JP4057092B2 - Dry magnetic field molding equipment for arc-shaped ferrite magnets - Google Patents

Dry magnetic field molding equipment for arc-shaped ferrite magnets Download PDF

Info

Publication number
JP4057092B2
JP4057092B2 JP07017397A JP7017397A JP4057092B2 JP 4057092 B2 JP4057092 B2 JP 4057092B2 JP 07017397 A JP07017397 A JP 07017397A JP 7017397 A JP7017397 A JP 7017397A JP 4057092 B2 JP4057092 B2 JP 4057092B2
Authority
JP
Japan
Prior art keywords
arc
molding
magnetic field
punch
upper punch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07017397A
Other languages
Japanese (ja)
Other versions
JPH10270276A (en
Inventor
光昭 佐々木
淳二 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP07017397A priority Critical patent/JP4057092B2/en
Publication of JPH10270276A publication Critical patent/JPH10270276A/en
Application granted granted Critical
Publication of JP4057092B2 publication Critical patent/JP4057092B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • H01F41/028Radial anisotropy

Description

【0001】
【発明の属する技術分野】
本発明は径方向の異方性が均一で表面磁束密度分布が一定な円弧状フェライト磁石を低コストで生産性よく製造できる乾式磁場成型装置に関する。
【0002】
【従来の技術】
家電製品や自動車の電装用などに用いられるモータには高性能、かつ小型、軽量であることが求められている。これらモータには異方性円弧状フェライト磁石や異方性リング状フェライト磁石が用いられており、磁石は径方向が磁化容易軸となるように異方性化されている。これらフェライト磁石は、内周面側の表面磁束密度が強くなるよう径方向に均一に異方性化され、内周面側の表面磁束密度が周方向において一定であることが要求される。
【0003】
このような異方性円弧状フェライト磁石の製造方法は湿式成型法又は乾式成型法に大別される。
【0004】
湿式成型法は磁石の配向性が良好であり高特性のものが得られるが、分散媒を排除しながらの成型となるために生産性が低くなり、また金型構造が複雑となり装置も大がかりになるため、製造コストがかなり高くなる。
【0005】
一方、乾式成型法は磁石の配向性については湿式法に劣るが、生産性が高く装置の構成も単純なのでコストが低くて済む。中でも、上部パンチが型枠の成型空間内に進入して上部パンチのみ、若しくは上部下部両パンチにて加圧が行われる成型方法は、上部パンチと型枠が面で接することがなく金型寿命が長くかつ生産性も高い。また、金型構造も単純で小型で済むため、高生産性含め製造コストが非常に低い。
【0006】
【発明が解決しようとする課題】
しかしながら、前記の乾式成型方法を用いる場合は、一般に円弧状フェライト磁石の外周側の上下に関係なく、上部パンチと下部パンチは両方とも磁性体が用いられているため、磁束線が外周側の磁性体パンチにも集束するので径方向に均一に配向させることは不可能である。また、一部ステライト等の非磁性体部を設ける程度で配向を制御しているが、本来求められる配向とは大きくかけ離れたものである。
【0007】
このような配向の均一化を図るために、特開平5-239505号公報には、所要口径のダイス内にあって、表面にステライトを溶着した磁性体の下側金型と磁性体の上側金型とから成る磁場プレス金型において、下側金型の幅に対して上側金型の幅を所要分広幅にした金型について記載されている。しかし、型枠の成型空間内(同公報では「ダイス内」)に上部パンチ(同公報では「上側金型」)が進入しないで成型が行われる方法であるため、金型も大がかりとなり生産性も低くなるため、湿式成型法との優位性がなくなってしまい、低コスト、高生産性は期待できない。
【0008】
そこで、本発明は生産性良く低コストで、径方向の異方性が均一で表面磁束密度分布が一定である円弧状フェライト磁石を製造する乾式磁場成型装置を提供するものである。
【0009】
【課題を解決するための手段】
このような目的は下記(1)又は(2)の構成により達成できる。
【0010】
(1)型枠と上部パンチと下部パンチと有し、前記上部パンチが前記型枠と前記下部パンチから構成される成型空間に進入して成型が為される円弧状フェライト磁石の乾式磁場成型装置において、上部パンチは円弧状フェライト磁石の外周側を形成し、かつ、非磁性体からなり、下部パンチは円弧状フェライト磁石の内周側を形成し、かつ、その成型面に非磁性体を設けた磁性体からなることを特徴とする円弧状フェライト磁石の乾式磁場成型装置。
【0011】
(2)前記乾式磁場成型装置において、前記上部パンチの上方に上部パンチの成型面の円弧形状に沿った形状の下面を有し、かつ、前記下面の面積が前記上部パンチの成型面の面積より大きい磁性体治具を装着してなることを特徴とする(1)に記載の乾式磁場成型装置。
【0012】
【発明の実施の形態】
図1及び図2を参照しながら本発明に係る乾式磁場成型装置について具体的に説明する。
【0013】
図1に本発明に係る乾式磁場成型装置の一例であって、その要部(成型部付近)断面図を示す。即ち、本発明に係る乾式磁場成型装置は、型枠1、上部パンチ2、下部パンチ3、型枠1と下部パンチ3から構成される成型空間4、コイル5及び上部パンチ2、下部パンチ3の成型空間側に設けられたステライト部6を有する。
【0014】
そして、上部パンチ2は円弧状フェライト磁石の外周面を形成し(よって、円弧状フェライト磁石の外周面を形成する当該パンチの面の形状はその断面から見て凹状である(以下、外周成型面2aとする))、非磁性体からなり、下部パンチ3は円弧状フェライト磁石の内周面を形成し(よって、円弧状フェライト磁石の内周面を形成する当該パンチの面の形状はその断面から見て凸状である(以下、内周成型面3aとする))、内周成型面3aに非磁性体を設けた磁性体(同図中の斜線部)からなる。上部パンチを非磁性体とすることで、磁界印加時の成型空間内の磁界方向は下部パンチから放散することになる。つまり、円弧状フェライト磁石の配向が外周面に集束したり、部分的な配向方向の偏り等が起こらず、径方向に均一に異方性化することができる。
【0015】
ただし、上部パンチを非磁性体とすると上下パンチ間の磁界強度が劣化するため、上部パンチを磁性体とするときよりも高めにする必要があるが、成型体の面積、厚さ等により必要磁界が異なるため、印加磁界は成型体に応じて都度適宜選択すればよい。
【0016】
また、上部パンチを構成する非磁性体の材質は特に限定されず、例えば、ステンレス鋼、銅ベリリウム合金、ハイマンガン鋼、青銅、真鍮、非磁性超鋼等を用いることができ、2種以上の材質を組み合わせても良い。例えば、図1に示すように上部パンチ2の成型面に耐磨耗性の向上及び配向の制御のためにステライト部6を設けるが如きである。
【0017】
一方、下部パンチを構成する磁性体の材質は特に限定されず、一般に用いられるものであればよく、例えば炭素鋼、炭素工具鋼、合金工具鋼、ダイス鋼等が用いられる。また、円弧状フェライト磁石の内周面を形成するパンチの成型面には耐磨耗性の向上及び配向の制御のためにステライト部を設けることが一般的である。よって、当該下部パンチ3にもステライト部6が設けられる。ここで、ステライト以外にも非磁性で耐磨耗性材料であれば何でもよいが、例えば非磁性超鋼等を用いることができる。
【0018】
型枠1の材質は非磁性体であればよく、上部パンチと同様の材質を用いることができる。また、当該型枠の成型空間内壁面にも非磁性超鋼、ステライト等の耐磨耗材が設けられる。
【0019】
更に、本発明に係る乾式磁場成型装置は、型枠1と下部パンチ3から構成される成型空間4に上記パンチが進入することにより成型が行われる(図1参照)。
【0020】
詳しくは、成型空間4とは、型枠1のシリンダ部1aの空間のうち内嵌した下部パンチ3が占める部分を除いた空間である。そして、当該成型空間4へ成型される粉末が充填され、上部パンチ2が当該成型空間4に進入する形で成型されるものである。
【0021】
また、上部パンチ2及び下部パンチ3の幅は同一であり、これらの幅は前記シリンダ部1aの内径と同一幅(但し、同一幅といっても、当然にパンチが上下できる程度のマージンは備え、シリンダ部1aの上部にはテーパーを設けてもよい)である。よって、上部パンチ2の成型空間への進入量は型枠1によっては規制されることがない。換言すれば、上部パンチ又は型枠に段差を設けて上部パンチと型枠を面で接することにより上下動を規制していないので金型寿命が長くかつ生産性も高い。また、金型構造も単純で小型で済むため、円弧状フェライト磁石の高生産性含め製造コストが非常に低い。
【0022】
また、図2に示すように、本発明に係る乾式磁場成型装置は上部パンチ2の上方に上部パンチの成型面2aの円弧に沿った形状の下面7aを有する磁性体治具7を装着することが好ましい。非磁性体からなる上部パンチ側に磁性体治具7を設けることで、成型空間内の磁界強度が高まり、かつ磁性体治具7の下面7aの形状を上部パンチの成型面に沿った構成とすることで、完全な径方向の配向が可能となるからである。この磁性体治具7の下面7aの面積は、円弧状フェライト磁石の端部配向に偏りを与えない程度に大きめにすればよい。また、材質としては通常の磁性体であればよく、例えば炭素鋼、炭素工具鋼、合金工具鋼、ダイス鋼等が用いられる。
【0023】
続いて、本発明に係る乾式磁場成型装置の成型部以外の構成について説明する。
【0024】
通常、磁場成型装置の枠組みは磁性体で構成されており、磁界印加時に閉磁路を形成できる機構になっている。本発明の成型装置本体も磁性体で構成されており、上部パンチ2及び下部パンチ3の装着部(図示せず)は磁性体である。つまり、上部パンチを非磁性体とするが上部パンチ装着部は磁性体のため、成型装置全体では磁界印加時、閉磁路を形成することができる。ここで、磁性体の材質としては前記磁性体と同様に通常の磁性体であればよく、例えば炭素鋼、炭素工具鋼、合金工具鋼、ダイス鋼等が用いられる。
【0025】
【実施例】
以下、本発明の具体的実施例を示す。
【0026】
<実施例1>
図1に示される乾式成型装置を用いて、ストロンチウムフェライトの材料粉末を磁場中で成型した。ここで、非磁性体の上部パンチ2はステンレス鋼のSUS304からなり、磁性体の下部パンチ3は合金工具鋼のSKS2からなり、共に成型面2a、3aにはステライト部6を溶着したものを用いた。得られた成型体を1240℃で焼成し表面加工を加えた後に円弧状フェライト磁石(試料No.1)を得た。続いて、フラックスメータによりトータルフラックス及びガウスメータにより表面磁束波形の測定を行った。
【0027】
それぞれの結果について表1及び図3に示す。ここで、表1における向上率とは、下記試料No.3に対するトータルフラックスの向上率を意味する。
【0028】
なお、比較のために図4に示すように上部パンチ20が磁性体からなり、下部パンチ30が成型面に非磁性体であるステライト部60を設けた磁性体からなり、上部パンチ20及び下部パンチ30が型枠10に内嵌することにより成型が行われる、従来の乾式成型装置にて磁場中で成型した。また、図4に示す乾式成型装置において上部パンチ20の成型面にも配向制御のためにステライトを溶着したものも用いて同様に成型した。ここで、使用した上部パンチ20及び下部パンチ30の磁性体の材料はSKS2である。得られた成型体を前記と同様に処理(それぞれ、試料No.3、試料No.4)し、トータルフラックス及び表面磁束波形を測定した。
【0029】
【表1】

Figure 0004057092
【0030】
表1及び図3から本発明の効果は明らかである。即ち、本発明に係る乾式磁場成型装置により作成した円弧状フェライト磁石は、磁性体からなる上部パンチにより作成した試料No.3だけでなく、これに配向制御のためにステライトを溶着し作成した試料No.4と比較しても3.3%もトータルフラックスが向上している(表1参照)。また、図3に示す表面磁束波形を見ると、特に円弧状フェライト磁石の内周側の端部の磁束密度が向上しており、径方向に均一に異方性化されていることがわかる。
【0031】
<実施例2>
図2に示される成型装置、即ち、上部パンチ2の上方に磁性体治具7を装着した他は実施例1と同様の操作を行い、得られた試料(試料No.2)のトータルフラックス及び表面磁束波形の測定を行った。なお、用いた磁性体治具7の下面7aは成型完了直前に上部パンチ2が位置したときに、上部パンチ2の成型面2aの円弧と同心円になるような形状とした。
【0032】
その結果を表1及び図3に示す。
【0033】
表1及び図3から本発明の効果は明らかである。即ち、磁性体からなる上部パンチにより作成した試料No.3だけでなく、これに配向制御のためにステライトを溶着し作成した試料No.4と比較しても4.2%のトータルフラックスの向上が認められ、また、実施例1に係る試料No.1に比しても向上が見られる(表1参照)。図3に示す表面磁束波形からもまた、比較例たる試料No.3及びNo.4だけでなく、試料No.1よりも更に径方向の異方性化の均一化が顕著となっている。
【0034】
【発明の効果】
以上のように、上部パンチを円弧状フェライト磁石の外周側とし、かつ、非磁性体とすることで、または該上部パンチ上方に磁性体を設けることで、径方向の異方性が均一であり、高特性な円弧状フェライト磁石の製造が可能となる。
【0035】
また、前述したように更に前記各パンチが型枠に内嵌することにより成型が行われる成型方法であるため、高生産性かつ製造コストを低減することができる。
【図面の簡単な説明】
【図1】本発明に係る乾式磁場成型装置の要部断面図の一例である。
【図2】本発明に係る乾式磁場成型装置の要部断面図の他の一例である。
【図3】(a)は本発明の乾式磁場成型装置を用いて製造された円弧状フェライト磁石の表面磁束波形を示す図であり、(b)は従来の乾式磁場成型装置を用いて製造された円弧状フェライト磁石の表面磁束波形を示す図である。
【図4】従来の乾式磁場成型装置の要部断面図である。
【符号の説明】
1、10;型枠(非磁性体)
1a;シリンダ部
2;上部パンチ(非磁性体)
2a、3a;成型面
20;上部パンチ(磁性体)
3、30;下部パンチ(磁性体)
4、40;成型空間
5、50;コイル
6、60;ステライト部
7;磁性体治具
7a;磁性体治具の下面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dry magnetic field molding apparatus capable of manufacturing an arc-shaped ferrite magnet having a uniform radial anisotropy and a constant surface magnetic flux density distribution at low cost and high productivity.
[0002]
[Prior art]
Motors used for home appliances and automobile electrical equipment are required to have high performance, small size, and light weight. These motors use anisotropic arc-shaped ferrite magnets or anisotropic ring-shaped ferrite magnets, and the magnets are anisotropicized so that the radial direction is the easy axis of magnetization. These ferrite magnets are required to be uniformly anisotropic in the radial direction so that the surface magnetic flux density on the inner peripheral surface side becomes stronger, and the surface magnetic flux density on the inner peripheral surface side is required to be constant in the circumferential direction.
[0003]
The manufacturing method of such an anisotropic arc-shaped ferrite magnet is roughly classified into a wet molding method and a dry molding method.
[0004]
The wet molding method provides good magnet orientation and high properties, but the molding is performed while eliminating the dispersion medium, resulting in low productivity, and the mold structure is complicated and the equipment is large. Therefore, the manufacturing cost is considerably increased.
[0005]
On the other hand, the dry molding method is inferior to the wet method in terms of magnet orientation, but the cost is low because the productivity is high and the configuration of the apparatus is simple. Among them, the molding method in which the upper punch enters the molding space of the mold and pressurizes with only the upper punch or both the upper and lower punches, the upper punch and the mold are not in contact with each other, and the mold life is reached. Long and high productivity. In addition, since the mold structure is simple and small, the manufacturing cost including the high productivity is very low.
[0006]
[Problems to be solved by the invention]
However, when using the dry molding method described above, since the upper punch and the lower punch are generally made of a magnetic material regardless of the upper and lower sides of the arc-shaped ferrite magnet, the magnetic flux lines are magnetic on the outer side. Since it also converges on the body punch, it is impossible to uniformly align in the radial direction. Further, although the orientation is controlled by the degree of providing a non-magnetic part such as stellite, it is far from the orientation that is originally required.
[0007]
In order to achieve such uniform orientation, Japanese Patent Application Laid-Open No. 5-239505 discloses a lower die of a magnetic body in a die having a required diameter and having stellite deposited on the surface thereof, and an upper die of the magnetic body. In a magnetic field press mold composed of a mold, a mold is described in which the width of the upper mold is wider than the width of the lower mold. However, since the upper punch (“upper die” in the publication) does not enter the molding space of the mold (in the same publication, “inside the die”), the mold becomes large and productive. Therefore, the superiority to the wet molding method is lost, and low cost and high productivity cannot be expected.
[0008]
Therefore, the present invention provides a dry magnetic field molding apparatus for producing an arc-shaped ferrite magnet having a high productivity and a low cost, having a uniform radial magnetic anisotropy and a constant surface magnetic flux density distribution.
[0009]
[Means for Solving the Problems]
Such an object can be achieved by the following constitution (1) or (2).
[0010]
(1) A dry magnetic field molding apparatus for arc-shaped ferrite magnets having a mold, an upper punch, and a lower punch, wherein the upper punch enters a molding space composed of the mold and the lower punch. The upper punch forms the outer peripheral side of the arc-shaped ferrite magnet and is made of a non-magnetic material, the lower punch forms the inner peripheral side of the arc-shaped ferrite magnet, and the non-magnetic material is provided on the molding surface. An arc-shaped ferrite magnet dry-type magnetic field molding apparatus characterized by comprising a magnetic material.
[0011]
(2) In the dry magnetic field molding apparatus, the upper punch has a lower surface along the arc shape of the molding surface of the upper punch , and the area of the lower surface is larger than the area of the molding surface of the upper punch. A dry magnetic field molding apparatus according to (1), wherein a large magnetic jig is attached.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The dry magnetic field molding apparatus according to the present invention will be specifically described with reference to FIGS. 1 and 2.
[0013]
FIG. 1 is an example of a dry magnetic field molding apparatus according to the present invention, and shows a cross-sectional view of the main part (near the molding part). That is, the dry magnetic field molding apparatus according to the present invention includes a mold 1, an upper punch 2, a lower punch 3, a molding space 4 composed of the mold 1 and the lower punch 3, a coil 5, an upper punch 2, and a lower punch 3. It has the stellite part 6 provided in the molding space side.
[0014]
The upper punch 2 forms the outer peripheral surface of the arc-shaped ferrite magnet (therefore, the shape of the surface of the punch forming the outer peripheral surface of the arc-shaped ferrite magnet is concave when viewed from the cross section (hereinafter referred to as the outer peripheral molding surface). 2a)), and the lower punch 3 forms the inner peripheral surface of the arc-shaped ferrite magnet (therefore, the shape of the surface of the punch that forms the inner peripheral surface of the arc-shaped ferrite magnet has a cross section thereof) And a magnetic body (hatched portion in the figure) provided with a nonmagnetic material on the inner peripheral molding surface 3a. By making the upper punch a non-magnetic material, the magnetic field direction in the molding space when a magnetic field is applied is dissipated from the lower punch. That is, the orientation of the arc-shaped ferrite magnet is not focused on the outer peripheral surface, and the orientation direction is not partially biased.
[0015]
However, if the upper punch is made of a non-magnetic material, the magnetic field strength between the upper and lower punches will deteriorate, so it will need to be higher than when the upper punch is made of a magnetic material, but the required magnetic field will depend on the area and thickness of the molded product. Therefore, the applied magnetic field may be appropriately selected depending on the molded body.
[0016]
Moreover, the material of the nonmagnetic material constituting the upper punch is not particularly limited, and for example, stainless steel, copper beryllium alloy, high manganese steel, bronze, brass, nonmagnetic super steel, etc. can be used, and two or more kinds can be used. You may combine materials. For example, as shown in FIG. 1, a stellite portion 6 is provided on the molding surface of the upper punch 2 in order to improve wear resistance and control the orientation.
[0017]
On the other hand, the material of the magnetic body constituting the lower punch is not particularly limited, and any material that is generally used can be used. For example, carbon steel, carbon tool steel, alloy tool steel, die steel, or the like is used. In addition, it is common to provide a stellite portion on the molding surface of the punch that forms the inner peripheral surface of the arc-shaped ferrite magnet in order to improve wear resistance and control the orientation. Therefore, the stellite portion 6 is also provided in the lower punch 3. Here, in addition to stellite, any nonmagnetic and wear-resistant material may be used. For example, nonmagnetic super steel or the like can be used.
[0018]
The material of the mold 1 may be a non-magnetic material, and the same material as the upper punch can be used. In addition, wear resistant materials such as nonmagnetic super steel and stellite are also provided on the inner wall surface of the molding space of the mold.
[0019]
Furthermore, in the dry magnetic field molding apparatus according to the present invention, molding is performed when the punch enters the molding space 4 composed of the mold 1 and the lower punch 3 (see FIG. 1).
[0020]
Specifically, the molding space 4 is a space excluding the portion occupied by the internally fitted lower punch 3 in the space of the cylinder portion 1 a of the mold 1. Then, the molding space 4 is filled with powder to be molded, and the upper punch 2 is molded so as to enter the molding space 4.
[0021]
The upper punch 2 and the lower punch 3 have the same width, and these widths are the same as the inner diameter of the cylinder portion 1a (however, even if the width is the same, there is naturally enough margin to allow the punch to move up and down). In addition, a taper may be provided on the upper portion of the cylinder portion 1a). Therefore, the amount of entry of the upper punch 2 into the molding space is not restricted by the mold 1. In other words, since the vertical movement is not restricted by providing a step in the upper punch or the mold and contacting the upper punch and the mold with the surface, the mold life is long and the productivity is high. Further, since the mold structure is simple and small, the manufacturing cost including the high productivity of the arc-shaped ferrite magnet is very low.
[0022]
As shown in FIG. 2, the dry magnetic field molding apparatus according to the present invention mounts a magnetic jig 7 having a lower surface 7 a having a shape along the arc of the molding surface 2 a of the upper punch above the upper punch 2. Is preferred. By providing the magnetic body jig 7 on the upper punch side made of a non-magnetic material, the magnetic field strength in the molding space is increased, and the shape of the lower surface 7a of the magnetic body jig 7 is configured along the molding surface of the upper punch. This is because complete radial orientation is possible. The area of the lower surface 7a of the magnetic jig 7 may be increased to such an extent that the end portion orientation of the arc-shaped ferrite magnet is not biased. The material may be a normal magnetic material such as carbon steel, carbon tool steel, alloy tool steel, or die steel.
[0023]
Next, the configuration other than the molding unit of the dry magnetic field molding apparatus according to the present invention will be described.
[0024]
Usually, the framework of the magnetic field shaping apparatus is made of a magnetic material, and has a mechanism capable of forming a closed magnetic path when a magnetic field is applied. The molding apparatus main body of the present invention is also made of a magnetic material, and the mounting portions (not shown) of the upper punch 2 and the lower punch 3 are magnetic materials. That is, although the upper punch is made of a non-magnetic material, the upper punch mounting portion is a magnetic material, so that the entire molding apparatus can form a closed magnetic path when a magnetic field is applied. Here, the material of the magnetic body may be a normal magnetic body as in the case of the magnetic body, and for example, carbon steel, carbon tool steel, alloy tool steel, die steel and the like are used.
[0025]
【Example】
Specific examples of the present invention will be described below.
[0026]
<Example 1>
A strontium ferrite material powder was molded in a magnetic field using the dry molding apparatus shown in FIG. Here, the non-magnetic upper punch 2 is made of stainless steel SUS304, the magnetic lower punch 3 is made of alloy tool steel SKS2, and both are formed by welding the stellite portion 6 to the molding surfaces 2a and 3a. It was. The obtained molded body was fired at 1240 ° C. and subjected to surface processing, and then an arc-shaped ferrite magnet (sample No. 1) was obtained. Subsequently, the total flux and the surface magnetic flux waveform were measured with a gauss meter using a flux meter.
[0027]
The results are shown in Table 1 and FIG. Here, the improvement rate in Table 1 is the following sample No. The improvement rate of the total flux with respect to 3.
[0028]
For comparison, as shown in FIG. 4, the upper punch 20 is made of a magnetic material, and the lower punch 30 is made of a magnetic material having a non-magnetic stellite portion 60 on the molding surface. Molding was performed in a magnetic field by a conventional dry molding apparatus in which molding is performed by fitting 30 to the mold 10. Further, in the dry molding apparatus shown in FIG. 4, the molding surface of the upper punch 20 was also molded in the same manner using a material in which stellite was welded for orientation control. Here, the magnetic material of the upper punch 20 and the lower punch 30 used is SKS2. The obtained molded body was processed in the same manner as above (sample No. 3 and sample No. 4 respectively), and the total flux and the surface magnetic flux waveform were measured.
[0029]
[Table 1]
Figure 0004057092
[0030]
The effects of the present invention are apparent from Table 1 and FIG. That is, the arc-shaped ferrite magnet created by the dry magnetic field molding apparatus according to the present invention has the sample No. 2 created by the upper punch made of a magnetic material. In addition to sample No. 3, sample No. 3 was prepared by welding stellite to control orientation. Compared to 4, the total flux is improved by 3.3% (see Table 1). Moreover, when the surface magnetic flux waveform shown in FIG. 3 is seen, it turns out that especially the magnetic flux density of the edge part of the inner peripheral side of an arc-shaped ferrite magnet is improving, and it is made anisotropic uniformly in radial direction.
[0031]
<Example 2>
2 except that the magnetic jig 7 is mounted above the upper punch 2 and the same operation as in Example 1 is performed, and the total flux of the obtained sample (sample No. 2) and The surface magnetic flux waveform was measured. The lower surface 7a of the magnetic jig 7 used was shaped so as to be concentric with the arc of the molding surface 2a of the upper punch 2 when the upper punch 2 was positioned immediately before the completion of molding.
[0032]
The results are shown in Table 1 and FIG.
[0033]
The effects of the present invention are apparent from Table 1 and FIG. That is, the sample No. prepared by the upper punch made of a magnetic material. In addition to sample No. 3, sample No. 3 was prepared by welding stellite to control orientation. 4 and 4.2% of the total flux improvement was observed, and Sample No. An improvement is also seen compared to 1 (see Table 1). From the surface magnetic flux waveform shown in FIG. 3 and no. 4 as well as sample no. Even more uniform than 1 in the radial anisotropy.
[0034]
【The invention's effect】
As described above, the anisotropy in the radial direction is uniform by making the upper punch the outer peripheral side of the arc-shaped ferrite magnet and making it a non-magnetic material, or by providing a magnetic material above the upper punch. This makes it possible to produce a high-characteristic arc-shaped ferrite magnet.
[0035]
Further, as described above, since the molding is performed by further fitting each punch into the mold, high productivity and manufacturing cost can be reduced.
[Brief description of the drawings]
FIG. 1 is an example of a cross-sectional view of a main part of a dry magnetic field molding apparatus according to the present invention.
FIG. 2 is another example of a cross-sectional view of the main part of the dry magnetic field molding apparatus according to the present invention.
FIG. 3A is a diagram showing a surface magnetic flux waveform of an arc-shaped ferrite magnet manufactured using the dry magnetic field molding apparatus of the present invention, and FIG. 3B is manufactured using a conventional dry magnetic field molding apparatus. It is a figure which shows the surface magnetic flux waveform of a circular arc ferrite magnet.
FIG. 4 is a cross-sectional view of a main part of a conventional dry magnetic field molding apparatus.
[Explanation of symbols]
1, 10; Formwork (non-magnetic material)
1a; cylinder part 2; upper punch (non-magnetic material)
2a, 3a; molding surface 20; upper punch (magnetic material)
3, 30; Lower punch (magnetic material)
4, 40; molding space 5, 50; coil 6, 60; stellite portion 7; magnetic jig 7a;

Claims (2)

型枠と上部パンチと下部パンチと有し、前記上部パンチが前記型枠と前記下部パンチから構成される成型空間に進入して成型が為される円弧状フェライト磁石の乾式磁場成型装置において、上部パンチは円弧状フェライト磁石の外周側を形成し、かつ、非磁性体からなり、下部パンチは円弧状フェライト磁石の内周側を形成し、かつ、その成型面に非磁性体を設けた磁性体からなることを特徴とする円弧状フェライト磁石の乾式磁場成型装置。In a dry magnetic field molding apparatus of an arc-shaped ferrite magnet having a mold, an upper punch, and a lower punch, and the upper punch enters a molding space constituted by the mold and the lower punch, and molding is performed. The punch forms the outer peripheral side of the arc-shaped ferrite magnet and is made of a non-magnetic material, and the lower punch forms the inner peripheral side of the arc-shaped ferrite magnet and has a non-magnetic material on the molding surface An arc-shaped ferrite magnet dry magnetic field molding apparatus characterized by comprising: 前記乾式磁場成型装置において、前記上部パンチの上方に上部パンチの成型面の円弧形状に沿った形状の下面を有し、かつ、前記下面の面積が前記上部パンチの成型面の面積より大きい磁性体治具を装着してなることを特徴とする請求項1に記載の乾式磁場成型装置。In the dry magnetic field molding apparatus, a magnetic body having a lower surface along the arc shape of the molding surface of the upper punch above the upper punch , and the area of the lower surface is larger than the area of the molding surface of the upper punch The dry magnetic field molding apparatus according to claim 1, wherein a jig is attached.
JP07017397A 1997-03-24 1997-03-24 Dry magnetic field molding equipment for arc-shaped ferrite magnets Expired - Lifetime JP4057092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07017397A JP4057092B2 (en) 1997-03-24 1997-03-24 Dry magnetic field molding equipment for arc-shaped ferrite magnets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07017397A JP4057092B2 (en) 1997-03-24 1997-03-24 Dry magnetic field molding equipment for arc-shaped ferrite magnets

Publications (2)

Publication Number Publication Date
JPH10270276A JPH10270276A (en) 1998-10-09
JP4057092B2 true JP4057092B2 (en) 2008-03-05

Family

ID=13423884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07017397A Expired - Lifetime JP4057092B2 (en) 1997-03-24 1997-03-24 Dry magnetic field molding equipment for arc-shaped ferrite magnets

Country Status (1)

Country Link
JP (1) JP4057092B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7014811B2 (en) 2001-07-02 2006-03-21 Neomax Co., Ltd. Method for producing rare earth sintered magnets
JP4134616B2 (en) 2001-10-02 2008-08-20 日立金属株式会社 Press apparatus and magnet manufacturing method
JP5120534B2 (en) * 2006-03-15 2013-01-16 Tdk株式会社 Anisotropic ferrite magnet and motor
JP5870567B2 (en) * 2010-09-10 2016-03-01 Tdk株式会社 Bow magnets and magnetic field molds
JP5968735B2 (en) * 2012-09-13 2016-08-10 ゼノー・テック株式会社 Lower punch used for forming a ferrite magnet in a magnetic field, and method for manufacturing the lower punch
CN103071792B (en) * 2013-01-25 2016-08-03 无锡钻探工具厂有限公司 A kind of curved plate forming mold of hard alloy
CN103213191A (en) * 2013-05-02 2013-07-24 鞍山市德康磁性材料有限责任公司 Mold for rectifying deformation of permanent magnetic ferrite product

Also Published As

Publication number Publication date
JPH10270276A (en) 1998-10-09

Similar Documents

Publication Publication Date Title
JP2006245055A (en) Dust core and its production process, and actuator and solenoid valve employing the dust core
JP4057092B2 (en) Dry magnetic field molding equipment for arc-shaped ferrite magnets
US9646751B2 (en) Arcuate magnet having polar-anisotropic orientation, and method and molding die for producing it
JP2006210847A (en) Compressed powder magnetic core and manufacturing method thereof
JP2006014436A (en) Motor
JP2005277180A (en) Magnet-manufacturing method, magnetic powder forming method and dry forming equipment
JP4400698B2 (en) Surface multipolar anisotropic ring magnet forming equipment
JP3012049B2 (en) Anisotropic segment type magnet
JPH0272603A (en) Core
KR102136670B1 (en) Self-interest
CN112889202A (en) Iron core, stator and rotating electrical machine
JP3007293B2 (en) Anisotropic flat annular permanent magnet and manufacturing method thereof
JP3664271B2 (en) Multipolar magnetizing yoke
JP2860858B2 (en) Mold for magnetic powder molding
JPH10177928A (en) Molding device for cylindrical radial anisotropic magnet
JP2000323341A (en) Radial anisotropic magnet molding device
JPH05144632A (en) Bipolar cylindrical magnet
JP5120534B2 (en) Anisotropic ferrite magnet and motor
JP2009266929A (en) Powder magnetic core and its manufacturing method
JP2008186973A (en) Reactor core and reactor
JPS61140125A (en) Metal mold structure for press of magnetic powder
JPH08264362A (en) Magnet molding apparatus
JPS6241583Y2 (en)
JP2573706B2 (en) Fixed core assembly for solenoid and method of manufacturing the same
CN117378125A (en) Stator core, stator, rotating electrical machine, and method for manufacturing stator core

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

EXPY Cancellation because of completion of term