulfur compound is oxidized in the methyl group to become a carboxylic acid derivative insoluble in the fuel oil layer and can be easily removed from the fuel oil layer. did. The present invention has been made based on such findings.
That is, according to this application, the following invention is provided.
<1> A photo-oxidation catalyst for a sulfur compound contained in fuel oil, comprising a heteropolyacid compound having a Keggin structure represented by the following general formula (1).
[Chemical 1]
[A] 3+ [PW 12 O 40 ] 3- (1)
( Where [A] 3+ Is an atom or atomic group forming a counter ion of the heteropolyacid anion).
<2> The photooxidation catalyst according to <1>, wherein the heteropolyacid compound is H 3 PW 12 O 40 or a hydrate thereof.
<3> The photooxidation catalyst according to <1> or <2>, wherein the sulfur compound is an organic sulfur compound.
<4> The photooxidation catalyst according to <3>, wherein the organic sulfur compound is a dibenzothiophene.
<5> The photooxidation catalyst according to <4>, wherein the dibenzothiophene is a monoalkyl or dialkyl-substituted product thereof.
<6> The photooxidation catalyst according to <5>, wherein the dialkyl-substituted product of dibenzothiophenes is 4,6-dimethyl-dibenzothiophene.
<7> A fuel oil containing a sulfur compound is oxidized with oxygen or an oxygen-containing gas under light irradiation in the presence of the photooxidation catalyst according to any one of <1> to <6>. Photo-oxidative desulfurization method.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The fuel oil subject to the present invention means a fuel oil derived from fossil fuel, and is not limited to petroleum, and may be a fuel oil derived from organic fossil resources such as coal, oil sand, oil shale, and olimarsion. . Specific examples include petroleum-based gasoline, kerosene, light oil, heavy oil, etc. containing hydrocarbons such as aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, and condensed polycyclic compounds as main components. Distilled products and crude oil, etc. consisting of the specified fractions, coal-based coal tar, liquefied oil, etc., petroleum-like resources, extracts from oil sands, oil shale, olimal oil, etc., and liquids such as refined oil It is what has been made.
[0012]
Examples of the sulfur compound contained therein include inorganic sulfur compounds and organic sulfur compounds. As an organic sulfur compound, a compound containing a sulfur atom in a carbon chain constituting an aliphatic hydrocarbon, for example, a sulfur atom in a carbon chain as a substituent of an aromatic hydrocarbon such as a thiol or a thioether Examples thereof include compounds having a group such as thiophenols, thioanisoles, and heterocyclic compounds containing a sulfur atom in the skeleton, such as thiophenes, benzothiophenes, dibenzothiophenes, and the like.
[0013]
Examples of compounds contained in dibenzothiophenes include alkylated derivatives such as dibenzothiophene, dialkylthiophene or dialkyl such as 4,6-dimethyldibenzothiophene, and compounds having a dibenzothiophene skeleton in the molecule. .
[0014]
In general, heterocyclic compounds containing a sulfur atom in the skeleton described above, particularly 4,6-dimethyldibenzothiophene having a substituent such as an alkyl group around the sulfur atom, In the present method, the methyl group itself is oxidized to produce a corresponding carboxylic acid. Since this product is highly polar and hardly soluble in the fuel oil layer, it can be effectively removed from the oil layer.
In the case of dibenzothiophene, sulfur atoms are attacked and one or two oxygen atoms are added to the sulfur atoms, and these products are also highly polar, so they are hardly soluble in the oil layer, so they can be easily separated and removed. be able to.
Therefore, according to the photooxidation catalyst of the present invention, the above-mentioned sulfur compounds in general can be effectively photooxidized and removed from the fuel oil, but application to dibenzothiophenes is particularly effective.
[0015]
The fuel oil which is the subject of the present invention may be a mixture containing these components as appropriate. Furthermore, these fuel oils may be a mixture containing an organic sulfur compound after a specific desulfurization operation.
Although the ratio of the sulfur compound contained in the fuel oil can be selected as appropriate, the content of the organic sulfur compound is usually preferably 1 × 10 −4 (1 ppm) to 10% by weight.
[0016]
As the photooxidation catalyst of the present invention, a heteropolyacid compound represented by the following general formula (1) is used.
[Chemical 1]
[A] 3+ [PW 12 O 40 ] 3- (1)
( Where [A] 3+ Is an atom or atomic group forming a counter ion of the heteropolyacid anion).
[0017]
Here, [A] 3+ is a counter ion of the heteropolyacid anion, and examples thereof include a hydrogen ion, a sodium ion, a potassium ion, and an ammonium ion.
[0018]
The heteropolyacid compound preferably used in the present invention is a water-soluble heteropolyacid exhibiting a photocatalytic action, and among them, H 3 PW 12 O 40 or a hydrate thereof is used from the viewpoint of high oxidizing power and durability. More preferably.
[0019]
Here, the photocatalytic action means that a heteropolyacid compound excited by light absorption can undergo an oxidation-reduction reaction with a sulfur compound molecule to receive at least one electron, and the resulting heteropolyacid compound reductant is formed by coexisting oxygen. It means a function that can be reoxidized and return to its original state.
[0020]
The quantitative relationship between the photooxidation catalyst and the sulfur compound in the fuel oil is appropriately determined depending on the difficulty of the reaction, but the photocatalyst concentration of the aqueous solution is usually 0.0001-100 mol / L, preferably 0.001-10 mol / L.
The concentration of the sulfur compound in the fuel oil is 0.001-10000 times, preferably 0.01-500 times the concentration of the photocatalyst in the aqueous solution.
[0021]
As the oxygen-containing gas used in the present invention, a gas containing an inert gas such as nitrogen in addition to oxygen such as air can be used in addition to oxygen alone gas. The oxygen-containing gas preferably used in the present invention is an oxygen-only gas.
[0022]
The light irradiation conditions of the present invention are not particularly limited, but the wavelength of the light to be irradiated is desirably matched with the charge transfer absorption region of the photocatalyst to be used, and is usually 200 to 800 nm, preferably 250 to 400 nm. The type of the light source is not particularly limited, and a mercury lamp, a xenon lamp, a deuterium lamp, sunlight, or the like may be used as appropriate according to the wavelength of light.
The light irradiation time is not particularly limited, and about 1 to 24 hours is sufficient.
[0023]
In order to photooxidize the sulfur compound contained in the fuel oil by photooxidation using the water-soluble photocatalyst of the present invention, for example, the following may be performed.
First, water in which the water-soluble photocatalyst is dissolved is placed at the bottom of a reaction vessel capable of light irradiation. Fuel oil containing sulfur compounds is added here. Further oxygen is introduced. This oxygen introduction method is not particularly limited, and oxygen gas may be bubbled under normal pressure, or the inside of the reaction vessel may be filled with oxygen to about 1 MPa. Next, the two layers of the water layer and the fuel oil layer are mixed and irradiated with light for a predetermined time, and then left to stand to recover the fuel oil layer in the reaction vessel.
As a window material for introducing light attached to the reaction vessel, it is desirable to select a window material that does not inhibit the light absorption of the water-soluble photocatalyst, and quartz, sapphire, and the like are preferable.
The reaction temperature can be appropriately set as long as the reaction raw material can maintain a liquid state. In general, it can be carried out at −100 ° C. to 120 ° C., preferably −50 ° C. to 90 ° C., but it is sufficient at around room temperature. Since the reaction occurs at the interface, it is preferable that the two layers are sufficiently brought into contact by stirring or the like.
[0024]
In order to achieve the reproducibility of the reaction, temperature adjustment for keeping the reactor in the above temperature range is effective. Heating and heat removal for temperature adjustment can be performed using a heat medium from the outer wall of the reactor, for example. In some cases, it is also possible to install a temperature control device directly in the reactor. The reactor can be run in a flow system, a batch system, or a semi-batch system.
[0025]
Further, in the present invention, after completion of the reaction, the oxidation reaction product is separated from the fuel oil, but this method has conventionally been regarded as difficult to remove, and has a substituent such as an alkyl group around the sulfur atom. In dibenzothiophenes such as 6-dimethyldibenzothiophene, the methyl group itself is oxidized to produce the corresponding carboxylic acid. Moreover, since this product is hardly soluble in the fuel oil layer, it can be effectively removed from the oil layer. The separated fuel oil can be further purified by further extraction and adsorption operations.
[0026]
The fuel oil from which the organic sulfur compound converted into a derivative such as a carboxyl group has been removed can be used for the intended application as it is from which the organic sulfur compound has been removed. It is also possible to recycle a part to the reaction raw material.
[0027]
【Example】
Hereinafter, the contents of the present invention will be specifically described with reference to examples. However, the following examples are merely examples, and the present invention is not limited to these examples.
[0028]
Example 1
12 tungstophosphoric acid hexahydrate (H 3 PW 12 O 40 · 6H 2 O), a kind of heteropolyacid compound, was dissolved in water (2 mL) (concentration: 6.7 mM). On the other hand, 4,6-dimethyldibenzothiophene was dissolved in octane (2 mL) (concentration: 2.0 mM). These two kinds of solutions were placed in a quartz beaker (25 mL), and placed in the bottom of a cylindrical Inconel pressure-resistant reaction vessel (content 200 mL). Here, oxygen gas was introduced until the total pressure reached 1 MPa. While stirring this with a magnetic stirrer, light of 250 nm or more was irradiated through the upper sapphire window at 25 ° C. with a high-pressure mercury lamp for 0 to 4 hours. After irradiation, the pressure was returned to normal pressure, the octane layer was collected, and the concentration of 4,6-dimethyldibenzothiophene was measured by high performance liquid chromatography. FIG. 1A shows how the concentration of 4,6-dimethyldibenzothiophene in octane decreases due to light irradiation.
The presence or absence of deterioration of the polyacid compound in the aqueous layer was measured by Raman spectrum, UV-visible absorption spectrum and P-NMR, and no signs of deterioration or concentration reduction were observed.
[0029]
Example 2
In Example 1, photoreaction was performed for 0 to 12 hours using dibenzothiophene instead of 4,6-dimethyldibenzothiophene. FIG. 1B shows how the dibenzothiophene concentration in octane decreases due to light irradiation.
[0030]
Comparative Example 1
In Example 1, light irradiation was performed without adding a polyacid compound. The concentration of 4,6-dimethyldibenzothiophene in octane was unchanged from that before irradiation.
[0031]
Example 3
In Example 1, instead of the octane solution of 4,6-dimethyldibenzothiophene, a commercially available light oil sulfur standard substance (sulfur content 500 ppm) was used for light irradiation for 18 hours. After irradiation, the total sulfur concentration in the gas oil was measured by the microcoulometric titration method and found to be 5 ppm.
[0032]
【The invention's effect】
According to the photooxidation catalyst of the present invention, a sulfur oil, particularly a fuel oil containing an organic sulfur compound, is oxidized with a gas containing oxygen under light irradiation, whereby the organic sulfur compound is easily separated from other organic sulfur oxides. And can be desulfurized and removed from the fuel oil. That is, in the photo-oxidative desulfurization method using this photocatalyst, dibenzothiophenes such as 4,6-dimethyldibenzothiophene having a substituent such as an alkyl group around the sulfur atom, which has been conventionally difficult to remove, have a methyl group. Since it itself is oxidized and converted to a carboxylic acid derivative that is hardly soluble in the fuel oil layer, it can be effectively removed from the oil layer. Therefore, according to the present invention, it is possible to desulfurize organic sulfur compounds contained in fuel, particularly 4,6-dimethyldibenzothiophene, to an ultra-deep depth of 50 ppm or less.
[Brief description of the drawings]
FIG. 1 is a graph showing changes in sulfur compound concentration when the photo-oxidation catalysts of Example 1 and Example 2 are used.

Claims (7)

記一般式(1)で示されるケギン構造を有するヘテロポリ酸化合物を含有することを特徴とする、燃料油に含まれる硫黄化合物の光酸化触媒。
Figure 0004061375
(式中、 [A] 3+ はヘテロポリ酸アニオンの対イオンを形成する原子もしくは原子団である)。
Characterized in that it contains a heteropolyacid compound having the Keggin structure represented by the following following general formula (1), of the sulfur compounds contained in the fuel oil photooxidation catalyst.
Figure 0004061375
( Where [A] 3+ Is an atom or atomic group forming a counter ion of the heteropolyacid anion).
へテロポリ酸化合物が、H3PW12O40又はその水和物であることを特徴とする請求項1に記載の光酸化触媒。The photooxidation catalyst according to claim 1, wherein the heteropolyacid compound is H 3 PW 12 O 40 or a hydrate thereof. 硫黄化合物が、有機硫黄化合物であることを特徴とする請求項1又は2に記載の光酸化触媒。  The photooxidation catalyst according to claim 1 or 2, wherein the sulfur compound is an organic sulfur compound. 有機硫黄化合物が、ジベンゾチオフェン類であることを特徴とする請求項3に記載の光酸化触媒。  The photo-oxidation catalyst according to claim 3, wherein the organic sulfur compound is dibenzothiophenes. ジベンゾチオフェン類が、そのモノアルキル又はジアルキル置換体であることを特徴とする請求項4に記載の光酸化触媒。  The photooxidation catalyst according to claim 4, wherein the dibenzothiophene is a monoalkyl or dialkyl-substituted product thereof. ジベンゾチオフェン類のジアルキル置換体が、4,6−ジメチル−ジベンゾチオフェンであることを特徴とする請求項5に記載の光酸化触媒。  6. The photooxidation catalyst according to claim 5, wherein the dialkyl-substituted product of dibenzothiophenes is 4,6-dimethyl-dibenzothiophene. 硫黄化合物を含む燃料油を、請求項1乃至6何れかに記載の光酸化触媒の存在下、光照射下で酸素又は酸素含有ガスにより酸化することを特徴とする燃料油の光酸化脱硫方法。  A fuel oil photooxidation desulfurization method comprising oxidizing a fuel oil containing a sulfur compound with oxygen or an oxygen-containing gas under light irradiation in the presence of the photooxidation catalyst according to any one of claims 1 to 6.
JP2003102380A 2003-04-07 2003-04-07 Photo-oxidation catalyst for sulfur compounds in fuel oil Expired - Lifetime JP4061375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003102380A JP4061375B2 (en) 2003-04-07 2003-04-07 Photo-oxidation catalyst for sulfur compounds in fuel oil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003102380A JP4061375B2 (en) 2003-04-07 2003-04-07 Photo-oxidation catalyst for sulfur compounds in fuel oil

Publications (2)

Publication Number Publication Date
JP2004305888A JP2004305888A (en) 2004-11-04
JP4061375B2 true JP4061375B2 (en) 2008-03-19

Family

ID=33465823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003102380A Expired - Lifetime JP4061375B2 (en) 2003-04-07 2003-04-07 Photo-oxidation catalyst for sulfur compounds in fuel oil

Country Status (1)

Country Link
JP (1) JP4061375B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004986A1 (en) * 2008-07-07 2010-01-14 株式会社 For-C Method for refining natural oil
CN101804357B (en) * 2010-04-07 2011-10-26 山东大学 Catalyst for deep desulfurization of fuel oil and application thereof in deep desulfurization of fuel oil

Also Published As

Publication number Publication date
JP2004305888A (en) 2004-11-04

Similar Documents

Publication Publication Date Title
Bhutto et al. Oxidative desulfurization of fuel oils using ionic liquids: A review
Wei et al. Performances, kinetics and mechanisms of catalytic oxidative desulfurization from oils
Al-Shahrani et al. Desulfurization of diesel via the H2O2 oxidation of aromatic sulfides to sulfones using a tungstate catalyst
Kianpour et al. A task-specific phosphonium ionic liquid as an efficient extractant for green desulfurization of liquid fuel: An experimental and computational study
US7758745B2 (en) Diesel desulfurization method
Mjalli et al. Deep oxidative desulfurization of liquid fuels
EP2001802B1 (en) Catalytic process for deep oxidative desulfurization of liquid transportation fuels
Sachdeva et al. Deep desulfurization of diesel via peroxide oxidation using phosphotungstic acid as phase transfer catalyst
US9499751B2 (en) Process for oxidative conversion of organosulfur compounds in liquid hydrocarbon mixtures
Lü et al. Oxidative desulfurization of model diesel via dual activation by a protic ionic liquid
Wan et al. Enhance efficiency of tetraoctylammonium fluoride applied to ultrasound-assisted oxidative desulfurization (UAOD) process
Rezvani et al. Deep catalytic oxidative desulfurization process catalyzed by TBA-PWFe@ NiO@ BNT composite material as an efficient and recyclable phase-transfer nanocatalyst
Rezvani et al. Green and efficient organic–inorganic hybrid nanocatalyst for oxidative desulfurization of gasoline
Liu et al. Oxidative desulfurization of fuel oil catalyzed by magnetically recoverable nano-Fe3O4/SiO2 supported heteropoly compounds
Rezvani et al. Facile synthesis of inorganic–organic Fe2W18Fe4@ NiO@ CTS hybrid nanocatalyst induced efficient performance in oxidative desulfurization of real fuel
EP1941005A2 (en) Diesel oil desulfurization by oxidation and extraction
CN103285923A (en) Oxidative desulfurization amphiphilic catalyst, and preparation method and applications thereof
Ahmad et al. Catalytic oxidative desulfurization of dibenzothiophene by composites based Ni/Al-Oxide
Li et al. Preparation of CeVO4/BNNS catalyst and its application in oxidation desulfurization of diesel oil
JP4061375B2 (en) Photo-oxidation catalyst for sulfur compounds in fuel oil
JP3564533B2 (en) Method for oxidative desulfurization of fuel oil
JP2008169297A (en) Desulfurizing agent for super-deep oxidative desulfurization and oxidative desulfurization method using the same
CN102430428A (en) Desulfurization application method of super-deep oxidative desulfurization catalyst
Kowsari Recent advances in the science and technology of desulfurization of diesel fuel using ionic liquids
JP3721403B2 (en) Method for oxidative desulfurization of fuel oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

R150 Certificate of patent or registration of utility model

Ref document number: 4061375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term