JP4060573B2 - Walking assist device - Google Patents

Walking assist device Download PDF

Info

Publication number
JP4060573B2
JP4060573B2 JP2001342408A JP2001342408A JP4060573B2 JP 4060573 B2 JP4060573 B2 JP 4060573B2 JP 2001342408 A JP2001342408 A JP 2001342408A JP 2001342408 A JP2001342408 A JP 2001342408A JP 4060573 B2 JP4060573 B2 JP 4060573B2
Authority
JP
Japan
Prior art keywords
leg
angle
pedestrian
walking
measuring means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001342408A
Other languages
Japanese (ja)
Other versions
JP2003135543A (en
Inventor
宗 平田
工藤  浩
久 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2001342408A priority Critical patent/JP4060573B2/en
Publication of JP2003135543A publication Critical patent/JP2003135543A/en
Application granted granted Critical
Publication of JP4060573B2 publication Critical patent/JP4060573B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、アクチュエータを介して歩行者の脚体に補助力を付与することで、該歩行者の歩行を補助する装置に関する。
【0002】
【従来の技術】
かかる歩行補助装置を使用することで、脚体等の筋力が低下した者でも階段や坂道の上り下り等の場合に苦を感じることなく歩行することができる。
【0003】
【発明が解決しようとする課題】
しかし、補助力ばかりに依存して歩行し続けると、脚体の筋力がほとんど使われずに減退するため、かかる事態を回避すべく脚体に付与される補助力は適度に抑制されることが好ましい。また、補助力が付与されるタイミングによっては歩行者は意図せぬ不自然な姿勢での歩行を強要されることになり不快感を抱きかねない。
【0004】
そこで、本発明は歩行者の筋力衰退等を防止しながら、歩行者に自然な姿勢での歩行を可能とする歩行補助装置を提供することを解決課題とする。
【0005】
【課題を解決するための手段】
第1発明の歩行補助装置は、アクチュエータを介して歩行者の脚体に補助力を付与することで、該歩行者の歩行を補助する装置であって、歩行者の脚体が着床状態と離床状態とのいずれであるかを判定する脚体状態判定手段と、歩行者の大腿部の鉛直方向に対する傾斜角度を、股関節を含み、基本前額面に平行な平面を基準として前方を正、後方を負として定義される第1角度として測定する第1角度測定手段と、歩行者の歩行速度を測定する歩行速度測定手段と、装置の利用に伴う負荷を補償する補償力が脚体に付与されるようにアクチュエータを制御するとともに、該脚体状態判定手段により離床状態にあると判定された脚体について、第1角度測定手段により測定された第1角度が0°〜+10°の範囲で、且つ、該歩行速度手段により測定された歩行速度が2.0[km/h]以上の場合にのみ前記補償力に加えて補助力が該脚体に付与されるようにアクチュエータを制御する制御手段とを備えていることを特徴とする。
【0006】
本願発明者の得た知見によれば、脚体が離床状態にあり、且つ、当該脚体の第1角度が0°〜+10°である場合、当該脚体の大腿部は慣性力により前方に振り上げられ、この振り上げには歩行者の筋力はほとんど用いられない。「第1角度」は鉛直方向に対する大腿部の傾斜角度であり、股関節を含み、基本前額面に平行な平面を基準として前方を正、後方を負として定義される。また、この場合、脚体に補助力が付与されても、当該脚体の姿勢は補助力が付与されない場合と比較して同等に維持される。
【0007】
したがって、第1発明の歩行補助装置によれば、本来筋力がほとんど用いられない状態で脚体に補助力が付与されるので、補助力の付与が当該筋力の低下を招く事態を回避することができる。また、補助力が脚体に付与されてもこれが付与されない場合と比較して当該脚体の姿勢は同等なので、歩行者に不自然な姿勢での歩行を強いる事態を回避することができる。
【0008】
第2発明の歩行補助装置は、第1発明の歩行補助装置において、歩行者の脚体の股関節角速度を測定する股関節角速度測定手段を備え、前記脚体状態判定手段は一の脚体について第1角度測定手段により測定された第1角度が正で該股関節角速度測定手段により測定された股関節角速度が正の所定角速度以上、且つ、他の脚体について第1角度測定手段により測定された第1角度が負で該股関節角速度測定手段により測定された股関節角速度が負の所定角速度以下の場合、該一の脚体が離床状態であり、該他の脚体が着床状態であると判定することを特徴とする。
【0009】
第2発明の歩行補助装置によれば、後述のように歩行時の左右脚体の動きに関する定性的考察に基づき、脚体が着床・離床いずれの状態にあるかを判定することができる。
【0010】
第3発明の歩行補助装置は、第1または第2発明の歩行補助装置において、歩行者の脛部の鉛直方向に対する傾斜角度を、膝関節を含み、基本前額面に平行な平面を基準として前方を正、後方を負として定義される第2角度として測定する第2角度測定手段と、歩行者の大腿部および脛部の長さを記憶保持する第1記憶手段とを備え、前記歩行速度測定手段は第1記憶手段に記憶保持されている大腿部および脛部の長さと、第1角度測定手段により測定された第1角度と、第2角度測定手段により測定された第2角度とに基づいて該歩行者の歩行速度を測定することを特徴とする。
【0011】
第3発明の運動補助装置によれば、後述のように歩行者の脚体の長さ、関節における折れ曲り具合に関する初歩的な幾何学的考察に基づき、歩行者の歩行速度を測定することができる。
【0012】
第4発明の歩行補助装置は、第1、第2または第3発明の歩行補助装置において、歩行者の歩行速度と、該歩行者の脚体に付与される補助力との相関関係を記憶保持する第2記憶手段と、前記歩行速度測定手段により測定された歩行速度と、第2記憶手段により記憶保持されている該相関関係とに基づいて前記アクチュエータを介して脚体に付与される補助力を決定する補助力決定手段とを備えていることを特徴とする。
【0013】
第4発明の歩行補助装置によれば、後述のように予め構築された対応関係に基づいて適切な補助力を歩行者の脚体に付与することができる。
【0014】
【発明の実施の形態】
本発明の歩行補助装置の実施形態について図面を用いて説明する。図1は本実施形態の歩行補助装置の構成説明図であり、図2は本実施形態の歩行補助装置の制御方法を示すフローチャートであり、図3は本実施形態の歩行補助装置における歩行速度の測定方法説明図であり、図4は本実施形態の歩行補助装置における脚体状態判定方法を示すフローチャートであり、図5は本実施形態の歩行補助装置による補助力の決定方法の説明図であり、図6は本実施形態の歩行補助装置による補助力の説明図であり、図7は本実施形態の歩行補助装置における第1角度θ1 −第2角度θ2 平面軌道図である。
【0015】
図1に示す歩行補助装置は、歩行者の腹部に取り付けられて股関節回りの補助力を付与する左右の股関節アクチュエータ11と、歩行者の膝部に取り付けられて膝関節回りの補助力を付与する左右の膝関節アクチュエータ12と、アクチュエータ11、12の作動等を制御する制御ユニット(制御手段)2と、アクチュエータ11、12に電力を供給するNi−MHバッテリ等のバッテリ3とを備えている。制御ユニット2及びバッテリ3は歩行者の背中に装着されるバックパック4の中に格納されている。
【0016】
股関節アクチュエータ11は歩行者の腰部、大腿部に取り付けられる胴部サポータ51及び大腿部サポータ52を介して股関節回りの補助力を付与する。膝関節アクチュエータ12は歩行者の大腿部、下腿部に取り付けられた大腿部サポータ52及び下腿部サポータ53を介して膝関節回りの補助力を付与する。
【0017】
また、歩行補助装置は、歩行者の上体部に取り付けられ、上体部の鉛直方向に対する角速度を測定するジャイロセンサ61と、前後方向の加速度を測定する前後加速度センサ62とを備えている。さらに、歩行者の腰部に取り付けられ、腰部の鉛直方向に対する角速度を測定するジャイロセンサ63と、前後方向、鉛直方向の加速度を測定する前後加速度センサ64、上下加速度センサ65とを備えている。また、歩行者の腰部にあって股関節角度、即ち、腰部に対する大腿部の角度φ1 を測定する左右の股関節角度センサ66と、膝部にあって膝関節角度、即ち、大腿部に対する脛部の角度φ2 を測定する左右の膝関節角度センサ67とを備えている。
【0018】
制御ユニット2は、脚体状態判定手段21と、第1角度測定手段221と、第2角度測定手段222と、股関節角速度測定手段223と、歩行速度測定手段224と、第1記憶手段231と、第2記憶手段232と、補助力決定手段24とを備えている。
【0019】
脚体状態判定手段21は後述のように第1角度測定手段221により測定される第1角度θ1 等に基づき、左右の脚体がそれぞれ足裏が着床している着床状態であるか、足裏が離床している離床状態であるかを判定する。
【0020】
第1角度測定手段221は腰部のジャイロセンサ63からの出力に基づき測定された鉛直方向に対する腰部の傾斜角度φと、股関節角度センサ66により測定された股関節角度φ1 とに基づいて第1角度(鉛直方向に対する大腿部の角度)θ1 を測定する。第2角度測定手段222は第1角度測定手段221により測定された第1角度θ1 と、膝関節角度センサ67により測定された膝関節角度φ2 とに基づいて第2角度(鉛直方向に対する脛部の角度)θ2 を測定する。股関節角速度測定手段223は股関節角度センサ66により測定される股関節角度φ1 を時間微分演算することで股関節角速度ω(=dφ1 /dt)を測定する。歩行速度測定手段224は第1、第2角度測定手段221、222により測定される第1、第2角度θ1 、θ2 等に基づき、歩行者の歩行速度vを測定する。
【0021】
第1記憶手段231はROM、RAM等により構成され、予め測定された歩行者の大腿部、下腿部の長さl1 、l2 を記憶保持する。第2記憶手段232は予め実験結果により構築され、歩行速度vと脚体に付与される補助力Fとの対応関係(図6参照)を記憶保持する。
【0022】
補助力決定手段24は後述のように歩行速度測定手段22により測定された歩行速度v等に基づき、アクチュエータ11、12を介して股関節、膝関節回りに付与される補助力を決定する。
【0023】
そして、制御ユニット2は補助力決定手段24により決定された補助力が付与されるようにアクチュエータ11、12の駆動モータ(図示略)の電流値を制御する。
【0024】
上記構成の歩行補助装置の機能について図2〜図7を用いて説明する。
【0025】
まず、第1角度測定手段221、第2角度測定手段222、股関節角速度測定手段223、歩行速度測定手段224により左右の脚体について第1角度θ1 、第2角度θ2 、股関節角速度ω、歩行速度vが測定される(図2s1)。
【0026】
具体的には第1角度測定手段222は、腰部のジャイロセンサ63により測定された鉛直方向に対する腰部の傾斜角度φと、股関節角度センサ66により測定された股関節角度φ1 を用い、次式(1)に従って第1角度θ1 を測定する(図3参照)。なお、腰部の傾斜角φは基本前額面(身体を前後に二分する垂直面)を基準として腰部が前方に傾斜した場合は正、後方に傾斜した場合は負として定義される。また、股関節角度φ1 は股関節を含み、基本前額面を当該股関節の上方で腰部と同じく傾斜角φだけ傾斜させた平面に対し、大腿部が前方にある場合を正、後方にある場合を負として定義される。さらに、第1角度θ1 は股関節を含み、基本前額面に平行な平面を基準として前方を正、後方を負として定義される。
【0027】
θ1 = φ1 − φ ‥(1)
【0028】
また、第2角度測定手段222は、第1角度測定手段221により測定された第1角度θ1 と、膝関節角度センサ67により測定された膝関節角度φ2 とを用い、次式(2)に従って第2角度θ2 を測定する(図3参照)。なお、膝関節角度φ2 は股関節を含み、基本前額面を当該股関節の下方で第1角度θ1 だけ傾斜させた平面に対し、脛部が前方にある場合を負、後方にある場合を正として定義される。また、第2角度θ2 は膝関節を含み、基本前額面に平行な平面を基準として前方を正、後方を負として定義される。
【0029】
θ2 = θ1 − φ2 ‥(2)
【0030】
さらに、股関節角速度測定手段223は股関節角度センサ66により測定された股関節角度φ1 を時間微分演算することで股関節角速度ω(=dφ1 /dt)を測定する。なお、股関節角速度ωは大腿部が歩行方向に移動する場合を正、大腿部が歩行方向の逆方向に移動する場合を負として定義される。
【0031】
また、歩行速度測定手段224は、歩行者の両脚体が着床状態(図3点線:時刻ti )になってから、一方の脚体を着床させたまま他方の脚体を離床させ、再度両脚体が着床状態(図3実線:時刻ti+1 )になるまでの移動距離、所要時間に基づいて歩行速度vを測定する。腰部の上下加速度センサ65の出力に基づいて測定される腰部の上方向の加速度が所定の閾値を越えたときをもって、両脚体が着床状態になった時刻とされる。また、当該時刻において第1、第2角度測定手段221、222により測定された第1、第2角度θ1 、θ2 と、第1記憶手段231により記憶保持されている歩行者の大腿部、脛部の長さl1 、l2 とに基づき、歩行速度vを幾何学的考察に基づく次式(3)に従って測定する。
【0032】
v=d/(ti+1 −ti )、
d=l1 sinθ1 (ti+1 )+l2 sinθ2 (ti+1
−l1 sinθ1 (ti )−l2 sinθ2 (ti ) ‥(3)
【0033】
続いて、脚体状態判定手段21が左右の脚体がそれぞれ離床状態にあるか着床状態にあるかを判定する(図2s2)。具体的には図4に示すように右脚体について第1角度θ1 が0以上か否か、股関節角速度ωが正の所定角速度c+ (>0)以上か否か、左脚体について第1角度θ1 が負か否か、股関節角速度ωが負の所定角速度c- (<0)以下か否かが判断される(s21a〜24a)。そして、これら4つの条件が全て満たされているとき(s21a〜24aの全部でYES)、右脚体が離床状態、左脚体が着床状態であると判定する(s25a)。
【0034】
また、いずれかの条件が満たされていないとき(s21a〜24aのいずれかでNO)、左脚体について第1角度θ1 が0以上か否か、股関節角速度ωが正の所定角速度c+ (>0)以上か否か、右脚体について第1角度θ1 が負か否か、股関節角速度ωが負の所定角速度c- (<0)以下か否かが判断される(s21b〜24b)。そして、これら4つの条件が全て満たされているとき(s21b〜24bの全てでYES)、右脚体が着床状態、左脚体が離床状態であると判定する(s25b)。なお、上記8つの条件の全てが満たされていないとき(s21a〜24a、21b〜24bの全てでNO)、第1角度θ1 、第2角度θ2 等があらためて測定される(図4A、図2s1)。
【0035】
脚体状態判定手段21により離床状態であると判定された脚体については、続いて、制御ユニット2によって第1角度θ1 が0°以上10°以下であるか否かが判断され(s3)、さらに歩行速度vが所定速度v0 =2.0[km/h]以上か否かが判断される(s4)。
【0036】
第1角度θ1 が0°以上10°以下、歩行速度vが所定速度v0 =2.0[km/h]以上であると判断された場合(s3、s4でYES)、補助力決定手段24が補助力を決定する(s5)。具体的には補助力決定手段24は第2記憶手段232により記憶保持されている歩行速度vと補助力との対応関係を読み取り、これと歩行速度測定手段224により測定された歩行速度vとに基づいて補助力を決定する。図5に歩行速度vと補助力との対応関係を示すが、歩行速度vが大きくなるほど補助力が大きく決定されることがわかる。
【0037】
続いて、制御ユニット2が股関節アクチュエータ11、必要に応じて適宜膝関節アクチュエータ12の駆動モータ(図示略)の電流値を制御することで、補助力決定手段24により決定された補助力が脚体に付与される(s6)。
【0038】
なお、制御ユニット2により股関節、膝関節アクチュエータ11、12を介してフリクション等、装置の使用に伴う負荷を定常的に補償する「補償力」が歩行者の脚体に付与される。従って「補償力」が脚体に付与されることで、本装置を装着した歩行者はあたかも本装置を装着していないときと同じ感覚で歩行することができる。また「補助力」は「補償力」に加えて付与され、これにより歩行者は本装置によりその歩行が補助されていることを実感することができる。
【0039】
図6に歩行時間に対し、股関節に対して付与される補助力がどのように決定・付与されるかを示す。当該脚体が離床状態、第1角度θ1 が0°以上10°以下、且つ、歩行速度vが所定速度v0 =2.0[km/h]以上である時間帯Rでは補償力(太線)に加え、補助力(細線)が付与されている。一方、時間帯Rを除く時間帯では補償力(太線)のみが付与されている。
【0040】
そして、装置の作動が停止されない限り(s7でNO)、上述の処理(s1〜s6)が繰り返し実行される。
【0041】
本装置によれば、脚体が離床状態で、第1角度θ1 が0°〜+10°である場合(図6の時間帯R)にのみ補償力(図6太線)に加えて補助力(図6細線)が付与される(図2s5)。この場合、本願発明者の知見によれば、当該脚体の大腿部は慣性力により前方に振り上げられ、この振り上げには歩行者の筋力はほとんど用いられない。従って、本装置によれば、本来筋力がほとんど用いられない状態で脚体に補助力が付与されるので、補助力の付与が当該筋力の低下を招く事態を回避することができる。
【0042】
ここで、図7に補償力のみが付与された場合の1歩行周期にわたるθ1 −θ2 軌跡(実線)と、離床状態の脚体の第1角度θ1 が0°〜+10°の範囲(一点鎖線で囲まれた範囲)内にあるときのみ補償力に加えて補助力が付与された場合の1歩行周期にわたるθ1 −θ2 軌跡(点線)とを示す。両軌跡を比較すると離床状態の脚体の第1角度θ1 が0°〜+10°の範囲ではほぼ同一の軌跡であり、全体としてもほぼ同形状である。これは、離床状態、且つ、第1角度θ1 が0°〜+10°の範囲にある脚体に補助力が付与されても当該脚体の姿勢は補助力が付与されない場合と比較して同等に維持され、歩行者に不自然な姿勢での歩行を強いる事態を回避することができることを意味する。
【0043】
さらに、歩行速度vが2.0[km/h])未満(図6の時間帯Rを除く時間帯)の場合は補助力は付与されない(図2s4、s5b)。歩行速度vが2.0[km/h]未満の場合、歩行者が意図的にゆっくりと歩行していると推認されるよう設定されているので、補助力が脚体に付与されることで歩幅が大きくなる等、歩行者がその意に反する歩行を強要される事態を回避することができる。なお、2.0[km/h]の値は適宜変更設定されてもよい。
【0044】
本実施形態では歩行速度v、第1角度θ1 により補助力の付与条件が特定されたが(図2s3、s4参照)、他の実施形態としてこれらに加えて第2角度θ2 や上体部の傾斜角度、股関節角速度ω1 =dφ1 /dt、膝関節角速度ω2 =dφ2 /dtにより当該条件が決定されてもよい。
【0045】
本実施形態では上式(3)に従って歩行速度vが測定されたが、他の実施形態として股関節角速度ω1 =dφ1 /dt、膝関節角速度ω2 =dφ2 /dtが股関節角度センサ66、膝関節角度センサ67の出力に基づいて測定された上で、歩行速度vが次式(4)に従って測定されてもよい。なお、前述のように股関節角速度ω1 は大腿部が歩行方向に移動する場合を正、大腿部が歩行方向の逆方向に移動する場合を負として定義される。また、膝関節角速度ω2 は膝関節が延びる方向を負、折れ曲る方向を正として定義される。
【0046】
v=l1 ω1 ・cosθ1 +l2 ω2 ・cosθ2 ‥(4)
【図面の簡単な説明】
【図1】本実施形態の歩行補助装置の構成説明図
【図2】本実施形態の歩行補助装置の制御方法を示すフローチャート
【図3】本実施形態の歩行補助装置における歩行速度の測定方法説明図
【図4】本実施形態の歩行補助装置における脚体状態判定方法を示すフローチャート
【図5】本実施形態の歩行補助装置による補助力決定方法の説明図
【図6】本実施形態の歩行補助装置による補助力の説明図
【図7】本実施形態の歩行補助装置における第1角度θ1 −第2角度θ2 平面軌道図
【符号の説明】
11‥股関節アクチュエータ、12‥膝関節アクチュエータ、2‥制御ユニット、21‥脚体状態判定手段、221‥第1角度測定手段、222‥第2角度測定手段、223‥股関節角速度測定手段、224‥歩行速度測定手段、231‥第1記憶手段、232‥第2記憶手段、24‥補助力決定手段、66‥股関節角度センサ、67‥膝関節角度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a device that assists the walking of a pedestrian by applying an assisting force to the leg of the pedestrian via an actuator.
[0002]
[Prior art]
By using such a walking assist device, even those who have weak muscles such as legs can walk without feeling painful when going up and down stairs or hills.
[0003]
[Problems to be solved by the invention]
However, if walking continues depending only on the assisting force, the muscle strength of the leg is reduced without being used, so that the assisting force applied to the leg is preferably moderately suppressed to avoid such a situation. . Moreover, depending on the timing at which the assisting force is applied, the pedestrian may be forced to walk in an unnatural posture, which may cause discomfort.
[0004]
Then, this invention makes it a solution subject to provide the walking assistance apparatus which enables a walker to walk with a natural attitude | position, preventing a pedestrian's muscle strength decline.
[0005]
[Means for Solving the Problems]
The walking assist device of the first invention is a device that assists the walking of the pedestrian by applying an assisting force to the pedestrian's leg through an actuator, and the pedestrian's leg is in a landing state. The leg state determination means for determining whether the bed is in a state of bed leaving, the inclination angle of the pedestrian's thigh with respect to the vertical direction , including the hip joint, the front is positive with reference to a plane parallel to the basic frontal plane, A first angle measuring means that measures the rear as a first angle defined as negative, a walking speed measuring means that measures the walking speed of the pedestrian, and a compensation force that compensates for the load associated with the use of the device is applied to the leg. The first angle measured by the first angle measuring means is in the range of 0 ° to + 10 ° with respect to the leg that is determined to be out of bed by the leg state determining means. And by the walking speed means Control means for controlling the actuator so that an auxiliary force is applied to the leg body in addition to the compensation force only when the measured walking speed is 2.0 [km / h] or more. Features.
[0006]
According to the knowledge obtained by the present inventor, when the leg is in a bed leaving state and the first angle of the leg is 0 ° to + 10 °, the thigh of the leg is moved forward by inertial force. The pedestrian's muscle strength is hardly used for this swing-up. The “first angle” is an inclination angle of the thigh with respect to the vertical direction, and is defined as positive on the front side and negative on the back side with respect to a plane including the hip joint and parallel to the basic frontal plane . Further, in this case, even if the assisting force is applied to the leg, the posture of the leg is maintained equivalent to the case where the assisting force is not applied.
[0007]
Therefore, according to the walking assist device of the first invention , the assisting force is applied to the leg in a state where essentially no muscle force is used, and therefore it is possible to avoid a situation where the application of the assisting force causes a decrease in the muscle strength. it can. Moreover, since the posture of the leg body is the same as the case where the assist force is applied to the leg body as compared with the case where the assist force is not applied, it is possible to avoid a situation in which the pedestrian is forced to walk in an unnatural posture.
[0008]
A walking assist device according to a second aspect of the present invention is the walking assist device according to the first aspect , further comprising hip joint angular velocity measuring means for measuring a hip joint angular velocity of a pedestrian's leg, wherein the leg state determining means is the first for one leg. The first angle measured by the angle measuring means is positive, the hip joint angular velocity measured by the hip joint angular velocity measuring means is not less than a predetermined positive angular velocity, and the first angle measured by the first angle measuring means for the other legs. If the hip joint angular velocity measured by the hip joint angular velocity measuring means is equal to or less than the negative predetermined angular velocity, the one leg is determined to be out of bed and the other leg is determined to be in the landing state. Features.
[0009]
According to the walking assist device of the second invention, it is possible to determine whether the leg is in the landing state or the leaving state based on the qualitative consideration regarding the movement of the left and right legs during walking as described later.
[0010]
The walking assist device of the third invention is the walking assist device of the first or second invention, wherein the inclination angle of the pedestrian's shin portion with respect to the vertical direction is forward with reference to a plane including the knee joint and parallel to the basic frontal plane. A second angle measuring means that measures the second angle defined as positive and backward as a negative angle, and a first storage means that stores and holds the lengths of the thighs and shins of the pedestrian. The measuring means includes the lengths of the thighs and shins stored and held in the first storage means, the first angle measured by the first angle measuring means, and the second angle measured by the second angle measuring means. The walking speed of the pedestrian is measured based on the above.
[0011]
According to the exercise assisting device of the third invention , the walking speed of the pedestrian can be measured based on elementary geometrical considerations regarding the length of the pedestrian's leg and the bending state of the joint as described later. it can.
[0012]
The walking assist device according to a fourth aspect of the present invention is the walking assist device according to the first, second or third aspect of the present invention, which stores and holds the correlation between the walking speed of the pedestrian and the assisting force applied to the leg of the pedestrian. Assisting force applied to the leg via the actuator based on the second storage means, the walking speed measured by the walking speed measuring means, and the correlation stored and held by the second storage means And an auxiliary force determining means for determining.
[0013]
According to the walking assist device of the fourth aspect of the present invention, an appropriate assisting force can be applied to the pedestrian's leg based on the correspondence established in advance as described below.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a walking assistance device of the present invention will be described with reference to the drawings. FIG. 1 is an explanatory diagram of the configuration of the walking assist device of the present embodiment, FIG. 2 is a flowchart showing a control method of the walking assist device of the present embodiment, and FIG. 3 shows the walking speed of the walking assist device of the present embodiment. FIG. 4 is a flowchart illustrating a method for determining leg state in the walking assist device of the present embodiment, and FIG. 5 is an explanatory diagram of a method for determining assisting force by the walking assist device of the present embodiment. FIG. 6 is an explanatory diagram of the assisting force by the walking assistance device of the present embodiment, and FIG. 7 is a plan view of the first angle θ 1 -second angle θ 2 in the walking assistance device of the present embodiment.
[0015]
The walking assist device shown in FIG. 1 is attached to a pedestrian's abdomen and applies left and right hip joint actuators 11 that apply auxiliary force around the hip joint, and attached to the pedestrian's knee and applies auxiliary force around the knee joint. It includes a left and right knee joint actuator 12, a control unit (control means) 2 that controls the operation of the actuators 11, 12, and a battery 3 such as a Ni-MH battery that supplies power to the actuators 11, 12. The control unit 2 and the battery 3 are stored in a backpack 4 that is worn on the back of a pedestrian.
[0016]
The hip joint actuator 11 provides an assisting force around the hip joint via the waist supporter 51 and the thigh supporter 52 attached to the waist and thighs of the pedestrian. The knee joint actuator 12 applies assisting force around the knee joint via a thigh supporter 52 and a lower leg supporter 53 attached to the thigh and lower leg of the pedestrian.
[0017]
The walking assist device includes a gyro sensor 61 that is attached to the body part of the pedestrian and that measures an angular velocity of the body part with respect to the vertical direction, and a longitudinal acceleration sensor 62 that measures acceleration in the longitudinal direction. Furthermore, it is provided with a gyro sensor 63 that is attached to the waist of the pedestrian and measures the angular velocity of the waist with respect to the vertical direction, a longitudinal acceleration sensor 64 that measures acceleration in the longitudinal direction and the vertical direction, and a vertical acceleration sensor 65. Further, the hip joint angle In the waist of the pedestrian, i.e., left and right hip joint angle sensor 66 for measuring the angle phi 1 of the thigh with respect to the waist, the knee joint angle In the knee, i.e., shin against the thigh the Department of angle phi 2 and a right and left knee joint angle sensor 67 that measures.
[0018]
The control unit 2 includes a leg state determination unit 21, a first angle measurement unit 221, a second angle measurement unit 222, a hip joint angular velocity measurement unit 223, a walking speed measurement unit 224, a first storage unit 231, Second storage means 232 and auxiliary force determination means 24 are provided.
[0019]
Whether the leg state determining means 21 is in a landing state where the left and right legs are respectively in contact with the soles based on the first angle θ 1 measured by the first angle measuring means 221 as described later. Then, it is determined whether the floor is in the state of getting out of bed.
[0020]
The first angle measuring means 221 uses the first angle (based on the inclination angle φ of the waist with respect to the vertical direction measured based on the output from the gyro sensor 63 of the waist and the hip joint angle φ 1 measured by the hip joint angle sensor 66). Measure the angle of the thigh (vertical direction) θ 1 . The second angle measuring means 222 is based on the first angle θ 1 measured by the first angle measuring means 221 and the knee joint angle φ 2 measured by the knee joint angle sensor 67. Part angle) θ 2 is measured. The hip joint angular velocity measuring means 223 measures the hip joint angular velocity ω (= dφ 1 / dt) by time-differentiating the hip joint angle φ 1 measured by the hip joint angle sensor 66. The walking speed measuring unit 224 measures the walking speed v of the pedestrian based on the first and second angles θ 1 and θ 2 measured by the first and second angle measuring units 221 and 222.
[0021]
The first storage means 231 is composed of a ROM, a RAM, and the like, and stores and holds the lengths l 1 and l 2 of the pedestrian's thigh and crus measured in advance. The second storage means 232 is constructed in advance by experimental results, and stores and holds the correspondence (see FIG. 6) between the walking speed v and the auxiliary force F applied to the legs.
[0022]
The assisting force determining means 24 determines the assisting force applied to the hip joint and the knee joint via the actuators 11 and 12 based on the walking speed v measured by the walking speed measuring means 22 as described later.
[0023]
And the control unit 2 controls the electric current value of the drive motor (not shown) of the actuators 11 and 12 so that the auxiliary force determined by the auxiliary force determining means 24 is applied.
[0024]
The function of the walking assistance device having the above configuration will be described with reference to FIGS.
[0025]
First, the first angle θ 1 , the second angle θ 2 , the hip joint angular velocity ω, the walking with respect to the left and right legs by the first angle measuring means 221, the second angle measuring means 222, the hip joint angular velocity measuring means 223, and the walking speed measuring means 224. The velocity v is measured (Fig. 2s1).
[0026]
Specifically, the first angle measurement means 222 uses the waist inclination angle φ with respect to the vertical direction measured by the waist gyro sensor 63 and the hip joint angle φ 1 measured by the hip joint angle sensor 66, and the following equation (1 ) To measure the first angle θ 1 (see FIG. 3). In addition, the inclination | tilt angle (phi) of a waist | hip | lumbar part is defined as positive when the waist | hip | lumbar part inclines forward on the basis of the basic frontal plane (vertical surface which bisects the body back and forth), and negative when it inclines back. Further, the hip joint angle φ 1 includes the hip joint, and the case where the thigh is in the front and the rear in the plane where the basic frontal plane is inclined by the tilt angle φ above the hip joint in the same manner as the waist. Defined as negative. Further, the first angle θ 1 includes the hip joint, and is defined as positive on the front and negative on the back with respect to a plane parallel to the basic frontal plane.
[0027]
θ 1 = φ 1 − φ (1)
[0028]
The second angle measuring means 222 uses the first angle θ 1 measured by the first angle measuring means 221 and the knee joint angle φ 2 measured by the knee joint angle sensor 67, and the following equation (2) Then, the second angle θ 2 is measured (see FIG. 3). Note that the knee joint angle φ 2 includes the hip joint, and is negative when the shin is forward and negative when it is behind the plane with the basic frontal plane inclined by the first angle θ 1 below the hip joint. Is defined as The second angle θ 2 includes the knee joint, and is defined as positive on the front and negative on the back with respect to a plane parallel to the basic frontal plane.
[0029]
θ 2 = θ 1 − φ 2 (2)
[0030]
Further, the hip joint angular velocity measuring means 223 measures the hip joint angular velocity ω (= dφ 1 / dt) by time-differentiating the hip joint angle φ 1 measured by the hip joint angle sensor 66. The hip joint angular velocity ω is defined as positive when the thigh moves in the walking direction and negative when the thigh moves in the opposite direction of the walking direction.
[0031]
Further, the walking speed measuring means 224 causes the other leg to leave the floor while one leg remains on the ground after both legs of the pedestrian are in the landing state (dotted line in FIG. 3: time t i ). The walking speed v is measured based on the moving distance and the required time until both legs again reach the landing state (solid line in FIG. 3: time t i + 1 ). The time when the upper body acceleration measured on the basis of the output of the waist vertical acceleration sensor 65 exceeds a predetermined threshold is the time when both legs are in the landing state. Further, the first and second angles θ 1 and θ 2 measured by the first and second angle measuring means 221 and 222 at the time, and the thigh of the pedestrian stored and held by the first storage means 231. Based on the lengths l 1 and l 2 of the shin part, the walking speed v is measured according to the following equation (3) based on geometric considerations.
[0032]
v = d / (t i + 1 −t i ),
d = l 1 sin θ 1 (t i + 1 ) + l 2 sin θ 2 (t i + 1 )
−l 1 sin θ 1 (t i ) −l 2 sin θ 2 (t i ) (3)
[0033]
Subsequently, the leg state determination means 21 determines whether the left and right legs are in a bed leaving state or a landing state (FIG. 2 s2). Specifically, as shown in FIG. 4, whether or not the first angle θ 1 is greater than or equal to 0 for the right leg, whether or not the hip joint angular velocity ω is greater than or equal to a predetermined positive angular velocity c + (> 0), It is determined whether or not one angle θ 1 is negative and whether or not the hip joint angular velocity ω is equal to or less than a predetermined negative angular velocity c (<0) (s21a to 24a). When all of these four conditions are satisfied (YES in all of s21a to 24a), it is determined that the right leg is in the leaving state and the left leg is in the landing state (s25a).
[0034]
Further, when any of the conditions is not satisfied (NO in any of s21a to 24a), the first angle θ 1 is 0 or more for the left leg, and the hip joint angular velocity ω is a positive predetermined angular velocity c + ( > 0) or more, whether or not the first leg θ 1 is negative for the right leg, and whether or not the hip joint angular velocity ω is equal to or less than a predetermined negative angular velocity c (<0) (s21b to 24b). . When all of these four conditions are satisfied (YES in all of s21b to 24b), it is determined that the right leg is in the landing state and the left leg is in the leaving state (s25b). When all of the above eight conditions are not satisfied (NO in all of s21a to 24a and 21b to 24b), the first angle θ 1 , the second angle θ 2, etc. are measured again (FIG. 4A, FIG. 2s1).
[0035]
For the leg that has been determined to be out of bed by the leg state determining means 21, it is subsequently determined by the control unit 2 whether or not the first angle θ 1 is between 0 ° and 10 ° (s3). Further, it is determined whether or not the walking speed v is equal to or higher than the predetermined speed v 0 = 2.0 [km / h] (s4).
[0036]
When it is determined that the first angle θ 1 is not less than 0 ° and not more than 10 ° and the walking speed v is not less than the predetermined speed v 0 = 2.0 [km / h] (YES in s3 and s4), the auxiliary force determining means 24 determines the assisting force (s5). Specifically, the auxiliary force determining means 24 reads the correspondence relationship between the walking speed v stored and held in the second storage means 232 and the auxiliary force, and converts this into the walking speed v measured by the walking speed measuring means 224. Auxiliary power is determined based on this. FIG. 5 shows a correspondence relationship between the walking speed v and the assisting force, and it can be seen that the assisting force is determined to be larger as the walking speed v increases.
[0037]
Subsequently, the control unit 2 controls the current value of the hip joint actuator 11 and, if necessary, the drive motor (not shown) of the knee joint actuator 12, so that the auxiliary force determined by the auxiliary force determining means 24 is the leg. (S6).
[0038]
The control unit 2 applies a “compensation force” to the pedestrian's legs through the hip joint and knee joint actuators 11 and 12 to steadily compensate for a load associated with the use of the apparatus, such as friction. Therefore, by providing “compensation power” to the leg, a pedestrian wearing this apparatus can walk with the same feeling as when not wearing this apparatus. In addition to the “compensation force”, the “assisting force” is given, so that the pedestrian can feel that the walking is assisted by this apparatus.
[0039]
FIG. 6 shows how the auxiliary force applied to the hip joint is determined and applied to the walking time. Compensation force (thick line) in the time zone R in which the leg is in a bed leaving state, the first angle θ 1 is 0 ° or more and 10 ° or less, and the walking speed v is a predetermined speed v 0 = 2.0 [km / h] or more. ) And auxiliary power (thin lines). On the other hand, only the compensation power (thick line) is applied in the time zone excluding the time zone R.
[0040]
Then, as long as the operation of the apparatus is not stopped (NO in s7), the above processing (s1 to s6) is repeatedly executed.
[0041]
According to the present apparatus, in addition to the compensation force (thick line in FIG. 6), the auxiliary force (the thick line in FIG. 6) is applied only when the leg is in a bed leaving state and the first angle θ 1 is 0 ° to + 10 ° (time zone R in FIG. 6). A thin line in FIG. 6 is given (FIG. 2 s5). In this case, according to the knowledge of the present inventor, the thigh of the leg is swung forward by the inertial force, and the muscular strength of the pedestrian is hardly used for this swinging up. Therefore, according to the present apparatus, since the assisting force is applied to the leg in a state where essentially no muscle force is used, it is possible to avoid a situation in which the application of the assisting force causes a decrease in the muscle strength.
[0042]
Here, the θ 12 trajectory (solid line) over one walking cycle when only the compensation force is given in FIG. 7 and the first angle θ 1 of the leg in the state of getting out of bed are in the range of 0 ° to + 10 ° ( A θ 12 trajectory (dotted line) over one walking cycle in the case where auxiliary force is applied in addition to compensation force only when it is within a range surrounded by a one-dot chain line). Comparing both trajectories, the first legs θ 1 of the legs in the state of getting out of bed are substantially the same in the range of 0 ° to + 10 °, and the overall shape is substantially the same. This is equivalent to the case where the assisting force is applied to the leg in the state of getting out of bed and the first angle θ 1 is in the range of 0 ° to + 10 ° compared to the case where the assisting force is not applied. This means that it is possible to avoid a situation in which a pedestrian is forced to walk in an unnatural posture.
[0043]
Further, when the walking speed v is less than 2.0 [km / h] (time zone excluding the time zone R in FIG. 6), no assisting force is applied (FIG. 2 s4, s5b). When the walking speed v is less than 2.0 [km / h], it is set so that the pedestrian is intentionally walking slowly, so that auxiliary power is applied to the leg. It is possible to avoid a situation in which a pedestrian is forced to walk contrary to his intention, such as an increase in stride. Note that the value of 2.0 [km / h] may be changed and set as appropriate.
[0044]
In this embodiment, the condition for applying the assisting force is specified by the walking speed v and the first angle θ 1 (see s3 and s4 in FIG. 2), but in addition to these, the second angle θ 2 and the body part are added. These conditions may be determined by the inclination angle, hip joint angular velocity ω 1 = dφ 1 / dt, and knee joint angular velocity ω 2 = dφ 2 / dt.
[0045]
In this embodiment, the walking speed v is measured according to the above equation (3). As another embodiment, the hip joint angular velocity ω 1 = dφ 1 / dt and the knee joint angular velocity ω 2 = dφ 2 / dt are the hip joint angle sensor 66, The walking speed v may be measured according to the following equation (4) after being measured based on the output of the knee joint angle sensor 67. As described above, the hip joint angular velocity ω 1 is defined as positive when the thigh moves in the walking direction and negative when the thigh moves in the direction opposite to the walking direction. The knee joint angular velocity ω 2 is defined as a direction in which the knee joint extends is negative and a direction in which the knee joint is bent is positive.
[0046]
v = l 1 ω 1 · cos θ 1 + l 2 ω 2 · cos θ 2 (4)
[Brief description of the drawings]
FIG. 1 is a diagram illustrating the configuration of a walking assistance device according to the present embodiment. FIG. 2 is a flowchart illustrating a control method for the walking assistance device according to the present embodiment. FIG. 4 is a flowchart showing a leg state determination method in the walking assist device of the present embodiment. FIG. 5 is an explanatory diagram of an assisting force determination method by the walking assist device of the present embodiment. FIG. 7 is a diagram illustrating the first angle θ 1 -second angle θ 2 plane trajectory in the walking assist device of the present embodiment.
DESCRIPTION OF SYMBOLS 11 ... Hip joint actuator, 12 ... Knee joint actuator, 2 ... Control unit, 21 ... Leg state determination means, 221 ... First angle measurement means, 222 ... Second angle measurement means, 223 ... Hip joint angular velocity measurement means, 224 ... Walking Speed measuring means, 231 ... first storage means, 232 ... second storage means, 24 ... auxiliary force determining means, 66 ... hip joint angle sensor, 67 ... knee joint angle sensor

Claims (4)

アクチュエータを介して歩行者の脚体に補助力を付与することで、該歩行者の歩行を補助する装置であって、
歩行者の脚体が着床状態と離床状態とのいずれであるかを判定する脚体状態判定手段と、
歩行者の大腿部の鉛直方向に対する傾斜角度を、股関節を含み、基本前額面に平行な平面を基準として前方を正、後方を負として定義される第1角度として測定する第1角度測定手段と、
歩行者の歩行速度を測定する歩行速度測定手段と、
装置の利用に伴う負荷を補償する補償力が脚体に付与されるようにアクチュエータを制御するとともに、該脚体状態判定手段により離床状態にあると判定された脚体について、第1角度測定手段により測定された第1角度が0°〜+10°の範囲で、且つ、該歩行速度手段により測定された歩行速度が2.0[km/h]以上の場合にのみ前記補償力に加えて補助力が該脚体に付与されるようにアクチュエータを制御する制御手段とを備えていることを特徴とする歩行補助装置。
A device for assisting the walking of the pedestrian by applying an assisting force to the leg of the pedestrian via an actuator,
Leg state determination means for determining whether the pedestrian's leg is in a landing state or a leaving state; and
First angle measuring means for measuring the inclination angle of the pedestrian's thigh with respect to the vertical direction as a first angle defined as positive forward and negative negative with respect to a plane including the hip joint and parallel to the basic frontal plane. When,
Walking speed measuring means for measuring the walking speed of the pedestrian,
The actuator is controlled so that a compensation force for compensating for a load associated with the use of the apparatus is applied to the leg, and the first angle measuring means for the leg determined to be in the bed leaving state by the leg state determining means. In addition to the compensation force only when the first angle measured by the step is in the range of 0 ° to + 10 ° and the walking speed measured by the walking speed means is 2.0 [km / h] or more. A walking assist device comprising: a control unit that controls the actuator so that force is applied to the leg.
請求項1記載の歩行補助装置において、
歩行者の脚体の股関節角速度を測定する股関節角速度測定手段を備え、
前記脚体状態判定手段は一の脚体について第1角度測定手段により測定された第1角度が正で該股関節角速度測定手段により測定された股関節角速度が正の所定角速度以上、且つ、他の脚体について第1角度測定手段により測定された第1角度が負で該股関節角速度測定手段により測定された股関節角速度が負の所定角速度以下の場合、該一の脚体が離床状態であり、該他の脚体が着床状態であると判定することを特徴とする歩行補助装置。
The walking assist device according to claim 1,
A hip joint angular velocity measuring means for measuring a hip joint angular velocity of a pedestrian's leg;
The leg state determining means is such that the first angle measured by the first angle measuring means for one leg is positive and the hip joint angular velocity measured by the hip joint angular velocity measuring means is equal to or greater than a positive predetermined angular velocity and the other leg. When the first angle measured by the first angle measuring means is negative and the hip joint angular velocity measured by the hip joint angular velocity measuring means is equal to or less than the negative predetermined angular velocity, the one leg is in the state of getting out of bed, It is determined that the leg of the person is in a landing state.
請求項1または2記載の歩行補助装置において、
歩行者の脛部の鉛直方向に対する傾斜角度を、膝関節を含み、基本前額面に平行な平面を基準として前方を正、後方を負として定義される第2角度として測定する第2角度測定手段と、
歩行者の大腿部および脛部の長さを記憶保持する第1記憶手段とを備え、
前記歩行速度測定手段は第1記憶手段に記憶保持されている大腿部および脛部の長さと、第1角度測定手段により測定された第1角度と、第2角度測定手段により測定された第2角度とに基づいて該歩行者の歩行速度を測定することを特徴とする歩行補助装置。
The walking assist device according to claim 1 or 2,
Second angle measuring means for measuring an inclination angle with respect to the vertical direction of the shin part of the pedestrian as a second angle defined as positive forward and negative negative with respect to a plane including the knee joint and parallel to the basic frontal plane. When,
First storage means for storing and holding the length of the thigh and shin of the pedestrian,
The walking speed measuring means stores the length of the thigh and shin stored in the first storage means, the first angle measured by the first angle measuring means, and the first angle measured by the second angle measuring means. A walking assist device that measures the walking speed of the pedestrian based on two angles.
請求項1、2または3記載の歩行補助装置において、
歩行者の歩行速度と、該歩行者の脚体に付与される補助力との相関関係を記憶保持する第2記憶手段と、前記歩行速度測定手段により測定された歩行速度と、第2記憶手段により記憶保持されている該相関関係とに基づいて前記アクチュエータを介して脚体に付与される補助力を決定する補助力決定手段とを備えていることを特徴とする歩行補助装置。
The walking assist device according to claim 1, 2, or 3,
Second storage means for storing and holding a correlation between the walking speed of the pedestrian and the assisting force applied to the leg of the pedestrian, walking speed measured by the walking speed measuring means, and second storage means A walking assisting device comprising: an assisting force determining means for determining an assisting force applied to the leg via the actuator based on the correlation stored and held by the actuator.
JP2001342408A 2001-11-07 2001-11-07 Walking assist device Expired - Fee Related JP4060573B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001342408A JP4060573B2 (en) 2001-11-07 2001-11-07 Walking assist device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001342408A JP4060573B2 (en) 2001-11-07 2001-11-07 Walking assist device

Publications (2)

Publication Number Publication Date
JP2003135543A JP2003135543A (en) 2003-05-13
JP4060573B2 true JP4060573B2 (en) 2008-03-12

Family

ID=19156273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001342408A Expired - Fee Related JP4060573B2 (en) 2001-11-07 2001-11-07 Walking assist device

Country Status (1)

Country Link
JP (1) JP4060573B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012219429B4 (en) * 2011-10-24 2020-08-13 Honda Motor Co., Ltd. Movement support device and gait support device

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3930399B2 (en) 2002-08-21 2007-06-13 本田技研工業株式会社 Walking assist device
JP4008464B2 (en) 2005-08-29 2007-11-14 本田技研工業株式会社 Motion induction device
JP4008465B2 (en) 2005-09-02 2007-11-14 本田技研工業株式会社 Motion induction device
JP3950149B2 (en) 2005-09-02 2007-07-25 本田技研工業株式会社 Exercise assistance device
JP2010148637A (en) * 2008-12-25 2010-07-08 Toyota Motor Corp Walking aid device
KR101073525B1 (en) * 2009-01-12 2011-10-17 한양대학교 산학협력단 Wearable robot for assisting the muscular strength of lower extremity
JP5507224B2 (en) * 2009-12-02 2014-05-28 学校法人 中村産業学園 Walking assistance robot
KR101171225B1 (en) 2009-12-29 2012-08-06 한국생산기술연구원 Sensor system for a user's intention following and walk supporting robot
JP5588724B2 (en) * 2010-04-23 2014-09-10 本田技研工業株式会社 Walking motion assist device
JP5433707B2 (en) * 2010-09-09 2014-03-05 パナソニック株式会社 Electric equipment
JP5747784B2 (en) * 2011-10-26 2015-07-15 トヨタ自動車株式会社 Walking assistance device and control method thereof
JP5779478B2 (en) * 2011-11-10 2015-09-16 本田技研工業株式会社 Force imparting device and control method thereof
JP5849657B2 (en) * 2011-11-30 2016-02-03 大日本印刷株式会社 Measuring device, motion assisting robot, measuring method, and program for measuring device
JP5954089B2 (en) * 2012-10-04 2016-07-20 トヨタ自動車株式会社 Walking assist device
JP5987742B2 (en) * 2013-03-25 2016-09-07 トヨタ自動車株式会社 Walking assistance device and walking assistance method
JP5706016B2 (en) * 2014-03-19 2015-04-22 学校法人 中村産業学園 Walking assistance robot
KR102429612B1 (en) 2015-07-27 2022-08-05 삼성전자주식회사 Method for walking assist, and devices operating the same
WO2019131386A1 (en) * 2017-12-27 2019-07-04 日本電産シンポ株式会社 Power assist suit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012219429B4 (en) * 2011-10-24 2020-08-13 Honda Motor Co., Ltd. Movement support device and gait support device

Also Published As

Publication number Publication date
JP2003135543A (en) 2003-05-13

Similar Documents

Publication Publication Date Title
JP4060573B2 (en) Walking assist device
JP4255744B2 (en) Control system for motion assist device
US7713217B2 (en) Torque imparting system
US9427373B2 (en) Wearable action-assist device and control program
CA2828420C (en) Gait training device and gait training system
US11148278B2 (en) Exoskeleton
US9839552B2 (en) Powered joint orthosis
US7153242B2 (en) Gait-locomotor apparatus
EP1835879B1 (en) Body weight support device and body weight support program
JP2002301124A (en) Walking assisting device
US8317732B2 (en) Motion assist device
KR102146363B1 (en) Wearable robot and control method for the same
KR102503955B1 (en) Method and apparatus for controlling balance
KR102546547B1 (en) Method and apparatus for assisting walking
JP5147595B2 (en) Control device and control method for walking assist device
Eguchi et al. Standing mobility device with passive lower limb exoskeleton for upright locomotion
KR102645075B1 (en) A motion assist apparatus and a method for controlling thereof
Lim et al. Development of a lower extremity exoskeleton robot with a quasi-anthropomorphic design approach for load carriage
Lee et al. A flexible exoskeleton for hip assistance
US20210401659A1 (en) Load reduction device, load reduction method, and storage medium for storing program therein
KR101787879B1 (en) Method of ZMP-based gait trajectory generation for control of wearable robot and control method of gait trajectory generation system
Tanaka et al. Walking assistance apparatus using a spatial parallel link mechanism and a weight bearing lift
Nie et al. Design of Wearable Robotic Support Limbs for Walking Assistance Based on Configurable Support Polygon
JP6544613B1 (en) Assist device, assist method and program
Nakamura et al. Control of model-based wearable anti-gravity muscles support system for standing up motion

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071220

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101228

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111228

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121228

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131228

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees