JP4056791B2 - Fracture reduction guidance device - Google Patents

Fracture reduction guidance device Download PDF

Info

Publication number
JP4056791B2
JP4056791B2 JP2002147185A JP2002147185A JP4056791B2 JP 4056791 B2 JP4056791 B2 JP 4056791B2 JP 2002147185 A JP2002147185 A JP 2002147185A JP 2002147185 A JP2002147185 A JP 2002147185A JP 4056791 B2 JP4056791 B2 JP 4056791B2
Authority
JP
Japan
Prior art keywords
fracture
reduction
bone fragment
movement
bone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002147185A
Other languages
Japanese (ja)
Other versions
JP2003339725A (en
Inventor
誠 鮫島
義浩 古結
策雄 米延
伸彦 菅野
進一 田村
嘉伸 佐藤
義和 中島
Original Assignee
策雄 米延
伸彦 菅野
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 策雄 米延, 伸彦 菅野 filed Critical 策雄 米延
Priority to JP2002147185A priority Critical patent/JP4056791B2/en
Publication of JP2003339725A publication Critical patent/JP2003339725A/en
Application granted granted Critical
Publication of JP4056791B2 publication Critical patent/JP4056791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/60Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like for external osteosynthesis, e.g. distractors, contractors
    • A61B17/66Alignment, compression or distraction mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations

Description

【0001】
【発明の属する技術分野】
本発明は、骨折した患部における骨片ずれを修復する骨折整復誘導装に関する。
【0002】
【従来の技術】
人体の骨折患部の治療は、患者をベッドに寝かせた状態で、患者の骨折患部を複数回X線撮影(例えば、上下、左右の撮影)して骨片のずれを確認した後、牽引することで骨折患部を整復し、骨折患部の整復位置が適正かどうかを再度X線撮影して確認している。
【0003】
【発明が解決しようとする課題】
ところが、従来の骨折整復治療では、骨折患部のX線撮影画像に基づいて術者が骨折患部を牽引して適正な接合位置に整復するものであるが、骨折した骨片の牽引方向や牽引力等は定量性がなく、各術者の経験によるところが大きい。また術者の肉体労働を強いていることになる。そのため、術者の技量によって骨折治療の完治期間にずれが生じてしまうという問題がある。更に、X線撮影を頻繁に行うため、患者及び術者に対する被爆の問題がある。
【0004】
本発明はこのような問題を解決するものであり、骨折整復治療における定量性を確保して整復作業の作業性及び作業効率の向上を図った骨折整復誘導装を提供することを目的とする。
【0005】
【課題を解決するための手段】
上述の目的を達成するための請求項1の発明の骨折整復誘導装置は、骨折患部を撮影する骨折患部撮影手段と、該骨折患部撮影手段が撮影した撮影画像に基づいて骨折断端の接合位置を指定して骨折位置から該接合位置までの骨片の移動軌跡及び移動量を設定する整復シミュレーション設定手段と、前記骨折患部における一方の骨片に保持して移動可能な骨片移動手段と、前記整復シミュレーション設定手段が設定した骨片の移動軌跡及び移動量に基づいて前記骨片移動手段の移動順序、移動量、移動方向を設定する制御量設定手段とを具えた骨折整復誘導装置において、前記骨折患部撮影手段として3次元の画像が合成可能なX線透視装置を用い、該X線透視装置にマーカを付けて該マーカの3次元位置を計測する3次元計測装置を設け、前記骨折患部に対して複数箇所の3次元撮影画像と前記マーカの3次元位置・方向座標により整復に必要な範囲の骨全体の画像に作成する画像処理手段を設け、更に、前記骨片移動手段が保持した一方の骨片にマーカを付ける骨片マーカ付着手段と、該骨片マーカ付着手段が付けたマーカの3次元位置を計測する3次元計測装置とを設け、前記制御量設定手段は、該3次元計測装置が測定したマーカの移動軌跡及び移動量と、前記整復シミュレーション設定手段が設定した骨片の移動軌跡及び移動量との誤差を検出し、この誤差が所定値を越えたときには前記骨片移動手段の補正量を設定することを特徴とする。
【0007】
請求項の発明の骨折整復誘導装置では、前記画像処理手段は作成した骨折患部の3次元画像に基づいて骨片の分離を行って各骨片の3次元画像を作成し、前記整復シミュレーション設定手段は、該骨片の3次元画像に基づいて骨折断端の接合位置を指定することを特徴としている。
【0008】
請求項の発明の骨折整復誘導装置では、前記整復シミュレーション設定手段は、前記骨折患部撮影手段が撮影した撮影画像と予め記憶した骨正常位置とを比較して前記骨折断端の接合位置を指定することを特徴としている。
【0010】
請求項の発明の骨折整復誘導装置では、前記整復シミュレーション設定手段は、術者の手に装着されるデータグローブを有し、該術者は前記骨折患部撮影手段が撮影した撮影画像に基づいて該データグローブを操作して骨折断端の接合位置を指定して骨折位置から該接合位置までの骨片の移動軌跡及び移動量を設定することを特徴としている。
【0011】
請求項の発明の骨折整復誘導装置では、前記整復シミュレーション設定手段と前記制御量設定手段との間でデータを送受信可能なデータ送受信機を設けたことを特徴としている。
【0018】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を詳細に説明する。
【0019】
図1に本発明の第1実施形態に係る骨折整復誘導装置の概略構成、図2に本実施形態の骨折整復誘導装置による整復方法を表すフローチャート、図3乃至図5に本実施形態の骨折整復誘導装置により整復方法を表す概略を示す。
【0020】
本実施形態の骨折整復誘導装置は、図1に示すように、骨折患部を撮影する骨折患部撮影手段としての3次元画像が合成可能なX線透視装置11と、骨折した骨片に付ける骨片マーカ12aと、X線透視装置11に付ける装置マーカ12bと、この骨片マーカ12aと装置マーカ12bの3次元位置を計測する3次元計測装置13と、X線透視装置11で合成された骨片の3次元画像を用いて3次元計測装置13が計測したマーカの3次元位置から骨片の3次元位置を推定し、整復シミュレーション及び整復制御量を出力する整復誘導装置18と、骨折患部における一方の骨片に保持して移動可能な骨片移動手段としての牽引装置15とから構成されている。この整復誘導装置18は骨片の3次元画像に基づいて骨折断端の接合位置を指定して骨折位置から接合位置までの骨片の移動軌跡及び移動量を設定する整復シミュレーション設定装置16と、この整復シミュレーション設定装置16が設定した骨片の移動軌跡及び移動量に基づいて牽引装置15の位置・姿勢操作量を設定する制御量設定装置17とから構成されている。
【0021】
X線透視装置11は、例えば、骨折患部としての大腿部の外周部に位置してリング形状をなすC字形アームであって、大腿部の周方向に回動自在であると共に、長手方向に移動可能であり、骨折患部を複数の位置や角度からX線撮影可能となっており、3次元画像を生成する。骨片マーカ12aは、骨折患部にて骨折した側の骨片に刻設すると共に、皮膚に皮膚マーカを貼着するものである。装置マーカ12bは、X線透視装置11に付設するものである。3次元計測装置13は、この骨片マーカ12aの3次元位置と装置マーカ12bの3次元位置を計測するものである。
【0022】
X線透視装置11で骨折患部周辺を、位置を変えて複数箇所撮影するが、X線透視装置11の位置は装置マーカ12bを3次元計測装置13で計測されて画像処理装置14に入力される。この画像処理装置14は、X線透視装置11からの骨折患部周辺の複数箇所の3次元画像により手術する骨部全体を合成する。また、画像処理装置14は、3次元計測装置13が計測した各マーカの3次元位置(3次元座標)から骨片の3次元位置を推定する。
【0023】
整復シミュレーション設定装置16は、X線透視装置11が撮影した撮影画像に基づいて画像処理装置14が作成した骨片の3次元画像から骨折断端の接合位置を指定し、骨片がずれた骨折位置から骨片が適正に接触する接合位置までの骨片の移動軌跡及び移動量を設定するものである。この場合、骨片の適正な接合位置は、骨折していない側の大腿部のX線撮影画像や平均的な骨の接合形状とのマッチングにより行うことが望ましい。
【0024】
制御量設定装置17は、整復シミュレーション設定装置16が設定した骨片の移動軌跡及び移動量に基づいて牽引装置15の位置・姿勢の操作量を演算することで、実際の骨折患部にて牽引装置15が保持した骨片をずれた骨折位置から適正な接合位置まで移動指示するものである。この場合、制御量設定装置17は、3次元計測装置13が計測した各マーカの3次元位置に基づいて画像処理装置14が推定した骨片の実移動軌跡及び実移動量と、整復シミュレーション設定装置16が設定した骨片の移動軌跡及び移動量との誤差を検出し、この誤差が減少するように牽引装置15を補正制御する。
【0025】
そして、牽引装置15は、ベッドに横になった患者の骨折した足に履かせて保持するブーツと、このブーツを6自由度(3次元方向への直線移動、3次元方向に沿った軸回りの回動)の移動動作を可能とする移動機構とを有しており、骨片を6自由度の方向に牽引可能となっている。
【0026】
ここで、本実施形態の骨折整復誘導装置による骨折整復方法について、図2に記載したフローチャートと図3乃至図5に記載した骨折患部の概略に基づいて詳細に説明する。
【0027】
図2に示すフローチャートにて、ステップS1では、X線透視装置11を用いて大腿部の周方向に回動すると共に長手方向に移動し、骨折患部を異なる位置でX線撮影を行い、図3(a)に示すように、複数の3次元画像A,B,C,Dを取得する。ステップS2では、3次元画像A,B,C,Dに対応する装置マーカ12bの位置データを用いて、図3(b)に示すように、術部全体が把握できるように骨折患部周辺の3次元画像を作成する。そして、ステップS3では、図3(c)に示すように、この骨折患部周辺の3次元画像に基づいて、骨折した各骨片ごとの分離を行って各骨片(骨折の断端)の3次元画像を作成する。
【0028】
ステップS4にて、整復シミュレーション設定装置16は、画像処理装置14が作成した分離骨片の3次元画像にて、図4(a)に示すように、骨片の適正な接合位置を指定するが、この場合、予め骨折していない側の大腿部のX線撮影画像を取得し、骨折患部の分離骨片に対応する3次元画像を記憶しておき、骨折していない大腿部の3次元画像に基づいて、骨折した大腿部における骨片の接合位置を指定する。そして、図4(b)に示すように、3次元画像上で骨片を指定した接合位置までシミュレーション移動することで骨折患部の整復状態を確認し、移動軌跡及び移動量を設定する。予め骨折していない側の大腿部のX線画像が得られない場合、図4(c)に示すように、骨折断端に接合位置(a,b,c)、(a′,b′,c′)を設定し、この接合位置までの骨片の移動軌跡及び移動量を設定し、この移動軌跡及び移動量に基づいて骨片のシミュレーション移動し、骨片の整復状態を確認することもできる。
【0029】
このように整復シミュレーション設定装置16にて、接合位置までの骨片の移動軌跡及び移動量が設定されたら、ステップS5にて、制御量設定装置17は、牽引装置15による制御量、即ち、骨片の移動軌跡及び移動量に対応したブーツにおける6方向の移動順序、移動量、移動速度等を換算する。そして、ステップS6にて、牽引装置15は、図5(a)(b)に示すように、ブーツを設定した移動順序、移動量、移動方向等に基づいて移動されて骨片をずれた骨折位置から適正な接合位置まで移動する。なお、牽引装置15は自動で駆動される必要はなく、手動で操作してもよい。
【0030】
この場合、予め骨片マーカ12aが刻設されると共に皮膚にマーカが貼着され、ステップS7にて、3次元計測装置13が各マーカの3次元位置を計測している。そして、ステップS8では、3次元計測装置13が計測した各マーカの3次元位置に基づいて画像処理装置14が推定した骨片の実移動軌跡及び実移動量と、整復シミュレーション設定装置16が設定した骨片の移動軌跡及び移動量とを比較し、牽引装置15の作動によって移動する骨片が指定した軌跡上にあるかどうかをリアルタイムで判定している。
【0031】
従って、ステップS8にて、骨片の実移動軌跡と骨片の設定移動軌跡とを比較し、その誤差が所定値を越えたときには牽引装置15の作動によって移動する骨片が指定した軌跡上にないと判定し、ステップS9にてこの誤差が減少するように牽引装置15を位置補正し、ステップS6に戻る。一方、骨片の実移動軌跡と骨片の設定移動軌跡との誤差が所定値以内であれば、移動する骨片が指定した軌跡上にあると判定し、ステップS10に移行する。ここに、ステップS9の位置補正は制御量設定装置17にて実施される。
【0032】
このステップS10では、骨片の実移動軌跡及び実移動量と、骨片の設定移動軌跡及び設定移動量とを比較し、牽引装置15の作動によって移動する骨片が指定した接合位置に移動したかどうかを判定する。このステップS10で、骨片の実移動軌跡及び実移動量と、骨片の設定移動軌跡及び設定移動量とが一致していなければ、骨片がまだ指定した接合位置に移動していないものと判定し、ステップS6に戻って処理を繰り返す。
【0033】
一方、骨片の実移動軌跡及び実移動量と設定移動軌跡及び設定移動量とが一致していれば、骨片が指定した接合位置に移動したものと判定する。そして、ステップS11にて、X線透視装置11により骨折患部を撮影し、ステップS12で、骨片が所定の接合位置に移動して適正に整復されているかどうかを判定し、骨片が所定の接合位置に移動せずに適正に整復されていなければ、ステップS4に戻って全ての処理を繰り返す一方、骨片が所定の接合位置に移動して適正に整復されていることが確認されたら整復作業を完了する。そして、図示しないが、骨折患部の手術やギブスによる固定などの適切な処置を行う。
【0034】
このように本実施形態の骨折整復誘導装置にあっては、X線透視装置11により骨折患部を撮影し、骨片の3次元画像を作成し、画像処理装置14が撮影した複数の3次元撮影画像を座標変換して手術する骨全体に合成し、整復シミュレーション設定装置16が作成した骨片の3次元画像に基づいて骨折断端の接合位置を指定して骨折位置から接合位置までの骨片の移動軌跡及び移動量を設定し、制御量設定装置17は骨片の移動軌跡及び移動量に基づいて牽引装置15の操作量、操作方向を設定し、これに基づいて牽引装置15を駆動して骨折患部を整復するようにしている。
【0035】
従って、骨片を予め設定した移動軌跡及び移動量に基づいて牽引装置15により接合位置まで移動して整復するため、骨折した骨片の牽引方向や牽引力は定量的なものとなり、術者の経験に拘らずほぼ一定な技量となり、骨折治療の完治期間にずれが生じることはなく、その結果、骨折整復治療における定量性を確保して整復作業の作業性及び作業効率を向上できる。
【0036】
また、骨片マーカ12aが骨片に刻設されると共に皮膚にマーカを貼着し、3次元計測装置13が計測した各マーカの3次元位置に基づいて推定した骨片の実移動軌跡及び実移動量と、整復シミュレーション設定装置16が設定した骨片の実移動軌跡及び実移動量とを比較し、両者の誤差が減少するように牽引装置15を補正制御しており、骨片の移動を常時監視して早期に修正することができる。更に、患者及び術者に対してX線透視装置11の使用回数を減少することで、X線被爆を防止することができる。
【0037】
図6乃至図8に本発明の第2〜4実施形態に係る骨折整復誘導装置の概略構成を示す。なお、前述した実施形態で説明したものと同様の機能を有する部材には同一の符号を付して重複する説明は省略する。
【0038】
第2実施形態の骨折整復誘導装置において、図6に示すように、整復シミュレーション設定装置21は、X線透視装置11が撮影した撮影画像に基づいて画像処理装置14が作成した骨片の3次元画像を映し出すディスプレイ22と、術者の手に装着されるデータグローブ23と、このデータグローブ23の作動を検出する各種センサ類24と、この各種センサ類24の出力に基づいて骨片の移動位置を推定する演算装置25とを有している。なお、この各種センサ類24は磁気センサあるいは光学センサであって、データグローブ23の6自由度(3次元方向への直線移動、3次元方向に沿った軸回りの回動)の移動動作を検出できるセンサであればどれでもよい。
【0039】
従って、この整復シミュレーション設定装置21では、ディスプレイ22に骨折患部における骨片の3次元画像が映し出された状態で、術者がデータグローブ23を操作、つまり、骨片を保持していると仮定して骨折断端の接合位置まで移動させると、センサ類24がこのデータグローブ23の移動軌跡及び移動量を検出し、演算装置25がこの移動軌跡及び移動量に基づいて骨片の移動位置を推定し、ディスプレイ22に表示される。そして、術者が骨片を骨折位置から適正な接合位置まで移動させたときの骨片の移動軌跡及び移動量を、骨折位置から接合位置までの骨片の設定移動軌跡及び設定移動量として設定する。
【0040】
そして、整復シミュレーション設定装置21にて、接合位置までの骨片の移動軌跡及び移動量が設定されたら、前述の実施形態と同様に、制御量設定装置17が牽引装置15による操作量、即ち、骨片の移動軌跡及び移動量に対応した牽引装置15の6方向の移動順序、移動量、移動方向等を換算し、これに基づいて牽引装置15を駆動して骨片をずれた骨折位置から適正な接合位置まで移動する。
【0041】
このように本実施形態の骨折整復誘導装置にあっては、整復シミュレーション設定装置21にて、術者がデータグローブ23を操作して骨片を骨折位置から適正な接合位置まで移動させて設定移動軌跡及び設定移動量を設定している。従って、骨片の接合位置を適正に設定することができ、整復作業の作業性及び作業効率を向上できる。
【0042】
第3実施形態の骨折整復誘導装置では、図7に示すように、第2実施形態で説明した演算装置25と整復誘導装置18とをデータ送受信装置31,32に接続し、両者間でデータの送受信を可能としている。
【0043】
従って、患者がいる病院に熟練の術者が不在であるときは、X線透視装置11が撮影した撮影画像に基づいて画像処理装置14が作成した骨片の3次元画像を熟練の術者がいる病院にデータ送受信装置31,32を用いて送信する。熟練の術者は受信したデータをディスプレイ22に表示しながらデータグローブ23を操作し、骨片を骨折位置から適正な接合位置まで移動させて設定移動軌跡及び設定移動量を設定する。そして、骨片の設定移動軌跡及び設定移動量を患者がいる病院にデータ送受信装置31,32を用いて送信すると、制御量設定装置17による操作量、即ち、骨片の移動軌跡及び移動量に対応した6方向の移動順序、移動量、移動方向等を換算し、これに基づいて牽引装置15を駆動して骨片をずれた骨折位置から適正な接合位置まで移動する。
【0044】
このように本実施形態の骨折整復誘導装置にあっては、骨片の3次元画像や骨片の設定移動軌跡及び設定移動量をデータ送受信装置31,32により送受信可能とすることで、熟練の術者が不在である遠隔地などの病院であっても、骨折患部を適正に修復することができる。
【0045】
第4実施形態の骨折整復誘導装置では、図8に示すように、第1実施形態で説明した制御量設定装置17に音声指示装置41を接続している。
【0046】
従って、制御量設定装置17が牽引装置15を駆動制御して骨片をずれた骨折位置から適正な接合位置まで移動しているとき、骨片の実移動軌跡及び実移動量と設定移動軌跡及び設定移動量とに誤差が発生したときには、音声指示装置41から制御量設定装置17に音声で指示を送ることで、骨片の修正移動を早期に実行することができ、また、不測の事態には牽引装置15を緊急停止することができる。なお、第3実施形態で説明したように、音声指示装置41と整復誘導装置18とをデータ送受信装置31,32に接続し、遠隔地より熟練の術者が音声で指示する方法も可能である。
【0047】
【発明の効果】
以上、実施形態において詳細に説明したように請求項1の発明の骨折整復誘導装置によれば、骨折患部を撮影する骨折患部撮影手段と、撮影した撮影画像に基づいて骨折断端の接合位置を指定して骨折位置から接合位置までの骨片の移動軌跡及び移動量を設定する整復シミュレーション設定手段と、骨折患部における一方の骨片に保持して移動可能な骨片移動手段と、整復シミュレーション設定手段が設定した骨片の移動軌跡及び移動量に基づいて骨片移動手段の移動順序、移動量、移動方向を設定する制御量設定手段とを設けたので、骨片を予め設定した移動軌跡及び移動量に基づいて接合位置まで移動して整復することとなり、骨折した骨片の移動方向や移動力は定量的なものとなり、術者の経験に拘らずほぼ一定な技量となり、骨折治療の完治期間にずれが生じることはなく、その結果、骨折整復治療における定量性を確保して整復作業の作業性及び作業効率を向上することができるだけでなく、骨折患部撮影手段として3次元の画像が合成可能なX線透視装置を用い、このX線透視装置にマーカを付けて3次元位置を計測する3次元計測装置を設け、骨折患部に対して複数箇所の3次元撮影画像とマーカの3次元位置・方向座標により整復に必要な範囲の骨全体の画像に作成する画像処理手段を設けたので、患者の術部全体を把握することで骨折の様子を適切に認識することができ、しかも、骨片移動手段が保持した一方の骨片にマーカを付ける骨片マーカ付着手段と、骨片マーカ付着手段が付けたマーカの3次元位置を計測する3次元計測装置とを設け、制御量設定手段は、3次元計測装置が測定したマーカの移動軌跡及び移動量と、整復シミュレーション設定手段が設定した骨片の移動軌跡及び移動量との誤差を検出し、この誤差が所定値を越えたときには骨片移動手段の補正量を設定するので、骨片移動手段による骨片移動ルートの逸脱を早期に検出して適切な骨片の移動制御を可能とすることができる
【0049】
請求項の発明の骨折整復誘導装置によれば、画像処理手段は骨折患部の3次元画像に基づいて骨片の分離を行って各骨片の3次元画像を作成し、整復シミュレーション設定手段は骨片の3次元画像に基づいて骨折断端の接合位置を指定するので、簡単な制御により骨片の整合位置を設定することができる。
【0050】
請求項の発明の骨折整復誘導装置によれば、整復シミュレーション設定手段は骨折患部撮影手段が撮影した撮影画像と予め記憶した骨正常位置とを比較して骨折断端の接合位置を指定するので、簡単な制御により骨片の整合位置を適切に設定することができる。
【0052】
請求項の発明の骨折整復誘導装置によれば、整復シミュレーション設定手段は術者の手に装着されるデータグローブを有し、術者は骨折患部撮影手段が撮影した撮影画像に基づいてデータグローブを操作して骨折断端の接合位置を指定して骨折位置から接合位置までの骨片の移動軌跡及び移動量を設定するので、骨片の接合位置を適正に設定することができ、整復作業の作業性及び作業効率を向上できる。
【0053】
請求項の発明の骨折整復誘導装置によれば、整復シミュレーション設定手段と制御量設定手段との間でデータを送受信可能なデータ送受信機を設けたので、熟練の術者が不在である遠隔地などの病院であっても、骨折患部を適正に修復することができる。
【0054】
請求項の発明の骨折整復誘導装置によれば、制御量設定手段に音声指示装置を接続したので、骨片移動手段による骨片移動ルートの逸脱に対して早期に骨片の移動修正を可能とすることができる。
【0055】
請求項の発明の骨折整復誘導装置によれば、制御量設定手段と音声指示装置との間でデータを送受信可能なデータ送受信装置を設けたので、遠隔地より熟練の術者が音声で指示することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る骨折整復誘導装置の概略構成図である。
【図2】本実施形態の骨折整復誘導装置による整復方法を表すフローチャートである。
【図3】本実施形態の骨折整復誘導装置により整復方法を表す概略図である。
【図4】本実施形態の骨折整復誘導装置により整復方法を表す概略図である。
【図5】本実施形態の骨折整復誘導装置により整復方法を表す概略図である。
【図6】本発明の第2実施形態に係る骨折整復誘導装置の概略構成図である。
【図7】本発明の第3実施形態に係る骨折整復誘導装置の概略構成図である。
【図8】本発明の第4実施形態に係る骨折整復誘導装置の概略構成図である。
【符号の説明】
11 X線透視装置(骨折患部撮影手段)
12 骨片マーカ付着装置
13 3次元計測装置
14 画像処理装置
15 牽引装置(骨片移動手段)
16,21 整復シミュレーション設定手段
17 制御量設定装置
22 ディスプレイ
23 データグローブ
24 演算装置
31,32 データ送受信装置
41 音声指示装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to fracture reduction inducing equipment to repair bone fragments displacement in fractured affected area.
[0002]
[Prior art]
To treat a fractured part of the human body, with the patient lying on the bed, tow the patient's fractured part several times by X-raying (eg, up and down, left and right) to confirm the displacement of the bone fragment. Then, the fractured part is reduced, and it is confirmed by X-ray imaging again whether the reduction position of the fractured part is appropriate.
[0003]
[Problems to be solved by the invention]
However, in the conventional fracture reduction treatment, the operator pulls the fracture affected part based on the X-ray image of the fractured part and reduces it to an appropriate joint position. Is not quantitative and depends largely on the experience of each operator. It also forces the surgeon's physical labor. For this reason, there is a problem that a shift occurs in the complete healing period of the fracture treatment depending on the skill of the operator. Furthermore, since X-ray imaging is frequently performed, there is a problem of exposure to the patient and the operator.
[0004]
The present invention has been made to solve such problems, and an object thereof is to provide a fracture reduction induction equipment with improved workability and working efficiency of the reduction work to ensure quantitative properties in fracture reduction treatment .
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the fracture reduction inducing device of the invention of claim 1 includes a fractured part imaging unit for imaging a fractured part and a joint position of a fracture stump based on a photographed image photographed by the fractured part imaging unit. A reduction simulation setting means for setting the movement trajectory and movement amount of the bone fragment from the fracture position to the joint position by designating, and a bone fragment movement means that can be held and moved by one bone fragment in the fractured part, In a fracture reduction guidance device comprising control amount setting means for setting the movement order, movement amount, and movement direction of the bone fragment moving means based on the movement trajectory and movement amount of the bone fragment set by the reduction simulation setting means, the fracture affected part using a 3-dimensional image is synthesizable X-ray fluoroscopy apparatus as an imaging means, it provided a three-dimensional measurement apparatus for measuring a three-dimensional position of the marker with a marker on the X-ray fluoroscope, Serial provided an image processing means for creating the image of the entire bone extent necessary reduction by a three-dimensional position and orientation coordinates of the three-dimensional photographic image with the marker at a plurality of positions with respect to the fracture affected area, further, the bone piece moving means A bone fragment marker attaching means for attaching a marker to one bone piece held by the bone fragment, and a three-dimensional measuring device for measuring a three-dimensional position of the marker attached by the bone fragment marker attaching means, the control amount setting means comprising: An error is detected between the movement trajectory and movement amount of the marker measured by the three-dimensional measuring apparatus and the movement trajectory and movement amount of the bone fragment set by the reduction simulation setting means, and when the error exceeds a predetermined value, A correction amount of the bone fragment moving means is set .
[0007]
In the fracture reduction inducing device according to the invention of claim 2, the image processing means separates bone fragments based on the created three-dimensional image of the fractured part to create a three-dimensional image of each bone fragment, and the reduction simulation setting The means is characterized by designating the joint position of the fracture end based on the three-dimensional image of the bone fragment.
[0008]
In the fracture reduction guiding device according to the third aspect of the invention, the reduction simulation setting means designates the joint position of the fracture end by comparing a photographed image photographed by the fracture affected part photographing means with a normal bone position stored in advance. It is characterized by doing.
[0010]
In the fracture reduction guiding device according to the invention of claim 4, the reduction simulation setting means has a data glove to be worn on the hand of the surgeon, and the surgeon is based on a photographed image photographed by the fracture affected part photographing means. The data glove is operated to specify the joint position of the fracture end and to set the movement trajectory and the movement amount of the bone fragment from the fracture position to the joint position.
[0011]
In the fracture reduction inducing device according to the fifth aspect of the present invention, a data transceiver capable of transmitting and receiving data between the reduction simulation setting means and the control amount setting means is provided.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0019]
FIG. 1 is a schematic configuration of a fracture reduction guide device according to the first embodiment of the present invention, FIG. 2 is a flowchart showing a reduction method by the fracture reduction guide device of this embodiment, and FIGS. 3 to 5 are fracture reductions of this embodiment. The outline showing the reduction method by a guidance device is shown.
[0020]
As shown in FIG. 1, the fracture reduction inducing device of the present embodiment includes an X-ray fluoroscopic device 11 capable of synthesizing a three-dimensional image as a fractured part imaging unit for imaging a fractured part, and a bone piece attached to a fractured bone piece. Marker 12a, device marker 12b to be attached to the X-ray fluoroscopic device 11, a three-dimensional measuring device 13 for measuring the three-dimensional position of the bone fragment marker 12a and the device marker 12b, and a bone fragment synthesized by the X-ray fluoroscopic device 11 A reduction guide device 18 that estimates the three-dimensional position of the bone fragment from the three-dimensional position of the marker measured by the three-dimensional measurement device 13 using the three-dimensional image and outputs a reduction simulation and a reduction control amount; And a traction device 15 as a bone fragment moving means that can be held and moved by the bone fragment. The reduction guide device 18 specifies a joint position of a fracture stump based on a three-dimensional image of a bone fragment, and sets a movement trajectory and a movement amount of the bone fragment from the fracture position to the joint position; The reduction simulation setting device 16 includes a control amount setting device 17 that sets the position / posture operation amount of the traction device 15 based on the movement locus and movement amount of the bone fragment set by the reduction simulation setting device 16.
[0021]
The X-ray fluoroscopy device 11 is a C-shaped arm having a ring shape that is located on the outer periphery of the thigh as a fractured part, for example, and is rotatable in the circumferential direction of the thigh and in the longitudinal direction. X-ray imaging is possible from a plurality of positions and angles, and a three-dimensional image is generated. The bone fragment marker 12a is engraved on the bone fragment on the fractured side of the fractured part, and a skin marker is attached to the skin. The apparatus marker 12 b is attached to the X-ray fluoroscopic apparatus 11. The three-dimensional measuring device 13 measures the three-dimensional position of the bone fragment marker 12a and the three-dimensional position of the device marker 12b.
[0022]
The X-ray fluoroscopic apparatus 11 images a plurality of locations around the affected part of the fracture while changing the position. The position of the X-ray fluoroscopic apparatus 11 is measured by the three-dimensional measuring apparatus 13 with the device marker 12b and input to the image processing apparatus 14. . The image processing apparatus 14 synthesizes the entire bone part to be operated on based on a three-dimensional image at a plurality of locations around the fractured part from the X-ray fluoroscopic apparatus 11. Further, the image processing apparatus 14 estimates the three-dimensional position of the bone fragment from the three-dimensional position (three-dimensional coordinates) of each marker measured by the three-dimensional measurement apparatus 13.
[0023]
The reduction simulation setting device 16 designates the joint position of the fracture edge from the three-dimensional image of the bone fragment created by the image processing device 14 based on the photographed image taken by the X-ray fluoroscopic device 11, and the fracture in which the bone fragment has shifted. The movement trajectory and movement amount of the bone fragment from the position to the joint position where the bone fragment properly contacts are set. In this case, it is desirable that an appropriate joint position of the bone fragment is obtained by matching with an X-ray image of the thigh on the side where the bone is not broken or an average bone joint shape.
[0024]
The control amount setting device 17 calculates the operation amount of the position / posture of the traction device 15 based on the movement trajectory and the movement amount of the bone fragment set by the reduction simulation setting device 16, so that the traction device can be used at the actual fractured part. 15 is used to instruct the movement from the fracture position where the bone fragment held by 15 is displaced to an appropriate joint position. In this case, the control amount setting device 17 includes the actual movement trajectory and actual movement amount of the bone fragment estimated by the image processing device 14 based on the three-dimensional position of each marker measured by the three-dimensional measurement device 13, and the reduction simulation setting device. An error with the movement trajectory and movement amount of the bone fragment set by 16 is detected, and the traction device 15 is corrected and controlled so that this error is reduced.
[0025]
The traction device 15 includes a boot for holding a patient's broken leg lying on the bed and holding the boot, and the boot with six degrees of freedom (linear movement in the three-dimensional direction, and an axis along the three-dimensional direction). And a moving mechanism that enables the moving operation of the bone), and the bone fragment can be pulled in the direction of 6 degrees of freedom.
[0026]
Here, the fracture reduction method by the fracture reduction guide device of the present embodiment will be described in detail based on the flowchart shown in FIG. 2 and the outline of the fracture affected part shown in FIGS.
[0027]
In the flowchart shown in FIG. 2, in step S <b> 1, the X-ray fluoroscopic apparatus 11 is used to rotate in the circumferential direction of the thigh and move in the longitudinal direction to perform X-ray imaging of the fractured affected part at different positions. As shown in 3 (a), a plurality of three-dimensional images A, B, C, and D are acquired. In step S2, using the position data of the apparatus marker 12b corresponding to the three-dimensional images A, B, C, and D, as shown in FIG. Create a dimensional image. Then, in step S3, as shown in FIG. 3 (c), based on the three-dimensional image around the fractured part, the fractured bone pieces are separated to obtain 3 of each bone piece (fracture stump). Create a dimensional image.
[0028]
In step S4, the reduction simulation setting device 16 designates an appropriate joint position of the bone fragment in the three-dimensional image of the separated bone fragment created by the image processing device 14 as shown in FIG. In this case, an X-ray image of the thigh on the non-fractured side is acquired in advance, and a three-dimensional image corresponding to the separated bone fragment of the fracture affected part is stored. Based on the three-dimensional image, the joint position of the bone fragment in the fractured thigh is designated. And as shown in FIG.4 (b), the reduction | restoration state of a fracture affected part is confirmed by carrying out a simulation movement to the joint position which designated the bone fragment on the three-dimensional image, and a movement locus | trajectory and a movement amount are set. If an X-ray image of the thigh on the side not previously fractured is not obtained, as shown in FIG. 4 (c), the joint positions (a, b, c), (a ', b' , C ′), and the movement trajectory and movement amount of the bone fragment up to the joint position are set, the bone fragment is moved based on the movement trajectory and movement amount, and the reduction state of the bone fragment is confirmed. You can also.
[0029]
When the reduction trajectory setting device 16 sets the movement trajectory and the movement amount of the bone fragment up to the joining position in this way, in step S5, the control amount setting device 17 controls the control amount by the traction device 15, that is, the bone. The order of movement, the amount of movement, the movement speed, etc. of the six directions in the boot corresponding to the movement locus and movement amount of the piece are converted. Then, in step S6, as shown in FIGS. 5 (a) and 5 (b), the traction device 15 is moved based on the movement sequence, movement amount, movement direction, etc., in which the boots are set, and the bone fragment is displaced. Move from position to proper joining position. Note that the traction device 15 does not need to be driven automatically and may be operated manually.
[0030]
In this case, the marker is adhered to the skin along with advance bone marker 12 a is engraved, in step S7, the three-dimensional measuring device 13 measures the three-dimensional position of each marker. In step S8, the actual movement trajectory and actual movement amount of the bone fragment estimated by the image processing apparatus 14 based on the three-dimensional position of each marker measured by the three-dimensional measurement apparatus 13 and the reduction simulation setting apparatus 16 are set. The movement trajectory and the movement amount of the bone fragment are compared, and it is determined in real time whether the bone fragment moving by the operation of the traction device 15 is on the designated locus.
[0031]
Therefore, in step S8, the actual movement trajectory of the bone fragment is compared with the set movement trajectory of the bone fragment, and when the error exceeds a predetermined value, the bone fragment moving by the operation of the traction device 15 is on the designated locus. In step S9, the position of the traction device 15 is corrected so that this error is reduced, and the process returns to step S6. On the other hand, if the error between the actual movement trajectory of the bone fragment and the set movement trajectory of the bone fragment is within a predetermined value, it is determined that the moving bone fragment is on the designated locus, and the process proceeds to step S10. Here, the position correction in step S9 is performed by the control amount setting device 17.
[0032]
In this step S10, the actual movement trajectory and actual movement amount of the bone fragment are compared with the set movement trajectory and set movement amount of the bone fragment, and the moving bone fragment is moved to the designated joint position by the operation of the traction device 15. Determine whether or not. In this step S10, if the actual movement trajectory and actual movement amount of the bone fragment do not match the set movement trajectory and set movement amount of the bone fragment, the bone fragment has not yet moved to the designated joint position. Determine, and return to step S6 to repeat the process.
[0033]
On the other hand, if the actual movement trajectory and actual movement amount of the bone fragment match the set movement trajectory and the set movement amount, it is determined that the bone fragment has moved to the designated joint position. Then, in step S11, the fractured part is imaged by the X-ray fluoroscopy device 11, and in step S12, it is determined whether the bone fragment has been moved to a predetermined joint position and properly reduced, and the bone fragment is determined in advance. If it is not properly reduced without moving to the joining position, the process returns to step S4 and all processes are repeated. On the other hand, if it is confirmed that the bone fragment has moved to the predetermined joining position and has been properly reduced, the reduction is performed. Complete the work. And although not shown in figure, appropriate treatments, such as surgery of a fractured part and fixation with a cast, are performed.
[0034]
As described above, in the fracture reduction and guidance device of the present embodiment, a plurality of three-dimensional imagings obtained by imaging the fractured part with the X-ray fluoroscopy device 11, creating a three-dimensional image of the bone fragment, and imaging the image processing unit 14 are performed. A bone fragment from the fracture position to the joint position by designating the joint position of the fracture end based on the three-dimensional image of the bone fragment created by the reduction simulation setting device 16 by synthesizing the image with the entire bone to be operated by coordinate transformation The control amount setting device 17 sets the operation amount and operation direction of the traction device 15 based on the movement locus and movement amount of the bone fragment, and drives the traction device 15 based on this. To reduce the affected area.
[0035]
Therefore, since the bone fragment is moved to the joint position by the traction device 15 based on the movement trajectory and movement amount set in advance and reduced, the traction direction and the traction force of the fractured bone fragment are quantitative, and the operator's experience. Regardless of this, the skill is almost constant, and there is no deviation in the complete healing period of the fracture treatment. As a result, the quantitative performance in the fracture reduction treatment can be ensured and the workability and work efficiency of the reduction work can be improved.
[0036]
In addition, the bone fragment marker 12a is engraved on the bone fragment, the marker is attached to the skin, and the actual movement trajectory and the actual bone fragment estimated based on the three-dimensional position of each marker measured by the three-dimensional measurement device 13 are obtained. The movement amount is compared with the actual movement trajectory and actual movement amount of the bone fragment set by the reduction simulation setting device 16, and the traction device 15 is corrected and controlled so that the error between them is reduced. It can always be monitored and corrected early. Furthermore, X-ray exposure can be prevented by reducing the number of times the X-ray fluoroscope 11 is used for the patient and the operator.
[0037]
6 to 8 show a schematic configuration of the fracture reduction guiding device according to the second to fourth embodiments of the present invention. In addition, the same code | symbol is attached | subjected to the member which has the same function as what was demonstrated in embodiment mentioned above, and the overlapping description is abbreviate | omitted.
[0038]
In the fracture reduction guidance device of the second embodiment, as shown in FIG. 6, the reduction simulation setting device 21 is a three-dimensional bone fragment created by the image processing device 14 based on a photographed image photographed by the X-ray fluoroscopic device 11. A display 22 that displays an image, a data glove 23 that is worn on the operator's hand, various sensors 24 that detect the operation of the data glove 23, and the movement position of the bone fragment based on the outputs of the various sensors 24 And an arithmetic unit 25 for estimating. The various sensors 24 are magnetic sensors or optical sensors, and detect the movement motion of the data globe 23 with six degrees of freedom (linear movement in the three-dimensional direction, rotation about the axis along the three-dimensional direction). Any sensor can be used.
[0039]
Therefore, in the reduction simulation setting device 21, it is assumed that the operator operates the data glove 23, that is, holds the bone fragment in a state where a three-dimensional image of the bone fragment in the affected part of the fracture is displayed on the display 22. Then, the sensors 24 detect the movement locus and movement amount of the data glove 23, and the arithmetic unit 25 estimates the movement position of the bone fragment based on the movement locus and movement amount. And displayed on the display 22. Then, the movement trajectory and movement amount of the bone fragment when the surgeon moves the bone fragment from the fracture position to the appropriate joint position are set as the set movement trajectory and set movement amount of the bone fragment from the fracture position to the joint position. To do.
[0040]
Then, when the movement trajectory and the movement amount of the bone fragment up to the joining position are set by the reduction simulation setting device 21, the control amount setting device 17 operates the operation amount by the traction device 15, that is, similarly to the above-described embodiment. The movement order, the movement amount, the movement direction, etc. of the traction device 15 corresponding to the movement trajectory and movement amount of the bone fragment are converted, and based on this, the traction device 15 is driven and the bone fragment is displaced from the fracture position. Move to the proper joining position.
[0041]
As described above, in the fracture reduction guidance device of the present embodiment, the operator operates the data glove 23 in the reduction simulation setting device 21 to move the bone fragment from the fracture position to the appropriate joint position and to move the setting. The trajectory and set movement amount are set. Therefore, the joining position of the bone fragments can be set appropriately, and the workability and work efficiency of reduction work can be improved.
[0042]
In the fracture reduction guidance device of the third embodiment, as shown in FIG. 7, the arithmetic device 25 and the reduction guidance device 18 described in the second embodiment are connected to the data transmission / reception devices 31 and 32, and data is transmitted between them. Transmission and reception are possible.
[0043]
Therefore, when there is no skilled operator in the hospital where the patient is present, the skilled operator uses the three-dimensional image of the bone fragment created by the image processing device 14 based on the image taken by the X-ray fluoroscope 11. Data is transmitted to the hospital using the data transmission / reception devices 31 and 32. A skilled surgeon operates the data glove 23 while displaying the received data on the display 22 to move the bone fragment from the fracture position to an appropriate joint position and set the set movement trajectory and the set movement amount. Then, when the set movement trajectory and the set movement amount of the bone fragment are transmitted to the hospital where the patient is located by using the data transmitting / receiving devices 31 and 32, the operation amount by the control amount setting device 17, that is, the movement trajectory and the movement amount of the bone fragment are obtained. The corresponding movement order, movement amount, movement direction, and the like in the corresponding six directions are converted, and based on this, the traction device 15 is driven to move the bone fragment from the fracture position to the proper joint position.
[0044]
As described above, in the fracture reduction guidance device of the present embodiment, the data transmission / reception devices 31 and 32 can transmit and receive the three-dimensional image of the bone fragment and the set movement trajectory and the set movement amount of the bone fragment. Even in a hospital such as a remote place where the operator is absent, the affected part of the fracture can be properly repaired.
[0045]
In the fracture reduction guidance device of the fourth embodiment, as shown in FIG. 8, a voice instruction device 41 is connected to the control amount setting device 17 described in the first embodiment.
[0046]
Therefore, when the control amount setting device 17 controls the traction device 15 to move from the fracture position where the bone fragment is displaced to the appropriate joint position, the actual movement locus of the bone fragment, the actual movement amount, the set movement locus, When an error occurs in the set movement amount, a corrective movement of the bone fragment can be executed at an early stage by sending a voice instruction from the voice instruction device 41 to the control amount setting device 17. Can urgently stop the traction device 15. As described in the third embodiment, it is also possible to connect the voice instruction device 41 and the reduction guide device 18 to the data transmission / reception devices 31 and 32 so that a skilled operator can give a voice instruction from a remote place. .
[0047]
【The invention's effect】
As described above in detail in the embodiment, according to the fracture reduction inducing device of the invention of claim 1, the fractured part imaging means for imaging the fractured part and the joint position of the fracture stump based on the photographed photographed image are determined. Reduction simulation setting means for setting and specifying the movement trajectory and movement amount of the bone fragment from the fracture position to the joint position, bone fragment movement means that can be held and moved on one bone piece in the fractured part, and reduction simulation setting Since there is provided a control amount setting means for setting the movement order, movement amount, and movement direction of the bone fragment moving means based on the movement locus and movement amount of the bone fragment set by the means, Based on the amount of movement, it will move to the joint position and reduce, and the direction and force of movement of the fractured bone fragment will be quantitative, and the skill will be almost constant regardless of the operator's experience. Rather than the deviation occurs in the cure period, as a result, not only can improve the workability and working efficiency of the reduction work to ensure quantitative properties in fracture reduction treatment, a three-dimensional image as a fracture diseased photographing means Is used , and a three-dimensional measuring device for measuring a three-dimensional position by attaching a marker to the X-ray fluoroscopic device is provided. Since the image processing means is created to create an image of the entire bone within the range necessary for reduction based on the dimensional position and direction coordinates, the state of the fracture can be properly recognized by grasping the entire surgical site of the patient , A bone fragment marker attaching means for attaching a marker to one bone piece held by the bone fragment moving means, and a three-dimensional measuring device for measuring the three-dimensional position of the marker attached by the bone fragment marker attaching means, and setting a control amount means An error between the movement trajectory and movement amount of the marker measured by the three-dimensional measuring apparatus and the movement trajectory and movement amount of the bone fragment set by the reduction simulation setting means is detected, and when this error exceeds a predetermined value, the bone fragment Since the correction amount of the moving means is set, the deviation of the bone fragment moving route by the bone fragment moving means can be detected at an early stage to enable appropriate bone fragment movement control .
[0049]
According to the fracture reduction guiding device of the invention of claim 2 , the image processing means separates the bone fragments based on the three-dimensional image of the fractured part to create a three-dimensional image of each bone fragment, and the reduction simulation setting means includes Since the joint position of the fracture end is specified based on the three-dimensional image of the bone fragment, the alignment position of the bone fragment can be set by simple control.
[0050]
According to the fracture reduction guiding device of the invention of claim 3 , the reduction simulation setting means designates the joint position of the fracture end by comparing the photographed image photographed by the fracture affected part photographing means and the normal bone position stored in advance. The alignment position of the bone fragment can be appropriately set by simple control.
[0052]
According to the fracture reduction guiding device of the invention of claim 4 , the reduction simulation setting means has a data glove worn on the operator's hand, and the operator uses the data glove based on the photographed image taken by the fracture affected part imaging means. To specify the joint position at the fracture end and set the movement trajectory and movement amount of the bone fragment from the fracture position to the joint position, so that the joint position of the bone fragment can be set appropriately and reduction work Workability and work efficiency can be improved.
[0053]
According to the fracture reduction guiding device of the invention of claim 5 , since the data transmitter / receiver capable of transmitting and receiving data between the reduction simulation setting means and the control amount setting means is provided, the remote place where the skilled operator is absent Even in hospitals such as, it is possible to properly repair the fractured part.
[0054]
According to the fracture reduction and guidance device of the seventh aspect of the invention, since the voice instruction device is connected to the control amount setting means, the movement of the bone fragments can be corrected early with respect to the deviation of the bone fragment movement route by the bone fragment moving means. It can be.
[0055]
According to the fracture reduction guidance device of the eighth aspect of the present invention, since the data transmission / reception device capable of transmitting and receiving data is provided between the control amount setting means and the voice instruction device, a skilled operator gives an instruction from a remote place by voice. can do.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a fracture reduction guiding device according to a first embodiment of the present invention.
FIG. 2 is a flowchart showing a reduction method by the fracture reduction guide device of the present embodiment.
FIG. 3 is a schematic view showing a reduction method by the fracture reduction guide device of the present embodiment.
FIG. 4 is a schematic view showing a reduction method by the fracture reduction guide device of the present embodiment.
FIG. 5 is a schematic view showing a reduction method by the fracture reduction guide device of the present embodiment.
FIG. 6 is a schematic configuration diagram of a fracture reduction guiding device according to a second embodiment of the present invention.
FIG. 7 is a schematic configuration diagram of a fracture reduction inducing device according to a third embodiment of the present invention.
FIG. 8 is a schematic configuration diagram of a fracture reduction guiding device according to a fourth embodiment of the present invention.
[Explanation of symbols]
11 X-ray fluoroscopy device (fracture imaging unit)
12 bone fragment marker attaching device 13 three-dimensional measuring device 14 image processing device 15 traction device (bone fragment moving means)
16, 21 Reduction simulation setting means 17 Control amount setting device 22 Display 23 Data glove 24 Arithmetic device 31, 32 Data transmission / reception device 41 Voice instruction device

Claims (5)

骨折患部を撮影する骨折患部撮影手段と、該骨折患部撮影手段が撮影した撮影画像に基づいて骨折断端の接合位置を指定して骨折位置から該接合位置までの骨片の移動軌跡及び移動量を設定する整復シミュレーション設定手段と、前記骨折患部における一方の骨片に保持して移動可能な骨片移動手段と、前記整復シミュレーション設定手段が設定した骨片の移動軌跡及び移動量に基づいて前記骨片移動手段の移動順序、移動量、移動方向を設定する制御量設定手段とを具えた骨折整復誘導装置において、前記骨折患部撮影手段として3次元の画像が合成可能なX線透視装置を用い、該X線透視装置にマーカを付けて該マーカの3次元位置を計測する3次元計測装置を設け、前記骨折患部に対して複数箇所の3次元撮影画像と前記マーカの3次元位置・方向座標により整復に必要な範囲の骨全体の画像に作成する画像処理手段を設け、更に、前記骨片移動手段が保持した一方の骨片にマーカを付ける骨片マーカ付着手段と、該骨片マーカ付着手段が付けたマーカの3次元位置を計測する3次元計測装置とを設け、前記制御量設定手段は、該3次元計測装置が測定したマーカの移動軌跡及び移動量と、前記整復シミュレーション設定手段が設定した骨片の移動軌跡及び移動量との誤差を検出し、この誤差が所定値を越えたときには前記骨片移動手段の補正量を設定することを特徴とする骨折整復誘導装置。A fracture affected part imaging means for imaging a fracture affected part, and a movement locus and a movement amount of a bone fragment from the fracture position to the joint position by specifying a joint position of a fracture end based on a photographed image taken by the fracture affected part imaging means Based on the movement trajectory and movement amount of the bone fragment set by the reduction simulation setting means, the bone fragment movement means that can be held and moved by one bone fragment in the fracture affected part, movement sequence, the amount of movement of the bone fragments moving means, the fracture reduction induced device with a control amount setting means for setting a moving direction, a three-dimensional image using the synthesizable X-ray fluoroscopy apparatus as the fracture affected area imaging means And providing a three-dimensional measuring device for measuring the three-dimensional position of the marker by attaching a marker to the fluoroscopic device, and a plurality of three-dimensional captured images and a tertiary of the marker with respect to the fractured part. An image processing means for generating the position-direction coordinate on the image of the entire bone in the range required for reduction is provided, further, the bone marker attachment means for attaching the marker to the bone fragments while the bone fragment moving means is held, the A three-dimensional measuring device that measures the three-dimensional position of the marker attached by the bone fragment marker attaching means, and the control amount setting means includes the movement trajectory and moving amount of the marker measured by the three-dimensional measuring device, and the reduction A fracture reduction guiding device characterized by detecting an error between the movement trajectory and the movement amount of the bone fragment set by the simulation setting means, and setting the correction amount of the bone fragment movement means when the error exceeds a predetermined value. . 請求項1において、前記画像処理手段は作成した骨折患部の3次元画像に基づいて骨片の分離を行って各骨片の3次元画像を作成し、前記整復シミュレーション設定手段は、該骨片の3次元画像に基づいて骨折断端の接合位置を指定することを特徴とする骨折整復誘導装置。 2. The image processing means according to claim 1, wherein the image processing means separates bone fragments based on the created 3D image of the affected part of the fracture to create 3D images of the bone fragments, and the reduction simulation setting means A fracture reduction inducing device characterized by designating a joint position of a fracture end based on a three-dimensional image. 請求項1において、前記整復シミュレーション設定手段は、前記骨折患部撮影手段が撮影した撮影画像と予め記憶した骨正常位置とを比較して前記骨折断端の接合位置を指定することを特徴とする骨折整復誘導装置。2. The fracture according to claim 1, wherein the reduction simulation setting means designates a joint position of the fracture end by comparing a photographed image photographed by the fracture affected part photographing means with a normal bone position stored in advance. Reduction induction device. 請求項1において、前記整復シミュレーション設定手段は、術者の手に装着されるデータグローブを有し、該術者は前記骨折患部撮影手段が撮影した撮影画像に基づいて該データグローブを操作して骨折断端の接合位置を指定して骨折位置から該接合位置までの骨片の移動軌跡及び移動量を設定することを特徴とする骨折整復誘導装置。2. The reduction simulation setting unit according to claim 1, wherein the reduction simulation setting unit has a data glove worn on a surgeon's hand, and the surgeon operates the data glove based on a photographed image photographed by the fractured part photographing unit. A fracture reduction guidance device characterized by designating a joint position of a fracture end and setting a movement trajectory and a movement amount of a bone fragment from the fracture position to the joint position. 請求項において、前記整復シミュレーション設定手段と前記制御量設定手段との間でデータを送受信可能なデータ送受信機を設けたことを特徴とする骨折整復誘導装置。5. The fracture reduction inducing device according to claim 4 , further comprising a data transmitter / receiver capable of transmitting / receiving data between the reduction simulation setting unit and the control amount setting unit.
JP2002147185A 2002-05-22 2002-05-22 Fracture reduction guidance device Expired - Fee Related JP4056791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002147185A JP4056791B2 (en) 2002-05-22 2002-05-22 Fracture reduction guidance device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002147185A JP4056791B2 (en) 2002-05-22 2002-05-22 Fracture reduction guidance device

Publications (2)

Publication Number Publication Date
JP2003339725A JP2003339725A (en) 2003-12-02
JP4056791B2 true JP4056791B2 (en) 2008-03-05

Family

ID=29766465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002147185A Expired - Fee Related JP4056791B2 (en) 2002-05-22 2002-05-22 Fracture reduction guidance device

Country Status (1)

Country Link
JP (1) JP4056791B2 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8944070B2 (en) 1999-04-07 2015-02-03 Intuitive Surgical Operations, Inc. Non-force reflecting method for providing tool force information to a user of a telesurgical system
JP2007518540A (en) * 2004-01-22 2007-07-12 スミス アンド ネフュー インコーポレーテッド Method, system and apparatus for providing a surgical navigation sensor attached to a patient
FR2880791B1 (en) 2005-01-18 2007-04-06 Perception Raisonnement Action METHOD AND DEVICE FOR COMPUTER ASSISTANCE FOR REDUCING A FRACTURE
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US11259870B2 (en) 2005-06-06 2022-03-01 Intuitive Surgical Operations, Inc. Interactive user interfaces for minimally invasive telesurgical systems
US8398541B2 (en) 2006-06-06 2013-03-19 Intuitive Surgical Operations, Inc. Interactive user interfaces for robotic minimally invasive surgical systems
EP2289454B1 (en) 2005-06-06 2020-03-25 Intuitive Surgical Operations, Inc. Laparoscopic ultrasound robotic surgical system
US7942868B2 (en) 2006-06-13 2011-05-17 Intuitive Surgical Operations, Inc. Surgical instrument with parallel motion mechanism
US10008017B2 (en) 2006-06-29 2018-06-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US20090192523A1 (en) 2006-06-29 2009-07-30 Intuitive Surgical, Inc. Synthetic representation of a surgical instrument
US10258425B2 (en) 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
US9089256B2 (en) 2008-06-27 2015-07-28 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US9138129B2 (en) 2007-06-13 2015-09-22 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US8620473B2 (en) 2007-06-13 2013-12-31 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US9469034B2 (en) 2007-06-13 2016-10-18 Intuitive Surgical Operations, Inc. Method and system for switching modes of a robotic system
US9084623B2 (en) 2009-08-15 2015-07-21 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US8864652B2 (en) 2008-06-27 2014-10-21 Intuitive Surgical Operations, Inc. Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip
US8918211B2 (en) 2010-02-12 2014-12-23 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US9492927B2 (en) 2009-08-15 2016-11-15 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
KR101214849B1 (en) 2011-06-10 2012-12-24 한국과학기술원 Re―registration device in robot arthroplasty, Re―registration method in robot arthroplasty and robot arthroplasty including the re―registration device
KR101373066B1 (en) 2012-05-02 2014-03-11 조선대학교산학협력단 Robot system for dental implantology and dental implantology procedure using the same
WO2014008613A1 (en) * 2012-07-12 2014-01-16 Ao Technology Ag Method for generating a graphical 3d computer model of at least one anatomical structure in a selectable pre-, intra-, or postoperative status
KR101433242B1 (en) 2012-11-16 2014-08-25 경북대학교 산학협력단 Reduction surgical robot and method for driving control thereof
US10507066B2 (en) 2013-02-15 2019-12-17 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US10070929B2 (en) 2013-06-11 2018-09-11 Atsushi Tanji Surgical operation support system, surgical operation support apparatus, surgical operation support method, surgical operation support program, and information processing apparatus
CN103690183B (en) * 2014-01-14 2017-01-04 四川聚能核技术工程有限公司 Limb fracture reduction system
JP6951116B2 (en) * 2016-05-11 2021-10-20 キヤノンメディカルシステムズ株式会社 Medical image processing equipment, medical diagnostic imaging equipment, and image processing methods
EP3421001A1 (en) * 2017-06-30 2019-01-02 Koninklijke Philips N.V. Transformation determination for anatomically aligning fragments of a broken bone
CN107252364B (en) * 2017-07-06 2023-09-12 武汉市黄陂区人民医院 3D printed humerus model and preparation method thereof
KR101961682B1 (en) * 2017-07-13 2019-07-17 재단법인대구경북과학기술원 Navigation apparatus and method for fracture correction
CN113576642B (en) * 2020-03-10 2022-08-30 河北医科大学第三医院 Reduction system for lower limb fracture, broken bone and rotation deformity
KR102304595B1 (en) * 2020-11-26 2021-09-23 유진상 Implant treatment Implant UV sterilization method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0670924A (en) * 1992-08-27 1994-03-15 Toshiba Corp X-ray tv device
JP2751787B2 (en) * 1993-05-31 1998-05-18 株式会社島津製作所 Medical image display
JPH11197159A (en) * 1998-01-13 1999-07-27 Hitachi Ltd Operation supporting system
SE9802052L (en) * 1998-04-01 1999-10-02 Stig Lindequist Procedures and devices for punching and determining the direction of punching
US6033415A (en) * 1998-09-14 2000-03-07 Integrated Surgical Systems System and method for performing image directed robotic orthopaedic procedures without a fiducial reference system
JP2003527880A (en) * 1999-03-31 2003-09-24 ウルトラガイド・リミテッド Apparatus and method for medical diagnostics and medical guided interventions and treatments
JP3735751B2 (en) * 2000-07-05 2006-01-18 隆弘 越智 Bone repair / treatment device

Also Published As

Publication number Publication date
JP2003339725A (en) 2003-12-02

Similar Documents

Publication Publication Date Title
JP4056791B2 (en) Fracture reduction guidance device
CN109998687B (en) Robot system and method for fracture reduction surgery
JP6538234B2 (en) System for arranging multiple objects in the operating room in preparation for a surgical procedure
US11890066B2 (en) Surgical robot with passive end effector
KR101661318B1 (en) robotic arms
JP4220780B2 (en) Surgery system
JP6293777B2 (en) Collision avoidance during controlled movement of image capture device and operable device movable arm
CN116602766A (en) Orthopaedics operation system and control method thereof
US5546942A (en) Orthopedic robot and method for reduction of long-bone fractures
Viant et al. A computer assisted orthopaedic surgical system for distal locking of intramedullary nails
EP3474284A1 (en) Orthopedic fixation with imagery analysis
JP7399982B2 (en) 3D visualization during surgery
EP3797715A1 (en) Surgical robot with passive end effector
EP3328306A1 (en) Apparatus for performing fracture reduction
WO2013034877A1 (en) A system for anatomical reduction of bone fractures
KR20230079492A (en) Methods for conducting guided oral and maxillofacial procedures, and associated system
KR20190078853A (en) Laser projection apparatus and control method thereof, laser guidance system including the apparatus
US20210093333A1 (en) Systems and methods for fixating a navigation array
CN112043382A (en) Surgical navigation system and use method thereof
KR20240021747A (en) Medical robots for ultrasound-guided needle placement
US20210315590A1 (en) Systems and methods for navigating a pin guide driver
CN109717957B (en) Control system based on mixed reality
Lee et al. 3d image-guided robotic system for bone fracture reduction
EP3977949A1 (en) Systems and methods for fixating a navigation array
EP3305233A1 (en) Surgical path setting device, surgical robot system comprising same and surgical path setting method for surgical robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050519

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees