JP4061161B2 - Optical device manufacturing method - Google Patents

Optical device manufacturing method Download PDF

Info

Publication number
JP4061161B2
JP4061161B2 JP2002281916A JP2002281916A JP4061161B2 JP 4061161 B2 JP4061161 B2 JP 4061161B2 JP 2002281916 A JP2002281916 A JP 2002281916A JP 2002281916 A JP2002281916 A JP 2002281916A JP 4061161 B2 JP4061161 B2 JP 4061161B2
Authority
JP
Japan
Prior art keywords
optical fiber
optical
ferrule
optical device
reinforcing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002281916A
Other languages
Japanese (ja)
Other versions
JP2004117913A (en
Inventor
俊一 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2002281916A priority Critical patent/JP4061161B2/en
Publication of JP2004117913A publication Critical patent/JP2004117913A/en
Application granted granted Critical
Publication of JP4061161B2 publication Critical patent/JP4061161B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は光通信に用いる光ファイバスタブ及びその製造方法及びそれを用いた光デバイスに関する。
【0002】
【従来の技術】
光ファイバスタブ及びそれを用いた光デバイスは、光半導体素子(発光素子または受光素子)及びコネクタとの光接合部品として使用される。光コネクタと接続される面は、PC研磨されており最適な光結合を得るために光学研磨が施されている。
【0003】
また、コネクタ接続面側にはシングルモード光ファイバを一定長備えたFCコネクタ、SCコネクタ、MUコネクタ、LCコネクタ等が用いられたコネクタを有した構造のものもある。
【0004】
さらに、一端に光半導体素子を光接続させるためのレンズ部を備えた光ファイバを突出させた構造のものもある。
【0005】
さらにまた、基体であるフェルールに光アイソレータ、減衰器、フィルタ、レンズ等の光学素子を配設できる少なくとも1つの切り欠きを有するものがある。
【0006】
図6に上記従来の光ファイバスタブを用いた光デバイスの1例を示す。従来の光ファイバスタブを用いた光デバイスS1は、一端に光半導体素子(発光素子または受光素子)を光接続させるためのレンズ部9を備えた第1シングルモード光ファイバ1aの他端に、第1マルチモード光ファイバ2a、コアレス光ファイバ5、第2マルチモード光ファイバ2b、及び第2シングルモード光ファイバ1bを順次一列に接続して基体であるフェルール3の貫通孔4に挿入固定して成るとともに、コアレス光ファイバ5に形成した素子搭載用溝7に偏光子14a、14bでファラデー回転子15を挟むように一体成形後、切断して作製した光アイソレータ6を載置するとともに、光アイソレータ6の偏光子14a、14bの光入出射面とコアレス光ファイバ5の一端部との間に、屈折率をコアレス光ファイバ5に整合させた透光性の屈折率整合接着剤8を設けたものがある。
【0007】
【発明が解決しようとする課題】
しかしながら、図6に示すような従来の光ファイバスタブ及びそれを用いた光デバイスでは、一端を保持し他端に荷重が印加されるとフェルールに設けた切り欠きから折れてしまう恐れがあった。
【0008】
【課題を解決するための手段】
上記課題に鑑みて本発明は、円筒状の補強部材の内孔に1本のフェルールを圧入する工程と、前記フェルールを前記補強部材の内孔に圧入した後に、第1シングルモードファイバ、第1マルチモードファイバ、コアレスファイバ、第2マルチモードファイバ、および第2シングルモードファイバが順次一列に接続されてなる光ファイバ体を前記フェルールの貫通孔に固定し、前記補強部材、前記フェルール、および前記コアレスファイバを、前記貫通孔を横切るように切り欠いて、前記フェルールに素子搭載用溝を形成する工程と、前記素子搭載用溝に光学素子を載置する工程と、を含んでなることを特徴とする。
【0014】
【発明の実施の形態】
以下、本発明に係る実施の形態について模式的に示した図面に基づき詳細に説明する。なお、各図において同一部材については、同一符号を付し説明を省略するものとする。
【0015】
図1に本発明の実施形態である光ファイバスタブとこれを用いた光デバイスの断面図を示す。光デバイスS2は、基体であるフェルール3の貫通孔4内に、第1シングルモード光ファイバ1a、第1マルチモード光ファイバであるGIファイバ2a、コアを持たないコアレス光ファイバ5、第2マルチモード光ファイバであるGIファイバ2b、第2シングルモード光ファイバ1bを順次一列に接続した光ファイバ体Fを収納してなる。フェルール3から突出したシングルモード光ファイバの一端は、光半導体素子(発光素子または受光素子)と結合するために先球9が加工されており、他端はフェルール3の端面にて研磨加工もしくはシングルモード光ファイバを一定長備えた形の所謂ピグテイル形状としている。
【0016】
また、フェルール3内で分断されたコアレス光ファイバ5は素子搭載用溝7内に載置した光学素子(例えば光アイソレータ6)を介して光接続させるようにしている。
【0017】
そして、素子搭載用溝7の周囲を覆うように補強部材10を備えており、これによって切り欠きを有したフェルール3の抗折強度を容易に強くすることができる。
【0018】
ここで、円筒状の補強部材10の形状は図2(a)に示すように補強部材10の外周面に少なくとも1つの環状の凸部を有した形状のもの、図2(b)に示すように光学素子の出し入れが容易に可能となる、円筒状の補強部材10の外周面に少なくとも1つの切り欠きを有する形状のもの、図2(c)の断面図に示すように封止または整合用の接着剤を注入することが可能となる、円筒状の補強部材10の一部に少なくとも1つの孔を有するもの、圧入時の摩擦抵抗が少なく挿入性を良くできる図2(d)の断面図に示すように内周面に少なくとも2つ以上の凹部を有した形状又は図2(e)の断面図に示すように内周面に少なくとも1つの凹部又は少なくとも2つの凸部を有した形状のもの、又は図2(f)の断面図に示すように内周面の長手方向に少なくとも3つ以上の凸部、凹部を有したもの、図2(g)の断面図に示すように光モジュールとの嵌合の際、位置決めが容易な外周面の一部に少なくとも1つ以上の凸部を有するもの、又は図2(h)の断面図に示すように外周面の一部に少なくとも1つ以上の凹部を有するものも用いることができる。
【0019】
また、図3に示すものは、円筒状の補強部材10の内周面に1つの凹部10b又は2つの凸部10aを有した形状の円筒状の補強部材10を基体であるフェルール3に圧入固定してある。
【0020】
本発明で光ファイバスタブ及びそれを用いた光デバイスに使用するフェルール3はジルコニアやアルミナセラミックスの他、ガラス製や樹脂製も使用可能である。円筒状の補強部材10は円筒スリーブや割スリーブ、複数点支持スリーブが使用可能で、材質はステンレス等の金属の他ジルコニアやアルミナセラミックス等も使用可能である。
【0021】
また、円筒状の補強部材の厚みは圧入する基体であるフェルール3の外径の30%以上、長さはフェルール3の全長の30%以上が好ましい。
【0022】
次に本発明の光ファイバスタブ及びそれを用いた光デバイスの製造方法を説明する。光デバイスS2は、図4に示すように圧入用固定具11の中心にある貫通孔へ図3に示す外径3.5mm、長さ12.1mm、内径2.51mmの内周面には両端面から長さが2mmの環状の凸部10aを2つ有したステンレスの円筒状の補強部材10を挿入し、その上から圧入用ガイド12を被せ圧入用ガイドの中心にある貫通孔へ基体である直径2.499mm、長さ31mmのジルコニアフェルール3を挿入し、ハンドプレスを用いてフェルール3を円筒状の補強部材10に挿入固定した。
【0023】
ここで、円筒状の補強部材10を上記形状としたのは、従来の光ファイバスタブ及びそれを用いた光デバイスS1の基体であるフェルール3の形状が円筒状であり、補強部材10を円筒状とすることで光モジュールと勘合する部分の径を大きくするだけで容易に設計変更が出来る。
【0024】
また、円筒状の補強部材の内周面に長さ2mmの環状の2つの凸部10aを有したことで、基体であるフェルール3は長さ2mmの2つの環状の凸部10aで把持されるため合計長さ4mmと接触するだけとなり、長さ12.1mmと非常に長い円筒状の補強部材10を容易に圧入固定することができる。
【0025】
さらに、材質をステンレスとすれば光モジュールと補強部材10とをレーザー溶接することが可能となる。レーザー溶接は半田封止よりさらに簡便で短時間の工程であり、また、熱も局所的にしか発生しないため、光デバイスに内蔵されている光学素子やレーザーモジュール内の半導体素子に与える影響が少ない。
【0026】
これに第1シングルモード光ファイバ1a、第1マルチモード光ファイバであるGIファイバ2a、コアを持たないコアレス光ファイバ5、第2マルチモード光ファイバであるGIファイバ2b、第2シングルモード光ファイバ1bを順次一列に放電加工により融着接続し、最後に第1シングルモード光ファイバ1aの一端に研磨加工により先球9を形成した光ファイバ体Fをフェルール3の貫通孔4に挿入固定する。固定には接着剤を用いたが、気密性を高めるため、低融点ガラスや半田を用いても良い。他端はフェルール3の端面にて研磨加工もしくはシングルモード光ファイバを一定長備えた形の所謂ピグテイル形状としている。さらにコアレス光ファイバ5の部分で貫通孔4を横切るように幅1mmの素子搭載用溝7を形成し、そこに偏光子14a、14bでファラデー回転子15を挟むように一体成形後、切断して作製した光アイソレータ6を載置した。ここで、コアレス光ファイバ5と屈折率を整合させた紫外線硬化型接着剤や熱硬化型の接着剤8を用いて光アイソレータ6とコアレス光ファイバ5の間に充填接着し光デバイスS2を構成した。
【0027】
図示はしていないが、図1の光デバイスS2のレンズ部9を備えた第1シングルモード光ファイバ1A側には、不図示の光半導体素子(発光素子または受光素子)を搭載したモジュールが光接続され信号光を伝送できるようになっている。コネクタとの低接続損失を維持するために光デバイスS2のコネクタ接続面はPC研磨や、加工変質層を除去したPC研磨、またはシングルモード光ファイバを一定長備えたFCコネクタ、SCコネクタ、MUコネクタ、LCコネクタ等が用いられたコネクタを有した構造のものもある。素子搭載用溝7には光アイソレータ6の他に、減衰機、フィルタ、レンズ等の光学素子を配設したものがある。
【0028】
【実施例】
ここで、本発明における光ファイバ用スタブを用いた光デバイスと従来の光ファイバスタブを用いた光デバイスの抗折強度の比較を行った。
【0029】
図5に本発明の光ファイバスタブを用いた光デバイスS2と図示しない従来の光ファイバスタブを用いた光デバイスS1の抗折強度測定方法を模式的に示した。光デバイスS2の一端を強固に保持し、他端の端面から素子搭載用溝方向へ2mmの位置にプッシュプルゲージ13によって上方から基体であるフェルール3へ荷重を加え、光デバイスS2が折れるまでの荷重をプッシュプルゲージ13で測定し抗折強度を測定した。
【0030】
また、光デバイスS1においても同じ方法で測定した。
【0031】
【表1】

Figure 0004061161
【0032】
表1は上記本発明の光ファイバスタブを用いた光デバイスS2と従来の光ファイバスタブを用いた光デバイスS1の抗折強度を比較した表である。従来の光ファイバスタブを用いた光デバイスS1では抗折強度平均値が278.5kgf/mm2に対し、本発明の光ファイバスタブを用いた光デバイスS2では抗折強度平均値が904.5kgf/mm2と3.2倍抗折強度が強くなる。
【0033】
以上のように、本発明によれば、フェルールに設けた切り欠けに光学素子を載置し、この切り欠きの周囲を覆うように円筒状の補強部材を備えたことにより、作成容易で抗折強度が大幅に強い光デバイスを提供することができる。
【図面の簡単な説明】
【図1】本発明の光デバイスを示す断面図である。
【図2】 (a)〜(h)は本発明の光デバイスに用いる円筒状の補強部材のさまざまな形状を示す図である。
【図3】 本発明の光デバイスに用いる補強部材を示す断面図である。
【図4】 本発明の光デバイスの製造方法を示す断面図である。
【図5】 本発明の光デバイスの抗折強度測定方法を示す断面図である。
【図6】 従来の光デバイスを示す断面図である。
【符号の説明】
1a、1b:シングルモード光ファイバ
2a、2b:マルチモード光ファイバ
3:フェルール(基体)
4:貫通孔
5:コアレス光ファイバ
6:光アイソレータ
7:素子搭載用溝
8:屈折率整合接着剤
9:先球(レンズ部
10、10a、10b:円筒状部材(補強用部材)
11:圧入用固定具
12:圧入用ガイド
13:プッシュプルゲージ
14a、14b:偏光子
15:ファラデー回転子
F:光ファイバ体
S1、S2:光デバイス[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical fiber stub used for optical communication, a method for manufacturing the same, and an optical device using the same.
[0002]
[Prior art]
An optical fiber stub and an optical device using the optical fiber stub are used as an optical joining component with an optical semiconductor element (light emitting element or light receiving element) and a connector. The surface connected to the optical connector is PC-polished and optically polished to obtain optimum optical coupling.
[0003]
Some connectors have a structure using an FC connector, SC connector, MU connector, LC connector or the like having a single-mode optical fiber of a certain length on the connector connection surface side.
[0004]
Further, there is a structure in which an optical fiber provided with a lens portion for optically connecting an optical semiconductor element at one end is projected.
[0005]
Furthermore, there is a ferrule having at least one notch in which an optical element such as an optical isolator, an attenuator, a filter, and a lens can be disposed on a ferrule as a base.
[0006]
FIG. 6 shows an example of an optical device using the conventional optical fiber stub. An optical device S1 using a conventional optical fiber stub has a second end of a first single mode optical fiber 1a provided with a lens portion 9 for optically connecting an optical semiconductor element (light emitting element or light receiving element) at one end. 1 multi-mode optical fiber 2a, coreless optical fiber 5, second multi-mode optical fiber 2b, and second single-mode optical fiber 1b are sequentially connected in a row and inserted into a through-hole 4 of a ferrule 3 that is a base. At the same time, the optical isolator 6 formed by cutting and forming the Faraday rotator 15 integrally with the polarizers 14a and 14b is placed in the element mounting groove 7 formed in the coreless optical fiber 5, and the optical isolator 6 is mounted. The refractive index is matched to the coreless optical fiber 5 between the light incident / exit surfaces of the polarizers 14 a and 14 b and one end of the coreless optical fiber 5. There is provided an index matching adhesive 8 of the translucent.
[0007]
[Problems to be solved by the invention]
However, in the conventional optical fiber stub as shown in FIG. 6 and an optical device using the same, there is a possibility that it breaks from a notch provided in the ferrule when one end is held and a load is applied to the other end.
[0008]
[Means for Solving the Problems]
In view of the above problems, the present invention includes a step of press-fitting one ferrule into an inner hole of a cylindrical reinforcing member, a first single-mode fiber, a first step after press-fitting the ferrule into the inner hole of the reinforcing member . An optical fiber body in which a multimode fiber, a coreless fiber, a second multimode fiber, and a second single mode fiber are sequentially connected in a row is fixed to the through hole of the ferrule, and the reinforcing member, the ferrule, and the coreless A step of cutting a fiber so as to cross the through hole to form an element mounting groove in the ferrule; and a step of mounting an optical element in the element mounting groove. To do.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings schematically shown. In addition, in each figure, about the same member, the same code | symbol shall be attached | subjected and description shall be abbreviate | omitted.
[0015]
FIG. 1 shows a cross-sectional view of an optical fiber stub as an embodiment of the present invention and an optical device using the same. The optical device S2 includes a first single mode optical fiber 1a, a GI fiber 2a which is a first multimode optical fiber, a coreless optical fiber 5 having no core, and a second multimode in a through hole 4 of a ferrule 3 which is a base. An optical fiber body F in which a GI fiber 2b and a second single mode optical fiber 1b, which are optical fibers, are sequentially connected in a line is accommodated. One end of the single mode optical fiber protruding from the ferrule 3 has a tip 9 processed for coupling with an optical semiconductor element (light emitting element or light receiving element), and the other end is polished or single-ended at the end face of the ferrule 3. It is a so-called pigtail shape in which a mode optical fiber is provided with a certain length.
[0016]
Further, the coreless optical fiber 5 divided in the ferrule 3 is optically connected through an optical element (for example, an optical isolator 6) placed in the element mounting groove 7.
[0017]
And the reinforcing member 10 is provided so that the circumference | surroundings of the element mounting groove | channel 7 may be covered, and the bending strength of the ferrule 3 which has a notch by this can be strengthened easily.
[0018]
Here, the cylindrical reinforcing member 10 has a shape having at least one annular protrusion on the outer peripheral surface of the reinforcing member 10 as shown in FIG. 2A, as shown in FIG. 2B. The cylindrical reinforcing member 10 has a shape having at least one notch on the outer peripheral surface thereof, and can be sealed or aligned as shown in the sectional view of FIG. FIG. 2D is a cross-sectional view of FIG. 2D, in which at least one hole is formed in a part of the cylindrical reinforcing member 10 that can be injected with the adhesive of FIG. The shape having at least two concave portions on the inner peripheral surface as shown in FIG. 5 or the shape having at least one concave portion or at least two convex portions on the inner peripheral surface as shown in the sectional view of FIG. Or the inner peripheral surface as shown in the sectional view of FIG. At least one convex part having at least three convex parts and concave parts in the hand direction, at least one part of the outer peripheral surface that can be easily positioned when fitting with the optical module as shown in the sectional view of FIG. One having one or more convex portions or one having at least one concave portion on a part of the outer peripheral surface as shown in the cross-sectional view of FIG.
[0019]
3 shows that the cylindrical reinforcing member 10 having one concave portion 10b or two convex portions 10a on the inner peripheral surface of the cylindrical reinforcing member 10 is press-fitted and fixed to the ferrule 3 as a base. It is.
[0020]
The ferrule 3 used for the optical fiber stub and the optical device using the same in the present invention can be made of glass or resin in addition to zirconia or alumina ceramics. The cylindrical reinforcing member 10 can be a cylindrical sleeve, a split sleeve, or a multi-point support sleeve. The material can be a metal such as stainless steel, zirconia, alumina ceramics, or the like.
[0021]
The thickness of the cylindrical reinforcing member is preferably 30% or more of the outer diameter of the ferrule 3 which is a press-fitting base, and the length is preferably 30% or more of the entire length of the ferrule 3.
[0022]
Next, an optical fiber stub of the present invention and an optical device manufacturing method using the same will be described. As shown in FIG. 4, the optical device S2 is inserted into the through hole in the center of the press-fitting fixture 11 at both ends on the inner peripheral surface having an outer diameter of 3.5 mm, a length of 12.1 mm, and an inner diameter of 2.51 mm shown in FIG. A stainless steel cylindrical reinforcing member 10 having two annular projections 10a having a length of 2 mm from the surface is inserted, and a press-fitting guide 12 is covered from above to a through hole at the center of the press-fitting guide. A zirconia ferrule 3 having a diameter of 2.499 mm and a length of 31 mm was inserted, and the ferrule 3 was inserted and fixed to the cylindrical reinforcing member 10 using a hand press.
[0023]
Here, the cylindrical reinforcing member 10 has the above-mentioned shape because the shape of the ferrule 3 which is the base of the conventional optical fiber stub and the optical device S1 using the same is cylindrical, and the reinforcing member 10 is cylindrical. Thus, the design can be easily changed simply by increasing the diameter of the portion that fits into the optical module.
[0024]
Further, since the two annular convex portions 10a having a length of 2 mm are provided on the inner peripheral surface of the cylindrical reinforcing member, the ferrule 3 as a base is gripped by the two annular convex portions 10a having a length of 2 mm. Therefore, only the total length of 4 mm is brought into contact, and the very long cylindrical reinforcing member 10 having a length of 12.1 mm can be easily press-fitted and fixed.
[0025]
Furthermore, if the material is stainless steel, the optical module and the reinforcing member 10 can be laser-welded. Laser welding is a simpler and shorter process than solder sealing, and heat is only generated locally, so there is little effect on optical elements built in optical devices and semiconductor elements in laser modules. .
[0026]
This includes a first single mode optical fiber 1a, a GI fiber 2a which is a first multimode optical fiber, a coreless optical fiber 5 having no core, a GI fiber 2b which is a second multimode optical fiber, and a second single mode optical fiber 1b. Are sequentially fused and connected in a row by electric discharge machining, and finally, an optical fiber body F in which a tip ball 9 is formed by polishing at one end of the first single mode optical fiber 1a is inserted and fixed in the through hole 4 of the ferrule 3. Although an adhesive was used for fixing, low melting point glass or solder may be used in order to improve airtightness. The other end has a so-called pigtail shape in which the end surface of the ferrule 3 is polished or has a single-mode optical fiber having a certain length. Further, an element mounting groove 7 having a width of 1 mm is formed so as to cross the through-hole 4 at the coreless optical fiber 5, and the Faraday rotator 15 is integrally formed between the polarizers 14a and 14b, and then cut. The produced optical isolator 6 was placed. Here, an optical device S2 is configured by filling and bonding between the optical isolator 6 and the coreless optical fiber 5 using an ultraviolet curable adhesive or a thermosetting adhesive 8 whose refractive index is matched with that of the coreless optical fiber 5. .
[0027]
Although not shown, on the first single mode optical fiber 1A side provided with the lens portion 9 of the optical device S2 in FIG. 1, a module on which an optical semiconductor element (light emitting element or light receiving element) (not shown) is mounted is light. It is connected and can transmit signal light. To maintain a low connection loss with the connector, the connector connection surface of the optical device S2 is PC polished, PC polished with the work-affected layer removed, or FC connector, SC connector, MU connector with a single mode optical fiber having a certain length. There is also a structure having a connector using an LC connector or the like. In addition to the optical isolator 6, the element mounting groove 7 includes optical elements such as an attenuator, a filter, and a lens.
[0028]
【Example】
Here, the bending strength of the optical device using the optical fiber stub in the present invention and the optical device using the conventional optical fiber stub was compared.
[0029]
FIG. 5 schematically shows a bending strength measurement method for the optical device S2 using the optical fiber stub of the present invention and the optical device S1 using a conventional optical fiber stub not shown. One end of the optical device S2 is firmly held, and a load is applied from above to the ferrule 3 as a base by a push-pull gauge 13 at a position of 2 mm from the end face of the other end in the element mounting groove direction until the optical device S2 is broken. The load was measured with a push-pull gauge 13 to measure the bending strength.
[0030]
Further, the same measurement was performed for the optical device S1.
[0031]
[Table 1]
Figure 0004061161
[0032]
Table 1 is a table comparing the bending strengths of the optical device S2 using the optical fiber stub of the present invention and the optical device S1 using the conventional optical fiber stub. In the conventional optical device S1 using the optical fiber stub, the average bending strength is 278.5 kgf / mm 2, whereas in the optical device S2 using the optical fiber stub of the present invention, the average bending strength is 904.5 kgf / mm 2. mm 2 and 3.2 times higher bending strength.
[0033]
As described above, according to the present invention, the optical element is placed in the notch provided in the ferrule, and the cylindrical reinforcing member is provided so as to cover the periphery of the notch. An optical device with significantly high strength can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an optical device of the present invention.
FIGS. 2A to 2H are diagrams showing various shapes of a cylindrical reinforcing member used in the optical device of the present invention.
FIG. 3 is a cross-sectional view showing a reinforcing member used in the optical device of the present invention.
FIG. 4 is a cross-sectional view showing a method for manufacturing an optical device of the present invention.
FIG. 5 is a cross-sectional view showing a method for measuring the bending strength of an optical device according to the present invention.
FIG. 6 is a cross-sectional view showing a conventional optical device .
[Explanation of symbols]
1a, 1b: single mode optical fiber 2a, 2b: multimode optical fiber 3: ferrule (base)
4: Through hole 5: Coreless optical fiber 6: Optical isolator 7: Element mounting groove 8: Refractive index matching adhesive 9: Tip ball (lens portions 10, 10a, 10b: cylindrical member (reinforcing member)
11: Press-fit fixture 12: Guide for press-fit 13: Push-pull gauges 14a, 14b: Polarizer 15: Faraday rotator F: Optical fiber bodies S1, S2: Optical device

Claims (1)

円筒状の補強部材の内孔に1本のフェルールを圧入する工程と、
前記フェルールを前記補強部材の内孔に圧入した後に、第1シングルモードファイバ、第1マルチモードファイバ、コアレスファイバ、第2マルチモードファイバ、および第2シングルモードファイバが順次一列に接続されてなる光ファイバ体を前記フェルールの貫通孔に固定し、前記補強部材、前記フェルール、および前記コアレスファイバを、前記貫通孔を横切るように切り欠いて、前記フェルールに素子搭載用溝を形成する工程と、
前記素子搭載用溝に光学素子を載置する工程と、を含んでなる光デバイスの製造方法。
Pressing one ferrule into the inner hole of the cylindrical reinforcing member;
Light in which the first single mode fiber, the first multimode fiber, the coreless fiber, the second multimode fiber, and the second single mode fiber are sequentially connected in a line after the ferrule is press-fitted into the inner hole of the reinforcing member. Fixing a fiber body to the through-hole of the ferrule, cutting the reinforcing member, the ferrule, and the coreless fiber so as to cross the through-hole, and forming an element mounting groove in the ferrule; and
And a step of placing an optical element in the element mounting groove.
JP2002281916A 2002-09-26 2002-09-26 Optical device manufacturing method Expired - Fee Related JP4061161B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002281916A JP4061161B2 (en) 2002-09-26 2002-09-26 Optical device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002281916A JP4061161B2 (en) 2002-09-26 2002-09-26 Optical device manufacturing method

Publications (2)

Publication Number Publication Date
JP2004117913A JP2004117913A (en) 2004-04-15
JP4061161B2 true JP4061161B2 (en) 2008-03-12

Family

ID=32276241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002281916A Expired - Fee Related JP4061161B2 (en) 2002-09-26 2002-09-26 Optical device manufacturing method

Country Status (1)

Country Link
JP (1) JP4061161B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006047951A (en) * 2004-06-29 2006-02-16 Kyocera Corp Optical isolator
CN103940455B (en) * 2014-04-10 2017-03-29 华中科技大学 A kind of all -fiber high-precision sensor and its application based on optical fiber multiple-mode interfence
JP7071219B2 (en) * 2018-05-30 2022-05-18 京セラ株式会社 Isolator receptacles and optics

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100003A (en) * 1988-10-07 1990-04-12 Honda Tsushin Kogyo Kk Optical transmission member
JPH03107807A (en) * 1989-09-21 1991-05-08 Sumitomo Electric Ind Ltd Optical connector receptacle
JPH04223413A (en) * 1990-12-26 1992-08-13 Toshiba Corp Receptacle-type semiconductor laser module
JP2820817B2 (en) * 1991-07-04 1998-11-05 株式会社フジクラ Connector with filter
JPH0651163A (en) * 1992-08-03 1994-02-25 Emitsuto Seiko Kk Guide sleeve for optical fiber connector
TW257909B (en) * 1993-09-30 1995-09-21 Sumitomo Electric Industries
JP3142105B2 (en) * 1994-09-28 2001-03-07 日本電信電話株式会社 Optical attenuator and manufacturing method thereof
JP3427861B2 (en) * 1994-12-22 2003-07-22 住友電気工業株式会社 adapter
JP3181010B2 (en) * 1995-06-29 2001-07-03 京セラ株式会社 Split sleeve for optical connector
JP3400296B2 (en) * 1997-05-12 2003-04-28 ワイケイケイ株式会社 Sleeve for optical connector ferrule and method of manufacturing the same
JP3856954B2 (en) * 1998-06-17 2006-12-13 株式会社フジクラ Optical connector ferrule with filter
JP2001044553A (en) * 1999-07-29 2001-02-16 Kyocera Corp Fiber stub optical device and optical module using the same
JP2001215358A (en) * 2000-01-31 2001-08-10 Molex Inc Optical fiber ferrule and its manufacturing method
JP4369599B2 (en) * 2000-06-28 2009-11-25 京セラ株式会社 Optical fiber body and optical module including the same
JP2002243979A (en) * 2001-02-22 2002-08-28 Totoku Electric Co Ltd One hole multicore ferrule
JP2003295002A (en) * 2002-04-03 2003-10-15 Matsushita Electric Ind Co Ltd Optical transmission/reception module with ferrule and method of manufacturing the same
JP2004053651A (en) * 2002-07-16 2004-02-19 Matsushita Electric Ind Co Ltd Light transmission/reception module and its manufacture method
JP2004045567A (en) * 2002-07-09 2004-02-12 Sumitomo Electric Ind Ltd Optical module

Also Published As

Publication number Publication date
JP2004117913A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
US7512306B2 (en) Polarization maintaining fiber pigtail assembly
JP2013228678A (en) Communication light detecting connector
JP5583474B2 (en) Optical collimator and optical connector using the same
JP4061161B2 (en) Optical device manufacturing method
JP2011070101A (en) Optical fiber fixture and optical connector
JP2005338782A (en) Optical receptacle having lens and optical module using the optical receptacle
JPH0961673A (en) Optical semiconductor module
JP2003075688A (en) Optical module and method for manufacturing the same
JP2007178980A (en) Ferrule holder and eccentricity measuring apparatus using the same
JP2008083438A (en) Light receptacle and optical module using same
JPH0526168B2 (en)
JP4767121B2 (en) Fiber stub, optical receptacle and optical module using the same
JP2005062338A (en) Manufacturing method for optical connector
JP2006184338A (en) Optical receptacle and optical module using same
JP2005017540A (en) Optical receptacle and optical module using same
JP2006276734A (en) Optical receptacle and optical module using the same
JP2004258164A (en) Optical receptacle and optical module using the same
WO2022003880A1 (en) Optical component
JP4409303B2 (en) Optical receptacle and optical module using the same
JP2011242622A (en) Optical collimator and optical connector using the same
JP3914900B2 (en) Optical receptacle and method for manufacturing the same
JP2004233468A (en) Optical ferrule, and optical device and optical module using ferrule
JP2005338408A (en) Optical receptacle and optical module using same
JP2004294906A (en) Fiber stub, optical receptacle, and optical module using optical receptacle
JP2004325605A (en) Optical receptacle and optical module using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees