JP4057196B2 - Combine harvester mapping device - Google Patents

Combine harvester mapping device Download PDF

Info

Publication number
JP4057196B2
JP4057196B2 JP16909599A JP16909599A JP4057196B2 JP 4057196 B2 JP4057196 B2 JP 4057196B2 JP 16909599 A JP16909599 A JP 16909599A JP 16909599 A JP16909599 A JP 16909599A JP 4057196 B2 JP4057196 B2 JP 4057196B2
Authority
JP
Japan
Prior art keywords
sensor
grain
amount
map
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16909599A
Other languages
Japanese (ja)
Other versions
JP2000354416A (en
Inventor
昭彦 中矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanma Agricultural Equipment Co Ltd
Original Assignee
Yanma Agricultural Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanma Agricultural Equipment Co Ltd filed Critical Yanma Agricultural Equipment Co Ltd
Priority to JP16909599A priority Critical patent/JP4057196B2/en
Publication of JP2000354416A publication Critical patent/JP2000354416A/en
Application granted granted Critical
Publication of JP4057196B2 publication Critical patent/JP4057196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fertilizing (AREA)
  • Combines (AREA)
  • Harvester Elements (AREA)
  • Threshing Machine Elements (AREA)
  • Instructional Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、収穫地図を記録させるように構成したコンバインの収穫地図作成装置に関する。
【0002】
【発明が解決しようとする課題】
従来、前回の収穫量または作物成育状況並びに圃場の取水及び排水などを参考にして施肥または防除作業を行っていたから、作業者の経験または記憶による不安定な条件で施肥または防除作業が行われ易く、施肥量調節または防除量調節を狭い範囲に限定して局地的に対応させて適正に行い得ず、施肥または防除効率の向上並びに収穫増量などを容易に図り得ない等の問題がある。
【0003】
【課題を解決するための手段】
そこで、本発明では、走行クローラを具備して、刈取部で刈取った穀稈を脱穀部で脱穀して穀粒を連続的に収集するコンバインにおいて、穀粒重量を測定する穀粒センサと、穀粒の水分量を測定する水分センサと、穀粒の種類及び品種を選択する穀粒設定器を、作業コントローラに入力接続させ、各センサ及び設定器入力に基づき穀粒量を検出させ、前記脱穀部にフィードチェンを介して供給する穀稈長を検出する扱深センサと、株元を切断した穀稈を挾持搬送する搬送チェンの搬送穀稈の有無を検出する作業センサと、前記搬送チェンを長短稈調節する油圧扱深シリンダを制御する扱深コントローラを、前記作業コントローラに接続させ、扱深シリンダ調節位置を検出する扱深位置センサ並びに前記扱深センサの検出結果に基づき扱深シリンダを自動的に作動させて、自動扱深制御を行って脱穀部での穀稈扱深さを自動的に略一定に保ち、前記フィードチェンが挾持搬送する穀稈層厚を測定させる脱穀稈センサと、排藁チェンが挾持搬送する排藁層厚を測定させる排藁センサと、前記搬送チェンが挾持搬送する穀稈層厚を測定する刈取稈センサを、作業コントローラに接続させ、前記各チェンによって搬送する藁量を測定すると共に、前記扱深センサまたは扱深位置センサ入力のいずれか一方または両方によって前記センサ入力を補正し、扱深調節によって各チェンの藁の挾持位置が変更されることにより、前記センサが測定する藁量が変化するのを修正して、各チェンによって搬送する藁量を検出し、走行クローラの走行速度を検出する車速センサと、GPS(全地球測位システム)衛星からの電波を受信するGPS受信機を、前記作業コントローラに接続させ、前記受信機及び各センサによって検出される収穫作業位置、収穫穀粒量、収穫藁量に基づき、圃場の穀粒収穫状況を表す収穫地図を形成する収穫地図作成コントローラを設け、該コントローラを前記作業コントローラに接続させて、圃場を区分したメッシュ情報として収穫位置と穀粒量を記録させ、圃場地図に穀粒量をメッシュ情報として入力した区分図により収穫地図を作成させて、収穫地図を記録させるように構成したことを特徴とするコンバインの収穫地図作成装置を提供するものである。
【0004】
【発明の実施の形態】
以下、本発明の実施例を図面に基づいて詳述する。図1は収穫制御回路図、図2はコンバインの全体側面図、図3は同平面図であり、図中(1)は走行クローラ(2)を装設するトラックフレーム、(3)は前記トラックフレーム(1)上に架設する機台、(4)はフィードチェン(5)を左側に張架し扱胴(6)及び処理胴(7)を内蔵している脱穀部、(8)は刈刃(9)及び穀稈搬送機構(10)などを備える刈取部、(11)は昇降支点筒軸(12)を介して刈取部(8)を昇降させる油圧シリンダ、(13)は排藁チェン(14)終端を臨ませる排藁処理部、(15)は脱穀部(4)からの穀粒を揚穀筒(16)を介して搬入する穀物タンク、(17)は前記タンク(15)の穀粒を機外に搬出する排出オーガ、(18)は運転操作部(19)及び運転席(20)を備える運転台、(21)は運転席(20)下方に設けるエンジンであり、連続的に穀稈を刈取って脱穀するように構成している。
【0005】
また、操向及び昇降用操作レバー(22)をフロントコラム(23)に設けると共に、走行主変速レバー(24)、走行副変速レバー(25)、刈取クラッチレバー(26)及び脱穀クラッチレバー(27)をサイドコラム(28)に設けるもので、前記運転台(18)内部の前側及び左側に各コラム(23)(28)を配設させると共に、運転台(18)のステップ上面に主クラッチペダル(29)を設け、操作部(19)を構成している。
【0006】
さらに、図1に示す如く、前記穀物タンク(15)に揚穀筒(16)を介して搬入させる穀粒重量を測定する穀粒センサ(30)と、揚穀筒(16)からの搬入穀粒の水分量を測定する水分センサ(31)と、搬入穀粒の種類及び品種を選択する穀粒設定器(32)を、マイクロコンピュータで構成する作業コントローラ(33)に入力接続させ、各センサ(30)(31)及び設定器(32)入力に基づき穀物タンク(15)に収集する穀粒量(重量)を検出させる。
【0007】
また、前記脱穀部(4)にフィードチェン(5)を介して供給する穀稈長を検出する扱深センサ(34)と、刈刃(10)によって株元を切断した穀稈を挾持搬送する搬送チェン(35)の搬送穀稈の有無を検出する作業センサ(36)と、前記搬送チェン(35)を長短稈調節する油圧扱深シリンダ(37)を制御する扱深コントローラ(38)を、前記作業コントローラ(33)に接続させ、扱深シリンダ(37)調節位置を検出する扱深位置センサ(39)並びに前記扱深センサ(34)の検出結果に基づき扱深シリンダ(37)を自動的に作動させ、自動扱深制御を行って脱穀部(4)での穀稈扱深さを自動的に略一定に保つ。
【0008】
また、前記フィードチェン(5)が挾持搬送する穀稈層厚を測定させる脱穀稈センサ(40)と、前記排藁チェン(14)が挾持搬送する排藁層厚を測定させる排藁センサ(41)と、前記搬送チェン(35)が挾持搬送する穀稈層厚を測定する刈取稈センサ(42)を、入力選択スイッチ(43)(44)(45)を介して作業コントローラ(33)に接続させ、前記各チェン(5)(14)(35)によって搬送する藁量(層厚)を測定すると共に、前記扱深センサ(34)または扱深位置センサ(39)入力のいずれか一方または両方によって前記センサ(40)(41)(42)入力を補正し、扱深調節によって各チェン(5)(14)(35)の藁の挾持位置が変更されることにより、前記センサ(40)(41)(42)が測定する藁量が変化するのを修正し、各チェン(5)(14)(35)によって搬送する藁量を検出する。
【0009】
さらに、走行クローラ(2)の走行速度を検出する車速センサ(46)と、GPS(全地球測位システム)衛星からの電波を受信するGPS受信機(47)を、前記作業コントローラ(33)に接続させ、コンバインによる収穫作業位置を高精度で認識すると共に、前記受信機(47)及び各センサ(30)(40)(41)(42)によって検出される収穫作業位置、収穫穀粒量、収穫藁量に基づき、圃場の穀粒収穫状況を表す収穫地図を形成する収穫地図作成コントローラ(48)を設け、該コントローラ(48)を作業コントローラ(33)に接続させ、また互換自在な磁気ディスク(49)を装着して収穫地図を記録させるもので、図4に示す如く、畦(50)で囲まれた圃場(51)の高位置側の水路(52)の水を取水口(53)から導入し、圃場(51)の水を低位置側の水路(54)に排水口(55)から排出させ、水稲を育成することにより、取水口(53)付近では肥料が不足し易く、収穫する穀稈量または穀粒量が少なくなり易く、また圃場(51)中央部の水溜り部で肥料が多くなり、穀稈量が局部的に多くなったり、穀粒量が局部的に多くなるが、収穫する実際の圃場(51)形状に対応した藁量及び穀粒量が表示された図5に示す収穫地図(56)が形成され、前記ディスク(49)に記録される一方、図5の収穫地図(56)を前記ディスク(49)から読取って次回の施肥または防除(除草など)を行い、圃場(51)全体の収穫増量を図り、かつ肥料または薬剤の無駄な使用を防ぎ、肥培管理を適正に行えるように構成している。なお、作業コントローラ(33)にディスプレイ(57)を接続させ、穀粒タンク(15)に投入される穀粒量と、刈取られる藁量と、前記収穫地図(56)を、運転操作部(19)にディスプレイ(57)を設けて表示させる。
【0010】
上記から明らかなように、刈取部(8)で刈取った穀稈を脱穀部(4)で脱穀して穀粒を連続的に収集するコンバインにおいて、収穫される穀粒量を検出する穀粒センサ(30)と、藁の搬送量を検出する藁センサである脱穀稈センサ(40)または排藁センサ(41)または刈取稈センサ(42)と、車速を検出する車速センサ(46)を設け、穀粒量と藁量を夫々演算して穀粒及び藁の夫々の収穫地図(56)を作成するもので、穀粒及び藁の収穫地図(56)が自動的に形成されて記録され、次回の施肥または防除などの作業を収穫地図(56)に基づいて適正に行い、同一圃場内での穀稈の不均一な成育をなくし、水田での水管理の簡略化並びに病虫害または冷害の予防などを行う。また、脱穀部(4)に供給する穀稈長を調節する扱深センサ(34)の自動扱深制御によって脱穀稈センサ(40)または排藁センサ(41)または刈取稈センサ(42)の検出結果に基づく藁量を補正し、刈取った穀稈を挾持搬送する途中で検出する藁量が藁挾持位置で変化する不具合をなくし、また挾持する藁層厚検出と自動扱深制御の長短稈検出の組合せによって刈取った藁量を高精度で測定し、藁量検出データの信頼性向上などを図る。
【0011】
本実施例は上記の如構成するもので、図6の穀粒量地図制御のフローチャートに示す如く、車速センサ(46)、GPS受信機(47)、作業センサ(36)、水分センサ(31)、穀粒センサ(30)の各検出値を入力させ、水分センサ(31)値によって穀粒センサ(30)値を補正して穀粒重量(穀粒流量)を演算させると共に、GPS受信機(47)の方位値によって収穫位置を演算させ、車速センサ(46)値によって穀粒重量(穀粒流量)から収穫された穀粒量を演算させる。そして、圃場(51)を区分したメッシュ情報として収穫位置と穀粒量を記録及び表示させ、圃場(51)地図に穀粒量をメッシュ情報として入力した区分図により収穫地図(56)を作成させ、収穫地図(56)をディスク(49)に記録させ、かつディスプレイ(57)に表示する。
【0012】
また、図7の藁量地図制御のフローチャートに示す如く、車速センサ(46)、GPS受信機(47)、作業センサ(36)、扱深センサ(34)、脱穀稈センサ(40)、排藁センサ(41)、刈取稈センサ(42)の各検出値を入力させ、扱深センサ(34)の検出結果に基づき自動扱深制御を行って扱深シリンダ(37)を自動的に作動させ、刈取穀稈長が変化しても前記各チェン(5)(14)(35)の稈挾持位置を変化させ、脱穀部(4)での扱深さを略一定に保つと共に、扱深センサ(34)の自動扱深制御値によって前記各センサ(40)(41)(42)の検出藁量を補正し藁層厚(藁流量)を演算させ、GPS受信機(47)の方位置によって収穫位置を演算させ、車速センサ(46)値によって藁層厚(藁流量)から収穫された藁量を演算させる。そして、圃場(51)を区分したメッシュ情報として収穫位置と藁量を記録及び表示させ、圃場(51)地図に藁量をメッシュ情報として入力した区分図により収穫地図(56)を作成させ、収穫地図(56)をディスク(49)に記録させ、かつディスプレイ(57)に表示する。なお、穀粒量と藁量を色別または各別の画像データ形成などによって区別し、ディスプレイ(57)の画面上で穀粒量と藁量を目視判別できるように収穫地図(56)を作成させる。
【0013】
さらに、図8の施肥地図制御のフローチャートに示す如く、圃場(51)を区分した収穫位置と穀粒量及び藁量に基づき、肥料(薬剤)の過不足及び種類を演算して記録及び表示させ、圃場(51)の地図に次回の施肥(防除)の肥料(薬剤)の種類及び施肥量をメッシュ情報として入力した区分図により施肥(防除)地図を作成してディスク(49)に記録させ、ディスプレイ(57)に表示させると共に、次回施肥(防除)に必要な圃場(51)全体の肥料(薬剤)の種類及び量を演算させてディスク(49)に記録させ、ディスプレイ(57)に表示させる。
【0014】
【発明の効果】
以上実施例から明らかなように本発明は、以下のような効果を奏する。
すなわち、車速センサ(46)、GPS受信機(47)、作業センサ(36)、水分センサ(31)、穀粒センサ(30)の各検出値を入力させ、水分センサ(31)値によって穀粒センサ(30)値を補正して穀粒重量(穀粒流量)を演算させると共に、GPS受信機(47)の方位値によって収穫位置を演算させ、車速センサ(46)値によって穀粒重量(穀粒流量)から収穫された穀粒量を演算させる。そして、圃場(51)を区分したメッシュ情報として収穫位置と穀粒量を記録及び表示させ、圃場(51)地図に穀粒量をメッシュ情報として入力した区分図により収穫地図(56)を作成させ、収穫地図(56)を記録させる。
【0015】
また、車速センサ(46)、GPS受信機(47)、作業センサ(36)、扱深センサ(34)、脱穀稈センサ(40)、排藁センサ(41)、刈取稈センサ(42)の各検出値を入力させ、扱深センサ(34)の検出結果に基づき自動扱深制御を行って扱深シリンダ(37)を自動的に作動させ、刈取穀稈長が変化しても前記各チェン(5)(14)(35)の稈挾持位置を変化させ、脱穀部(4)での扱深さを略一定に保つと共に、扱深センサ(34)の自動扱深制御値によって前記各センサ(40)(41)(42)の検出藁量を補正し藁層厚(藁流量)を演算させ、GPS受信機(47)の方位置によって収穫位置を演算させ、車速センサ(46)値によって藁層厚(藁流量)から収穫された藁量を演算させる。そして、圃場(51)を区分したメッシュ情報として収穫位置と藁量を記録させ、圃場(51)地図に藁量をメッシュ情報として入力した区分図により収穫地図(56)を作成させ、収穫地図(56)を記録させ、かつディスプレイ(57)に表示する。なお、穀粒量と藁量を色別または各別の画像データ形成などによって区別し、ディスプレイ(57)の画面上で穀粒量と藁量を目視判別できるように収穫地図(56)を作成させる。
【0016】
このようにして、圃場(51)を区分した収穫位置と穀粒量及び藁量に基づき、肥料(薬剤)の過不足及び種類を演算して記録させ、圃場(51)の地図に次回の施肥(防除)の肥料(薬剤)の種類及び施肥量をメッシュ情報として入力した区分図により施肥(防除)地図を作成して記録させ、次回施肥(防除)に必要な圃場(51)全体の肥料(薬剤)の種類及び量を演算させて記録させることができる。
【図面の簡単な説明】
【図1】収穫制御回路図。
【図2】コンバインの全体の側面図。
【図3】同平面図。
【図4】圃場の説明図。
【図5】収穫地図の説明図。
【図6】穀粒量地図制御フローチャート。
【図7】藁量地図制御フローチャート。
【図8】施肥地図制御フローチャート。
【符号の説明】
(4) 脱穀部
(8) 刈取部
(30) 穀粒センサ
(34) 扱深センサ
(40) 脱穀稈センサ(藁センサ)
(41) 排藁センサ(藁センサ)
(42) 刈取稈センサ(藁センサ)
(46) 車速センサ
(56) 収穫地図
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a combine harvest map creating apparatus configured to record a harvest map .
[0002]
[Problems to be solved by the invention]
Conventionally, since fertilization or control work was performed with reference to the previous harvest amount or crop growth status and water intake and drainage of the field, fertilization or control work is easily performed under unstable conditions due to the experience or memory of the worker, There is a problem that the fertilization amount control or the control amount control is limited to a narrow range and cannot be appropriately performed in a localized manner, and it is difficult to improve the fertilization or control efficiency and increase the yield easily.
[0003]
[Means for Solving the Problems]
Therefore, in the present invention, a combine sensor that includes a traveling crawler and continuously collects grains by threshing the cereals harvested by the reaping part, and measuring the grain weight; A moisture sensor for measuring the moisture content of the grain and a grain setter for selecting the type and variety of the grain are connected to the work controller, and the grain amount is detected based on each sensor and the setter input, A handling depth sensor that detects the culm length supplied to the threshing unit via the feed chain, a work sensor that detects the presence or absence of a transport culm of the transport chain that holds and transports the culm that has been cut off the stock, and the transport chain A working depth controller that controls a hydraulic working depth cylinder that adjusts long and short lengths is connected to the work controller, and a working depth position sensor that detects the working depth cylinder adjustment position and a depth of treatment based on the detection result of the working depth sensor. A threshing bowl that automatically controls the depth of the cereals in the threshing section to automatically maintain a substantially constant cereal depth and measures the thickness of the culm that is held and conveyed by the feed chain. A sensor, a waste sensor that measures the waste layer thickness that is carried by the waste chain, and a cutting shear sensor that measures the grain layer thickness that is carried by the carry chain, connected to the work controller, Measure the amount of saddle to be conveyed by the above, correct the sensor input by either one or both of the handling depth sensor and handling depth position sensor input, and change the handling position of each chain by adjusting the handling depth. The vehicle speed sensor for detecting the amount of dredging conveyed by each chain and detecting the traveling speed of the traveling crawler and the GPS (Global Positioning System) are corrected. ) Connect a GPS receiver that receives radio waves from satellites to the work controller, and based on the harvesting work position, harvested grain quantity, and harvested rice quantity detected by the receiver and each sensor, grain in the field A harvest map creation controller that forms a harvest map that represents the harvest status is provided, and the controller is connected to the work controller to record the harvest position and the grain amount as mesh information dividing the field, and the grain amount is recorded on the field map. The present invention provides a harvesting map creating apparatus for a combine, characterized in that a harvesting map is created based on a division diagram inputted as mesh information and a harvesting map is recorded .
[0004]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a harvesting control circuit diagram, FIG. 2 is an overall side view of the combine, FIG. 3 is a plan view thereof, in which (1) is a track frame on which a traveling crawler (2) is installed, and (3) is the track. Machine base installed on the frame (1), (4) is a threshing section that stretches the feed chain (5) on the left side and incorporates the handling cylinder (6) and processing cylinder (7), (8) is cutting A cutting part provided with a blade (9) and a culm conveying mechanism (10), (11) is a hydraulic cylinder for raising and lowering the cutting part (8) via a lifting fulcrum cylinder shaft (12), and (13) is a waste chain (14) A waste disposal processing unit facing the end, (15) is a grain tank that carries the grain from the threshing unit (4) via the milling cylinder (16), and (17) is the tank (15) A discharge auger that carries the grain out of the machine, (18) is a cab equipped with a driving operation unit (19) and a driver seat (20), 21) is an engine provided in the driver's seat (20) downward, and configured to threshing continuously harvests culms.
[0005]
Further, a steering and elevating operation lever (22) is provided on the front column (23), and a traveling main transmission lever (24), a traveling auxiliary transmission lever (25), a cutting clutch lever (26), and a threshing clutch lever (27). ) Are provided on the side column (28). The columns (23) and (28) are disposed on the front side and the left side inside the cab (18), and the main clutch pedal is provided on the step upper surface of the cab (18). (29) is provided to constitute the operation unit (19).
[0006]
Furthermore, as shown in FIG. 1, the grain sensor (30) which measures the weight of the grain carried in to the said grain tank (15) via a milling cylinder (16), and the imported grain from a milling cylinder (16) A moisture sensor (31) for measuring the moisture content of the grain and a grain setting device (32) for selecting the type and variety of the grain brought in are input-connected to a work controller (33) constituted by a microcomputer. (30) Based on the input of (31) and the setting device (32), the grain amount (weight) collected in the grain tank (15) is detected.
[0007]
Moreover, the conveyance depth sensor (34) which detects the culm length supplied to the said threshing part (4) via the feed chain (5), and the conveyance which carries and carries the culm which cut | disconnected the stock root with the cutting blade (10) A working sensor (36) for detecting the presence or absence of a conveying culm in the chain (35), and a handling depth controller (38) for controlling a hydraulic handling cylinder (37) for adjusting the conveying chain (35). A handling depth position sensor (39) that detects the adjustment position of the handling depth cylinder (37) connected to the work controller (33) and the handling depth cylinder (37) automatically based on the detection result of the handling depth sensor (34). Operate and perform automatic handling depth control to automatically keep the grain handling depth in the threshing section (4) substantially constant.
[0008]
Further, a threshing culm sensor (40) for measuring the culm layer thickness carried by the feed chain (5) and an evacuation sensor (41) for measuring the culling layer thickness carried by the reject chain (14). ) And a cutting shear sensor (42) that measures the thickness of the culm layer carried by the transport chain (35) is connected to the work controller (33) via the input selection switches (43) (44) (45). In addition, the amount of layer (layer thickness) conveyed by each of the chains (5), (14), and (35) is measured, and either or both of the inputs of the handling depth sensor (34) and the handling depth position sensor (39) are measured. The sensor (40) (41) (42) input is corrected by adjusting the handle position of the chain (5) (14) (35) by adjusting the handling depth, thereby changing the sensor (40) ( 41) (42) is the measurement That straw weight Fixed to change, and detects the straw amount carried by each chain (5) (14) (35).
[0009]
Further, a vehicle speed sensor (46) for detecting the traveling speed of the traveling crawler (2) and a GPS receiver (47) for receiving radio waves from a GPS (Global Positioning System) satellite are connected to the work controller (33). The harvesting work position by the combine is recognized with high accuracy, and the harvesting work position, the harvested grain amount, the harvesting detected by the receiver (47) and the sensors (30) (40) (41) (42). A harvesting map creation controller (48) for forming a harvesting map representing the grain harvesting situation in the field based on the amount of straw is provided, the controller (48) is connected to the work controller (33), and a compatible magnetic disk ( 49) is attached to record the harvest map. As shown in FIG. 4, the water intake (53) of the water channel (52) on the high position side of the farm field (51) surrounded by the straw (50) is provided. The water in the field (51) is drained from the drain (55) to the lower channel (54), and the rice is grown, so that the fertilizer tends to be short in the vicinity of the intake (53). The amount of cereals or grains to be reduced tends to decrease, and the fertilizer increases in the water reservoir in the central part of the field (51), so that the amount of cereals increases locally or the amount of grains increases locally. However, the harvest map (56) shown in FIG. 5 is formed and displayed on the disk (49) while displaying the amount of straw and the amount of grain corresponding to the shape of the actual field (51) to be harvested. The harvest map (56) is read from the disk (49), and the next fertilization or control (weeding, etc.) is performed to increase the harvest of the entire field (51) and to prevent wasteful use of fertilizers or chemicals. It is configured so that it can be managed properly. In addition, the display (57) is connected to the work controller (33), and the amount of grain put into the grain tank (15), the amount of dredged crops, and the harvest map (56) are displayed on the operation unit (19 ) Is provided with a display (57).
[0010]
As is apparent from the above, in the combine that continuously harvests the grains by threshing the cereals harvested by the reaping part (8) by the threshing part (4), the grain for detecting the amount of grain to be harvested A sensor (30), a threshing culm sensor (40) or a culling sensor (41) or a mowing culm sensor (42), which is a cocoon sensor for detecting the amount of cocoon transport, and a vehicle speed sensor (46) for detecting the vehicle speed are provided. , Each of which calculates the amount of grain and the amount of straw and creates the respective harvest map (56) of grain and straw, the grain and straw harvest map (56) is automatically formed and recorded, The next work such as fertilization or pest control is properly performed based on the harvest map (56), eliminating uneven growth of cereals in the same field, simplifying water management in paddy fields, and preventing pest or cold damage And so on. Moreover, the detection result of the threshing culm sensor (40), the culling sensor (41), or the mowing culm sensor (42) by the automatic depth control of the depth sensor (34) for adjusting the culm length supplied to the threshing unit (4). Corrects the amount of cocoon based on the weight, eliminates the problem that the amount of cocoon detected in the middle of holding and transporting the harvested corn cocoon is eliminated, and also detects the cocoon layer thickness to be held and the detection of long and short cocoons by automatic handling depth control The amount of dredged cutting is measured with high accuracy and the reliability of drought detection data is improved.
[0011]
This embodiment constitutes rather above如, as shown in the flowchart of grain volume map control in FIG. 6, a vehicle speed sensor (46), GPS receiver (47), the work sensor (36), the moisture sensor (31 ), Each detected value of the grain sensor (30) is input, the grain sensor (30) value is corrected by the moisture sensor (31) value to calculate the grain weight (grain flow rate), and the GPS receiver The harvest position is calculated by the azimuth value of (47), and the amount of grain harvested from the grain weight (grain flow rate) is calculated by the value of the vehicle speed sensor (46). Then, the harvest position and the amount of grain are recorded and displayed as mesh information that divides the farm field (51), and the harvest map (56) is created from the section diagram in which the grain quantity is input as mesh information on the field (51) map. The harvest map (56) is recorded on the disk (49) and displayed on the display (57).
[0012]
In addition, as shown in the flowchart of the dredging map control in FIG. 7, the vehicle speed sensor (46), the GPS receiver (47), the work sensor (36), the handling depth sensor (34), the threshing dredge sensor (40), the exclusion The detection values of the sensor (41) and the cutting rod sensor (42) are input, the automatic handling depth control is performed based on the detection result of the handling depth sensor (34), and the handling depth cylinder (37) is automatically operated, Even if the cutting grain length changes, the holding position of each of the chains (5), (14) and (35) is changed to keep the handling depth in the threshing part (4) substantially constant, and the handling depth sensor (34 ) Corrects the amount of drought detected by the sensors (40), (41) and (42) according to the automatic handling depth control value, and calculates the dredging layer thickness (藁 flow rate), and the harvesting position according to the direction of the GPS receiver (47). Is calculated from the soot layer thickness (soot flow rate) according to the value of the vehicle speed sensor (46). Thereby calculating the mosquitoes have been straw weight. Then, the harvest position and the amount of drought are recorded and displayed as mesh information obtained by dividing the farm field (51), and the harvest map (56) is created based on the section map in which the drought amount is input as mesh information on the farm field (51). The map (56) is recorded on the disk (49) and displayed on the display (57). In addition, the amount of grain and the amount of straw are distinguished by color or each image data formation, etc., and a harvest map (56) is created so that the amount of grain and the amount of straw can be visually discriminated on the screen of the display (57) Let
[0013]
Further, as shown in the flow chart of fertilization map control in FIG. 8, the excess / deficiency and type of fertilizer (medicine) are calculated and recorded and displayed based on the harvesting position, the grain amount, and the drought amount obtained by dividing the field (51). Then, a fertilization (control) map is created on the map of the field (51) based on a division diagram in which the type and amount of fertilizer (medicine) of the next fertilization (control) are input as mesh information, and recorded on the disk (49). In addition to displaying on the display (57), the type and amount of fertilizer (medicine) of the entire field (51) required for the next fertilization (control) are calculated and recorded on the disk (49) and displayed on the display (57). .
[0014]
【The invention's effect】
As is apparent from the above embodiments, the present invention has the following effects.
That is, the detection values of the vehicle speed sensor (46), the GPS receiver (47), the work sensor (36), the moisture sensor (31), and the grain sensor (30) are input, and the grain is determined by the moisture sensor (31) value. The sensor (30) value is corrected to calculate the grain weight (grain flow rate), the harvest position is calculated from the azimuth value of the GPS receiver (47), and the grain weight (grain) is calculated from the vehicle speed sensor (46) value. The amount of harvested grain is calculated from the grain flow rate. Then, the harvest position and the grain amount are recorded and displayed as mesh information that categorizes the farm field (51), and the harvest map (56) is created based on the segment map in which the grain quantity is input as mesh information on the farm field (51) map. The harvest map (56) is recorded.
[0015]
In addition, each of the vehicle speed sensor (46), the GPS receiver (47), the work sensor (36), the handling depth sensor (34), the threshing paddle sensor (40), the culling sensor (41), and the mowing paddle sensor (42). The detected value is input, automatic handling depth control is performed based on the detection result of the handling depth sensor (34), the handling depth cylinder (37) is automatically actuated, and each chain (5 ) (14) The holding position of (35) is changed to keep the handling depth in the threshing section (4) substantially constant, and each sensor (40) is controlled by the automatic handling depth control value of the handling depth sensor (34). ) (41) and (42) are corrected so that the thickness of the soot layer (soot flow rate) is calculated, the harvesting position is calculated by the direction of the GPS receiver (47), and the soot layer is determined by the value of the vehicle speed sensor (46). The harvested amount of straw is calculated from the thickness (the straw flow rate). Then, the harvest position and the amount of drought are recorded as mesh information obtained by dividing the farm field (51), and the harvest map (56) is created based on the division map in which the drought amount is input as mesh information on the farm field (51) map. 56) is recorded and displayed on the display (57). In addition, the crop amount (56) is created so that the amount of grain and the amount of straw can be discriminated by color or different image data formation, and the amount of grain and the amount of straw can be visually discriminated on the screen of the display (57). Let
[0016]
In this way, the excess and deficiency and type of fertilizer (medicine) are calculated and recorded on the basis of the harvesting position, grain amount, and dredging amount obtained by dividing the field (51), and the next fertilization is performed on the map of the field (51). A fertilizer (control) map is created and recorded with a division diagram in which the type and amount of fertilizer (medicine) for (control) are input as mesh information, and the entire fertilizer (51) required for the next fertilization (control) ( The type and amount of the medicine can be calculated and recorded.
[Brief description of the drawings]
FIG. 1 is a harvest control circuit diagram.
FIG. 2 is an overall side view of the combine.
FIG. 3 is a plan view of the same.
FIG. 4 is an explanatory diagram of a farm field.
FIG. 5 is an explanatory diagram of a harvest map.
FIG. 6 is a flowchart of grain amount map control.
FIG. 7 is a weight map control flowchart.
FIG. 8 is a fertilization map control flowchart.
[Explanation of symbols]
(4) Threshing part (8) Cutting part (30) Grain sensor (34) Handling depth sensor (40) Threshing culm sensor (salmon sensor)
(41) Smoke sensor (smoke sensor)
(42) Mowing sensor (稈 sensor)
(46) Vehicle speed sensor (56) Harvest map

Claims (1)

走行クローラ(2)を具備して、刈取部(8)で刈取った穀稈を脱穀部(4)で脱穀して穀粒を連続的に収集するコンバインにおいて、
穀粒重量を測定する穀粒センサ(30)と、穀粒の水分量を測定する水分センサ(31)と、穀粒の種類及び品種を選択する穀粒設定器(32)を、作業コントローラ(33)に入力接続させ、各センサ(30)(31)及び設定器(32)入力に基づき穀粒量を検出させ、
前記脱穀部(4)にフィードチェン(5)を介して供給する穀稈長を検出する扱深センサ(34)と、株元を切断した穀稈を挾持搬送する搬送チェン(35)の搬送穀稈の有無を検出する作業センサ(36)と、前記搬送チェン(35)を長短稈調節する油圧扱深シリンダ(37)を制御する扱深コントローラ(38)を、前記作業コントローラ(33)に接続させ、扱深シリンダ(37)調節位置を検出する扱深位置センサ(39)並びに前記扱深センサ(34)の検出結果に基づき扱深シリンダ(37)を自動的に作動させて、自動扱深制御を行って脱穀部(4)での穀稈扱深さを自動的に略一定に保ち、
前記フィードチェン(5)が挾持搬送する穀稈層厚を測定させる脱穀稈センサ(40)と、排藁チェン(14)が挾持搬送する排藁層厚を測定させる排藁センサ(41)と、前記搬送チェン(35)が挾持搬送する穀稈層厚を測定する刈取稈センサ(42)を、作業コントローラ(33)に接続させ、前記各チェン(5)(14)(35)によって搬送する藁量を測定すると共に、前記扱深センサ(34)または扱深位置センサ(39)入力のいずれか一方または両方によって前記センサ(40)(41)(42)入力を補正し、扱深調節によって各チェン(5)(14)(35)の藁の挾持位置が変更されることにより、前記センサ(40)(41)(42)が測定する藁量が変化するのを修正して、各チェン(5)(14)(35)によって搬送する藁量を検出し、
走行クローラ(2)の走行速度を検出する車速センサ(46)と、GPS(全地球測位システム)衛星からの電波を受信するGPS受信機(47)を、前記作業コントローラ(33)に接続させ、前記受信機(47)及び各センサ(30)(40)(41)(42)によって検出される収穫作業位置、収穫穀粒量、収穫藁量に基づき、圃場の穀粒収穫状況を表す収穫地図を形成する収穫地図作成コントローラ(48)を設け、該コントローラ(48)を前記作業コントローラ(33)に接続させて、
圃場(51)を区分したメッシュ情報として収穫位置と穀粒量を記録させ、圃場(51)地図に穀粒量をメッシュ情報として入力した区分図により収穫地図(56)を作成させて、収穫地図(56)を記録させるように構成したことを特徴とするコンバインの収穫地図作成装置
In the combine which comprises a traveling crawler (2) and threshs the cereals harvested by the harvesting unit (8) and continuously collects the grains by the threshing unit (4),
A grain controller (30) for measuring the grain weight, a moisture sensor (31) for measuring the moisture content of the grain, and a grain setting device (32) for selecting the kind and variety of the grain, a work controller ( 33) to input and connect to each sensor (30) (31) and setter (32) based on the input to detect the grain amount,
A handling depth sensor (34) for detecting the culm length supplied to the threshing part (4) via the feed chain (5), and a transporting culm of the transport chain (35) for holding and transporting the culm with its stock cut. A work sensor (36) for detecting the presence or absence of a fluid and a working depth controller (38) for controlling a hydraulic working depth cylinder (37) for adjusting the length of the conveying chain (35) are connected to the work controller (33). Further, a depth control sensor (39) for detecting an adjustment position of the handle depth cylinder (37) and an automatic handle depth control by automatically operating the handle depth cylinder (37) based on the detection result of the handle depth sensor (34). To automatically keep the grain handling depth in the threshing section (4) substantially constant,
A threshing heel sensor (40) for measuring the culm layer thickness carried by the feed chain (5), and a culling sensor (41) for measuring the culling layer thickness carried by the rejection chain (14). A cutting shear sensor (42) for measuring the grain thickness of the grain that the transport chain (35) holds and transports is connected to the work controller (33) and is transported by the chains (5), (14), and (35). Measuring the quantity, correcting the sensor (40) (41) (42) input by either one or both of the handling depth sensor (34) and the handling depth position sensor (39) input, The change in the amount of wrinkles measured by the sensors (40), (41), and (42) due to the change of the wrinkle holding position of the chains (5), (14), and (35) is corrected. 5) According to (14) (35) Detecting the straw amount to transport Te and,
A vehicle speed sensor (46) for detecting the traveling speed of the traveling crawler (2) and a GPS receiver (47) for receiving radio waves from a GPS (Global Positioning System) satellite are connected to the work controller (33), A harvest map representing the grain harvesting situation in the field based on the harvesting work position, the harvested grain amount, and the harvested drought amount detected by the receiver (47) and the sensors (30) (40) (41) (42). A harvesting map creation controller (48) is formed, and the controller (48) is connected to the work controller (33),
The harvesting position and the grain amount are recorded as mesh information obtained by dividing the field (51), and the harvesting map (56) is created based on the division map in which the grain amount is input as mesh information on the field (51) map. (56) A harvesting map creating device for a combine, which is configured to record (56) .
JP16909599A 1999-06-16 1999-06-16 Combine harvester mapping device Expired - Fee Related JP4057196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16909599A JP4057196B2 (en) 1999-06-16 1999-06-16 Combine harvester mapping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16909599A JP4057196B2 (en) 1999-06-16 1999-06-16 Combine harvester mapping device

Publications (2)

Publication Number Publication Date
JP2000354416A JP2000354416A (en) 2000-12-26
JP4057196B2 true JP4057196B2 (en) 2008-03-05

Family

ID=15880234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16909599A Expired - Fee Related JP4057196B2 (en) 1999-06-16 1999-06-16 Combine harvester mapping device

Country Status (1)

Country Link
JP (1) JP4057196B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174869A1 (en) * 2013-04-26 2014-10-30 株式会社クボタ Combine
JP2018078819A (en) * 2016-11-15 2018-05-24 ヤンマー株式会社 Yield distribution calculation device and yield distribution calculation program
JP7449216B2 (en) 2020-11-13 2024-03-13 ヤンマーホールディングス株式会社 Harvest information management system, harvest information management program, and harvest information management method

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779257B2 (en) * 2001-08-09 2011-09-28 三菱電機株式会社 Navigation device
JP4846942B2 (en) * 2001-09-06 2011-12-28 三菱農機株式会社 Yield measuring device for combine
JP2005211045A (en) * 2004-02-02 2005-08-11 National Agriculture & Bio-Oriented Research Organization Combine harvester
JP2006061104A (en) * 2004-08-27 2006-03-09 Yanmar Co Ltd Conveying system and harvesting apparatus
JP4692010B2 (en) * 2005-02-18 2011-06-01 井関農機株式会社 Cultivation facility
JP2006246845A (en) * 2005-03-14 2006-09-21 Yanmar Co Ltd Combine
JP5207217B2 (en) * 2005-09-16 2013-06-12 独立行政法人農業・食品産業技術総合研究機構 Combine yield measuring device
JP4780225B2 (en) * 2009-09-14 2011-09-28 三菱電機株式会社 Navigation device
CN102550202B (en) * 2012-03-02 2014-04-09 江苏大学 Small-sized inter-row weeding robot for paddy fields
KR101392191B1 (en) * 2012-03-07 2014-05-08 경상대학교산학협력단 Appratus and method for monitoring grain yield
JP6025390B2 (en) * 2012-05-09 2016-11-16 株式会社クボタ Agricultural work support system
JP6499570B2 (en) * 2015-12-08 2019-04-10 ヤンマー株式会社 Stem number measuring system and farming management system using it
CN108347883B (en) 2015-12-25 2022-04-26 株式会社久保田 Combine harvester and grain yield management system for combine harvester
JP6854713B2 (en) * 2017-06-23 2021-04-07 株式会社クボタ combine
WO2018235486A1 (en) * 2017-06-23 2018-12-27 株式会社クボタ Harvester
JP2019170315A (en) * 2018-03-29 2019-10-10 株式会社クボタ Combine
JP7166074B2 (en) * 2018-05-30 2022-11-07 ヤンマーパワーテクノロジー株式会社 display image generator
JP7059125B2 (en) * 2018-06-25 2022-04-25 株式会社クボタ Combine and grain emission yield calculation method
JP7059124B2 (en) * 2018-06-25 2022-04-25 株式会社クボタ Combine and yield calculation method
JP6952652B2 (en) * 2018-06-28 2021-10-20 株式会社クボタ combine
JP7059121B2 (en) * 2018-06-25 2022-04-25 株式会社クボタ combine
WO2020003882A1 (en) * 2018-06-25 2020-01-02 株式会社クボタ Combine, yield calculation method, yield calculation system, yield calculation program, recording medium having yield calculation program recorded thereon, grain discharge yield calculation method, grain discharge yield calculation system, grain discharge yield calculation program, recording medium having grain discharge yield calculation program recorded thereon, irregular inflow detection system, irregular inflow detection program, recording medium having irregular inflow detection program recorded thereon, irregular inflow detection method, and storage level detection system
EP3845050B1 (en) * 2019-12-30 2023-11-29 AGCO Corporation Methods and systems for measuring organic material throughput data of harvested crops
CN113950938B (en) * 2021-09-28 2023-01-17 江苏大学 Combine harvester and grain flow online detection device and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014174869A1 (en) * 2013-04-26 2014-10-30 株式会社クボタ Combine
JP2014212749A (en) * 2013-04-26 2014-11-17 株式会社クボタ Combine
US10149435B2 (en) 2013-04-26 2018-12-11 Kubota Corporation Combine
JP2018078819A (en) * 2016-11-15 2018-05-24 ヤンマー株式会社 Yield distribution calculation device and yield distribution calculation program
WO2018092718A1 (en) * 2016-11-15 2018-05-24 ヤンマー株式会社 Yield distribution calculation device and yield distribution calculation method
JP7449216B2 (en) 2020-11-13 2024-03-13 ヤンマーホールディングス株式会社 Harvest information management system, harvest information management program, and harvest information management method

Also Published As

Publication number Publication date
JP2000354416A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
JP4057196B2 (en) Combine harvester mapping device
EP3453239B1 (en) System for optimizing agricultural machine settings
CN111386215A (en) Slip determination system, travel route generation system, and field work vehicle
CA2678453C (en) Combination residue spreader and collector for single pass harvesting systems
EP1349443B1 (en) A method of estimating crop yields
US20140215984A1 (en) Method for Setting the Work Parameters of a Harvester
EP3569050A1 (en) Method and system for controlling the height of an agricultural implement relative to the ground
US20130283745A1 (en) Automatic roll-back and return-to-position for header tilt on an agricultural machine
US20220015291A1 (en) System and method for setting parameters for a multi-segment agricultural header
EP3811762A1 (en) Method and system for controlling the height of an agricultural implement relative to the ground
JP2014187954A (en) Work information sharing system
JP3932655B2 (en) Precision farming
JP2003180152A (en) Precision agricultural method
JP7423441B2 (en) harvester
JP7433145B2 (en) harvester
JP2019135952A (en) Work support system
JP7423440B2 (en) harvester
JP7331984B1 (en) work vehicle
JP3518924B2 (en) Combine secondmore lift controller
JP6607085B2 (en) Work vehicle
JP2583587B2 (en) Steering control device for automatic traveling machine
US20200128731A1 (en) Agricultural harvester biomass estimating system
JPS6123313Y2 (en)
JP2021003055A (en) combine
JPH0588206U (en) Combine steering device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040610

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040810

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20050222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees