JP4057746B2 - Substrate for three-dimensional optical recording medium and method for manufacturing three-dimensional optical recording medium - Google Patents

Substrate for three-dimensional optical recording medium and method for manufacturing three-dimensional optical recording medium Download PDF

Info

Publication number
JP4057746B2
JP4057746B2 JP17335699A JP17335699A JP4057746B2 JP 4057746 B2 JP4057746 B2 JP 4057746B2 JP 17335699 A JP17335699 A JP 17335699A JP 17335699 A JP17335699 A JP 17335699A JP 4057746 B2 JP4057746 B2 JP 4057746B2
Authority
JP
Japan
Prior art keywords
recording medium
substrate
optical recording
dimensional optical
recording layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17335699A
Other languages
Japanese (ja)
Other versions
JP2001005368A (en
Inventor
俊文 滝澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP17335699A priority Critical patent/JP4057746B2/en
Publication of JP2001005368A publication Critical patent/JP2001005368A/en
Application granted granted Critical
Publication of JP4057746B2 publication Critical patent/JP4057746B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24044Recording layers for storing optical interference patterns, e.g. holograms; for storing data in three dimensions, e.g. volume storage
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/26Apparatus or processes specially adapted for the manufacture of record carriers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2250/00Laminate comprising a hologram layer
    • G03H2250/37Enclosing the photosensitive material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2270/00Substrate bearing the hologram
    • G03H2270/20Shape
    • G03H2270/22Disc shaped
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/24003Shapes of record carriers other than disc shape
    • G11B7/24012Optical cards

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Holo Graphy (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多層光メモリ,ホログラムメモリ等の大容量,高密度の光記録媒体の製造に用いて好適の、三次元光記録媒体用基板及び三次元光記録媒体の製造方法に関する。
【0002】
【従来の技術】
従来、CD−R等のディスク状の光記録媒体の製造方法として、スピンコート法が知られている。この方法は、ディスク状基板のプリピット及びプリグルーブが形成されている情報面に、記録材料である有機色素を適当な有機溶媒に溶解して成る塗布液を滴下した後、基板を回転させ、遠心力によって余剰の塗布液を情報面から除去し、記録層を形成するものである。
【0003】
【発明が解決しようとする課題】
ところで、近年、来るべきマルチメディア情報化時代への対応として、光記録媒体のさらなる大容量化,高密度化に向けた研究開発が行なわれている。例えば、図20に示すように、透明基板103上に積層した記録層101を集光レーザビーム102の焦点深度以上に厚くし、焦点位置をずらすことにより媒体内の深さ方向に三次元的な記録を行なう多層記録方式の光記録媒体(多層光メモリ)100や、図21に示すように、一対の透明基板109,110間で挟持された記録層108に、物体からの反射光や信号等の情報を表す信号ビーム106と、記録層108中で信号ビーム106と干渉を起こすための参照ビーム107とを照射し、参照ビーム107の入射角を少しずつ変えていくことにより、記録層108内の同一箇所に複数個のホログラムを多重記録するホログラム方式の光記録媒体(ホログラムメモリ)105のように、記録層の平面内のみならず厚み方向にも三次元的に記録することにより記録容量を向上させた三次元光記録媒体が開発されている。
【0004】
これらの多層光メモリ100,ホログラムメモリ105はいずれも、記録層に合成樹脂を多く含み(90重量%以上)、樹脂の熱または光による構造変化と、これに伴う光学的性質の変化を利用した光記録媒体であり、記録層の厚みが数十〜数百μmと従来の光記録媒体に比べて非常に厚いのが特徴である。また、これらの光記録媒体では、記録層の厚み方向にも三次元的に記録する必要から、従来の平面的に記録する光記録媒体に比較して記録層の厚みの均一性はより厳しく要求される。即ち、三次元光記録媒体は、二次元のものに比べて記録層をより厚く、しかも厚みをより均一性のあるものにしなくてはならない。
【0005】
合成樹脂を多く含む材料により均一厚みの層を形成する方法としては、上述したスピンコート法を用いるのが一般的であるが、CD−R等のように10μm未満の比較的薄い層であれば均一に形成できるものの、遠心力の作用により塗布液が広がってしまうため、より厚い、特に100μm以上の層を形成するのは困難である。また、層を厚く形成させるために基板を低速で回転させると、ディスクのエッジ部の膜厚が特に厚くなってしまい、厚みの均一性を確保できなくなってしまう。さらに、塗布液の粘度を高くする方法も考えられるが、粘度コントロールのために塗布液の組成を変えることは、媒体の記録特性への影響を考えると難しい場合が多い。
【0006】
本発明は上述の課題に鑑み創案されたもので、合成樹脂を多く含み比較的厚みのある記録層を有する三次元光記録媒体を容易に製造できるようにした、三次元光記録媒体用基体及び三次元光記録媒体の製造方法を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明の三次元光記録媒体用基体は、合成樹脂を多く含有してなる記録層内に三次元的に情報を記録する三次元光記録媒体用の基体であって、該記録層を形成する記録層用空間の両面を区画形成する一対の透明基板と、該一対の透明基板の相互間に介装され、該一対の透明基板を所定の距離をもって結合するとともに該記録層用空間の縁部を区画形成するスペーサとから構成され、さらに、該スペーサが、光硬化性又は熱硬化性フィルムからなり、該フィルムを該一対の透明基板間に介装し、光硬化又は熱硬化させることにより、該一対の透明基板と該フィルムによる該スペーサとが一体化されていることを特徴としている(請求項1)。
【0008】
ここで、該スペーサに該記録層用空間を外部に開にする開口部が設けられていることが好ましく、該一対の透明基板はディスク状であって、該記録層用空間は円環状に形成され、該スペーサは円環状の該記録層用空間の外周縁部と内周縁部とにそれぞれ設けられていることがより好ましい。
【0009】
また、該スペーサが、該一対の透明基板のうちの少なくとも一方に予め一体に形成されていることが好ましい。
また、別の本発明の三次元光記録媒体用基体は、合成樹脂を多く含有してなる記録層内に三次元的に情報を記録する三次元光記録媒体用の基体であって、該記録層を形成する記録層用空間の両面を区画形成する一対の透明基板と、該一対の透明基板の相互間に介装され、該一対の透明基板を所定の距離をもって結合するとともに該記録層用空間の縁部を区画形成するスペーサとから構成され、該スペーサの縁部外周に、該一対の透明基板の縁部外周よりも窪んだ窪み部が形成されていることを特徴とする(請求項2)。
ここで、該スペーサの縁部外面全体を、該一対の透明基板の縁部外面よりも該記録層を形成する空間内に変位した位置に設定することにより、該窪み部が形成されていることがより好ましい(請求項)。若しくは、該窪み部が、該スペーサの縁部の外面を面取りされ形成された面取り部によって構成されていることがより好ましい(請求項)。
【0010】
また、本発明の三次元光記録媒体の製造方法は、上記の三次元光記録媒体用基体(請求項であって、該スペーサに該記録用空間を外部に開にする開口部が設けられた三次元光記録媒体用基体を用いて三次元光記録媒体を製造する方法であって、該一対の透明基板と該スペーサとを結合して、該三次元光記録媒体用基体を組み立てる基体組立工程と、該開口部から該記録層空間内に、該記録層を形成する光硬化性又は熱硬化性の液状の樹脂を注入する樹脂注入工程と、該記録媒体用空間内に注入された液状の樹脂を光硬化又は熱硬化させる樹脂硬化工程とをそなえたことを特徴としている(請求項)。
【0011】
さらに、別の本発明の三次元光記録媒体の製造方法は、合成樹脂を多く含有してなる記録層内に三次元的に情報を記録する三次元光記録媒体用の基体であって、該記録層を形成する記録層用空間の両面を区画形成する一対の透明基板と、該一対の透明基板の相互間に介装され、該一対の透明基板を所定の距離をもって結合するとともに該記録層用空間の縁部を区画形成するスペーサとから構成された三次元光記録媒体用基体を用いて三次元光記録媒体を製造する方法であって、該一対の透明基板のうち、該スペーサの一部又は全部を装着された一方の透明基板上の該記録層用空間に、記録層を形成する光硬化性又は熱硬化性の液状の樹脂を充填する第一の工程と、液状の樹脂を充填した該一方の透明基板に他方の基板を重ね合わせる第二の工程と、該スペーサ間に充填された液状の樹脂を光硬化又は熱硬化させる第三の工程とをそなえるとともに、該第二の工程に先立ち該三次元光記録媒体用基体の周囲を真空雰囲気とする工程をそなえたことを特徴としている(請求項6)。
ここで、該スペーサが光硬化性又は熱硬化性フィルムからなり、該第三の工程において該液状の樹脂とともに該スペーサをも硬化させ、該透明基板と該スペーサとを貼り合わせることが好ましい。
【0013】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
まず、本発明の第1実施形態としての三次元光記録媒体用基体について説明する。なお、本実施形態にかかる三次元光記録媒体はディスク状のものであり、記録層は円環状(ドーナツ状)に形成されるものである。
【0014】
本三次元光記録媒体用基体1は、多層光メモリ,ホログラムメモリ等の大容量,高密度の三次元光記録媒体の製造に用いて好適の三次元光記録媒体用基体であり、図1に示すように、一対の透明基板2,3と、大小一組の円環状のスペーサ4,5とから構成されている。
透明基板2,3は、円盤状に形成されており、その中央には外周円と同心の円形の穴を有している。透明基板2,3の材質としては、ガラスや透明樹脂(例えばポリカーボネイト樹脂,アクリル樹脂,メタクリル樹脂,ポリスチレン樹脂,塩化ビニル樹脂,エポキシ樹脂,ポリエステル樹脂,アモルファスポリオレフィン等)を用いることができる。
【0015】
スペーサ4,5は、透明基板2,3間の距離を所定の大きさに均一に保つための部材であり、多層光メモリ,ホログラムメモリ等の本三次元光記録媒体用基体1の用途に応じた厚さ(好ましくは、30μm以上500μm以下の厚さ)に形成されている。スペーサ4は透明基板2,3の外周部2a,3aの相互間に介装されるもので、スペーサ4の外径は透明基板2,3の外径と略同径に設定されている。スペーサ5は透明基板2,3の内周部2b,3bの相互間に介装されるもので、スペーサ5の内径は透明基板2,3の内径と略同径に設定されている。また、スペーサ4には、一部に切れ目4aが設けられており、この切れ目4aにおいてスペーサ4の開口部が形成されている。
【0016】
スペーサ4,5の材質としては、光硬化性又は熱硬化性の樹脂、例えばアクリル系樹脂,エポキシ系樹脂,イソシアネート系樹脂等を用いることができるが、好ましくは、記録層を形成する樹脂の屈折率に近いものを選択するようにする。なお、本発明の第1実施形態にかかるスペーサとしては、図1に示すように予め独立して形成しておいたスペーサ4,5を使用することが好ましいが、未硬化の樹脂組成物を一方の基板上に塗布し、他方の基板を貼り合わせたのち硬化することによって、スペーサとしてもかまわない。
【0017】
予め独立してスペーサを形成しておく場合、例えば、光硬化性又は熱硬化性の樹脂を、ダイキャスト法,ディップコート法,ロールコート法等の公知方法を用いて用途に応じた所定の厚さのフィルムにし、光又は熱にて部分硬化させた後、適宜の形状に打ち抜くことにより、円環状の樹脂フィルムとしてスペーサ4,5を得ることができる。若しくは、スペーサ4,5の形状に応じた型枠に光硬化性又は熱硬化性の樹脂を注入し、光又は熱にて部分硬化させた後、型枠から取り出すことによっても、円環状の樹脂フィルムとしてスペーサ4,5を得ることができる。
【0018】
そして、本三次元光記録媒体用基体1は、透明基板2,3の外周部2a,3a間及び内周部2b,3b間に、それぞれスペーサ4,5を挟装することにより一体に形成されるものであり、一方の透明基板2の外周部3a又は2a上,内周部3b又は2b上にそれぞれスペーサ4,5を積層した後、さらに、他方の透明基板3を積層し、光硬化性又は熱硬化性の樹脂フィルムであるスペーサ4,5に光又は熱を当てて更に硬化させることにより形成される。
【0019】
本発明の第1実施形態としての三次元光記録媒体用基体1は上述のように構成されているので、三次元光記録媒体の製造にあたっては、まず、上述のようにして透明基板2,3及びスペーサ4,5を結合して、三次元光記録媒体用基体1を形成する(基体組立工程)。この結果、三次元光記録媒体用基体1の内部には、図2(a),図2(b)に示すように、透明基板2,3とスペーサ4,5とにより囲まれる内部空間(記録層用空間)6が形成される。この内部空間6は、記録層を形成する樹脂を充填するための空間であり、外側のスペーサ4に形成された切れ目(開口部)4aによって外部と連通している。
【0020】
したがって、本三次元光記録媒体用基体1を用いて光記録媒体を製造する場合には、例えば次のような方法を用いることが可能になる。図3を参照しながら本三次元光記録媒体の製造方法について説明すると、まず、図3(a)に示すように、予め基体組立工程で組み立てられた三次元光記録媒体用基体1の周囲を真空雰囲気にする。そして、図3(b)に示すように、真空雰囲気下でスペーサ4に形成された切れ目4aを記録層を形成する液状の樹脂8が満たされた容器7内に浸ける。
【0021】
記録層を形成する樹脂8としては、光硬化性又は熱硬化性の樹脂、例えば、アクリル系やメタクリル系のようにエチレン性不飽和二重結合含有化合物のラジカル反応で重合するものや、エポキシ系のように光でカチオン反応するもの等の光硬化可能なモノマーと、必要に応じ光硬化又は熱硬化可能なバインダー樹脂を含む材料、ポリ(p−ヒドロキシスチレン)とヘキサメトシキメチルメラミンの組み合わせのようなものが考えられるが、具体的には、記録方式に応じて適宜選択する。
【0022】
次に、図3(c)に示すように、真空雰囲気を解除して三次元光記録媒体用基体1の周囲雰囲気を大気圧に戻す。これにより、容器7内の液状樹脂8は、大気圧により押されて切れ目4aから真空状態になっている内部空間6内に充填されていく(以上、樹脂注入工程)。
そして、三次元光記録媒体用基体1に光又は熱を加えることにより、切れ目4aから内部空間6内に吸引された液状樹脂8を光硬化又は熱硬化させ、図3(d)に示すように、記録層9を形成する(樹脂硬化工程)。以上の工程により、光記録媒体が製造される。
【0023】
このように本三次元光記録媒体用基体1によれば、透明基板2,3間の隙間がスペーサ4,5により予め所定の間隔に設定されるとともに、記録層9が形成される空間がスペーサ4の切れ目4aのみにより外部と連通する閉空間になっているので、閉空間(内部空間)6内を真空雰囲気にして記録層を形成する樹脂を引き込むだけで、均一な厚みの記録層9を容易に形成することができ、多層光メモリ,ホログラムメモリ等の厚みのある記録層9を有する三次元光記録媒体の製造が容易になるという利点がある。
【0024】
また、スペーサ4,5として光硬化性又は熱硬化性フィルムを用いることにより、透明基板2,3との接合が容易になり、また、従来の透明基板をそのまま用いることができるという利点がある。
なお、上述の実施形態では、外周側のスペーサ4に切れ目4aを設けて、この切れ目4aを内部空間6内に記録層を形成する液状樹脂を充填するための通路にしているが、図4に示すように、内周側のスペーサ5に切れ目(開口部)5aを設けて、この切れ目5aを内部空間6内に記録層を形成する液状樹脂を充填するための通路としてもよい。
【0025】
また、上述の実施形態では、光硬化性又は熱硬化性の樹脂フィルムによりスペーサ4,5を成形し、光硬化又は熱硬化を用いて透明基板2,3に接合しているが、図5に示すように、はりあわせ樹脂10を用いてスペーサ4,5を透明基板2,3に接合するようにしてもよい。この場合、スペーサ4,5の材料は光硬化性又は熱硬化性の樹脂で無くても良く、例えば先に基板材料として挙げたものやポリアミド系樹脂等を使用することができる。ただし、この場合も、はりあわせ樹脂10及びスペーサ4,5の屈折率は記録層を形成する樹脂の屈折率に近いほうが好ましい。
【0026】
また、外周側のスペーサ4の外径は、はりあわせ樹脂10のはみ出しによる外観の悪化を防止するため、透明基板2,3の外径よりもわずかに小径に設定して、透明基板2,3の外周の表面よりも窪んだ窪み部を形成することが好ましい。さらに、内周側のスペーサ5の内径についても、透明基板2,3の内径よりもわずかに大径に設定して、透明基板2,3の内周の表面よりも窪んだ窪み部を形成することが好ましい。
【0027】
次に、本発明の第2実施形態としての三次元光記録媒体用基体について説明すると、本三次元光記録媒体用基体11は、図6に示すように、一対の透明基板12,13から構成されている。
透明基板12,13は、円盤状に形成されており、その中央には外周円と同心の円形の穴を有している。また、一方の透明基板12の外周部及び内周部には、それぞれ円環状の側壁14,15が一体に形成されている。これらの側壁14,15は、透明基板12,13を重ね合わせた時に、内部の隙間高さを均一に保つスペーサとして機能するものであり、多層光メモリ,ホログラムメモリ等の本三次元光記録媒体用基体1の用途に応じた高さ(好ましくは、30μm以上500μm以下の高さ)に形成されている。また、外周側の側壁14には、一部に切り欠き14aが設けられており、この切り欠き14aにおいて開口部が形成されている。
【0028】
本三次元光記録媒体用基体11は、上記の透明基板12,13を一体化することにより得られるものであり、一方の透明基板12の側壁14,15に、はりあわせ樹脂等の接着剤を塗布した後、他方の透明基板13を重ね合わせて接合することにより、透明基板12,13を一体化している。
本発明の第2実施形態としての三次元光記録媒体用基体11は上述のように構成されているので、三次元光記録媒体の製造にあたっては、まず、上述のようにして透明基板12,13を結合して、三次元光記録媒体用基体1を形成する(基体組立工程)。この結果、三次元光記録媒体用基体11の内部には、図7(a),図7(b)に示すように、側壁14,15がスペーサとなって透明基板12,13により囲まれる内部空間(記録層用空間)18が形成される。この内部空間18は、記録層を形成する樹脂を充填するための空間であり、外周側側壁14に設けられた切り欠き14aにより外部と連通している。
【0029】
したがって、本三次元光記録媒体用基体11を用いた場合にも、第1実施形態と同様な方法により光記録媒体を製造することが可能になる。つまり、まず、予め基体組立工程で組み立てられた三次元光記録媒体用基体11の周囲雰囲気を真空雰囲気にし、真空雰囲気下で外周側側壁14に設けられた切り欠き14aを記録層を形成する液状の樹脂が満たされた容器内に浸け、真空雰囲気を解除して三次元光記録媒体用基体11の周囲雰囲気を大気圧に戻す(樹脂注入工程)。次に、切り欠き14aから内部空間18内に吸引された液状樹脂を光硬化又は熱硬化させて記録層を形成するのである(樹脂硬化工程)。
【0030】
このように本三次元光記録媒体用基体11によれば、第1実施形態と同様に均一な厚みの記録層を容易に形成することができ、多層光メモリ,ホログラムメモリ等の厚みのある記録層を有する三次元光記録媒体の製造が容易になるという利点がある。さらに、本三次元光記録媒体用基体11によれば、透明基板12とともに一体成形される側壁14,15がスペーサとして機能するので、別にスペーサを設ける必要がなく、部品点数を削減することができるという利点もある。
【0031】
なお、上述の実施形態では、外周側の側壁14に切り欠き14aを設けて、この切り欠き14aにより形成される通路から内部空間18内に記録層を形成する液状樹脂を充填しているが、図8に示すように、内周側の側壁15に切り欠き15aを設けて、この切り欠き15aにより形成される通路から内部空間18内に記録層を形成する液状樹脂を充填してもよい。
【0032】
また、上述の実施形態では、一方の透明基板12にのみ側壁14,15を設けているが、図9に示すように各透明基板12,13に側壁14,15,側壁16,17を設けるようにしてもよい。ただし、この場合の側壁14,15,側壁16,17の高さは、本三次元光記録媒体用基体11の用途に応じた高さ(好ましくは、透明基板12,13を重ね合わせた時の高さの和が30μm以上500μm以下)に設定するとともに、側壁14,16の少なくとも一方に切れ込みを設けて(図9では、側壁14,16にそれぞれ切り欠き14a,16aを設けている)、内部空間18と外部とを連通させる必要がある。
【0033】
以上説明した第1実施形態,第2実施形態の三次元光記録媒体用基体は、ディスク状の一対の透明基板と、一対の透明基板の外周部間及び内周部間に挟装された二つの円環状のスペーサとからなり、二つのスペーサの何れか一方に開口部が設けられるという構成であるが、本発明の三次元光記録媒体用基体は、以下に説明する第3実施形態,第4実施形態のような構成にすることも可能である。
【0034】
まず、本発明の第3実施形態としての三次元光記録媒体用基体について説明すると、本三次元光記録媒体用基体21は、上記の第1実施形態,第2実施形態と同様に、多層光メモリ,ホログラムメモリ等の大容量,高密度の光記録媒体の製造に用いて好適の三次元光記録媒体用基体であり、図10に示すように、一対の透明基板22,23から構成されている。
【0035】
透明基板22,23は、円盤状に形成されており、その中央には外周円と同心の円形の穴を有している。また、透明基板22,23の外周部22a及び内周部23aには、それぞれ円環状の側壁24,25,側壁26,27が一体に形成されている。これらの側壁24,25,側壁26,27は、透明基板22,23を重ね合わせた時に、内部の隙間高さを均一に保つスペーサとして機能するものであり、多層光メモリ,ホログラムメモリ等の本三次元光記録媒体用基体21の用途に応じた高さ(好ましくは、透明基板22,23を重ね合わせた時の高さの和が30μm以上500μm以下)に形成されている。また、外周側の側壁24,26の外周側縁部は面取りが施され、傾斜面(面取り部)24a,26aが設けられており、透明基板22,23の外周面よりも内方に窪んだ窪み部が形成されるようになっている。なお、透明基板22,23の材質としては、第1実施形態で説明したものを用いることができる。
【0036】
本発明の第3実施形態としての三次元光記録媒体用基体21は上述のように構成されているので、図11に示すように、透明基板22,23には、それぞれ側壁24,25,側壁26,27により囲まれる容積部(記録層用空間)28,29が形成される。これらの容積部28,29は、記録層を形成する樹脂を充填するための容器として機能するものであり、他方の透明基板22(又は23)により蓋をすることができる。
【0037】
したがって、本三次元光記録媒体用基体21を用いて光記録媒体を製造する場合には、例えば次のような方法を用いることが可能になる。図12を参照しながら本三次元光記録媒体の製造方法について説明すると、まず、図12(a)に示すように、一方の透明基板22の容積部28内に記録層を形成する液状の樹脂30を充填する(第一の工程)。
【0038】
そして、図12(b)に示すように、三次元光記録媒体用基体21の周囲雰囲気を真空雰囲気にし、図12(c)に示すように、真空雰囲気下で液状樹脂30を充填した透明基板22の上に他方の透明基板23を重ね合わせる(第二の工程)。この時、透明基板23の側壁26と透明基板22の側壁24との重ね合わせ部分から液状樹脂30がはみ出してくる程度に、十分な量の樹脂30が容積部28内に充填されていることが好ましい。
【0039】
最後に、三次元光記録媒体用基体21に光又は熱を加えることにより、液状樹脂30を光硬化又は熱硬化させ、図12(d)に示すように、透明基板22,23を貼り合わせるとともに、記録層31を形成する(第三の工程)。以上の工程により、光記録媒体が製造される。
このように本三次元光記録媒体用基体21によれば、透明基板22,23の外周部及び内周部にそれぞれ設けられた側壁24,25,側壁26,27により透明基板22,23間の隙間間隔が規制されるとともに、透明基板22,23には容積部28,29が形成されているので、一方の透明基板22の容積部28内に記録層31を形成する樹脂を充填して、他方の透明基板23により蓋をするだけで、均一な厚みの記録層31を容易に形成することができ、多層光メモリ,ホログラムメモリ等の厚みのある記録層31を有する光記録媒体の製造が容易になるという利点がある。
【0040】
また、本三次元光記録媒体用基体21によれば、側壁24,25,側壁26,27をそれぞれ透明基板22,23とともに一体成形しているので、部品点数を削減することができるという利点もある。
さらに、外周側の側壁24,26の外周側縁部を面取りすることにより傾斜面24a,26aが設けられているので、透明基板22,23を重ね合わせた時には、その重ね合わせ部に切り込み(窪み部)が形成されるようになり、図13に示すように、内部の樹脂30がはみ出した場合でも、外見上目立つことがなく、外観の悪化を防止することができるという利点もある。
【0041】
なお、上述の実施形態では、各透明基板22,23にそれぞれ側壁24,25,側壁26,27を設けているが、図14に示すように一方の透明基板22のみに側壁24,25を設けて容積部28を形成するようにしてもよい。ただし、この場合にも、側壁24,25の高さを、本三次元光記録媒体用基体11の用途に応じた高さ(好ましくは、30μm以上500μm以下の高さ)に設定するとともに、外周側の側壁24の外周側縁部には、全域にわたって傾斜面24aを設けることが好ましい。
【0042】
また、上述の実施形態では、外周側の側壁24,26の外周側縁部のみを面取りしているが、図15に示すように、内周側の側壁25,27の内周側縁部にも面取りを施してもよく、さらに、各側壁24,25,26,27の内側の縁部にも面取りを施してもよい。このように内側の縁部にも面取りを施した場合には、三次元光記録媒体用基体21の内部全域に樹脂を行きわたらせ易く、記録層内に気泡が生じることを防止することができる。
【0043】
次に、本発明の第4実施形態としての三次元光記録媒体用基体について説明すると、本三次元光記録媒体用基体41は、図16に示すように、一対の透明基板42,43と、大小一組の円環状のスペーサ44,45とから構成されている。透明基板42,43は、円盤状に形成されており、その中央には外周円と同心の円形の穴を有している。スペーサ44,45は、透明基板42,43間の距離を均一に保つための部材であり、多層光メモリ,ホログラムメモリ等の本三次元光記録媒体用基体41の用途に応じた厚さ(好ましくは、30μm以上500μm以下の厚さ)に形成されている。スペーサ44の外径は透明基板42,43の外径よりもわずかに小径に設定され、スペーサ45の内径は透明基板42,43の内径と略同径に設定されている。なお、透明基板42,43の材質及びスペーサ44,45の材質としては、第1実施形態で説明したものを用いることができる。
【0044】
本三次元光記録媒体用基体41は、一方の透明基板42の外周部及び内周部に、それぞれスペーサ44,45を接合することにより円環状の側壁を形成したものであり、透明基板42の外周部上,内周部上にスペーサ44,45を積層した後、透明基板42とスペーサ44,45との接触部に光又は熱を当てて部分的に硬化させることによって、透明基板42とスペーサ44,45とを接合している。
【0045】
本発明の第4実施形態としての三次元光記録媒体用基体41は上述のように構成されているので、図17に示すように、一方の透明基板42には、スペーサ44,45により囲まれる容積部(記録層用空間)46が形成される。この容積部46は、記録層を形成する樹脂を充填するための容器として機能するものであり、他方の透明基板43により蓋をすることができる。
【0046】
したがって、本三次元光記録媒体用基体21を用いた場合にも、第3実施形態と同様な方法により光記録媒体を製造することが可能になる。つまり、まず、スペーサ44,45に囲まれた容積部46内に記録層を形成する液状の樹脂を充填し(第一の工程)、周囲雰囲気を真空雰囲気にした上で液状樹脂を充填した透明基板42の上に他方の透明基板43を重ね合わせ(第二の工程)、光又は熱を加えることにより、スペーサ44,45及び容積部46内の液状樹脂を光硬化又は熱硬化させ、透明基板43とスペーサ44,45とを貼り合わせるとともに記録層を形成するのである(第三の工程)。
【0047】
このように本三次元光記録媒体用基体41によれば、一方の透明基板42の外周部及び内周部に接合されたスペーサ44,45により透明基板42,43間の隙間間隔が規制されるとともに、透明基板42とスペーサ44,45とにより容積部46が形成されているので、容積部46内に記録層を形成する樹脂を充填して、他方の透明基板43により蓋をするだけで、均一な厚みの記録層を容易に形成することができ、多層光メモリ,ホログラムメモリ等の厚みのある記録層を有する三次元光記録媒体の製造が容易になるという利点がある。
【0048】
また、本三次元光記録媒体用基体41によれば、光硬化性又は熱硬化性フィルムからなる円環状のスペーサ44,45を透明基板42,43の外周部及び内周部に積層し、スペーサ44,45の透明基板42,43との接触部を部分的に光硬化又は熱硬化させることにより側壁を形成しているので、従来の透明基板をそのまま用いることができるという利点がある。
【0049】
さらに、外周側のスペーサ44の外径は、透明基板42,43の外径よりもわずかに小径に設定されているので、透明基板43により蓋をしたときに容積部46内から樹脂がはみ出した場合でも、外見上目立つことがなく、外観の悪化を防止することができるという利点もある。
以上、本発明の三次元光記録媒体用基体について、第1〜第4実施形態を説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々変形して実施することができる。例えば、本発明の三次元光記録媒体用基体が適用できる三次元光記録媒体は、上述した各実施形態のような円形ディスク形に限定されるものではなく、メモリカードのようなカード形の三次元光記録媒体等、種々の形状の光記録媒体に適用することができる。例えば、図18に示すようなカード型の三次元光記録媒体60に適用する場合には、カード型の一対の透明基板61,62の間に環状のスペーサ63を挟装し、スペーサ63の一部に内部(記録層用空間)と連通する切れ目(開口部)64を設けたような構成にしてもよく、また、図19に示す三次元光記録媒体70のように、カード型の一対の透明基板71,72の一方の外周部に環状のスペーサ73を固設したような構成にしてもよい。
【0050】
また、三次元光記録媒体の製造時に、真空雰囲気を用いているが、真空まで達しない減圧雰囲気を用いてもよく、また、必ずしもこのような減圧処理を行なわなくてもよい。
さらに、スペーサの縁部外周に形成する窪み部の形状は、上述の実施形態に限定されるものではなく、記録層用空間内からの樹脂のはみ出しを目立たなくできるような形状であればよい。
【0051】
【発明の効果】
以上詳述したように、本発明の三次元光記録媒体用基体(請求項1〜)によれば、一対の透明基板とスペーサとにより記録層を形成する記録層用空間が区画形成されるので、区画形成された記録層用空間内に記録層を形成する樹脂を注入するだけで、均一な厚みの記録層を容易に形成することができ、多層光メモリ,ホログラムメモリ等の厚みのある記録層を有する三次元光記録媒体の製造が容易になるという利点がある。
【0052】
また、スペーサに設けた開口部により記録層用空間と外部とを連通させた場合には、記録層用空間内を減圧するだけで記録層を形成する樹脂を記録層用空間内に引き込むことが可能になり、均一な厚みの記録層をより容易に形成することができという利点がある。
特に、スペーサとして光硬化性又は熱硬化性フィルムを用いる場合には、透明基板との接合が容易になり、また、従来の透明基板をそのまま用いることができるという利点がある(請求項)。
【0053】
また、スペーサを一対の透明基板のうちの少なくとも一方に予め一体に形成した場合には、部品点数を削減することができるという利点がある。
さらに、スペーサの縁部外周に、一対の透明基板の縁部外周よりも窪んだ窪み部が形成した場合には、記録層用空間内の樹脂がはみ出した場合でも外見上目立つことがなく、外観の悪化を防止することができるという利点がある(請求項)。
【0054】
そして、本発明の三次元光記録媒体の製造方法(請求項5)によれば、上記のような三次元光記録媒体用基体(請求項1)を用いることにより、多層光メモリ,ホログラムメモリ等の厚みのある記録層を有する三次元光記録媒体を容易に製造することができるという利点がある。
また、別の本発明の三次元光記録媒体の製造方法(請求項6,7)によれば、上記のような三次元光記録媒体用基体を用いることにより、多層光メモリ,ホログラムメモリ等の厚みのある記録層を有する三次元光記録媒体を容易に製造することができるという利点がある。
【図面の簡単な説明】
【図1】本発明の第1実施形態としての三次元光記録媒体用基体の構成を示す斜視図であり、各構成要素毎に分解して示している。
【図2】本発明の第1実施形態としての三次元光記録媒体用基体の構成を示す断面図であり、(a)は水平断面図、(b)は縦断面図である。
【図3】本発明の第1実施形態としての三次元光記録媒体用基体を用いた三次元光記録媒体の製造方法を説明するための図であり、(a)〜(d)の順に製造工程を示している。
【図4】本発明の第1実施形態としての三次元光記録媒体用基体の他の構成を示す斜視図であり、各構成要素毎に分解して示している。
【図5】本発明の第1実施形態としての三次元光記録媒体用基体の他の構成を示す縦断面図である。
【図6】本発明の第2実施形態としての三次元光記録媒体用基体の構成を示す斜視図であり、各構成要素毎に分解して示している。
【図7】本発明の第2実施形態としての三次元光記録媒体用基体の構成を示す断面図であり、(a)は水平断面図、(b)は縦断面図である。
【図8】本発明の第2実施形態としての三次元光記録媒体用基体の他の構成を示す斜視図であり、各構成要素毎に分解して示している。
【図9】本発明の第2実施形態としての三次元光記録媒体用基体の他の構成を示す縦断面図である。
【図10】本発明の第3実施形態としての三次元光記録媒体用基体の構成を示す斜視図である。
【図11】本発明の第3実施形態としての三次元光記録媒体用基体の構成を示す縦断面図である。
【図12】本発明の第3実施形態としての三次元光記録媒体用基体を用いた三次元光記録媒体の製造方法を説明するための図であり、(a)〜(d)の順に製造工程を示している。
【図13】本発明の第3実施形態としての三次元光記録媒体用基体の要部構成を示す縦断面図である。
【図14】本発明の第3実施形態としての三次元光記録媒体用基体の他の構成を示す縦断面図である。
【図15】本発明の第3実施形態としての三次元光記録媒体用基体の他の構成を示す縦断面図である。
【図16】本発明の第4実施形態としての三次元光記録媒体用基体の構成を示す斜視図である。
【図17】本発明の第4実施形態としての三次元光記録媒体用基体の構成を示す縦断面図である。
【図18】本発明の三次元光記録媒体用基体の他の実施形態を示す斜視図であり、各構成要素毎に分解して示している。
【図19】本発明の三次元光記録媒体用基体の他の実施形態を示す斜視図である。
【図20】本発明の適用対象の一つである多層光メモリの構成を示す模式図である。
【図21】本発明の適用対象の一つであるホログラムメモリの構成を示す模式図である。
【符号の説明】
1 三次元光記録媒体用基体
2,3 透明基板
4,5 スペーサ
4a 切れ目(開口部)
6 内部空間(記録層用空間)
8 記録層を形成する液状の樹脂
9 記録層
11 三次元光記録媒体用基体
12,13 透明基板
14,15 側壁(スペーサ)
14a 切れ込み(開口部)
18 内部空間(記録層用空間)
21 三次元光記録媒体用基体
22,23 透明基板
24〜27 側壁(スペーサ)
28,29 内部空間(記録層用空間)
30 記録層を形成する液状の樹脂
31 記録層
41 三次元光記録媒体用基体
42,43 透明基板
44,45 スペーサ
46 内部空間(記録層用空間)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a substrate for a three-dimensional optical recording medium and a method for manufacturing the three-dimensional optical recording medium, which are suitable for manufacturing a large-capacity, high-density optical recording medium such as a multilayer optical memory and a hologram memory.
[0002]
[Prior art]
Conventionally, a spin coating method is known as a method for manufacturing a disk-shaped optical recording medium such as a CD-R. In this method, a coating solution prepared by dissolving an organic dye as a recording material in an appropriate organic solvent is dropped on the information surface of a disk-shaped substrate where prepits and pregrooves are formed, and then the substrate is rotated and centrifuged. The excess coating solution is removed from the information surface by force to form a recording layer.
[0003]
[Problems to be solved by the invention]
By the way, in recent years, as a response to the coming multimedia information age, research and development for further increasing the capacity and density of optical recording media has been carried out. For example, as shown in FIG. 20, the recording layer 101 laminated on the transparent substrate 103 is made thicker than the focal depth of the focused laser beam 102, and the focal position is shifted so that the recording layer 101 is three-dimensional in the depth direction in the medium. As shown in FIG. 21, a multilayer recording type optical recording medium (multilayer optical memory) 100 that performs recording, or a recording layer 108 sandwiched between a pair of transparent substrates 109 and 110, reflects light from an object, signals, and the like. By irradiating a signal beam 106 representing information and a reference beam 107 for causing interference with the signal beam 106 in the recording layer 108, the incident angle of the reference beam 107 is changed little by little, so that Like a hologram type optical recording medium (hologram memory) 105 that multiplex-records a plurality of holograms at the same location, not only in the plane of the recording layer but also in the thickness direction three-dimensionally. Three-dimensional optical recording medium having improved recording capacity by recording have been developed.
[0004]
Both the multilayer optical memory 100 and the hologram memory 105 contain a large amount of synthetic resin (90% by weight or more) in the recording layer, and light utilizing the structural change caused by heat or light of the resin and the accompanying change in optical properties. It is a recording medium, and the thickness of the recording layer is several tens to several hundreds μm, which is very thick compared to a conventional optical recording medium. Also, these optical recording media require three-dimensional recording in the thickness direction of the recording layer, so that the uniformity of the recording layer thickness is more stringent than conventional optical recording media that record in a plane. Is done. That is, the three-dimensional optical recording medium must have a thicker recording layer and a more uniform thickness than a two-dimensional one.
[0005]
As a method for forming a layer having a uniform thickness with a material containing a large amount of synthetic resin, the above-described spin coating method is generally used. However, if the layer is a relatively thin layer of less than 10 μm, such as a CD-R. Although it can be formed uniformly, the coating liquid spreads due to the action of centrifugal force, so it is difficult to form a thicker layer, particularly 100 μm or more. Further, if the substrate is rotated at a low speed in order to form a thick layer, the film thickness of the edge portion of the disk becomes particularly large, and it becomes impossible to ensure the uniformity of the thickness. Further, although a method of increasing the viscosity of the coating solution is also conceivable, it is often difficult to change the composition of the coating solution for viscosity control in view of the influence on the recording characteristics of the medium.
[0006]
The present invention was devised in view of the above-mentioned problems, and a three-dimensional optical recording medium substrate which can easily manufacture a three-dimensional optical recording medium having a relatively thick recording layer containing a large amount of synthetic resin, and It is an object to provide a method for manufacturing a three-dimensional optical recording medium.
[0007]
[Means for Solving the Problems]
  In order to achieve the above object, the substrate for a three-dimensional optical recording medium of the present invention is a substrate for a three-dimensional optical recording medium that records information three-dimensionally in a recording layer containing a large amount of synthetic resin. And a pair of transparent substrates that form both sides of the recording layer space forming the recording layer and the pair of transparent substrates, and couple the pair of transparent substrates at a predetermined distance. And a spacer for defining an edge of the recording layer space.Further, the spacer is made of a photo-curable or thermosetting film, and the film is interposed between the pair of transparent substrates, and is photo-cured or thermo-cured, whereby the pair of transparent substrates and the film are used. The spacer is integrated(Claim 1).
[0008]
  Here, it is preferable that the spacer is provided with an opening that opens the recording layer space to the outside.TheThe pair of transparent substrates are disk-shaped, the recording layer space is formed in an annular shape, and the spacers are provided on the outer peripheral edge and the inner peripheral edge of the annular recording layer space, respectively. More preferredYes.
[0009]
  Further, it is preferable that the spacer is integrally formed in advance on at least one of the pair of transparent substrates.Yes.
  Also,Another substrate for a three-dimensional optical recording medium of the present invention is a substrate for a three-dimensional optical recording medium for recording information three-dimensionally in a recording layer containing a large amount of synthetic resin, A pair of transparent substrates that form both sides of the recording layer space to be formed and the pair of transparent substrates are interposed between the pair of transparent substrates, and the pair of transparent substrates are coupled with a predetermined distance. And a spacer that defines the edge,On the outer periphery of the edge of the spacer, a recess is formed that is recessed from the outer periphery of the edge of the pair of transparent substrates.(Claim 2).
  hereMore preferably, the recess is formed by setting the entire outer edge surface of the spacer to a position displaced from the outer edge surfaces of the pair of transparent substrates into the space forming the recording layer. Preferred (claims)3). Alternatively, it is more preferable that the hollow portion is constituted by a chamfered portion formed by chamfering the outer surface of the edge portion of the spacer.4).
[0010]
  The method for producing a three-dimensional optical recording medium of the present invention comprises the above-described substrate for a three-dimensional optical recording medium (claims).1)A substrate for a three-dimensional optical recording medium, wherein the spacer is provided with an opening for opening the recording space to the outside.A method of manufacturing a three-dimensional optical recording medium using a substrate, the base assembly step of assembling the base for three-dimensional optical recording medium by combining the pair of transparent substrates and the spacer, A resin injection step of injecting a photocurable or thermosetting liquid resin for forming the recording layer into the recording layer space, and a photocuring or thermosetting of the liquid resin injected into the recording medium space. And a resin curing process to be performed (claims)5).
[0011]
  Furthermore, another method for producing a three-dimensional optical recording medium of the present invention is a substrate for a three-dimensional optical recording medium for recording information three-dimensionally in a recording layer containing a large amount of synthetic resin, A pair of transparent substrates that form both sides of a recording layer space for forming a recording layer, and the pair of transparent substrates are interposed between the pair of transparent substrates, and the pair of transparent substrates are coupled to each other with a predetermined distance. A method of manufacturing a three-dimensional optical recording medium using a three-dimensional optical recording medium substrate comprising a spacer that defines an edge of a working space, wherein one of the pair of transparent substrates is one of the spacers. A first step of filling the space for the recording layer on one transparent substrate with a part or the whole thereof with a photocurable or thermosetting liquid resin for forming the recording layer, and the liquid resin The second process of superimposing the other substrate on the one transparent substrate And a third step of photocuring or thermosetting the liquid resin filled between the spacers, and prior to the second step, the periphery of the substrate for the three-dimensional optical recording medium is made a vacuum atmosphere. It is characterized by having a process (claim 6).
  Here, it is preferable that the spacer is made of a photocurable or thermosetting film, and the spacer is cured together with the liquid resin in the third step, and the transparent substrate and the spacer are bonded together.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
First, the three-dimensional optical recording medium substrate as the first embodiment of the present invention will be described. Note that the three-dimensional optical recording medium according to the present embodiment has a disk shape, and the recording layer is formed in an annular shape (doughnut shape).
[0014]
The substrate 1 for a three-dimensional optical recording medium is a substrate for a three-dimensional optical recording medium suitable for use in manufacturing a large-capacity, high-density three-dimensional optical recording medium such as a multilayer optical memory or a hologram memory, and is shown in FIG. In this way, it is composed of a pair of transparent substrates 2 and 3 and a pair of large and small annular spacers 4 and 5.
The transparent substrates 2 and 3 are formed in a disk shape, and have a circular hole concentric with the outer circumference circle at the center thereof. As the material of the transparent substrates 2 and 3, glass or transparent resin (for example, polycarbonate resin, acrylic resin, methacrylic resin, polystyrene resin, vinyl chloride resin, epoxy resin, polyester resin, amorphous polyolefin, etc.) can be used.
[0015]
The spacers 4 and 5 are members for keeping the distance between the transparent substrates 2 and 3 uniform in a predetermined size, and are in accordance with the use of the substrate for the three-dimensional optical recording medium 1 such as a multilayer optical memory or a hologram memory. It is formed to a thickness (preferably, a thickness of 30 μm to 500 μm). The spacer 4 is interposed between the outer peripheral portions 2 a and 3 a of the transparent substrates 2 and 3, and the outer diameter of the spacer 4 is set to be substantially the same as the outer diameter of the transparent substrates 2 and 3. The spacer 5 is interposed between the inner peripheral portions 2 b and 3 b of the transparent substrates 2 and 3, and the inner diameter of the spacer 5 is set to be substantially the same as the inner diameter of the transparent substrates 2 and 3. The spacer 4 is partially provided with a cut 4a, and an opening of the spacer 4 is formed in the cut 4a.
[0016]
The material of the spacers 4 and 5 may be a photo-curing or thermosetting resin such as an acrylic resin, an epoxy resin, an isocyanate resin, etc., but preferably the refraction of the resin forming the recording layer. Try to select the one that is close to the rate. In addition, as the spacer according to the first embodiment of the present invention, it is preferable to use spacers 4 and 5 that have been independently formed in advance as shown in FIG. The spacer may be applied on the other substrate, bonded to the other substrate, and then cured.
[0017]
In the case where the spacers are formed independently in advance, for example, a photo-curing or thermosetting resin is used with a predetermined thickness according to the application using a known method such as a die casting method, a dip coating method, or a roll coating method. After the film is partially cured with light or heat, the spacers 4 and 5 can be obtained as annular resin films by punching into an appropriate shape. Alternatively, an annular resin can also be obtained by injecting a photocurable or thermosetting resin into a mold according to the shape of the spacers 4 and 5, partially curing with light or heat, and then removing from the mold. Spacers 4 and 5 can be obtained as a film.
[0018]
The three-dimensional optical recording medium substrate 1 is integrally formed by sandwiching spacers 4 and 5 between the outer peripheral portions 2a and 3a and the inner peripheral portions 2b and 3b of the transparent substrates 2 and 3, respectively. After the spacers 4 and 5 are laminated on the outer peripheral part 3a or 2a and the inner peripheral part 3b or 2b of one transparent substrate 2, respectively, the other transparent substrate 3 is further laminated and photocurable. Alternatively, it is formed by further curing by applying light or heat to the spacers 4 and 5 which are thermosetting resin films.
[0019]
Since the three-dimensional optical recording medium substrate 1 according to the first embodiment of the present invention is configured as described above, in manufacturing the three-dimensional optical recording medium, first, as described above, the transparent substrates 2 and 3 are used. The three-dimensional optical recording medium substrate 1 is formed by combining the spacers 4 and 5 (substrate assembling step). As a result, inside the three-dimensional optical recording medium substrate 1, as shown in FIGS. 2A and 2B, an internal space (recording) surrounded by the transparent substrates 2 and 3 and the spacers 4 and 5 is recorded. Layer space) 6 is formed. The internal space 6 is a space for filling the resin forming the recording layer, and communicates with the outside through a cut (opening) 4 a formed in the outer spacer 4.
[0020]
Therefore, when manufacturing an optical recording medium using the substrate for three-dimensional optical recording medium 1, for example, the following method can be used. The manufacturing method of the present three-dimensional optical recording medium will be described with reference to FIG. 3. First, as shown in FIG. 3A, the periphery of the substrate 1 for a three-dimensional optical recording medium assembled in advance in the base assembly process. Create a vacuum atmosphere. Then, as shown in FIG. 3B, the cut 4a formed in the spacer 4 is immersed in a container 7 filled with a liquid resin 8 forming a recording layer in a vacuum atmosphere.
[0021]
As the resin 8 forming the recording layer, a photo-curing or thermosetting resin, for example, a polymer that is polymerized by a radical reaction of an ethylenically unsaturated double bond-containing compound such as an acrylic or methacrylic resin, or an epoxy resin A material containing a photo-curable monomer such as a photo-reactive cation, and a binder resin that can be photo-cured or heat-cured as necessary, a combination of poly (p-hydroxystyrene) and hexamethoxymethylmelamine Although such a thing can be considered, specifically, it selects suitably according to a recording system.
[0022]
Next, as shown in FIG. 3C, the vacuum atmosphere is released and the ambient atmosphere of the three-dimensional optical recording medium substrate 1 is returned to atmospheric pressure. As a result, the liquid resin 8 in the container 7 is filled into the internal space 6 that is pressed by the atmospheric pressure and is in a vacuum state from the cut 4a (the resin injection step).
Then, by applying light or heat to the substrate 1 for a three-dimensional optical recording medium, the liquid resin 8 sucked into the internal space 6 from the cut 4a is photocured or thermally cured, as shown in FIG. 3 (d). Then, the recording layer 9 is formed (resin curing step). The optical recording medium is manufactured through the above steps.
[0023]
As described above, according to the substrate 1 for a three-dimensional optical recording medium, the gap between the transparent substrates 2 and 3 is set in advance by the spacers 4 and 5 at a predetermined interval, and the space in which the recording layer 9 is formed is a spacer. Since the closed space communicates with the outside only by the four cuts 4a, the recording layer 9 having a uniform thickness can be formed by simply drawing the resin for forming the recording layer in the closed space (internal space) 6 in a vacuum atmosphere. There is an advantage that it can be easily formed, and manufacturing of a three-dimensional optical recording medium having a thick recording layer 9 such as a multilayer optical memory or a hologram memory becomes easy.
[0024]
Further, by using a photocurable or thermosetting film as the spacers 4 and 5, there is an advantage that joining with the transparent substrates 2 and 3 is facilitated, and a conventional transparent substrate can be used as it is.
In the above-described embodiment, the outer spacer 4 is provided with a cut 4a, and the cut 4a is used as a passage for filling the liquid resin forming the recording layer in the internal space 6. FIG. As shown, a cut (opening) 5a may be provided in the inner circumferential spacer 5 and the cut 5a may be used as a passage for filling the internal space 6 with a liquid resin that forms a recording layer.
[0025]
In the above-described embodiment, the spacers 4 and 5 are formed of a photocurable or thermosetting resin film and bonded to the transparent substrates 2 and 3 using photocuring or thermosetting. As shown, the spacers 4 and 5 may be bonded to the transparent substrates 2 and 3 using a bonding resin 10. In this case, the material of the spacers 4 and 5 does not have to be a photo-curing or thermosetting resin. For example, the materials mentioned above as the substrate material or a polyamide-based resin can be used. In this case, however, the refractive index of the bonding resin 10 and the spacers 4 and 5 is preferably close to the refractive index of the resin forming the recording layer.
[0026]
The outer diameter of the spacer 4 on the outer peripheral side is set to be slightly smaller than the outer diameter of the transparent substrates 2 and 3 in order to prevent deterioration of the appearance due to the sticking of the bonding resin 10. It is preferable to form a recessed portion that is recessed from the outer peripheral surface of the substrate. Furthermore, the inner diameter of the spacer 5 on the inner peripheral side is also set to be slightly larger than the inner diameter of the transparent substrates 2 and 3 to form a hollow portion that is recessed from the inner peripheral surface of the transparent substrates 2 and 3. It is preferable.
[0027]
Next, the three-dimensional optical recording medium substrate according to the second embodiment of the present invention will be described. The three-dimensional optical recording medium substrate 11 includes a pair of transparent substrates 12 and 13 as shown in FIG. Has been.
The transparent substrates 12 and 13 are formed in a disc shape, and have a circular hole concentric with the outer circumference circle at the center thereof. In addition, annular side walls 14 and 15 are integrally formed on the outer peripheral portion and the inner peripheral portion of one transparent substrate 12, respectively. These side walls 14 and 15 function as spacers that keep the internal gap height uniform when the transparent substrates 12 and 13 are overlapped, and are used for this three-dimensional optical recording medium such as a multilayer optical memory or a hologram memory. The substrate 1 is formed to have a height (preferably, a height of 30 μm or more and 500 μm or less) according to the application. Further, the outer side wall 14 is partially provided with a notch 14a, and an opening is formed in the notch 14a.
[0028]
The substrate 11 for the three-dimensional optical recording medium is obtained by integrating the transparent substrates 12 and 13 described above, and an adhesive such as a bonding resin is applied to the side walls 14 and 15 of the one transparent substrate 12. After the application, the transparent substrates 12 and 13 are integrated by overlapping and bonding the other transparent substrate 13.
Since the three-dimensional optical recording medium substrate 11 according to the second embodiment of the present invention is configured as described above, in manufacturing the three-dimensional optical recording medium, first, as described above, the transparent substrates 12, 13 are used. Are combined to form a substrate 1 for a three-dimensional optical recording medium (substrate assembly step). As a result, inside the substrate 11 for the three-dimensional optical recording medium, as shown in FIGS. 7A and 7B, the side walls 14 and 15 serve as spacers and are surrounded by the transparent substrates 12 and 13. A space (recording layer space) 18 is formed. The internal space 18 is a space for filling the resin forming the recording layer, and communicates with the outside through a notch 14 a provided in the outer peripheral side wall 14.
[0029]
Therefore, even when the three-dimensional optical recording medium substrate 11 is used, it is possible to manufacture the optical recording medium by the same method as in the first embodiment. That is, first, the ambient atmosphere of the three-dimensional optical recording medium substrate 11 assembled in advance in the substrate assembling process is set to a vacuum atmosphere, and the notch 14a provided on the outer peripheral side wall 14 is formed in the vacuum atmosphere to form a recording layer. In a container filled with the resin, the vacuum atmosphere is released and the ambient atmosphere of the three-dimensional optical recording medium substrate 11 is returned to atmospheric pressure (resin injection step). Next, the liquid resin sucked into the internal space 18 from the notch 14a is photocured or thermally cured to form a recording layer (resin curing step).
[0030]
Thus, according to the substrate 11 for a three-dimensional optical recording medium, a recording layer having a uniform thickness can be easily formed as in the first embodiment, and a thick recording layer such as a multilayer optical memory or a hologram memory can be formed. There is an advantage that it is easy to manufacture a three-dimensional optical recording medium having Furthermore, according to the substrate 11 for the three-dimensional optical recording medium, the side walls 14 and 15 formed integrally with the transparent substrate 12 function as spacers, so that it is not necessary to provide a separate spacer and the number of parts can be reduced. There is also an advantage.
[0031]
In the above-described embodiment, the notch 14a is provided in the outer peripheral side wall 14, and the liquid resin for forming the recording layer is filled in the internal space 18 from the passage formed by the notch 14a. As shown in FIG. 8, a notch 15a may be provided in the inner peripheral side wall 15, and a liquid resin forming a recording layer may be filled into the internal space 18 from a passage formed by the notch 15a.
[0032]
In the above-described embodiment, the side walls 14 and 15 are provided only on one transparent substrate 12, but the side walls 14 and 15 and the side walls 16 and 17 are provided on each transparent substrate 12 and 13, as shown in FIG. It may be. However, the height of the side walls 14 and 15 and the side walls 16 and 17 in this case is the height corresponding to the use of the substrate 11 for the three-dimensional optical recording medium (preferably when the transparent substrates 12 and 13 are superposed. The height is set to 30 μm or more and 500 μm or less), and at least one of the side walls 14 and 16 is provided with a cut (in FIG. 9, the side walls 14 and 16 are provided with notches 14a and 16a, respectively) It is necessary to communicate the space 18 with the outside.
[0033]
The three-dimensional optical recording medium substrate according to the first embodiment and the second embodiment described above includes a pair of disc-shaped transparent substrates and two sandwiched between the outer peripheral portion and the inner peripheral portion of the pair of transparent substrates. The three-dimensional optical recording medium substrate according to the present invention has a configuration in which one of the two spacers is provided with an opening, and the three-dimensional optical recording medium substrate according to the present invention is described below in a third embodiment. It is also possible to adopt a configuration as in the fourth embodiment.
[0034]
First, a three-dimensional optical recording medium substrate according to a third embodiment of the present invention will be described. The three-dimensional optical recording medium substrate 21 is a multi-layer optical memory, as in the first and second embodiments. , A base for a three-dimensional optical recording medium suitable for use in the production of a large-capacity, high-density optical recording medium such as a holographic memory, and is composed of a pair of transparent substrates 22 and 23 as shown in FIG. .
[0035]
The transparent substrates 22 and 23 are formed in a disk shape, and have a circular hole concentric with the outer circumference circle at the center thereof. In addition, annular side walls 24 and 25 and side walls 26 and 27 are integrally formed on the outer peripheral portion 22a and the inner peripheral portion 23a of the transparent substrates 22 and 23, respectively. The side walls 24 and 25 and the side walls 26 and 27 function as spacers that keep the internal gap height uniform when the transparent substrates 22 and 23 are overlaid. The original optical recording medium substrate 21 is formed to have a height (preferably, the sum of the height when the transparent substrates 22 and 23 are overlapped is 30 μm or more and 500 μm or less). Further, the outer peripheral side edges of the outer peripheral side walls 24 and 26 are chamfered, and inclined surfaces (chamfered portions) 24a and 26a are provided, which are recessed inward from the outer peripheral surfaces of the transparent substrates 22 and 23. A recess is formed. In addition, as a material of the transparent substrates 22 and 23, what was demonstrated in 1st Embodiment can be used.
[0036]
Since the three-dimensional optical recording medium substrate 21 according to the third embodiment of the present invention is configured as described above, the transparent substrates 22 and 23 have side walls 24 and 25, respectively, as shown in FIG. Volume portions (recording layer spaces) 28 and 29 surrounded by 26 and 27 are formed. These volume portions 28 and 29 function as containers for filling the resin forming the recording layer, and can be covered with the other transparent substrate 22 (or 23).
[0037]
Therefore, when manufacturing an optical recording medium using the substrate 21 for the three-dimensional optical recording medium, for example, the following method can be used. The manufacturing method of the three-dimensional optical recording medium will be described with reference to FIG. 12. First, as shown in FIG. 12A, a liquid resin for forming a recording layer in the volume portion 28 of one transparent substrate 22. 30 is filled (first step).
[0038]
Then, as shown in FIG. 12B, the ambient atmosphere of the substrate 21 for the three-dimensional optical recording medium is made a vacuum atmosphere, and as shown in FIG. 12C, the transparent substrate filled with the liquid resin 30 in the vacuum atmosphere. The other transparent substrate 23 is overlaid on 22 (second step). At this time, the volume portion 28 should be filled with a sufficient amount of the resin 30 such that the liquid resin 30 protrudes from the overlapping portion of the side wall 26 of the transparent substrate 23 and the side wall 24 of the transparent substrate 22. preferable.
[0039]
Finally, the liquid resin 30 is photocured or heat cured by applying light or heat to the three-dimensional optical recording medium substrate 21, and the transparent substrates 22 and 23 are bonded together as shown in FIG. Then, the recording layer 31 is formed (third step). The optical recording medium is manufactured through the above steps.
As described above, according to the substrate 21 for the three-dimensional optical recording medium, the side walls 24 and 25 and the side walls 26 and 27 respectively provided on the outer peripheral portion and the inner peripheral portion of the transparent substrates 22 and 23 are provided between the transparent substrates 22 and 23. The gap interval is regulated, and the volume portions 28 and 29 are formed in the transparent substrates 22 and 23. Therefore, the resin for forming the recording layer 31 is filled in the volume portion 28 of one transparent substrate 22, By simply covering with the other transparent substrate 23, the recording layer 31 having a uniform thickness can be easily formed, and an optical recording medium having a thick recording layer 31 such as a multilayer optical memory or a hologram memory can be easily manufactured. There is an advantage of becoming.
[0040]
Further, according to the substrate 21 for the three-dimensional optical recording medium, the side walls 24 and 25 and the side walls 26 and 27 are integrally formed with the transparent substrates 22 and 23, respectively, so that the number of parts can be reduced. is there.
Further, since the inclined surfaces 24a and 26a are provided by chamfering the outer peripheral side edge portions of the outer peripheral side walls 24 and 26, when the transparent substrates 22 and 23 are overlapped, a cut (dent) is formed in the overlapped portion. 13), as shown in FIG. 13, even when the internal resin 30 protrudes, there is an advantage that the appearance is not noticeable and deterioration of the appearance can be prevented.
[0041]
In the above-described embodiment, the transparent substrates 22 and 23 are provided with the side walls 24 and 25 and the side walls 26 and 27, respectively, but the side walls 24 and 25 are provided only on one transparent substrate 22 as shown in FIG. Thus, the volume portion 28 may be formed. However, also in this case, the height of the side walls 24 and 25 is set to a height (preferably, a height of 30 μm or more and 500 μm or less) according to the application of the substrate 11 for the three-dimensional optical recording medium. It is preferable to provide an inclined surface 24a over the entire outer peripheral side edge of the side wall 24 on the side.
[0042]
In the above-described embodiment, only the outer peripheral side edges of the outer peripheral side walls 24 and 26 are chamfered. However, as shown in FIG. 15, the inner peripheral side edges of the inner peripheral side walls 25 and 27 are chamfered. Also, chamfering may be performed, and chamfering may also be performed on the inner edges of the side walls 24, 25, 26, 27. When the inner edge portion is chamfered in this way, the resin can be easily distributed throughout the entire interior of the three-dimensional optical recording medium substrate 21, and bubbles can be prevented from being generated in the recording layer.
[0043]
Next, a three-dimensional optical recording medium substrate as a fourth embodiment of the present invention will be described. The three-dimensional optical recording medium substrate 41 includes a pair of transparent substrates 42 and 43, as shown in FIG. It comprises a pair of large and small annular spacers 44 and 45. The transparent substrates 42 and 43 are formed in a disk shape, and have a circular hole concentric with the outer circumference circle at the center thereof. The spacers 44 and 45 are members for keeping the distance between the transparent substrates 42 and 43 uniform, and have a thickness (preferably, depending on the use of the substrate for a three-dimensional optical recording medium 41 such as a multilayer optical memory or a hologram memory). , 30 μm or more and 500 μm or less in thickness). The outer diameter of the spacer 44 is set to be slightly smaller than the outer diameter of the transparent substrates 42 and 43, and the inner diameter of the spacer 45 is set to be approximately the same as the inner diameter of the transparent substrates 42 and 43. As the material of the transparent substrates 42 and 43 and the material of the spacers 44 and 45, those described in the first embodiment can be used.
[0044]
The substrate for a three-dimensional optical recording medium 41 has annular side walls formed by bonding spacers 44 and 45 to the outer peripheral portion and inner peripheral portion of one transparent substrate 42, respectively. After the spacers 44 and 45 are stacked on the outer peripheral portion and the inner peripheral portion, the transparent substrate 42 and the spacer are partially cured by applying light or heat to the contact portion between the transparent substrate 42 and the spacers 44 and 45. 44 and 45 are joined.
[0045]
Since the three-dimensional optical recording medium substrate 41 according to the fourth embodiment of the present invention is configured as described above, one transparent substrate 42 is surrounded by spacers 44 and 45 as shown in FIG. A volume (recording layer space) 46 is formed. The volume portion 46 functions as a container for filling the resin forming the recording layer, and can be covered with the other transparent substrate 43.
[0046]
Accordingly, even when this three-dimensional optical recording medium substrate 21 is used, an optical recording medium can be manufactured by the same method as in the third embodiment. That is, first, a liquid resin for forming a recording layer is filled in the volume portion 46 surrounded by the spacers 44 and 45 (first step), and the transparent atmosphere is filled with the liquid resin after setting the ambient atmosphere to a vacuum atmosphere. The other transparent substrate 43 is overlaid on the substrate 42 (second step), and the liquid resin in the spacers 44 and 45 and the volume portion 46 is photocured or thermocured by applying light or heat to form a transparent substrate. 43 and spacers 44 and 45 are bonded together and a recording layer is formed (third step).
[0047]
As described above, according to the substrate for a three-dimensional optical recording medium 41, the gap interval between the transparent substrates 42 and 43 is regulated by the spacers 44 and 45 bonded to the outer peripheral portion and the inner peripheral portion of one transparent substrate 42. At the same time, since the volume portion 46 is formed by the transparent substrate 42 and the spacers 44 and 45, the resin for forming the recording layer is filled in the volume portion 46 and the other transparent substrate 43 is simply covered. There is an advantage that a recording layer having a uniform thickness can be easily formed, and a three-dimensional optical recording medium having a thick recording layer such as a multilayer optical memory or a hologram memory can be easily manufactured.
[0048]
Further, according to the substrate for a three-dimensional optical recording medium 41, annular spacers 44 and 45 made of a photocurable or thermosetting film are laminated on the outer peripheral portion and the inner peripheral portion of the transparent substrates 42 and 43, and the spacer Since the side walls are formed by partially photocuring or thermosetting the contact portions of 44 and 45 with the transparent substrates 42 and 43, there is an advantage that a conventional transparent substrate can be used as it is.
[0049]
Further, since the outer diameter of the spacer 44 on the outer peripheral side is set to be slightly smaller than the outer diameter of the transparent substrates 42 and 43, the resin protrudes from the inside of the volume portion 46 when the transparent substrate 43 is covered. Even in this case, there is an advantage that the appearance is not conspicuous and deterioration of the appearance can be prevented.
The first to fourth embodiments of the substrate for a three-dimensional optical recording medium of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and does not depart from the spirit of the present invention. Various modifications can be made. For example, the three-dimensional optical recording medium to which the substrate for the three-dimensional optical recording medium of the present invention can be applied is not limited to the circular disk shape as in each of the embodiments described above, but a card-shaped tertiary such as a memory card. The present invention can be applied to optical recording media of various shapes such as original optical recording media. For example, when applied to a card-type three-dimensional optical recording medium 60 as shown in FIG. 18, an annular spacer 63 is sandwiched between a pair of card-type transparent substrates 61, 62, and A section (opening) 64 that communicates with the interior (recording layer space) may be provided in the part, and a pair of card-types may be provided as in the three-dimensional optical recording medium 70 shown in FIG. A configuration in which an annular spacer 73 is fixed to one outer peripheral portion of the transparent substrates 71 and 72 may be employed.
[0050]
In addition, a vacuum atmosphere is used when manufacturing the three-dimensional optical recording medium. However, a reduced pressure atmosphere that does not reach the vacuum may be used, and such a reduced pressure process is not necessarily performed.
Further, the shape of the recess formed on the outer periphery of the edge of the spacer is not limited to the above-described embodiment, and may be any shape that makes the protrusion of the resin from the recording layer space inconspicuous.
[0051]
【The invention's effect】
  As described in detail above, the substrate for a three-dimensional optical recording medium of the present invention4), The recording layer space for forming the recording layer is partitioned by the pair of transparent substrates and the spacers. Therefore, the resin for forming the recording layer can be injected into the partitioned recording layer space. Therefore, there is an advantage that a recording layer having a uniform thickness can be easily formed, and a three-dimensional optical recording medium having a thick recording layer such as a multilayer optical memory or a hologram memory can be easily manufactured.
[0052]
  Further, when the recording layer space is communicated with the outside through the opening provided in the spacer, the resin for forming the recording layer can be drawn into the recording layer space simply by reducing the pressure in the recording layer space. This makes it possible to form a recording layer with a uniform thickness more easily.The
  In particular, when a photocurable or thermosetting film is used as the spacer, there is an advantage that joining with a transparent substrate is facilitated, and a conventional transparent substrate can be used as it is (claims).1).
[0053]
  In addition, when the spacer is integrally formed in advance on at least one of the pair of transparent substrates, there is an advantage that the number of parts can be reduced.The
  In addition, when a recess is formed on the outer periphery of the spacer, which is recessed from the outer periphery of the pair of transparent substrates, even if the resin in the recording layer space protrudes, the appearance does not stand out. Can be prevented from deteriorating (claims)2~4).
[0054]
  According to the method for manufacturing a three-dimensional optical recording medium of the present invention (Claim 5), a multilayer optical memory, a hologram memory, or the like can be obtained by using the above three-dimensional optical recording medium substrate (Claim 1). There is an advantage that a three-dimensional optical recording medium having a thick recording layer can be easily manufactured.
  Another method for producing a three-dimensional optical recording medium of the present invention (claim 6)., 7), It is possible to easily manufacture a three-dimensional optical recording medium having a thick recording layer, such as a multilayer optical memory or a hologram memory, by using the substrate for a three-dimensional optical recording medium as described above. There is.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a configuration of a substrate for a three-dimensional optical recording medium as a first embodiment of the present invention, which is disassembled for each component.
2A and 2B are cross-sectional views showing a configuration of a substrate for a three-dimensional optical recording medium as a first embodiment of the present invention, wherein FIG. 2A is a horizontal cross-sectional view and FIG. 2B is a vertical cross-sectional view.
FIG. 3 is a diagram for explaining a method of manufacturing a three-dimensional optical recording medium using the three-dimensional optical recording medium substrate as the first embodiment of the present invention, manufactured in the order of (a) to (d). The process is shown.
FIG. 4 is a perspective view showing another configuration of the substrate for a three-dimensional optical recording medium as the first embodiment of the present invention, which is disassembled for each component.
FIG. 5 is a longitudinal sectional view showing another configuration of the three-dimensional optical recording medium substrate according to the first embodiment of the present invention.
FIG. 6 is a perspective view showing a configuration of a substrate for a three-dimensional optical recording medium as a second embodiment of the present invention, which is disassembled for each component.
7A and 7B are cross-sectional views showing a configuration of a substrate for a three-dimensional optical recording medium as a second embodiment of the present invention, wherein FIG. 7A is a horizontal cross-sectional view and FIG. 7B is a vertical cross-sectional view.
FIG. 8 is a perspective view showing another configuration of a substrate for a three-dimensional optical recording medium as a second embodiment of the present invention, which is disassembled for each component.
FIG. 9 is a longitudinal sectional view showing another configuration of a substrate for a three-dimensional optical recording medium as a second embodiment of the present invention.
FIG. 10 is a perspective view showing a configuration of a substrate for a three-dimensional optical recording medium as a third embodiment of the present invention.
FIG. 11 is a longitudinal sectional view showing a configuration of a substrate for a three-dimensional optical recording medium as a third embodiment of the present invention.
FIG. 12 is a diagram for explaining a method of manufacturing a three-dimensional optical recording medium using a substrate for a three-dimensional optical recording medium as a third embodiment of the present invention, manufactured in the order of (a) to (d). The process is shown.
FIG. 13 is a longitudinal cross-sectional view showing the main configuration of a three-dimensional optical recording medium substrate according to a third embodiment of the present invention.
FIG. 14 is a longitudinal sectional view showing another configuration of a three-dimensional optical recording medium substrate according to a third embodiment of the present invention.
FIG. 15 is a longitudinal sectional view showing another configuration of a substrate for a three-dimensional optical recording medium as a third embodiment of the present invention.
FIG. 16 is a perspective view showing a configuration of a substrate for a three-dimensional optical recording medium as a fourth embodiment of the present invention.
FIG. 17 is a longitudinal sectional view showing a configuration of a substrate for a three-dimensional optical recording medium as a fourth embodiment of the present invention.
FIG. 18 is a perspective view showing another embodiment of the substrate for a three-dimensional optical recording medium of the present invention, which is disassembled for each component.
FIG. 19 is a perspective view showing another embodiment of the substrate for a three-dimensional optical recording medium of the present invention.
FIG. 20 is a schematic diagram showing the configuration of a multilayer optical memory that is one of the objects to which the present invention is applied.
FIG. 21 is a schematic diagram showing the configuration of a hologram memory that is one of the objects to which the present invention is applied.
[Explanation of symbols]
1 Substrate for three-dimensional optical recording medium
2, 3 Transparent substrate
4,5 spacer
4a Cut (opening)
6 Internal space (recording layer space)
8 Liquid resin forming the recording layer
9 Recording layer
11 Substrate for three-dimensional optical recording medium
12, 13 Transparent substrate
14,15 Side wall (spacer)
14a notch (opening)
18 Internal space (recording layer space)
21 Substrate for three-dimensional optical recording medium
22, 23 Transparent substrate
24-27 Side Wall (Spacer)
28, 29 Internal space (recording layer space)
30 Liquid resin forming the recording layer
31 Recording layer
41 Substrate for three-dimensional optical recording medium
42, 43 Transparent substrate
44, 45 Spacer
46 Internal space (recording layer space)

Claims (7)

合成樹脂を多く含有してなる記録層内に三次元的に情報を記録する三次元光記録媒体用の基体であって、
該記録層を形成する記録層用空間の両面を区画形成する一対の透明基板と、
該一対の透明基板の相互間に介装され、該一対の透明基板を所定の距離をもって結合するとともに該記録層用空間の縁部を区画形成するスペーサとから構成され、
該スペーサが、光硬化性又は熱硬化性フィルムからなり、該フィルムを該一対の透明基板間に介装し、光硬化又は熱硬化させることにより、該一対の透明基板と該フィルムによる該スペーサとが一体化されてなる
ことを特徴とする、三次元光記録媒体用基体。
A substrate for a three-dimensional optical recording medium for recording information three-dimensionally in a recording layer containing a large amount of synthetic resin,
A pair of transparent substrates that form both sides of a recording layer space for forming the recording layer;
The spacer is interposed between the pair of transparent substrates, and is configured to couple the pair of transparent substrates with a predetermined distance, and to form an edge of the recording layer space.
The spacer is made of a photocurable or thermosetting film, and the film is interposed between the pair of transparent substrates, and is photocured or thermoset, whereby the pair of transparent substrates and the spacer made of the film A substrate for a three-dimensional optical recording medium, wherein the substrate is integrated.
合成樹脂を多く含有してなる記録層内に三次元的に情報を記録する三次元光記録媒体用の基体であって、
該記録層を形成する記録層用空間の両面を区画形成する一対の透明基板と、
該一対の透明基板の相互間に介装され、該一対の透明基板を所定の距離をもって結合するとともに該記録層用空間の縁部を区画形成するスペーサとから構成され、
該スペーサの縁部外周に、該一対の透明基板の縁部外周よりも窪んだ窪み部が形成されている
ことを特徴とする、三次元光記録媒体用基体。
A substrate for a three-dimensional optical recording medium for recording information three-dimensionally in a recording layer containing a large amount of synthetic resin,
A pair of transparent substrates that form both sides of a recording layer space for forming the recording layer;
The spacer is interposed between the pair of transparent substrates, and is configured to couple the pair of transparent substrates with a predetermined distance, and to form an edge of the recording layer space.
A substrate for a three-dimensional optical recording medium, characterized in that a recess is formed in the outer periphery of the edge of the spacer, which is recessed from the outer periphery of the edge of the pair of transparent substrates.
該スペーサの縁部外面全体を、該一対の透明基板の縁部外面よりも該記録層を形成する空間内に変位した位置に設定することにより、該窪み部が形成されている
ことを特徴とする、請求項2記載の三次元光記録媒体用基体。
The recess is formed by setting the entire outer edge surface of the spacer at a position displaced from the outer surface of the edge of the pair of transparent substrates into the space for forming the recording layer. The substrate for a three-dimensional optical recording medium according to claim 2.
該窪み部が、該スペーサの縁部の外面を面取りされ形成された面取り部によって構成されている
ことを特徴とする、請求項2記載の三次元光記録媒体用基体。
3. The substrate for a three-dimensional optical recording medium according to claim 2, wherein the hollow portion is constituted by a chamfered portion formed by chamfering an outer surface of an edge portion of the spacer.
請求項1記載の三次元光記録媒体用基体であって、該スペーサに該記録用空間を外部に開にする開口部が設けられた三次元光記録媒体用基体を用いて三次元光記録媒体を製造する方法であって、
該一対の透明基板と該スペーサとを結合して、該三次元光記録媒体用基体を組み立てる基体組立工程と、
該開口部から該記録層空間内に、該記録層を形成する光硬化性又は熱硬化性の液状の樹脂を注入する樹脂注入工程と、
該記録媒体用空間内に注入された液状の樹脂を光硬化又は熱硬化させる樹脂硬化工程とをそなえた
ことを特徴とする、三次元光記録媒体の製造方法。
2. The three-dimensional optical recording medium substrate according to claim 1, wherein the spacer is provided with an opening for opening the recording space to the outside. A method of manufacturing
A base assembly process for assembling the three-dimensional optical recording medium base by combining the pair of transparent substrates and the spacer;
A resin injection step of injecting a photocurable or thermosetting liquid resin for forming the recording layer into the recording layer space from the opening;
A method for producing a three-dimensional optical recording medium, comprising: a resin curing step in which a liquid resin injected into the recording medium space is photocured or thermally cured.
合成樹脂を多く含有してなる記録層内に三次元的に情報を記録する三次元光記録媒体用の基体であって、該記録層を形成する記録層用空間の両面を区画形成する一対の透明基板と、該一対の透明基板の相互間に介装され、該一対の透明基板を所定の距離をもって結合するとともに該記録層用空間の縁部を区画形成するスペーサとから構成された三次元光記録媒体用基体を用いて三次元光記録媒体を製造する方法であって、
該一対の透明基板のうち、該スペーサの一部又は全部を装着された一方の透明基板上の該記録層用空間に、記録層を形成する光硬化性又は熱硬化性の液状の樹脂を充填する第一の工程と、
液状の樹脂を充填した該一方の透明基板に他方の基板を重ね合わせる第二の工程と、
該スペーサ間に充填された液状の樹脂を光硬化又は熱硬化させる第三の工程とをそなえるとともに、
該第二の工程に先立ち該三次元光記録媒体用基体の周囲を真空雰囲気とする工程をそなえた
ことを特徴とする、三次元光記録媒体の製造方法。
A substrate for a three-dimensional optical recording medium for recording information three-dimensionally in a recording layer containing a large amount of synthetic resin, and a pair of sections for forming both sides of a recording layer space for forming the recording layer A three-dimensional structure composed of a transparent substrate and a spacer that is interposed between the pair of transparent substrates, joins the pair of transparent substrates with a predetermined distance, and defines an edge of the recording layer space. A method for producing a three-dimensional optical recording medium using an optical recording medium substrate,
Of the pair of transparent substrates, the space for the recording layer on one transparent substrate on which a part or all of the spacer is mounted is filled with a photocurable or thermosetting liquid resin for forming the recording layer. The first step to
A second step of superimposing the other substrate on the one transparent substrate filled with a liquid resin;
And a third step of photocuring or thermosetting the liquid resin filled between the spacers,
A method for producing a three-dimensional optical recording medium, comprising the step of creating a vacuum atmosphere around the substrate for the three-dimensional optical recording medium prior to the second step.
該スペーサが光硬化性又は熱硬化性フィルムからなり、The spacer is made of a photocurable or thermosetting film,
該第三の工程において該液状の樹脂とともに該スペーサをも硬化させ、該透明基板と該スペーサとを貼り合わせる  In the third step, the spacer is cured together with the liquid resin, and the transparent substrate and the spacer are bonded together.
ことを特徴とする、請求項6記載の三次元光記録媒体の製造方法。The method for producing a three-dimensional optical recording medium according to claim 6.
JP17335699A 1999-06-18 1999-06-18 Substrate for three-dimensional optical recording medium and method for manufacturing three-dimensional optical recording medium Expired - Fee Related JP4057746B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17335699A JP4057746B2 (en) 1999-06-18 1999-06-18 Substrate for three-dimensional optical recording medium and method for manufacturing three-dimensional optical recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17335699A JP4057746B2 (en) 1999-06-18 1999-06-18 Substrate for three-dimensional optical recording medium and method for manufacturing three-dimensional optical recording medium

Publications (2)

Publication Number Publication Date
JP2001005368A JP2001005368A (en) 2001-01-12
JP4057746B2 true JP4057746B2 (en) 2008-03-05

Family

ID=15958901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17335699A Expired - Fee Related JP4057746B2 (en) 1999-06-18 1999-06-18 Substrate for three-dimensional optical recording medium and method for manufacturing three-dimensional optical recording medium

Country Status (1)

Country Link
JP (1) JP4057746B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6804034B2 (en) * 2002-08-20 2004-10-12 Imation Corp. Fluid containment substrates for holographic media
WO2004107328A1 (en) 2003-05-30 2004-12-09 Memory-Tech Corporation Optical disc recording medium and process for producing the same
JP4407228B2 (en) * 2003-10-09 2010-02-03 Tdk株式会社 Method for manufacturing holographic recording medium
JP4550616B2 (en) * 2004-02-24 2010-09-22 日本ペイント株式会社 Photosensitive composition for volume hologram recording and method for producing volume hologram recording medium using the same
JP2006079049A (en) * 2004-08-11 2006-03-23 Nippon Paint Co Ltd Volume hologram recording medium and method for manufacturing the same
JP2006154083A (en) * 2004-11-26 2006-06-15 Toshiba Corp Hologram recording medium
JP2006301127A (en) 2005-04-18 2006-11-02 Fuji Photo Film Co Ltd Optical recording medium, its manufacturing method, method of recording and reproducing the same
JP2006301171A (en) * 2005-04-19 2006-11-02 Fuji Photo Film Co Ltd Optical recording medium, its manufacturing method, method of recording and reproducing the same
JP4621646B2 (en) 2006-09-13 2011-01-26 株式会社東芝 Holographic data storage medium
JP2008197597A (en) 2007-02-16 2008-08-28 Fujifilm Corp Holographic recording medium and method for manufacturing the same
JP2015045794A (en) * 2013-08-29 2015-03-12 セイコーエプソン株式会社 Optical element and manufacturing method of optical element, and image display device

Also Published As

Publication number Publication date
JP2001005368A (en) 2001-01-12

Similar Documents

Publication Publication Date Title
US5688447A (en) Mass production method for fabricating multi-layer CDs
US5846627A (en) Method for writing and reading data on a multi-layer recordable interferometric optical disc and method for fabricating such
JP4057746B2 (en) Substrate for three-dimensional optical recording medium and method for manufacturing three-dimensional optical recording medium
JPH1092013A (en) Optical information recording medium
JP3581246B2 (en) Manufacturing method of bonded optical disk
JPH08255374A (en) Multilayer optical disk and its signal reproducing method
US6177168B1 (en) DVD disc with four information layers, and method for making same
JPH10283683A (en) Optical recording medium and its manufacture
CN1675596A (en) Fluid containment substrates for holographic media
JP4080741B2 (en) Multilayer optical recording medium manufacturing method and multilayer optical recording medium
JPH0997452A (en) Production of multilayered optical recording medium
JP2000036135A (en) Production of multilayered information recording medium
JP2000298879A (en) Optical recording medium
US20090053617A1 (en) Holographic recording medium
JPH09204686A (en) Optical disk and production thereof
JP2010096936A (en) Optical recording medium
US20090121390A1 (en) Method for producing optical recording medium
WO2004107328A1 (en) Optical disc recording medium and process for producing the same
JP3671484B2 (en) Optical recording medium
JPH09282712A (en) Optical information recording medium and its production
JP3840566B2 (en) Multi-layer structure optical recording medium and manufacturing method thereof
JP4260929B2 (en) Optical information recording medium and manufacturing method thereof
JP3037715B2 (en) Method for manufacturing optical information recording medium
JPH044665B2 (en)
JPH0973663A (en) Multilayered optical disk

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071214

R150 Certificate of patent or registration of utility model

Ref document number: 4057746

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees