JP4057749B2 - Diffusion bonding method - Google Patents

Diffusion bonding method Download PDF

Info

Publication number
JP4057749B2
JP4057749B2 JP22398699A JP22398699A JP4057749B2 JP 4057749 B2 JP4057749 B2 JP 4057749B2 JP 22398699 A JP22398699 A JP 22398699A JP 22398699 A JP22398699 A JP 22398699A JP 4057749 B2 JP4057749 B2 JP 4057749B2
Authority
JP
Japan
Prior art keywords
mounting member
mounting
cylinder head
diffusion bonding
valve seat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22398699A
Other languages
Japanese (ja)
Other versions
JP2001050104A (en
Inventor
朋幸 橋本
真 佐藤
清信 溝上
孝治 上田
政克 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP22398699A priority Critical patent/JP4057749B2/en
Priority to EP00115918A priority patent/EP1074329B1/en
Priority to DE60010813T priority patent/DE60010813T2/en
Priority to US09/629,795 priority patent/US6321710B1/en
Publication of JP2001050104A publication Critical patent/JP2001050104A/en
Application granted granted Critical
Publication of JP4057749B2 publication Critical patent/JP4057749B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軸方向一方に向かうにつれて小径となる被取付け面を有する被取付け部材に、前記被取付け面に少なくとも外周部を対向させる対向端面を軸方向一端に有するとともに横断面円形の外側面を有する取付け部材、前記対向端面および前記外側面の連設部を被取付け面に最初に接触させつつ両部材の加熱状態で被取付け部材側に加圧る拡散接合方法に関する。
【0002】
【従来の技術】
このような方法による拡散接合構造は、たとえば特開平7−103070号公報、特開平7−189628号公報および特開平9−122924号公報等により既に知られており、これらの公報には、被取付け部材としてのシリンダヘッドに、該シリンダヘッドとは異なる材料から成る取付け部材としてのバルブシートが拡散接合される構造とその方法が開示されている。
【0003】
【発明が解決しようとする課題】
ところが、上記従来の拡散接合方法では、取付け部材のうち被取付け部材に接合される部分の接合前の外面が、直線の組み合わせから成る横断面形状を有しているために、前記直線部分で充分な塑性流動が生じないことにより、充分な接合強度が得られない。これは、取付け部材の被取付け部材側への加圧時に被取付け部材に最初に接触する先端部は鋭角に形成されているので、この部分では充分な塑性流動が生じて拡散接合層は充分に形成されるのであるが、直線状の断面形状を有して前記先端部に連なる部分では、前記先端部と比較して塑性流動物の滑り速度や塑性流動物の量が明らかに低下し、充分な拡散接合層が形成されないからであると思料される。
【0004】
また取付け部材の被取付け部材への接合深さは、取付け部材の被取付け部材への没入によって生じる塑性流動物の量に対応した抵抗値ならびに排出された前記塑性流動物が被取付け面および対向端面間に噛込むことで生じる抵抗値の和と、加圧力とのバランスで定まるものであるが、前記噛込みによる抵抗値のバラツキは非常に大きく、接合深さを精度よくコントロールするのが困難であった。
【0005】
本発明は、かかる事情に鑑みてなされたものであり、拡散接合時に取付け部材および被取付け部材間に生じる塑性流動物の滑り速度および塑性流動物の量の増大を図り、充分な接合強度を得ることができるようにするとともに、塑性流動物の噛込みによる抵抗値のバラツキを抑えて接合深さを精度よくコントロールし得るようにした拡散接合方法を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、請求項1記載の発明は、軸方向一方に向かうにつれて小径となる被取付け面を有する被取付け部材に、前記被取付け面に少なくとも外周部を対向させる対向端面を軸方向一端に有するとともに横断面円形の外側面を有する取付け部材、前記対向端面および前記外側面の連設部を被取付け面に最初に接触させつつ両部材の加熱状態で被取付け部材側に加圧る拡散接合方法において、取付け部材の被取付け部材への接合前に、前記連設部被取付け部材側に膨らんだ曲面状に形成るとともに、前記対向端面および外側面のうち被取付け部材に接合される部分前記連設部よりも曲率半径を大きくした曲面状に形成しておく一方、前記被取付け部材の被取付け面に、前記対向端面の外周部に対向する環状の底面と、該底面の外周縁から取付け部材側に立ち上がって該取付け部材の外側面に対向する内側面とで構成される接合凹部を設けておき、前記取付け部材の前記被取付け部材側への加圧時に、前記連設部を前記底面の外周部に接触させる第1のステップと、前記対向端面を前記底面に半径方向外方側から順次接触させる第2のステップと、前記外側面を前記内側面に軸方向内方側から順次接触させて加圧抵抗値を立ち上がらせる第3のステップとを、順次実行することを特徴とする。
【0007】
このような請求項1記載の発明の構成によれば、取付け部材および被取付け部材間に生じる塑性流動物の滑り速度および塑性流動物の量を増大し、良好な拡散接合により充分な接合強度を得ることができる。すなわち取付け部材のうち被取付け部材に接合される部分の接合前の外面形状が曲面であるものは、平坦面であるものに比べて、ストロークに対する塑性流動物の滑り速度を増大することが可能であり、取付け部材の被取付け部材側への加圧時に被取付け部材に被取付け面に最初に接触する連設部が、曲率半径を比較的小さくした曲面に形成されているので、その連設部の被取付け部材への没入により生じる塑性流動物の量を大とすることができ、また対向端面および外側面のうち被取付け部材に接合される部分が前記連設部よりも曲率半径を大きくした曲面状にそれぞれ形成されているので、塑性流動物の滑り速度を増大して塑性流動物を積極的に排出することができる。そして、前記取付け部材の前記被取付け部材側への加圧時の第1ステップでは、取付け部材の連設部が被取付け部材に没入することで塑性流動物が発生するのに応じて抵抗値が急激に増大するが、第2ステップでは取付け部材の対向端面が接合凹部の底面に半径方向外方側から順次接触することで前記抵抗値が徐々に増大し、さらに第3ステップでは、前記連設部および対向端面に加えて取付け部材の外側面が接合凹部の内側面に没入することで、前記抵抗値が大きく立上がることになるから、取付け部材の被取付け部材側への加圧時に、各ステップ毎に抵抗値の変化特性を異ならせ、目標接合深さ直前の接合終期に、抵抗値を大きく立ち上がらせる設定とすることで、加圧を停止するタイミングを精度よく定めることが可能となり、接合深さのコントロール精度を向上することができる。
【0008】
また請求項2記載の発明は、上記請求項1記載の発明の構成に加えて、取付け部材の被取付け部材への接合前に、前記対向端面のうち被取付け部材に接合される部分よりも半径方向内方に、被取付け面および対向端面の接合界面から排出される塑性流動物を受け入れる環状の凹部を形成しておくことを特徴とする。
【0009】
このような請求項2記載の発明の構成によれば、対向端面のうち被取付け部材に接合される部分よりも半径方向内方に環状の凹部が形成されているので、対向端面および被取付け面間から前記半径方向内方側に排出される塑性流動物を前記凹部内に逃がすことができ、排出された前記塑性流動物が被取付け面および対向端面間に噛込むことで生じる加圧抵抗値のバラツキを最少限に抑え、接合深さをより精度よくコントロールすることが可能となる。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態を、添付の図面に示した本発明の一実施例に基づいて説明する。
【0011】
図1〜図7は本発明の一実施例を示すものであり、図1は4サイクルエンジンの要部縦断面図、図2はバルブシート素材のシリンダヘッドへの拡散接合直前の状態を示す縦断面図、図3は図2の要部拡大図、図4は拡散接合過程終了時の図3に対応した断面図、図5は拡散接合過程を順次説明するための断面図、図6は塑性流動物の滑り速度を説明するための図、図7は拡散接合過程での抵抗値の変化を示す図である。
【0012】
先ず図1において、4サイクルエンジンのシリンダブロック11に設けられたシリンダ孔12に摺動可能に嵌合されるピストン(図示せず)と、シリンダブロック11に結合される被取付け部材としてのシリンダヘッド13との間には、燃焼室14が形成されており、シリンダヘッド13には、燃焼室14に通じ得る吸気ポート15および排気ポート16が設けられる。
【0013】
吸気ポート15および排気ポート16の燃焼室14への開口端で、シリンダヘッド13にはバルブシート17,18が接合されており、それらのバルブシート17,18に着座可能なシート部19a,20aを備える吸気バルブ19および排気バルブ20のステム部19b,20Bが、シリンダヘッド13に設けられたガイド筒21,22にそれぞれ摺動可能に嵌合される。しかも前記各ステム部19b,20bはガイド筒21,22から上方に突出するものであり、各ステム部19b,20bの上端およびシリンダヘッド13間に、吸気バルブ19および排気バルブ20を上方、すなわちシート部19a,20aをバルブシート17,18に着座させて吸気ポート15および排気ポート16を閉じる方向に付勢するばね23,24が設けられる。また各ステム部19b,20bの上端には図示しない動弁装置が連結されており、該動弁装置で吸気バルブ19および排気バルブ20が開閉駆動される。
【0014】
ところでバルブシート17,18は、一般的には圧入によりシリンダヘッド13に組付けられるのであるが、近年のエンジンレイアウトでは、吸気バルブ19および排気バルブ20が近接して配置されており、従来の圧入式では、より大きなバルブ径としたり、高圧縮比化を図ったりするために燃焼室14の周囲のレイアウトを変更するにあたっての自由度が殆どない状態である。そこで上記圧入式に代えて、シリンダヘッド13にバルブシート17,18を直接接合すると、バルブシート17,18の薄肉化によって前記レイアウトの自由度を大幅に向上させたり、バルブシート17,18を介しての熱伝達性が改善されることによる吸気および排気バルブ19,20、バルブシート17,18および燃焼室14の温度を低減することが可能であり、エンジン性能の大幅向上を期待することができる。この際、バルブシート17,18が、シリンダヘッド13とは異なる金属であっても拡散接合することで充分な接合強度を得ることが可能である。
【0015】
図2において、シリンダヘッド13には、取付け部材としてのバルブシート素材25が拡散接合され、接合後のバルブシート素材25に機械加工を施すことでバルブシート17,18が形成される。
【0016】
而してシリンダヘッド13としては、軽量かつ熱伝達性に優れた金属であるアルミニウム合金鋳物が用いられ、バルブシート素材25としては、たとえば耐摩耗性に優れた鉄系の焼結合金や、冷却・熱伝導性に優れたCu−Be合金等が用いられる。
【0017】
シリンダヘッド13における吸気および排気ポート15,16の燃焼室14側開口端には、軸方向に沿って燃焼室14から離反するにつれて小径となる被取付け面26が形成される。一方、バルブシート素材25は、前記被取付け面25に外周部を対向させる対向端面27を軸方向一端に有するとともに横断面円形の外側面28を有してリング状に形成される。
【0018】
バルブシート素材25は、該バルブシート素材25およびシリンダヘッド13の加熱状態でシリンダヘッド13の被取付け面26側に一定の加圧力で加圧されることにより、被取付け面26に拡散接合される。而して前記加熱状態は、バルブシート素材25をシリンダヘッド13の被取付け面26に接触させつつバルブシート素材25およびシリンダヘッド13に短時間に大電流を通電することにより、バルブシート素材25およびシリンダヘッド13の接触面がジュール発熱で発熱することにより得られる。
【0019】
図3において、バルブシート素材25は、該バルブシート素材25のシリンダヘッド13側への加圧時に前記対向端面27および外側面28の連設部29をシリンダヘッド13に最初に接触させるものであり、対向端面27の外周側の部分27aならびに外側面28の対向端面27側の部分28aと、前記連設部29とがシリンダヘッド13に拡散接合される。
【0020】
而してバルブシート素材25のうちシリンダヘッド13に接合される前に、前記連設部29は、シリンダヘッド13側に曲率半径R1で膨らんだ曲面状に形成され、対向端面27の外周側の部分27aは前記連設部29よりも大きな曲率半径R2でシリンダヘッド13側に膨らんだ曲面状に形成され、外側面28の対向端面27側の部分28aも前記連設部29よりも大きな曲率半径R3でシリンダヘッド13側に膨らんだ曲面状に形成される。
【0021】
また前記対向端面27のうちシリンダヘッド13に接合される部分27aよりも半径方向内方には環状の凹部32が形成され、この凹部32には、図4で示すように、被取付け面26および対向端面27の接合界面から排出される塑性流動物33を受け入れることが可能である。
【0022】
図3に注目して、バルブシート素材25のシリンダヘッド13への接合前に、シリンダヘッド13の被取付け面26には、バルブシート素材25における対向端面27の外周部に対向する環状の底面34aと、該底面34aの外周縁からバルブシート素材25側に立ち上がって該バルブシート素材25の外側面28に対向する内側面34bとで構成される接合凹部34が設けられる。
【0023】
しかも前記底面34aおよび前記内側面34bは、バルブシート素材25の被取付け面26側への加圧時に、図5(a)で示すように、前記連設部29前記底面34aの外周部に接触させる第1のステップと、図5(b)で示すように、前記対向端面27前記底面34aに半径方向外方側から順次接触させる第2のステップと、図5(c)で示すように、前記外側面28前記内側面34bに軸方向内方側から順次接触させて加圧抵抗値を立ち上がらせる第3のステップと順次実行されるように形成される。
【0024】
次にこの実施例の作用について説明すると、バルブシート素材25を、該バルブシート素材25およびシリンダヘッド13の加熱状態でシリンダヘッド13側に加圧すると、バルブシート素材25およびシリンダヘッド13の接触面で滑り変形が生じ、バルブシート素材25およびシリンダヘッド13の表面の酸化皮膜、異物および金属間化合物が、図4で示すように塑性流動物33として接合界面から排出されることになり、前記接合界面での微細凹凸や原子間空孔が消失し、極めて清浄で雰囲気ガスのない接触面が形成されることになる。しかも加熱状態での清浄面同士の接触により金属内自由電子が活性化され、バルブシート素材25およびシリンダヘッド13間での原子の粒内・粒界拡散が生じることで、バルブシート素材25がシリンダヘッド13に拡散接合される。
【0025】
ところで、バルブシート素材25のうちシリンダヘッド13に接合される部分の接合前の外面形状が曲面で形成されるものは、平坦面であるものに比べて、加圧ストロークに対する塑性流動物33の滑り速度を増大することが可能である。すなわち塑性流動物33が、図6(a)で示す曲面を滑るときの滑り距離L1は、図6(b)で示す平坦面を滑るときの滑り距離L2に対して、同一の加圧ストロークSでは大(L1>L2)となるものであり、バルブシート素材25のうちシリンダヘッド13に接合される部分の接合前の外面形状が曲面で形成されるものは、平坦面であるものに比べて滑り速度が大となるのである。
【0026】
しかるにバルブシート素材25のシリンダヘッド13側への加圧時に最初にシリンダヘッド13に接触する連設部29が、曲率半径R1を比較的小さくして形成されているので、その先端側の連設部29のシリンダヘッド13への没入により生じる塑性流動物33の量を大とすることができ、また前記連設部29に連なる部分27a,28aも曲面状形成されているので、塑性流動物33の滑り速度を増大して塑性流動物33を積極的に排出することができる。したがってバルブシート素材25をシリンダヘッド13に良好に拡散接合して充分な接合強度を得ることが可能となる。
【0027】
またバルブシート素材25のシリンダヘッド13への接合深さは、バルブシート素材25のシリンダヘッド13への没入によって生じる塑性流動物33の量に対応した抵抗値ならびに排出された前記塑性流動物33が被取付け面26および対向端面27間に噛込むことで生じる抵抗値の和と、加圧力とのバランスで定まるものであるが、前記噛込みによる抵抗値のバラツキは非常に大きく、そのバラツキを放置したままでは接合深さを精度よくコントロールするのが困難である。
【0028】
しかるに対向端面27のうちシリンダヘッド13に接合される部分よりも半径方向内方には環状の凹部32が形成され、この凹部32には、塑性流動物33を受け入れることが可能である。したがって対向端面27および被取付け面26間から内方側に排出される塑性流動物33を凹部32内に逃がすことができ、排出された前記塑性流動物33が被取付け面26および対向端面27間に噛込むことで生じる加圧抵抗値のバラツキを最少限に抑え、接合深さをより精度よくコントロールすることが可能となる。
【0029】
またバルブシート素材25のシリンダヘッド13への接合前に、シリンダヘッド13の被取付け面26には、環状の底面34aと、該底面34aの外周縁からバルブシート素材25側に立ち上がる内側面34bとで構成される接合凹部34が設けられており、底面34aおよび内側面34bは、バルブシート素材25の被取付け面26側への加圧時に、バルブシート素材25の連設部29前記底面34aの外周部に接触させる第1のステップと、バルブシート素材25の対向端面27前記底面34aに半径方向外方側から順次接触させる第2のステップと、バルブシート素材25の外側面28前記内側面34bに軸方向内方側から順次接触させる第3のステップとが順次実行されるように形成されており、このような接合凹部34により、加圧を停止するタイミングを精度よく定めて接合深さのコントロール精度をより向上することができる。
【0030】
図7において、第1ステップではバルブシート素材25の連設部29がシリンダヘッド13に没入することで塑性流動物が発生するのに応じて抵抗値が急激に増大するが、第2ステップではバルブシート素材25の対向端面27が接合凹部34の底面34aに半径方向外方側から順次接触することで前記抵抗値が徐々に増大し、さらに第3ステップでは、前記連設部29および対向端面27に加えてバルブシート素材25の外側面28が接合凹部34の内側面34bに没入するので、前記抵抗値が大きく立上がることになる。すなわちバルブシート素材25をシリンダヘッド13側に一定の加圧力で加圧する際に、各ステップ毎に抵抗値の変化特性を異ならせ、抵抗値が大きく立ち上がる最終の第3ステップでバルブシート素材25を加圧する一定の加圧力と抵抗値(加圧に対する反力)とを釣合わせることにより、目標接合深さを精度よく得ることが可能となり、接合深さのコントロール精度をより向上することができる。
【0031】
以上、本発明の実施例を詳述したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明を逸脱することなく種々の設計変更を行なうことが可能である。
【0032】
たとえば本発明は、バルブシート素材25のシリンダヘッド13への拡散接合構造に限定されるものではなく、取付け部材の被取付け部材への拡散接合構造に広く適用可能である。
【0033】
【発明の効果】
以上のように請求項1記載の発明によれば、取付け部材および被取付け部材間に生じる塑性流動物の滑り速度および塑性流動物の量を増大し、良好な拡散接合により充分な接合強度を得ることができ、しかも、取付け部材の被取付け部材側への加圧時に目標接合深さ直前の接合終期に、抵抗値を大きく立ち上がらせる設定とすることで、加圧を停止するタイミングを精度よく定めることが可能となり、接合深さのコントロール精度をより向上することができる。
【0034】
また請求項2記載の発明によれば、排出された塑性流動物が被取付け面および対向端面間に噛込むことで生じる加圧抵抗値のバラツキを最少限に抑え、接合深さをより精度よくコントロールすることが可能となる。
【図面の簡単な説明】
【図1】 4サイクルエンジンの要部縦断面図である。
【図2】 バルブシート素材のシリンダヘッドへの拡散接合直前の状態を示す縦断面図である。
【図3】 図2の要部拡大図である。
【図4】 拡散接合過程終了時の図3に対応した断面図である。
【図5】 拡散接合過程を順次説明するための断面図である。
【図6】 塑性流動物の滑り速度を説明するための図である。
【図7】 拡散接合過程での抵抗値の変化を示す図である。
【符号の説明】
13・・・被取付け部材としてのシリンダヘッド
25・・・取付け部材としてのバルブシート素材
26・・・被取付け面
27・・・対向端面
27a・・・対向端面のうち被取付け部材に接合される部分
28・・・外側面
28a・・・外側面のうち被取付け部材に接合される部分
29・・・連設部
32・・・凹部
34・・・接合凹部前
34a・・・底面
34b・・・内側面
[0001]
BACKGROUND OF THE INVENTION
The present invention has a mounting member having a mounting surface that decreases in diameter toward one side in the axial direction, and has an opposing end surface at one end in the axial direction facing at least the outer peripheral portion to the mounting surface and an outer surface having a circular cross section. a mounting member having, on diffusion bonding how to pressure the the mating member side in a heated state of the first contacts are allowed while the members of the joint portion of the facing end surface and said outer surface the mounting surface.
[0002]
[Prior art]
Diffusion bonding structures by such a method are already known, for example, from JP-A-7-103070, JP-A-7-189628, JP-A-9-122924, and the like. A structure and method are disclosed in which a valve seat as an attachment member made of a material different from that of the cylinder head is diffusion bonded to the cylinder head as a member.
[0003]
[Problems to be solved by the invention]
However, in the conventional diffusion bonding method , since the outer surface of the attachment member before joining the portion to be attached to the attached member has a cross-sectional shape composed of a combination of straight lines, the straight portion is sufficient. Since sufficient plastic flow does not occur, sufficient joint strength cannot be obtained. This is because the tip portion that first contacts the mounted member when the mounting member is pressed to the mounted member side is formed at an acute angle, so that sufficient plastic flow occurs in this portion, and the diffusion bonding layer is sufficiently formed. Although it is formed, the sliding speed of the plastic fluid and the amount of the plastic fluid are clearly reduced in the portion having a linear cross-sectional shape and continuing to the tip portion, compared with the tip portion. It is thought that this is because a new diffusion bonding layer is not formed.
[0004]
Further, the joining depth of the mounting member to the mounted member is the resistance value corresponding to the amount of the plastic fluid generated by the immersion of the mounting member into the mounted member, and the discharged plastic fluid is the mounted surface and the opposed end surface. It is determined by the balance between the sum of resistance values generated by interposing between them and the applied pressure, but the variation in resistance values due to the engagement is very large, and it is difficult to control the junction depth with high accuracy. there were.
[0005]
The present invention has been made in view of such circumstances, and increases the sliding speed of the plastic fluid generated between the mounting member and the mounted member at the time of diffusion bonding and the amount of the plastic fluid to obtain sufficient bonding strength. Another object of the present invention is to provide a diffusion bonding method capable of controlling the bonding depth with high accuracy by suppressing variation in resistance value due to the biting of the plastic fluid.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a mounting member having a mounting surface that decreases in diameter toward one side in the axial direction is provided with an opposing end surface that has at least an outer peripheral portion facing the mounting surface. a mounting member having an outer surface of circular cross section and having a direction end, pressurizes the connecting portion of the facing end surface and said outer surface the mating member side in a heated state of the two members while the first contact with a mounting surface in diffusion bonding how to pressure, prior to bonding to the mounting member of the mounting member, the rewritable form the connecting portion into a curved shape bulging the mounting member side, the mounting of the facing end surface and an outer surface while previously formed part which is bonded to a member in a curved shape with a larger radius of curvature than the coupling parts, wherein the target mounting surface of the mounting member, and an annular bottom surface that faces the outer peripheral portion of the facing end surface A joint recess that is formed from an outer peripheral edge of the bottom surface to the mounting member side and is formed with an inner surface facing the outer surface of the mounting member is provided, and when the mounting member is pressurized to the mounted member side, A first step of bringing the connecting portion into contact with the outer peripheral portion of the bottom surface, a second step of bringing the opposing end surface into contact with the bottom surface sequentially from the radially outer side, and the outer surface as an axis on the inner surface. The third step of sequentially raising the pressure resistance value by sequentially contacting from the inner side in the direction is characterized in that it is executed .
[0007]
According to such a configuration of the invention described in claim 1, the sliding speed of the plastic fluid generated between the mounting member and the mounted member and the amount of the plastic fluid are increased, and sufficient bonding strength is obtained by good diffusion bonding. Obtainable. That is, in the attachment member, the portion of the attachment portion to be attached to the attached member having a curved outer surface shape can increase the sliding speed of the plastic fluid with respect to the stroke as compared with a flat surface. Yes, the connecting part that first contacts the attached surface to the attached member when the attaching member is pressed to the attached member side is formed in a curved surface with a relatively small radius of curvature. The amount of the plastic fluid generated by the immersion of the mounted member can be increased, and the portion of the opposing end surface and the outer surface joined to the mounted member has a radius of curvature larger than that of the connecting portion. Since each is formed in a curved surface, the plastic fluid can be positively discharged by increasing the sliding speed of the plastic fluid. Then, in the first step when the mounting member is pressed to the mounted member side, the resistance value is increased in accordance with the plastic fluid generated by the continuous portion of the mounting member being immersed in the mounted member. In the second step, the resistance value gradually increases as the opposing end surfaces of the mounting members sequentially contact the bottom surfaces of the joint recesses from the radially outer side in the second step, and in the third step, the resistance is increased. In addition to the part and the opposed end surface, the outer surface of the attachment member is immersed in the inner surface of the joint recess, so that the resistance value rises greatly. By changing the resistance change characteristics for each step and setting the resistance value to rise significantly at the end of the joint immediately before the target joint depth, it is possible to accurately determine the timing to stop pressurization. Depth It is possible to improve the control accuracy.
[0008]
According to a second aspect of the present invention, in addition to the structure of the first aspect of the present invention, before the attachment of the attachment member to the attached member, the radius of the opposite end surface is larger than that of the portion joined to the attached member. An annular recess for receiving the plastic fluid discharged from the joint interface between the mounted surface and the opposed end surface is formed inward in the direction .
[0009]
According to such a configuration of the invention described in claim 2 , since the annular recess is formed radially inward from the portion of the opposing end face that is joined to the attached member, the opposing end face and the attached surface The plastic fluid discharged to the radially inward side from the gap can escape into the recess, and the pressure resistance value generated when the discharged plastic fluid is caught between the mounted surface and the opposed end surface It is possible to control the junction depth more accurately by minimizing the variation in the thickness.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on one embodiment of the present invention shown in the accompanying drawings.
[0011]
1 to 7 show an embodiment of the present invention. FIG. 1 is a longitudinal sectional view of a main part of a four-cycle engine, and FIG. 2 is a longitudinal section showing a state immediately before diffusion bonding of a valve seat material to a cylinder head. 3 is an enlarged view of the main part of FIG. 2, FIG. 4 is a cross-sectional view corresponding to FIG. 3 at the end of the diffusion bonding process, FIG. 5 is a cross-sectional view for sequentially explaining the diffusion bonding process, and FIG. FIG. 7 is a diagram for explaining the sliding speed of the fluid, and FIG.
[0012]
First, in FIG. 1, a piston (not shown) slidably fitted in a cylinder hole 12 provided in a cylinder block 11 of a four-cycle engine, and a cylinder head as a mounted member coupled to the cylinder block 11. A combustion chamber 14 is formed between the intake port 15 and the exhaust port 16, which can communicate with the combustion chamber 14.
[0013]
Valve seats 17 and 18 are joined to the cylinder head 13 at the open ends of the intake port 15 and the exhaust port 16 to the combustion chamber 14, and seat portions 19 a and 20 a that can be seated on the valve seats 17 and 18 are provided. Stem portions 19b and 20B of the intake valve 19 and the exhaust valve 20 provided are slidably fitted to guide cylinders 21 and 22 provided on the cylinder head 13, respectively. In addition, each of the stem portions 19b and 20b protrudes upward from the guide cylinders 21 and 22, and the intake valve 19 and the exhaust valve 20 are moved upward, that is, the seat between the upper ends of the stem portions 19b and 20b and the cylinder head 13. Springs 23 and 24 are provided to seat the portions 19a and 20a on the valve seats 17 and 18 and urge the intake ports 15 and the exhaust ports 16 in the closing direction. Further, a valve operating device (not shown) is connected to the upper ends of the stem portions 19b and 20b, and the intake valve 19 and the exhaust valve 20 are opened and closed by the valve operating device.
[0014]
By the way, the valve seats 17 and 18 are generally assembled to the cylinder head 13 by press-fitting. However, in recent engine layouts, the intake valve 19 and the exhaust valve 20 are arranged close to each other, and the conventional press-fitting is performed. In the equation, there is almost no degree of freedom in changing the layout around the combustion chamber 14 in order to achieve a larger valve diameter or to achieve a higher compression ratio. Therefore, when the valve seats 17 and 18 are directly joined to the cylinder head 13 instead of the press-fitting type, the valve seats 17 and 18 are thinned to greatly improve the degree of freedom of the layout, or via the valve seats 17 and 18. It is possible to reduce the temperatures of the intake and exhaust valves 19 and 20, the valve seats 17 and 18 and the combustion chamber 14 by improving the heat transfer performance of all the engines, and a great improvement in engine performance can be expected. . At this time, even if the valve seats 17 and 18 are made of a metal different from the cylinder head 13, sufficient bonding strength can be obtained by diffusion bonding.
[0015]
In FIG. 2, a valve seat material 25 as an attachment member is diffusion bonded to the cylinder head 13, and valve seats 17 and 18 are formed by machining the valve seat material 25 after the bonding.
[0016]
Thus, the cylinder head 13 is made of an aluminum alloy casting which is a lightweight and heat-transferable metal, and the valve seat material 25 is, for example, an iron-based sintered alloy having excellent wear resistance, -Cu-Be alloy etc. excellent in thermal conductivity are used.
[0017]
At the opening end of the intake and exhaust ports 15 and 16 of the cylinder head 13 on the combustion chamber 14 side, a mounting surface 26 having a smaller diameter is formed as the distance from the combustion chamber 14 increases along the axial direction. On the other hand, the valve seat material 25 is formed in a ring shape having an opposing end surface 27 that opposes the mounting surface 25 at one end in the axial direction and an outer surface 28 having a circular cross section.
[0018]
Valve seat material 25 by being pressurized with a constant pressure on the mounting surface 26 of the cylinder head 13 in a heated state of the valve seat material 25 and the cylinder head 13, is diffusion bonded to the mounting surface 26 . Thus, in the heated state, the valve seat material 25 and the cylinder head 13 are energized in a short time while the valve seat material 25 is in contact with the mounting surface 26 of the cylinder head 13, so that the valve seat material 25 and It is obtained when the contact surface of the cylinder head 13 generates heat by Joule heat generation.
[0019]
In FIG. 3, the valve seat material 25 is the one in which the connecting portion 29 of the opposed end surface 27 and the outer surface 28 is first brought into contact with the cylinder head 13 when the valve seat material 25 is pressurized to the cylinder head 13 side. The portion 27 a on the outer peripheral side of the opposed end surface 27 and the portion 28 a on the opposed end surface 27 side of the outer side surface 28 and the connecting portion 29 are diffusion bonded to the cylinder head 13.
[0020]
Thus, before the valve seat material 25 is joined to the cylinder head 13, the connecting portion 29 is formed in a curved shape swelled on the cylinder head 13 side with a radius of curvature R 1, and on the outer peripheral side of the opposing end face 27. The portion 27 a is formed in a curved surface swelled toward the cylinder head 13 with a radius of curvature R 2 larger than that of the continuous portion 29, and the portion 28 a on the opposite end surface 27 side of the outer surface 28 is also larger in radius of curvature than the continuous portion 29. It is formed in a curved shape that swells toward the cylinder head 13 at R3.
[0021]
Also, an annular recess 32 is formed radially inward of the opposed end surface 27 with respect to the portion 27a joined to the cylinder head 13, and the recess 32 has a mounting surface 26 and It is possible to receive the plastic fluid 33 discharged from the joint interface of the opposing end face 27.
[0022]
3, before joining the valve seat material 25 to the cylinder head 13, the mounting surface 26 of the cylinder head 13 has an annular bottom surface 34 a that faces the outer peripheral portion of the opposed end surface 27 of the valve seat material 25. And a joint recess 34 that is formed from an outer peripheral edge of the bottom surface 34 a toward the valve seat material 25 and an inner side surface 34 b that faces the outer surface 28 of the valve seat material 25.
[0023]
Moreover, the bottom surface 34a and the inner side surface 34b are arranged so that the connecting portion 29 is placed on the outer peripheral portion of the bottom surface 34a when the valve seat material 25 is pressurized toward the mounting surface 26 side, as shown in FIG. a first step of Ru in contact, as shown in FIG. 5 (b), a second step of Ru by sequentially contacting the radially outer side of the facing end surface 27 to the bottom surface 34a, in FIG. 5 (c) as shown, the third step of the outer surface 28 rise pressurization resistance by sequentially contacting the axially inner side to the inner side surface 34b is formed so that are executed sequentially.
[0024]
Next, the operation of this embodiment will be described. When the valve seat material 25 is pressurized toward the cylinder head 13 while the valve seat material 25 and the cylinder head 13 are heated, the contact surfaces of the valve seat material 25 and the cylinder head 13 are described. As shown in FIG. 4, slip deformation occurs in the valve seat material 25 and the cylinder head 13, and the oxide film, foreign matter and intermetallic compound are discharged from the joint interface as a plastic fluid 33 as shown in FIG. 4. Fine irregularities and interatomic vacancies at the interface disappear, and a contact surface that is extremely clean and free of atmospheric gas is formed. Moreover, free electrons in the metal are activated by contact between the clean surfaces in the heated state, and the intragranular and grain boundary diffusion of atoms occurs between the valve seat material 25 and the cylinder head 13, so that the valve seat material 25 becomes a cylinder. It is diffusion bonded to the head 13.
[0025]
By the way, in the valve seat material 25, the portion of the portion to be joined to the cylinder head 13 that is formed with a curved outer surface shape is a slip surface of the plastic fluid 33 with respect to the pressurization stroke as compared with a flat surface. It is possible to increase the speed. That is, the sliding distance L1 when the plastic fluid 33 slides on the curved surface shown in FIG. 6A is equal to the sliding distance L2 when sliding on the flat surface shown in FIG. 6B. In the valve seat material 25, the shape of the outer surface of the valve seat material 25 that is joined to the cylinder head 13 before being joined is a curved surface as compared to a flat surface. The sliding speed becomes large.
[0026]
However, since the connecting portion 29 that first comes into contact with the cylinder head 13 when the valve seat material 25 is pressurized to the cylinder head 13 side is formed with a relatively small curvature radius R1, the connecting portion 29 on the tip side thereof is provided. the amount of plastic flow animals 33 caused by immersion of the cylinder head 13 of the part 29 can be large, also the connecting portion 29 to the continuous portion 27a, so 28a are also formed in a curved surface, the plastic flow animals The sliding speed of 33 can be increased and the plastic fluid 33 can be positively discharged. Accordingly, the valve seat material 25 can be diffused and bonded satisfactorily to the cylinder head 13 to obtain a sufficient bonding strength.
[0027]
The joint depth of the valve seat material 25 to the cylinder head 13 is such that the resistance value corresponding to the amount of the plastic fluid 33 generated by the immersion of the valve seat material 25 into the cylinder head 13 and the discharged plastic fluid 33 are Although it is determined by the balance between the sum of the resistance values generated by the engagement between the mounted surface 26 and the opposed end surface 27 and the applied pressure, the variation in the resistance value due to the engagement is very large, and the variation is left as it is. As it is, it is difficult to control the junction depth with high accuracy.
[0028]
However, an annular recess 32 is formed radially inwardly of the opposed end surface 27 with respect to the portion joined to the cylinder head 13, and the plastic fluid 33 can be received in the recess 32. Accordingly, the plastic fluid 33 discharged inward from between the opposed end surface 27 and the mounted surface 26 can be released into the recess 32, and the discharged plastic fluid 33 is disposed between the mounted surface 26 and the opposed end surface 27. Therefore, it is possible to minimize the variation in the pressure resistance value caused by the biting into the gap and to control the junction depth more accurately.
[0029]
Further, before the valve seat material 25 is joined to the cylinder head 13, the mounting surface 26 of the cylinder head 13 includes an annular bottom surface 34a and an inner side surface 34b that rises from the outer peripheral edge of the bottom surface 34a toward the valve seat material 25. joining recess 34 is provided configured in the bottom surface 34a and inner surface 34b is in pressurized to the mounting surface 26 side of the valve seat material 25, said connecting portion 29 of the valve seat material 25 bottom 34a a first step of Ru into contact with the outer peripheral portion of a second step of the facing end surface 27 of the valve seat material 25 Ru by sequentially contacting the radially outward side of the bottom surface 34a, the outer surface 28 of the valve seat material 25 the are formed so that the execution and the third step of Ru by sequentially contacting the axially inner side are sequentially into the inner surface 34b, such a joining recess 34 , It is possible to further improve the control accuracy of the junction depth of the timing of stopping the pressure accurately determined.
[0030]
In FIG. 7, in the first step, the resistance value increases rapidly as the plastic fluid is generated by immersing the connecting portion 29 of the valve seat material 25 in the cylinder head 13. The opposing end surface 27 of the sheet material 25 sequentially contacts the bottom surface 34a of the bonding recess 34 from the radially outer side, so that the resistance value gradually increases. In the third step, the connecting portion 29 and the opposing end surface 27 are further increased. In addition, since the outer side surface 28 of the valve seat material 25 is immersed in the inner side surface 34b of the joint recess 34, the resistance value rises greatly. That is, when pressurizing the valve seat material 25 toward the cylinder head 13 with a constant pressure, the change characteristic of the resistance value is changed for each step, and the valve seat material 25 is changed in the final third step in which the resistance value rises greatly. By balancing the constant pressurizing force and the resistance value (reaction force against pressurization), the target joining depth can be obtained with high accuracy, and the control accuracy of the joining depth can be further improved.
[0031]
Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various design changes can be made without departing from the present invention described in the claims. Is possible.
[0032]
For example, the present invention is not limited to the diffusion bonding structure of the valve seat material 25 to the cylinder head 13 but can be widely applied to the diffusion bonding structure of the mounting member to the mounted member.
[0033]
【The invention's effect】
As described above, according to the first aspect of the present invention, the sliding speed of the plastic fluid generated between the mounting member and the mounted member and the amount of the plastic fluid are increased, and sufficient bonding strength is obtained by good diffusion bonding. In addition , it is possible to accurately determine the timing of stopping the pressurization by setting the resistance value to rise greatly at the end of joining immediately before the target joining depth when the attaching member is pressed to the attached member side. This makes it possible to improve the control accuracy of the junction depth.
[0034]
According to the second aspect of the present invention, the variation in the pressurization resistance value that occurs when the discharged plastic fluid is caught between the mounted surface and the opposed end surface is minimized, and the joining depth is more accurately determined. It becomes possible to control.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an essential part of a 4-cycle engine.
FIG. 2 is a longitudinal sectional view showing a state immediately before diffusion bonding of a valve seat material to a cylinder head.
FIG. 3 is an enlarged view of a main part of FIG.
4 is a cross-sectional view corresponding to FIG. 3 at the end of the diffusion bonding process.
FIG. 5 is a cross-sectional view for sequentially explaining diffusion bonding processes.
FIG. 6 is a diagram for explaining a sliding speed of a plastic fluid.
FIG. 7 is a diagram showing a change in resistance value in a diffusion bonding process.
[Explanation of symbols]
13 ... Cylinder head 25 as attached member ... Valve seat material 26 as attaching member ... Installed surface 27 ... Opposing end surface 27a ... Joined to attached member among opposed end surfaces Portion 28 ... Outer surface 28a ... Outer surface portion to be joined to member 29 ... Continuous portion 32 ... Concave portion 34 ... Joining concave portion 34a ... Bottom surface 34b ...・ Inside

Claims (2)

軸方向一方に向かうにつれて小径となる被取付け面(26)を有する被取付け部材(13)に、前記被取付け面(26)に少なくとも外周部を対向させる対向端面(27)を軸方向一端に有するとともに横断面円形の外側面(28)を有する取付け部材(25)、前記対向端面(27)および前記外側面(28)の連設部(29)を被取付け面(26)に最初に接触させつつ両部材(13,25)の加熱状態で被取付け部材(13)側に加圧る拡散接合方法において、
取付け部材(25)の被取付け部材(13)への接合前に、前記連設部(29)被取付け部材(13)側に膨らんだ曲面状に形成るとともに、前記対向端面(27)および外側面(28)のうち被取付け部材(13)に接合される部分(27a,28a)前記連設部(29)よりも曲率半径を大きくした曲面状に形成しておく一方、前記被取付け部材(13)の被取付け面(26)に、前記対向端面(27)の外周部に対向する環状の底面(34a)と、該底面(34a)の外周縁から取付け部材(25)側に立ち上がって該取付け部材(25)の外側面(28)に対向する内側面(34b)とで構成される接合凹部(34)を設けておき、
前記取付け部材(25)の前記被取付け部材(13)側への加圧時に、前記連設部(29)を前記底面(34a)の外周部に接触させる第1のステップと、前記対向端面(27)を前記底面(34a)に半径方向外方側から順次接触させる第2のステップと、前記外側面(28)を前記内側面(34b)に軸方向内方側から順次接触させて加圧抵抗値を立ち上がらせる第3のステップとを、順次実行することを特徴とする拡散接合方法。
A mounted member (13) having a mounted surface (26) having a smaller diameter toward one side in the axial direction has an opposed end surface (27) at one end in the axial direction at least facing the outer surface of the mounted surface (26). first contacts the outer surface of the circular cross section of the mounting member (25) having (28), the connecting portion (29) of the facing end surface (27) and said outer surface (28) on the mounting surface (26) with in diffusion bonding how to pressure the the mating member (13) side in a heated state of the two members (13, 25) while,
Before bonding to the mating member (13) of the mounting member (25), wherein to form the connecting portion (29) to the mounting member (13) bulging side curved Rutotomoni, the opposing end faces (27) The portions (27a, 28a) to be joined to the member to be attached (13) of the outer surface (28) are formed in a curved surface having a radius of curvature larger than that of the connecting portion (29). On the mounting surface (26) of the mounting member (13), an annular bottom surface (34a) facing the outer peripheral portion of the opposed end surface (27), and from the outer peripheral edge of the bottom surface (34a) to the mounting member (25) side There is provided a joint recess (34) that is constituted by an inner surface (34b) that stands up and faces the outer surface (28) of the mounting member (25),
A first step of bringing the connecting portion (29) into contact with the outer peripheral portion of the bottom surface (34a) when the mounting member (25) is pressed toward the mounted member (13); 27) sequentially contacts the bottom surface (34a) from the radially outer side, and pressurizes the outer surface (28) sequentially contacts the inner surface (34b) from the axially inner side. A diffusion bonding method characterized by sequentially performing a third step of raising the resistance value.
請求項1記載の拡散接合方法において、取付け部材(25)の被取付け部材(13)への接合前に、前記対向端面(27)のうち被取付け部材(13)に接合される部分(27a)よりも半径方向内方に、被取付け面(26)および対向端面(27)の接合界面から排出される塑性流動物を受け入れる環状の凹部(32)を形成しておくことを特徴とする拡散接合方法。The diffusion bonding method according to claim 1, wherein a portion (27a) to be bonded to the mounted member (13) of the opposing end surface (27) before the mounting member (25) is bonded to the mounted member (13). A diffusion bonding characterized by forming an annular recess (32) for receiving a plastic fluid discharged from the bonding interface between the mounted surface (26) and the opposed end surface (27) inwardly in the radial direction. Method.
JP22398699A 1999-08-06 1999-08-06 Diffusion bonding method Expired - Fee Related JP4057749B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP22398699A JP4057749B2 (en) 1999-08-06 1999-08-06 Diffusion bonding method
EP00115918A EP1074329B1 (en) 1999-08-06 2000-07-25 Diffusion joining structure
DE60010813T DE60010813T2 (en) 1999-08-06 2000-07-25 Diffusion bonding process
US09/629,795 US6321710B1 (en) 1999-08-06 2000-07-31 Diffusion joining structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22398699A JP4057749B2 (en) 1999-08-06 1999-08-06 Diffusion bonding method

Publications (2)

Publication Number Publication Date
JP2001050104A JP2001050104A (en) 2001-02-23
JP4057749B2 true JP4057749B2 (en) 2008-03-05

Family

ID=16806800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22398699A Expired - Fee Related JP4057749B2 (en) 1999-08-06 1999-08-06 Diffusion bonding method

Country Status (1)

Country Link
JP (1) JP4057749B2 (en)

Also Published As

Publication number Publication date
JP2001050104A (en) 2001-02-23

Similar Documents

Publication Publication Date Title
US5823158A (en) Engine valve and method for making the same
JPH1061527A (en) Seal device of cylinder head
JP5089706B2 (en) Valve opening mechanism and method
JP3546261B2 (en) Dissimilar metal materials joining method
JPS5985407A (en) Improvement of tappet with cam surface made of ceramic
JP5625967B2 (en) Intake valve for internal combustion engine
JP4057749B2 (en) Diffusion bonding method
JP3457888B2 (en) Poppet valve body
US6321710B1 (en) Diffusion joining structure
US5809644A (en) Valve lifter
JPH02157410A (en) Valve for internal-combustion engine
JP2001050103A (en) Diffusion bonding structure
JPH0670365B2 (en) Valve lifter for internal combustion engine
JP2005500462A (en) Valve mechanism with variable valve opening cross section
EP0864730A1 (en) Inlet valve in an internal combustion engine and a method of manufacturing the same
JP4263333B2 (en) Hydraulic lash adjuster
JPH0333892B2 (en)
JPS5911233Y2 (en) valve
JPS644047B2 (en)
JP4190210B2 (en) Engine intake and exhaust valves
JP2001221348A (en) Poppet valve
JP2001050105A (en) Method of forming intake or exhaust port and valve seat
US5572963A (en) Hydraulic tappet
JPS6011607A (en) Structure of ceramic valve
JP3635474B2 (en) Piston for internal combustion engine and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071214

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees