JP4056753B2 - Railroad crossing obstacle detection device - Google Patents

Railroad crossing obstacle detection device Download PDF

Info

Publication number
JP4056753B2
JP4056753B2 JP2002024293A JP2002024293A JP4056753B2 JP 4056753 B2 JP4056753 B2 JP 4056753B2 JP 2002024293 A JP2002024293 A JP 2002024293A JP 2002024293 A JP2002024293 A JP 2002024293A JP 4056753 B2 JP4056753 B2 JP 4056753B2
Authority
JP
Japan
Prior art keywords
train
signal
crossing
obstacle
pseudo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002024293A
Other languages
Japanese (ja)
Other versions
JP2003220952A (en
Inventor
統 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002024293A priority Critical patent/JP4056753B2/en
Publication of JP2003220952A publication Critical patent/JP2003220952A/en
Application granted granted Critical
Publication of JP4056753B2 publication Critical patent/JP4056753B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、踏切内の障害物を検知する踏切障害物検知装置に関するものである。
【0002】
【従来の技術】
図5は、例えば特開平10−76954号公報に記載された従来の踏切障害物検知装置を適用した踏切の平面図、及び図6は図5の踏切障害物検知装置の要部を示す構成図である。図5において、踏切1内の4箇所を横断するように、それぞれ4組の発受光器2〜5,及び反射器6〜9が設置されている。以下、発受光器2及び反射器6の組み合わせを例にして説明する。図5及び図6において、踏切1から所定の距離に列車(図示せず)が接近したときに出力される列車接近信号により遮断機10等の踏切機器が駆動される。さらに、制御回路11に列車接近信号が入力されると、踏切1から列車が退出するまで制御回路11からビーム送信回路12に駆動信号が送出される。発光素子2aはビーム送信回路12から駆動電流を受けて、時間の経過に従って出力値が変化する光線を反射器6に向けて照射する。発光素子2aが光線を照射している間に光線が遮断されると、受光素子2bの出力が低下してビーム受信回路13の障害物検知信号が0となり、制御回路11を介して特殊発光器(図示せず)に踏切1内に障害物ありの現示が行われる。
一方、発光素子2aから照射された光線上の検出エリア内に障害物がなく、発受光器2及び反射器6に異常がなければ、受光素子2bからは反射器6を介して発光素子2aの出力変化と同じように変化する出力が得られる。
さらに、検出エリア内に障害物がない場合に、発受光器2及び反射器6に異常があれば、受光素子2bの出力は発光素子2aの出力変化に追従しない。このように、追従しない受光素子2bの出力が得られたときは、踏切障害物検知装置に何らかの異常が発生しているので、制御回路11から通信回線を介して駅等の管理センタに故障検出信号が伝達される。
【0003】
【発明が解決しようとする課題】
従来の踏切障害物検知装置は以上のように構成されているので、発受光器2から照射した光線が障害物で遮断されて受光素子2bの出力が低下することにより障害物の存在を検知するため、踏切1内の障害物が発受光器2から照射された光線上から外れた位置に存在するときは障害物を検知できず、障害物を検知できない死角が生ずるという問題点があった。
さらに、発光素子2aから照射した光線を反射器6を介して受光素子2bで取り込んで、受光素子2bの出力が発光素子2aの出力変化に追従しないときに異常が発生したと判定することにより、雨天時には雨水に光線が遮断されて受光素子2bの出力が発光素子2aの出力変化に追従しないため、装置の正常動作を精度よく判定するのが困難であるという問題点があった。
この発明は、以上のような問題点を解消するためになされたもので、踏切内に障害物を検知できない死角が生じるのを防止することができる踏切障害物検知装置を提供することを目的としたものである。
さらに、天候の影響を受けることなく装置の正常動作を判定することができる踏切障害物検知装置を提供することを目的としたものである。
【0004】
【課題を解決するための手段】
この発明に係わる踏切障害物検知装置は、起動信号により擬似雑音符号を発生する擬似雑音符号発生手段と、搬送波を擬似雑音符号によりスペクトラム拡散変調して送信波を作成する変調手段と、送信波を踏切内に発射する送信アンテナと、送信波の反射波を受信する受信アンテナと、反射波を逆拡散して抽出した擬似雑音符号と変調手段で搬送波をスペクトラム拡散変調した擬似雑音符号との相関をとる復調手段と、起動信号を発生すると共に復調手段で抽出された擬似雑音符号の相関レベルが所定の範囲内にあるとき踏切内に障害物が存在するとして、障害物の位置を演算して物体検知信号を出力する信号処理手段と、列車が踏切から所定の距離に接近して警報区間に入ったときに出力される列車接近信号と物体検知信号とが入力されたときに踏切内に障害物が存在することを検知して警報信号を出力する論理処理手段と、踏切内へ列車が進入する側で列車を検知して第1の列車検知信号を出力する第1の列車検知手段と、列車が踏切内から退出する側で列車を検知して第2の列車検知信号を出力する第2の列車検知手段とを備え、論理処理手段は列車接近信号が入力されていると共に、両列車検知信号が入力されていて列車が踏切内に存在する間に物体検知信号が入力されたときに、受信した反射波の受信レベルが列車に対応した受信レベルとして記憶されたきい値以上であれば、列車からの反射波を受信したとして、障害物の検知機能が正常であると判定するものである。
【0005】
【発明の実施の形態】
実施の形態1.
図1は実施の形態1を適用した踏切の平面図、図2は実施の形態1の構成を示すブロック図、図3は図2において反射波の受信レベルを示す説明図、及び図4は列車が踏切内に存在する状態を示す説明図である。図1から図4において、14は線路、15は線路14を横断する踏切、16は列車接近信号で、列車17が踏切15から所定の距離に接近して警報区間に入ったときに出力される。18は踏切15の両側に設置された遮断機で、列車接近信号16により踏切15の通行を遮断する。19は警報機で、列車接近信号16により警報を出す。20は踏切15内に存在する人や自動車等の障害物、21は踏切15の近傍に設置された踏切障害物検知装置で、以下の22〜29により構成されている。22は後述の信号処理手段27からの起動信号により起動される擬似雑音符号発生手段で、擬似雑音(PN)符号を発生する。23は変調手段で、搬送波を擬似雑音符号でスペクトラム拡散(SS)変調して送信波を作成する。24は例えば前方20m〜40mを検知範囲とした送信アンテナで、変調手段23で作成された送信波を踏切15内に向け発射する。25は受信アンテナで、送信アンテナ24から発射された送信波の反射波を受信する。26は復調手段で、受信アンテナ25が受信した反射波を逆拡散して抽出した擬似雑音符号と変調手段23で搬送波をスペクトラム拡散変調した擬似雑音符号との相関をとる。
【0006】
27は信号処理手段で、擬似雑音符号発生手段22の起動信号を発生すると共に復調手段26で抽出された擬似雑音符号の相関レベルが所定の範囲内にあるとき踏切15内に障害物20が存在するとして、障害物20までの距離と角度とを算出して物体検知信号27aを出力する。
28は第1の列車検知手段で、踏切15内への列車17の進入する側で列車17を検知したときに第1の列車検知信号28aを出力する。29は第2の列車検知手段で、列車17が踏切15内から退出する側で列車17を検知したときに第2の列車検知信号29aを出力する。ここで、図3は図2において反射波の受信レベルを示す説明図である。なお、図3において、30cは列車判定信号で、列車17が踏切15内に存在するときに受信アンテナ25が受信した受信レベル、30dは列車判定信号30cを判別するしきい値で共に後述の論理処理手段30に記憶されている。30は論理処理手段で、列車接近信号16が入力されていて、信号処理手段27から物体検知信号27aが入力されると、踏切15内に障害物20が存在すると判定して警報信号30aを出力する。さらに、論理処理手段30は列車接近信号16が入力されていると共に、両列車検知信号28a,29aが入力されていて列車17が踏切15内に存在する間に物体検知信号27aが入力されたときに、反射波の受信レベルがしきい値30d以上の列車判定信号30cであれば列車17からの反射波を受信したとして、検知機能が正常であると判定して正常動作信号30bを出力する。
【0007】
次に動作について説明する。図1から図3において、列車(図示せず)がX方からY方へ進行してきて踏切15から所定の距離の踏切警報区間(図示せず)に進入すると、列車が検知されて列車接近信号16が出力されて、遮断機18及び警報機19が作動される。
そして、変調手段23でPN符号によりスペクトラム拡散変調された送信波が、送信アンテナ24から踏切15内に発射される。踏切15内に障害物20が存在する場合、障害物20により反射された送信波の反射波を受信アンテナ25が受信する。反射波は復調手段26で逆拡散により復調されて、抽出したPN符号と変調手段23で搬送波をスペクトラム拡散変調したPN符号との相関をとる。信号処理手段27は受信アンテナ25が受信した反射波から、反射波が反射した反射点までの距離と角度とを算出する。
論理処理手段30は列車接近信号16が入力されているときに、物体検知信号27aが入力された場合、踏切15内に障害物20が存在することを検知して警報信号30aを出力する。警報信号30aにより踏切制御装置(図示せず)等を介して列車(図示せず)に警報を伝達する。
【0008】
図4は列車17が踏切15内に存在する状態を示す説明図である。図2から図4において、列車17が踏切15に接近したときに第1の列車検知手段28が列車17の踏切15内への進入を検知して第1の列車検知信号28aを出力する。さらに、列車17が進むと踏切15の退出側に設置された第2の列車検知手段29が列車17を検知して第2の列車検知信号29aを出力する。信号処理手段27は復調手段26で抽出された擬似雑音符号の相関レベルが所定の範囲内にあるとき踏切15内に障害物20が存在するとして、障害物20までの距離と角度とを算出して物体検知信号27aを出力する。論理処理手段30は列車接近信号16が入力されていると共に、両列車検知信号28a,29aが入力されていて列車17が踏切15内に存在する間に物体検知信号27aが入力されたときに、反射波の受信レベルがしきい値30d以上の列車判定信号30cであれば列車17からの反射波を受信したとして、検知機能が正常であると判定して正常動作信号30bを出力する。そして、正常動作信号30bは駅等の踏切管理センターへ伝達される。
【0009】
以上のように、送信波を踏切15内に発射して障害物20で反射した反射波から障害物20の存在を検知するため、踏切15内に障害物20を検知できない死角が生じるのを防止することができる。
さらに、踏切15内へ列車17が進入する側で第1の列車検知手段28により列車を検知して第1の列車検知信号28aを出力し、列車17が踏切15内から退出する側で第2の列車検知手段29により列車17を検知して第2の列車検知信号29aを出力し、論理処理手段30に列車接近信号16が入力されていると共に、列車17が踏切15内に存在していて両列車検知信号28a,29aが入力されている間に、受信アンテナ25で受信された反射波が送信アンテナ24から発射された送信波のものであると信号処理手段27が判定し、受信した反射波の受信信号レベルがしきい値30d以上の列車判定信号30cのとき、障害物20の検知機能が正常であると論理処理手段30が判定することにより、天候の影響を受けることなく装置の正常動作を判定することができる。
実施の形態1において、列車(図示せず)がX方からY方へ進行してきた場合について説明したが、列車がY方からX方へ進行してきた場合にも同様の効果を期待することができる。
【0010】
【発明の効果】
この発明によれば、送信波を踏切内に発射して障害物で反射した反射波から障害物の存在を検知するため、踏切内に障害物を検知できない死角が生じるのを防止することができる。
さらに、踏切内へ列車が進入する側で第1の列車検知手段により列車を検知して第1の列車検知信号を出力し、列車が踏切内から退出する側で第2の列車検知手段により列車を検知して第2の列車検知信号を出力し、論理処理手段に列車接近信号6が入力されていると共に、列車が踏切内に存在していて両列車検知信号が入力されている間に、受信アンテナで受信された反射波が送信アンテナから発射された送信波のものであると信号処理手段が判定し、受信した反射波の受信レベルが列車に対応した受信レベルとして記憶されたしきい値以上のとき、障害物の検知機能が正常であると判定することにより、天候の影響を受けることなく装置の正常動作を判定することができる
【図面の簡単な説明】
【図1】 この発明の実施の形態1を適用した踏切の平面図である。
【図2】 この発明の実施の形態1の構成を示すブロック図である。
【図3】 図2において反射波の受信レベルを示す説明図である。
【図4】 この発明の実施の形態1において、列車が踏切内に存在する状態を示す説明図である。
【図5】 従来の踏切障害物検知装置を適用した踏切の平面図である。
【図6】 図5の踏切障害物検知装置の要部を示す構成図である。
【符号の説明】
15 踏切、17 列車、20 障害物、22 擬似雑音符号発生手段、
23 変調手段、24 送信アンテナ、25 受信アンテナ、
26 復調手段、27 信号処理手段、28 第1の列車検知手段、
29 第2の列車検知手段、30 論理処理手段。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a level crossing obstacle detection device that detects an obstacle in a level crossing.
[0002]
[Prior art]
FIG. 5 is a plan view of a level crossing to which a conventional level crossing obstacle detection device described in, for example, Japanese Patent Laid-Open No. 10-76954 is applied, and FIG. 6 is a configuration diagram showing a main part of the level crossing obstacle detection device of FIG. It is. In FIG. 5, four sets of light emitting / receiving devices 2 to 5 and reflectors 6 to 9 are installed so as to cross four places in the railroad crossing 1. Hereinafter, the combination of the light emitter / receiver 2 and the reflector 6 will be described as an example. 5 and 6, a railroad crossing device such as a breaker 10 is driven by a train approach signal output when a train (not shown) approaches a predetermined distance from the railroad crossing 1. Further, when a train approach signal is input to the control circuit 11, a drive signal is sent from the control circuit 11 to the beam transmission circuit 12 until the train leaves the railroad crossing 1. The light emitting element 2a receives a drive current from the beam transmission circuit 12, and irradiates the reflector 6 with a light beam whose output value changes as time passes. When the light beam is interrupted while the light emitting element 2a is irradiating the light beam, the output of the light receiving element 2b is reduced and the obstacle detection signal of the beam receiving circuit 13 becomes 0, and the special light emitter is connected via the control circuit 11. An indication that there is an obstacle in the level crossing 1 is performed (not shown).
On the other hand, if there is no obstacle in the detection area on the light beam irradiated from the light emitting element 2a and there is no abnormality in the light emitting / receiving device 2 and the reflector 6, the light receiving device 2b passes through the reflector 6 to the light emitting device 2a. An output that changes in the same way as an output change is obtained.
Furthermore, when there is no obstacle in the detection area and the light emitting / receiving device 2 and the reflector 6 are abnormal, the output of the light receiving device 2b does not follow the output change of the light emitting device 2a. In this way, when the output of the light receiving element 2b that does not follow is obtained, a fault has occurred in the crossing obstacle detection device, so that a failure is detected from the control circuit 11 to a management center such as a station via a communication line. A signal is transmitted.
[0003]
[Problems to be solved by the invention]
Since the conventional railroad crossing obstacle detection device is configured as described above, the presence of an obstacle is detected when the light emitted from the light emitting / receiving device 2 is blocked by the obstacle and the output of the light receiving element 2b decreases. For this reason, when the obstacle in the railroad crossing 1 exists at a position deviated from the light beam irradiated from the light emitter / receiver 2, there is a problem that the obstacle cannot be detected and a blind spot where the obstacle cannot be detected is generated.
Furthermore, the light beam emitted from the light emitting element 2a is captured by the light receiving element 2b via the reflector 6, and by determining that an abnormality has occurred when the output of the light receiving element 2b does not follow the output change of the light emitting element 2a, In rainy weather, light is blocked by rainwater, and the output of the light receiving element 2b does not follow the output change of the light emitting element 2a. Therefore, it is difficult to accurately determine the normal operation of the apparatus.
The present invention has been made to solve the above-described problems, and an object thereof is to provide a crossing obstacle detection device capable of preventing a blind spot where an obstacle cannot be detected in a crossing. It is a thing.
It is another object of the present invention to provide a crossing obstacle detection device that can determine the normal operation of the device without being affected by the weather.
[0004]
[Means for Solving the Problems]
The present invention crossing obstacle detection device according to the comprises a pseudo-noise code generating means for generating a pseudo-noise code by a start signal, modulation means for creating a transmission wave with spread-spectrum modulating a carrier by a pseudo noise code, the transmitted wave Correlation between a transmitting antenna that emits within a railroad crossing, a receiving antenna that receives a reflected wave of the transmitted wave, a pseudo-noise code that is extracted by despreading the reflected wave, and a pseudo-noise code that is obtained by spread-spectrum-modulating the carrier wave using a modulation means And calculating the position of the obstacle, assuming that there is an obstacle in the crossing when the correlation level of the pseudo-noise code extracted by the demodulation means is within a predetermined range. A signal processing means for outputting an object detection signal and a train approach signal and an object detection signal that are output when the train approaches a predetermined distance from a railroad crossing and enters an alarm section are input. A logical processing means for outputting an alarm signal by detecting that there is an obstacle in the crossing to come, the outputs of the first train detection signal by detecting a train on the side a train entering the crossings in 1 train detection means, and a second train detection means for detecting a train on the side where the train exits from the railroad crossing and outputting a second train detection signal. The logic processing means receives a train approach signal. In addition, when both train detection signals are input and the object detection signal is input while the train is in the railroad crossing, the reception level of the received reflected wave is stored as the reception level corresponding to the train. if more threshold to have, as receiving the reflected waves from the train detection function obstacle is to determined to be normal.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
1 is a plan view of a railroad crossing to which the first embodiment is applied, FIG. 2 is a block diagram showing the configuration of the first embodiment, FIG. 3 is an explanatory diagram showing the reception level of reflected waves in FIG. 2, and FIG. It is explanatory drawing which shows the state which exists in a level crossing. 1 to 4, 14 is a track, 15 is a railroad crossing that crosses the track 14, 16 is a train approach signal, and is output when a train 17 approaches a predetermined distance from the railroad crossing 15 and enters a warning section. . 18 is a circuit breaker installed on both sides of the level crossing 15 and blocks the passage of the level crossing 15 by a train approach signal 16. Reference numeral 19 denotes an alarm which issues an alarm by a train approach signal 16. Reference numeral 20 denotes an obstacle such as a person or a car existing in the crossing 15, and 21 denotes a crossing obstacle detection device installed in the vicinity of the crossing 15, which includes the following 22 to 29. Reference numeral 22 denotes a pseudo noise code generating means activated by an activation signal from a signal processing means 27 described later, which generates a pseudo noise (PN) code. Reference numeral 23 denotes a modulation means for generating a transmission wave by performing spread spectrum (SS) modulation on a carrier wave with a pseudo noise code. Reference numeral 24 denotes a transmission antenna whose detection range is, for example, 20 m to 40 m ahead, and emits a transmission wave created by the modulation means 23 into the railroad crossing 15. Reference numeral 25 denotes a reception antenna that receives a reflected wave of a transmission wave emitted from the transmission antenna 24. A demodulator 26 correlates the pseudo-noise code obtained by despreading the reflected wave received by the receiving antenna 25 and the pseudo-noise code obtained by subjecting the carrier wave to spectrum spread modulation by the modulator 23.
[0006]
27 is a signal processing means for generating an activation signal for the pseudo-noise code generating means 22, and when the correlation level of the pseudo-noise code extracted by the demodulating means 26 is within a predetermined range, there is an obstacle 20 in the railroad crossing 15. Then, the distance and angle to the obstacle 20 are calculated and the object detection signal 27a is output.
Reference numeral 28 denotes first train detection means, which outputs a first train detection signal 28a when the train 17 is detected on the side where the train 17 enters the railroad crossing 15. 29 is a 2nd train detection means, and outputs the 2nd train detection signal 29a, when the train 17 is detected in the side which the train 17 exits from the level crossing 15 inside. Here, FIG. 3 is an explanatory diagram showing the reception level of the reflected wave in FIG. In FIG. 3, 30c is a train determination signal, the reception level received by the receiving antenna 25 when the train 17 exists in the railroad crossing 15, and 30d is a threshold value for determining the train determination signal 30c. It is stored in the processing means 30. Reference numeral 30 denotes a logic processing means. When the train approach signal 16 is input and the object detection signal 27a is input from the signal processing means 27, it is determined that the obstacle 20 exists in the level crossing 15, and an alarm signal 30a is output. To do. Further, when the train approach signal 16 is input to the logic processing means 30, both the train detection signals 28a and 29a are input, and the object detection signal 27a is input while the train 17 exists in the railroad crossing 15. If the reception level of the reflected wave is the train determination signal 30c with the threshold value 30d or higher, it is determined that the reflected wave from the train 17 has been received, and the normal operation signal 30b is output by determining that the detection function is normal.
[0007]
Next, the operation will be described. 1 to 3, when a train (not shown) travels from the X direction to the Y direction and enters a level crossing warning section (not shown) at a predetermined distance from the level crossing 15, a train is detected and a train approach signal is detected. 16 is output, and the circuit breaker 18 and the alarm 19 are activated.
Then, a transmission wave that has been subjected to spread spectrum modulation by the PN code by the modulation means 23 is emitted from the transmission antenna 24 into the railroad crossing 15. When the obstacle 20 exists in the level crossing 15, the reception antenna 25 receives the reflected wave of the transmission wave reflected by the obstacle 20. The reflected wave is demodulated by despreading by the demodulating means 26, and the extracted PN code is correlated with the PN code obtained by performing spread spectrum modulation on the carrier wave by the modulating means 23. The signal processing means 27 calculates the distance and angle from the reflected wave received by the receiving antenna 25 to the reflection point where the reflected wave is reflected.
When the train approach signal 16 is input and the object detection signal 27a is input, the logic processing unit 30 detects the presence of the obstacle 20 in the level crossing 15 and outputs an alarm signal 30a. An alarm is transmitted to a train (not shown) by a warning signal 30a via a railroad crossing control device (not shown).
[0008]
FIG. 4 is an explanatory diagram showing a state in which the train 17 exists in the railroad crossing 15. 2 to 4, when the train 17 approaches the railroad crossing 15, the first train detection means 28 detects the entry of the train 17 into the railroad crossing 15 and outputs the first train detection signal 28a. Further, when the train 17 travels, the second train detection means 29 installed on the exit side of the railroad crossing 15 detects the train 17 and outputs a second train detection signal 29a. The signal processing means 27 calculates the distance and angle to the obstacle 20 assuming that the obstacle 20 exists in the level crossing 15 when the correlation level of the pseudo-noise code extracted by the demodulation means 26 is within a predetermined range. The object detection signal 27a is output. When the train approach signal 16 is input to the logic processing means 30 and both the train detection signals 28a and 29a are input and the train 17 is in the railroad crossing 15, the object detection signal 27a is input. If the reception level of the reflected wave is the train determination signal 30c with the threshold value 30d or higher, it is determined that the reflected wave from the train 17 is received, and the normal function signal 30b is output by determining that the detection function is normal. Then, the normal operation signal 30b is transmitted to a railroad crossing management center such as a station.
[0009]
As described above, since the transmission wave is emitted into the railroad crossing 15 and the presence of the obstacle 20 is detected from the reflected wave reflected by the obstacle 20, a blind spot where the obstacle 20 cannot be detected in the railroad crossing 15 is prevented. can do.
Further, the first train detection means 28 detects the train on the side where the train 17 enters the railroad crossing 15 and outputs the first train detection signal 28a, and the second side on the side where the train 17 leaves the railroad crossing 15 The train detection means 29 detects the train 17 and outputs a second train detection signal 29a. The train approach signal 16 is input to the logic processing means 30, and the train 17 exists in the railroad crossing 15. While both train detection signals 28a and 29a are being input, the signal processing means 27 determines that the reflected wave received by the receiving antenna 25 is that of the transmitted wave emitted from the transmitting antenna 24, and the received reflection. When the wave reception signal level is the train determination signal 30c with the threshold value 30d or higher, the logic processing means 30 determines that the obstacle 20 detection function is normal, so that it is not affected by the weather. It is possible to determine the normal operation of the.
In the first embodiment, the case where a train (not shown) travels from the X direction to the Y direction has been described. However, the same effect can be expected when the train travels from the Y direction to the X direction. it can.
[0010]
【The invention's effect】
According to the present invention, since the presence of an obstacle is detected from the reflected wave reflected by the obstacle by emitting a transmission wave into the railway crossing, it is possible to prevent a blind spot from being detected in the railway crossing. .
Further, the train is detected by the first train detection means on the side where the train enters the railroad crossing and outputs a first train detection signal, and the train is detected by the second train detection means on the side where the train leaves the railroad crossing. And the second train detection signal is output, and the train approach signal 6 is input to the logic processing means, and the train is present in the railroad crossing and the both train detection signals are input. The threshold value that the signal processing means determines that the reflected wave received by the receiving antenna is that of the transmitted wave emitted from the transmitting antenna, and the received level of the received reflected wave is stored as the received level corresponding to the train By determining that the obstacle detection function is normal at the above time, the normal operation of the device can be determined without being affected by the weather.
FIG. 1 is a plan view of a railroad crossing to which Embodiment 1 of the present invention is applied.
FIG. 2 is a block diagram showing a configuration of the first embodiment of the present invention.
3 is an explanatory diagram showing a reception level of a reflected wave in FIG. 2. FIG.
FIG. 4 is an explanatory diagram showing a state where a train is present within a railroad crossing in the first embodiment of the present invention.
FIG. 5 is a plan view of a level crossing to which a conventional level crossing obstacle detection device is applied.
6 is a configuration diagram showing a main part of the crossing obstacle detection device of FIG. 5. FIG.
[Explanation of symbols]
15 level crossings, 17 trains, 20 obstacles, 22 pseudo-noise code generation means,
23 modulation means, 24 transmitting antenna, 25 receiving antenna,
26 demodulating means, 27 signal processing means, 28 first train detecting means,
29 Second train detection means, 30 logic processing means.

Claims (1)

起動信号により擬似雑音符号を発生する擬似雑音符号発生手段と、
搬送波を上記擬似雑音符号によりスペクトラム拡散変調して送信波を作成する変調手段と、
上記送信波を踏切内に発射する送信アンテナと、
上記送信波の反射波を受信する受信アンテナと、
上記反射波を逆拡散して抽出した擬似雑音符号と上記変調手段で上記搬送波をスペクトラム拡散変調した擬似雑音符号との相関をとる復調手段と、
上記起動信号を発生すると共に上記復調手段で抽出された擬似雑音符号の相関レベルが所定の範囲内にあるとき上記踏切内に障害物が存在するとして、上記障害物の位置を演算して物体検知信号を出力する信号処理手段と、
列車が上記踏切から所定の距離に接近して警報区間に入ったときに出力される列車接近信号と上記物体検知信号とが入力されたときに上記踏切内に障害物が存在することを検知して警報信号を出力する論理処理手段と
上記踏切内へ列車が進入する側で上記列車を検知して第1の列車検知信号を出力する第1の列車検知手段と、
上記列車が上記踏切内から退出する側で上記列車を検知して第2の列車検知信号を出力する第2の列車検知手段とを備え、
上記論理処理手段は、上記列車接近信号が入力されていると共に、上記両列車検知信号が入力されていて上記列車が踏切内に存在する間に上記物体検知信号が入力されたときに、受信した上記反射波の受信レベルが上記列車に対応した受信レベルとして記憶されたしきい値以上であれば、上記列車からの上記反射波を受信したとして、上記障害物の検知機能が正常であると判定することを特徴とする踏切障害物検知装置。
A pseudo-noise code generating means for generating a pseudo-noise code by an activation signal;
Modulating means for creating a transmission wave and spread-spectrum-modulated by the pseudo-noise code carrier,
A transmission antenna for emitting the transmission wave into the railroad crossing;
A receiving antenna for receiving a reflected wave of the transmission wave;
Demodulation means for correlating the pseudo-noise code extracted by despreading the reflected wave and the pseudo-noise code obtained by performing spread spectrum modulation on the carrier wave by the modulation means;
When the activation signal is generated and the correlation level of the pseudo-noise code extracted by the demodulating means is within a predetermined range, it is determined that an obstacle exists in the crossing, and the position of the obstacle is calculated to detect the object. Signal processing means for outputting a signal;
When the train approach signal and the object detection signal output when the train approaches the predetermined distance from the crossing and enters the warning section, it is detected that there is an obstacle in the crossing. Logic processing means for outputting an alarm signal ,
First train detection means for detecting the train on the side where the train enters the railroad crossing and outputting a first train detection signal;
A second train detection means for detecting the train on the side where the train exits the railroad crossing and outputting a second train detection signal;
The logic processing means is received when the train approach signal is input and the both-train detection signal is input and the object detection signal is input while the train is present in a railroad crossing. If the reception level of the reflected wave is equal to or greater than the threshold stored as the reception level corresponding to the train, it is determined that the obstacle detection function is normal based on the reception of the reflected wave from the train. A crossing obstacle detection device characterized by:
JP2002024293A 2002-01-31 2002-01-31 Railroad crossing obstacle detection device Expired - Fee Related JP4056753B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002024293A JP4056753B2 (en) 2002-01-31 2002-01-31 Railroad crossing obstacle detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002024293A JP4056753B2 (en) 2002-01-31 2002-01-31 Railroad crossing obstacle detection device

Publications (2)

Publication Number Publication Date
JP2003220952A JP2003220952A (en) 2003-08-05
JP4056753B2 true JP4056753B2 (en) 2008-03-05

Family

ID=27746778

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002024293A Expired - Fee Related JP4056753B2 (en) 2002-01-31 2002-01-31 Railroad crossing obstacle detection device

Country Status (1)

Country Link
JP (1) JP4056753B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5127058B2 (en) * 2008-10-17 2013-01-23 日本信号株式会社 Railroad crossing obstacle detection device

Also Published As

Publication number Publication date
JP2003220952A (en) 2003-08-05

Similar Documents

Publication Publication Date Title
US6424289B2 (en) Obstacle detection device and obstacle detection system
US9019115B2 (en) Warning horn control system, radar system, and method
JP4233371B2 (en) Railroad crossing obstacle detection device
JP4056753B2 (en) Railroad crossing obstacle detection device
US5910929A (en) Audio railway crossing detector
JP3881297B2 (en) Railroad crossing control system
JP2018194297A (en) Ranging device and intrusion detection device
JP2005306366A (en) Crossing obstacle detector
JP6041782B2 (en) Train control device
JP3649077B2 (en) Railroad crossing obstacle detection device
JP3544517B2 (en) Train position detection device
JP2002048862A (en) Detecting device for movement direction of moving body
JPH09257919A (en) Zone monitoring method and its device
JP3872771B2 (en) Movable home fence device
JP3678643B2 (en) Train control device
JP2007015664A (en) Object detector in crosscut
JP3716209B2 (en) Alarm control device
JP3842137B2 (en) Level crossing obstacle detection device and level crossing obstacle detection method
JP2001270440A (en) Train detection apparatus
JP2004098984A (en) Railroad crossing obstacle detecting device and railroad crossing obstacle detecting method
JP2004101239A (en) Obstacle detecting apparatus
JP2003220948A (en) Platform fall detection device and platform fall detection method
JP2005121488A (en) Obstacle detection device
JP3903218B2 (en) Accident prevention device for maintenance vehicles
JP2003160049A (en) Train stop detecting device and method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees