JP4056143B2 - Measuring method of dimensional accuracy of optical fiber fixing member, optical fiber array, optical waveguide module, and optical fiber fixing member - Google Patents

Measuring method of dimensional accuracy of optical fiber fixing member, optical fiber array, optical waveguide module, and optical fiber fixing member Download PDF

Info

Publication number
JP4056143B2
JP4056143B2 JP25245498A JP25245498A JP4056143B2 JP 4056143 B2 JP4056143 B2 JP 4056143B2 JP 25245498 A JP25245498 A JP 25245498A JP 25245498 A JP25245498 A JP 25245498A JP 4056143 B2 JP4056143 B2 JP 4056143B2
Authority
JP
Japan
Prior art keywords
optical fiber
fixing member
engaging portion
fiber fixing
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25245498A
Other languages
Japanese (ja)
Other versions
JPH11153723A (en
Inventor
昌弘 吉田
照夫 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP25245498A priority Critical patent/JP4056143B2/en
Priority to US09/153,135 priority patent/US6134371A/en
Priority to EP98117760A priority patent/EP0903599A3/en
Publication of JPH11153723A publication Critical patent/JPH11153723A/en
Application granted granted Critical
Publication of JP4056143B2 publication Critical patent/JP4056143B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3865Details of mounting fibres in ferrules; Assembly methods; Manufacture fabricated by using moulding techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/38Mechanical coupling means having fibre to fibre mating means
    • G02B6/3807Dismountable connectors, i.e. comprising plugs
    • G02B6/3833Details of mounting fibres in ferrules; Assembly methods; Manufacture
    • G02B6/3834Means for centering or aligning the light guide within the ferrule
    • G02B6/3838Means for centering or aligning the light guide within the ferrule using grooves for light guides
    • G02B6/3839Means for centering or aligning the light guide within the ferrule using grooves for light guides for a plurality of light guides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3636Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3648Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures
    • G02B6/3652Supporting carriers of a microbench type, i.e. with micromachined additional mechanical structures the additional structures being prepositioning mounting areas, allowing only movement in one dimension, e.g. grooves, trenches or vias in the microbench surface, i.e. self aligning supporting carriers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3684Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier
    • G02B6/3696Mechanical coupling means for mounting fibres to supporting carriers characterised by the manufacturing process of surface profiling of the supporting carrier by moulding, e.g. injection moulding, casting, embossing, stamping, stenciling, printing, or with metallic mould insert manufacturing using LIGA or MIGA techniques

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Coupling Of Light Guides (AREA)
  • Optical Couplings Of Light Guides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光ファイバ端部を位置決め係合するための光ファイバ固定用部材および光ファイバ端部が位置決め固定された光ファイバアレイ、光導波路モジュールおよび光ファイバ固定用部材の寸法精度の測定方法に関する。
【0002】
【従来の技術】
光ファイバの光入出力端を高精度で位置決め固定するための部材に光ファイバ固定用部材が用いられている。このような光ファイバ固定用部材は例えば特開平8―292332号公報(以下、公報という)に光ファイバ固定用基板として開示されている。この基板は、プレス成形により、その表面に光ファイバを収容し、位置決めするための固定用溝が形成されている。固定用溝の断面形状はV字型であり、その底面が尖ったものや平坦なものが示されている。さらに前記公報には固定用溝に光ファイバを収容し、蓋で押さえた光ファイバアレイが開示されている。
【0003】
【発明が解決しようとする課題】
光ファイバ固定用部材を研削加工やプレス成形等の方法により作製した後、光ファイバ端部を位置決め係合する光ファイバ係合部が所定の精度内に形成されているかどうかを検査する必要がある。例えば複数本の光ファイバを位置決め係合して整列させる場合、各光ファイバ係合部のピッチ精度が所定の範囲内のものでないと、低い光接続損失が要求される光ファイバアレイに用いることができない。従来、ピッチ寸法精度測定方法には、測定顕微鏡等で画像から測定する光学式測定方法と、触針を使った形状測定機を用いる触針式測定法とがある。
【0004】
(1) 測定顕微鏡等で画像から各光ファイバ係合部のピッチ寸法を測定する場合、例えば光ファイバ係合部の底面の中心間のピッチ等を測定する方法を用いることができる。
【0005】
しかし、光ファイバ係合部の底面が前記公報に開示されているように尖ったものであると、光ファイバ係合部の底面の中心位置を検出するための画像のコントラストが得られにくい。また前記公報に開示されているように、光ファイバ係合部の底面が平坦であっても、底面が粗い面からなっていると固定用溝を構成する斜面と平坦な底面とを画像処理から判別するのが難しい。よって測定顕微鏡等で画像処理により自動的にピッチの計測ができない場合がある。
【0006】
例えば底面が尖っていると、光ファイバ係合部の光ファイバ側面を支持する斜面同士が直接接しているため、斜面同士の境界線に自動的にピントを合わせるのが困難であり、顕微鏡で観察すると2つの斜面での照明光に対する反射率が近く、斜面同士の境界線が明らかでない。また境界線が肉眼では観察できたとしても、画像処理による境界線の検出では、斜面の加工すじと境界線を間違えてしまうことが多い。
【0007】
一方、底面が平坦なものであっても粗い面からなっている場合、照明光が底面によって乱反射される。よって底面と斜面がともに白っぽく映り、底面と斜面の境界でのコントラストが低くなる。また底面と各斜面の境界が緩やかな曲面で構成されている場合には、底面と各斜面の境界でのコントラストが小さく、画像から境界を判別することが更に困難になる。
【0008】
以上のように、平坦な底面と斜面との画像のコントラストが低く、さらに底面と斜面の境界線がはっきりしないと、光ファイバ係合部の中心位置を見つけにくいという問題があった。
【0009】
(2) ―方、触針式の形状測定機を用いた測定法では、光ファイバ係合部の表面を先端アール1〜30μm程度の触針で溝方向(係合させた光ファイバの光軸)と直角になぞり、光ファイバ係合部の輪郭断面形状をまず測定する。次に得られた輪郭断面形状を解析ソフトで解析し、光ファイバ係合部のピッチや深さの精度を求める。
【0010】
ただし正確にピッチを測定するには、光ファイバ係合部の溝方向(光ファイバの光軸方向、光ファイバ係合部の延在方向)と測定方向(触針のスキャン方向)の直角度を正確に合わせる必要がある。
【0011】
この直角合わせが正確でないと、△P=P((1/cos△θ)−1)だけピッチを大きく測定してしまう(△P:ピッチの誤差、△θ:直角からのずれ角度、P:真のピッチ、)、例えば250μmピッチで8本のV溝を持った―般的な光ファイバ固定用部材では、累積ピッチが250×7=1750μmとなる。よって△θが1度でも、ピッチは0.27μmも大きく測定されてしまう。シングルモード光ファイバ用の固定用部材においては、最近のピッチ許容誤差は±0.5μm以下なので、測定における0.27μmの誤差は許容できる誤差ではない。逆に測定における許容誤差を0.1μm以下にするには、直角度の誤差を0.64度以下にしなければならない。
【0012】
このように触針式の形状測定機による精度測定においても、触針のスキャン方向を正確に合わせる必要がある。よって光ファイバ係合部の溝底面の位置を検出しにくいと、触針のスキャン方向を合わせるのに非常な労力を要する。またスキャン方向合わせの自動化を実現するためにも、観察画像上で光ファイバ係合部の溝底面位置をコントラスト良く検出できる必要がある。
【0013】
(3) 以上のような問題は、光ファイバを光ファイバ係合部に係合させ、光ファイバアレイを組立るときにも起きる。例えば光ファイバを光ファイバ係合部に係合させるときには、光ファイバ係合部付近を上方向から顕微鏡等で拡大し、光ファイバ係合部の中心に光ファイバの光軸が位置するように例えば光ファイバ位置を精密ステージで微調整する。このとき従来の光ファイバ固定用部材では、光ファイバ係合部の中心位置がはっきりせず、特に多心の光ファイバを係合する際には非常な労力を要していた。光ファイバ係合部に光ファイバを係合させる操作を自動化するには、画像処理で光ファイバ係合部の中心位置を認識させる必要がある。しかし画像処理による境界検出能力は肉眼より劣るため、境界部でのコントラストを上げる必要がある。
【0014】
(4) さらに上記光ファイバ固定用部材と光ファイバと押さえブロックとよりなる光ファイバアレイを組立てた後に、光ファイバの入出力端部と光ファイバに沿う端部付近において、光ファイバの光軸が光ファイバ係合部の中心に沿っているかどうか検査する必要がある場合がある。このとき光ファイバ固定用部材または押さえブロックのいずれかが透明であれば、光ファイバが係合固定された光ファイバ係合部付近を顕微鏡によって観察することができる。しかし従来の光ファイバアレイでは前記のように基準となる光ファイバ係合部の中心が正確にわかりにくいので高精度な位置精度の検査には非常な労力を要していた。
【0015】
本発明は上記の背景のもとでなされたものであって、その課題は、顕微鏡などによって光ファイバ係合部の中心位置が高精度に求まり、その結果、測定顕微鏡や触針式の形状測定機で光ファイバ係合部の正確な精度測定が可能となり且つ容易に光ファイバアレイを製造できる光ファイバ固定用部材、光ファイバ入出力端部付近で光ファイバが光ファイバ固定用部材の光ファイバ係合部の中心に位置しているかを容易に検査可能な光ファイバアレイ、そのような光ファイバアレイを備えた光導波路モジュール、および前記光ファイバ固定用部材の寸法精度を測定するための光ファイバ固定用部材の寸法精度の測定方法を提供することにある。
【0016】
【課題を解決するための手段】
本発明者らは、上記の課題を解決するためには、光ファイバ固定用部材の光ファイバ係合部に光を照射したとき、光ファイバ係合部の底面によって反射または透過する光の強度と、光ファイバ側面を支持するための斜面によって反射または透過する光の強度の差が大きいことが必要であり、また光ファイバ係合部の底面と斜面との境界付近で反射光や透過光の強度が急激に変化することが必要であることを見出した。
【0017】
本発明はこのような知見に基づき完成させたものであり、光ファイバ端部を位置決め係合するための光ファイバ固定用部材において、前記光ファイバ端部の側面を支持するための2つの斜面と前記2つの斜面の間に位置する底面を有する光ファイバ係合部を備え、前記底面が平坦に形成され、かつその表面粗さRaが1.0μm以下であって前記斜面の表面粗さより小さく形成されるとともに、前記光ファイバ係合部の斜面が前記平坦な底面から立ち上がるように形成され、前記底面に光を照射したとき、前記光ファイバ係合部の底面によって反射または透過する光の強度と前記斜面によって反射または透過する光の強度に差があり、前記底面と前記斜面との境界付近で前記反射光や透過光の強度が変化するようにしたことを特徴とする光ファイバ固定用部材、および、上記光ファイバ固定用部材において、反射膜又は反射防止膜を前記斜面と前記底面に選択的に成膜したことを特徴とする光ファイバ固定用部材上述の光ファイバ固定用部材において、前記光ファイバ係合部が複数設けられ、これら光ファイバ係合部の平坦な底面が同―平面上に位置するように構成されていることを特徴とする光ファイバ固定用部材、 上記光ファイバ固定用部材において、モールド成形が可能な素材をモールド成形して得られることを特徴とする光ファイバ固定用部材、上記光ファイバ固定用部材において、素材がガラス材料、高分子材料、高分子材料と無機フィラーからなるコンポジット材料のいずれか1つであることを特徴とする光ファイバ固定用部材を要旨とする。
【0018】
また、上述の光ファイバ固定用部材と、前記光ファイバ係合部に係合された光ファイバと、前記光ファイバ係合部に係合された光ファイバ側面を押圧し、前記光ファイバ端部を前記光ファイバ固定用部材とで挟持する押さえブロックとを備え、少なくとも前記光ファイバ固定用部材が透明である光ファイバアレイ、並びに、上記光ファイバアレイと、前記光ファイバアレイと光接続された光導波路素子とを有する光導波路モジュールを要旨とす る。
【0019】
さらに、上述の光ファイバ固定用部材の寸法精度の測定方法において、光ファイバ固定用部材の光ファイバ係合部の斜面と底面との観察像のコントラストを利用して前記斜面と底面との境界位置を判別し、前記境界位置をもとに2個以上の前記光ファイバ係合部のピッチを測定することにより光ファイバ係合部の寸法精度を測定することを特徴とする光ファイバ固定用部材の寸法精度の測定方法、並びに、触針式の形状測定機を用いた上述のの光ファイバ固定用部材の寸法精度の測定方法において、光ファイバ固定用部材の光ファイバ係合部の斜面と底面との観察像のコントラストを利用して前記斜面と底面との境界位置を判別し、前記境界位置をもとにして前記光ファイバ係合部の延在方向を求め、求めた延在方向を基準として前記形状測定機の測定方向を調整し、調整した測定方向に触針でなぞって得られる前記光ファイバ係合部の輪郭断面形状をもとに2個以上の前記光ファイバ係合部のピッチおよび/または深さの寸法精度を測定することを特徴とする光ファイバ固定用部材の寸法精度の測定方法を要旨とする。
【0020】
なお、前記光ファイバ係合部を触針でなぞるには、光ファイバ固定用部材を固定している固定台の方を動かすようにしても、形状測定機の触針の方を動かすようにしてもよい。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態について説明する。
【0022】
本発明の光ファイバ固定用部材は表面に光ファイバ端部を位置決め係合するための光ファイバ係合部を有するものである。この光ファイバ係合部は光ファイバ端部を係合したときにこの光ファイバの側面を支持する2つの斜面と、この2つの斜面の間に位置して光ファイバとは非接触となる平坦な底面を含むものである。
【0023】
ここで前記光ファイバ係合部の代表的な形状は凹部をなしており、光ファイバ端部の側面を支持するための前記凹部の対向面となる2つの斜面は、前記凹部の上部から底へ向かうにつれて対向面間が徐々に狭まる方向に傾斜しており、斜面の終わる凹部の底が前記底面を形成する。
【0024】
本発明の第1の形態は、光ファイバ係合部の2つの斜面に支持された光ファイバの光軸に対し垂直な断面において前記底面と前記斜面とが接続する部分、すなわち底面と斜面の境界で底面の傾きと斜面の傾きとが不連続であり、円弧によって接続されていないことを特徴とするものである。
【0025】
このとき光ファイバ係合部の斜面は平坦な底面から急激に立ち上がり、―方向から光を照射すると底面による反射方向と斜面による反射方向とが一致せず、底面から斜面に沿ってその反射方向を肉眼でみると、反射方向が底面と斜面の境界で急激に変化する。
【0026】
光を平坦な底面に対して垂直な方向から照射し、光ファイバ固定用部材の各部分による反射光を光の照射方向から見ると光ファイバ係合部の底面では正反射により反射光の強度が大きく、斜面では光の入射方向と反射方向が一致しないので反射光の強度は小さい。
【0027】
さらに顕微鏡によって光ファイバ係合部の底面に対し垂直な方向から観察するとき、落射照明によって前記底面に垂直方向から照明光を照射できるが、このとき顕微鏡の焦点を底面に合わせておくと、底面と斜面の境界から斜面に向けて急速に顕微鏡の焦点深度から外れることになり、平坦な底面のみが鮮明に観察される。このように底面と斜面の境界線を認めることができる。
【0028】
これに対し、光ファイバ係合部の2つの斜面に支持された光ファイバの光軸に対し垂直な断面において前記底面と前記斜面とが接続する部分において、底面から斜面ヘと傾きが連続的に変化するような、例えば平坦な底面であっても円弧によって斜面に接続するような形状の光ファイバ係合部では、上記のように光を照射したとき、底面と斜面の明暗は生じるが、その境界がぼやけてしまい境界線を見分けることができない。
【0029】
次に本発明の第2の形態は、光ファイバ係合部の平坦な底面に対し上方向または下方向から光ファイバ係合部に光を照射して見たときの底面と斜面でのコントラストが大きくなるよう、反射膜または反射防止膜を斜面と底面に選択的に成膜したことを特徴とするものである。底面に対して照射する光の方向は垂直方向からでも、斜め方向からでもよい。
【0030】
この形態としては前述した第1の形態のように光ファイバ係合部の形状によって高コントラストを生じるもの、あるいは底面のみにリソグラフィなどの方法で反射膜を選択的に形成したり、底面を除く部分に反射防止膜を選択的に形成したり、あるいは反射膜と反射防止膜を併用することによって底面のみ反射光の強度を高くするもの等がある。反射膜や反射防止膜を用いる場合には、底面と斜面との境界で底面の傾きと斜面の傾きとが不連続であっても構わない。
【0031】
さらに本発明の第3の形態は、光ファイバ係合部の平坦な底面の表面粗さをRaで1.0μm以下としたものである。底面の表面粗さを小さくすることによって、底面表面による乱反射が減少し、斜面と底面のコントラストを大きくすることができる。また底面の表面粗さを小さくすると、表面での光散乱が減るため、光ファイバ固定用部材底面への光の透過量が増加する。よって光ファイバ固定用部材を設置する面を反射率の高いものにすると、設置面からの反射もどり光により底面のみを明るく光らせることができる。逆に光ファイバ固定用部材を設置する面に反射率の低い黒色のものを用いると、底面のみを黒色とし、斜面を光散乱させて白く映ることが可能となる。第3の形態でも、底面と斜面の境界で底面の傾きと斜面の傾きとが不連続であっても構わない。
【0032】
以上のように底面での光の透過を利用する場合には、底面表面からの反射光を顕微鏡等に直接入れない方がコントラストを高くするために好ましい。つまり照明の方向と顕微鏡等の観察方向をずらした方が望ましい。測定顕微鏡のように画像から寸法を直接測定する場合、観察像が歪むのを防ぐため、底面に対して垂直方向から観察する必要がある。よって照明方向は垂直軸からずらして配置することが望ましい。
【0033】
一方。触針式の形状測定機のように、触針が邪魔になり垂直方向からの観察ができにくい場合には、斜め方向から底面を観察してもよい。この場合、観察方向は底面に対して30〜70度傾斜させる方が、斜面と底面のコントラストが高くなるため好ましい。
【0034】
以上のように、光ファイバ係合部の底面の表面粗さは小さいほど好ましいが、表面粗さがRaで1.0μm以下であれば、実用的なコントラストが得られ、0.5μm以下であれば非常に良いコントラストが得られることが分かった。
【0035】
また上記第1の形態と第2の形態、第1の形態と第3の形態、第2の形態と第3の形態、第1の形態と第2の形態と第3の形態を組合わせることもできる。例えば、第1の形態と第2の形態を組合わせた光ファイバ固定用部材、第1の形態と第3の形態を組合わせた光ファイバ固定用部材によれば光ファイバ係合部の底面と斜面のコントラストが大きく、その境界線をはっきりと見分けることが可能な光ファイバ固定用部材を得ることができる。
【0036】
さらに光ファイバ端部の側面を支持するための2つの斜面の開き角度を50〜100、好ましくは50〜90度の範囲にすることによって光ファイバ係合部を顕微鏡で観察した場合、焦点を光ファイバ係合部の底面に合わせると底面との境界に近い斜面も焦点深度から外れてぼやけるため、底面のみがよりはっきりと観察できる。
【0037】
また光ファイバ係合部を複数有する光ファイバ固定用部材の場合、各光ファイバ係合部の平坦な底面が同一平面上に位置することが好ましい。このような光ファイバ固定用部材では顕微鏡の視野に複数の光ファイバ係合部が入るようにしたとき、各底面に焦点を合わせた状態にすることができ、光ファイバ係合部中心間のピッチ間隔の測定評価が容易になる。
【0038】
光ファイバ固定用部材の材料としては、ガラス、結晶化ガラス、硬化状態で透明な高分子材料(例えば樹脂)など微細加工やモールド成形が可能な材料ならばよく、さらには光ファイバ係合部が裏面より観察できる透明なガラスで、低熱膨張係数のガラスが特に好ましい。また加工方法としては、研削加工、モールド成形などがあげられる。特にモールド成形の場合、光ファイバ係合部を転写する成形型は成形する光ファイバ係合部の形状に対して反転する形状のものを用いることができるが、その際、光ファイバ係合部の底面を転写する型の成形面は少なくとも平坦とし、さらに平滑状態にすることが好ましい。
【0039】
例えば平滑な表面を有する型材料を砥石によって研削加工する場合には、光ファイバ係合部の斜面を転写する成形面を砥石で加工し、これらの成形面の間に光ファイバ係合部の底面を転写する成形面として型材料の平滑な表面の一部を残す。このようにすれば斜面を転写する成形面の加工の後、別工程で光ファイバ係合部の底面を転写する成形面を加工する必要がなく、また各光ファイバ係合部の底面を転写する成形面が同一平面上になるので成形面の高さを合わせる必要がなくなる。また底面を転写する成形面と斜面を転写する成形面との間に鋭いエッジが形成され、このエッジ部が光ファイバ係合部の底面と斜面の境界線を形成する。
【0040】
モールド成形の場合、屈伏点が低く、モールド成形温度と室温の間における平均熱膨張係数の小さいガラスが好ましい。このようなガラスとして、SiO2 、B2 3 、ZnOを含むものがある。モールド成形は通常の高精度成形品を作製する方法を用いる。また量産性などではモールド成形に及ばないが研削加工も可能であり、その場合には光ファイバ係合部の底面を平滑面仕上げの砥石により平滑状態にすることが好ましい。
【0041】
これまで説明してきた光ファイバ固定用部材に透明なものを使用し、その光ファイバ係合部に光ファイバを係合して、上面から押さえブロックによって光ファイバを押圧し、光ファイバ端部を光ファイバ固定用部材とで挟持して光ファイバアレイを得ることができる。このような光ファイバアレイは光ファイバ係合部が形成されている面の裏側から顕微鏡により光ファイバ係合部および光ファイバ係合部に係合固定された光ファイバ端部を観察することができる。光ファイバ係合部の底面に垂直な方向から観察すると先に説明したように光ファイバ係合部の底面がはっきりと見分けられるので光ファイバ端面のみでなく、端面に連なる光ファイバ端部が光ファイバ係合部に正確に係合固定されているかどうか検査することが容易にできる。押さえブロックとしては例えば光ファイバ固定用部材に用いられるガラス等の材料からなる板状のものなどを使用することができる。
【0042】
押さえブロックの光ファイバ側面と接する部分は光ファイバ側面を確実に押圧できるよう平面であることが望ましい。
【0043】
上記の光ファイバアレイの組立では、例えば光ファイバ係合部に光ファイバ端部を係合させ、そこに光硬化性樹脂や熱硬化性樹脂のような接着剤を塗布し、押さえブロックで光ファイバ係合部に係合された光ファイバ側面を、光ファイバを押さえブロックと光ファイバ固定用部材とで挟持されるように押圧する。その状態で接着剤を硬化させ、光ファイバ端部を光ファイバ固定用部材に対し固定する。本発明における光ファイバ固定用部材、押えブロックは、透明な材料からなるものに限られないが、上記のように係合固定された光ファイバ端部を観察したり、光硬化性樹脂を硬化させるための紫外線照射を行ううえから、透明な材料を用いることが好ましい。
【0044】
光ファイバアレイの光ファイバ係合部、光ファイバ、押さえブロックの少なくともいずれか2つの部材によって囲まれた空間の一部または全部に接着剤を有する上記のような光ファイバアレイでは、光ファイバ係合部の底面表面における反射率が大きい方が底面を見分けることが容易になるので、接着剤と光ファイバ固定用部材の屈折率差が大きいことが好ましい。光ファイバアレイを組み立てた後、光ファイバアレイの光接続側端面を研磨する。
【0045】
これまで説明してきた光ファイバアレイを用い、光ファイバアレイと光導波路素子とを光接続して光導波路モジュールを得ることができる。光導波路素子としては、例えば分岐型光導波路素子、受光素子や発光素子やその他光学素子を備えた光導波路素子などをあげることができる。さらに光導波路素子を介して光ファイバアレイが光接続されている光導波路モジュールであって、少なくともいずれか一方の光ファイバアレイが本発明の光ファイバアレイであるものなどがある。
【0046】
【実施例】
以下、本発明の実施例について説明する。
【0047】
【実施例1】
炭化タングステンを主成分とする超硬母材を精密加工し、平面寸法が幅5mm、長さ5mmで、高さが14mmの土台付き超硬ブロックを得た。なお超硬ブロックの上面のみは、表面粗さがRaで0.04μmとなるよう表面加工した。この超硬ブロックの上面に、ダイシングソーとダイヤモンド砥石を用い、幅5mmの中心に並ぶように、開き角60度のV溝を250μm間隔で9本加工した。なお加工にあたっては、V溝とV溝の間に幅約20μmの未加工面(前記した上面)が残るようにV溝深さを設定した。
【0048】
次に両端のV溝の底面からV溝の外側に向かってV溝の深さと同じ深さに平面加工し、図2のように平面2に三角突起状のストライプ3が8本ならんだ凹凸溝4を有するV溝成形用の型1を得た。
【0049】
以上の成形型作製法によって、V溝成形用の型1の凹凸溝4の先端部には、幅約20μmで、表面粗さがRaで0.04μmの平面部5が形成される。
【0050】
本V溝成形用型を他の型部品と組み合せ、図3のような光ファイバ固定用部材用成形型を構成した。すなわち上述したV溝成形用型Bと、光ファイバ被覆部を載置する台座部を転写形成する成形型Dと、前記V溝成形用型Bおよび成形型Dを固定枠Eで一体化して上型とし、他に光ファイバ固定用部材側面を成形するための胴型Fと光ファイバ固定用部材底面を成形するための下型Gを用いてキャビティZを構成した。
【0051】
なお各成形型の成形面には、離型性を持たせるため、イオンプレーテイング法により予めカーボン系離型膜Hを500オングストローム成膜した。
【0052】
次に、SiO2 を13.3wt%、B2 3 を32.2wt%、ZnOを44.5wt%、Al2 3 を5.5wt%、Li2 Oを4.5wt%それぞれ含有し、さらに、外割りでSnO2 を0.1wt%含有するガラス素材を熱間で予備成形し、稜が曲面を呈する幅3.8mm、長さ10.5mm、厚さ2.05mmのガラス予備成形体Jを得た。このガラス予備成形体Jを、図3のように成形型のキヤビティZ内に配置し、型を不活性雰囲気中で560℃に加熱しながら、型で150kgf/cm2 の圧力を加え、90秒間ガラス予備成形体Jをプレス成形した。この後、加圧力を弱めながら室温まで冷却し成形品Cを型から取出した。
【0053】
図4のように成形品である光ファイバ固定用部材Cの上面には、光ファイバ係合部C−1を構成するV溝C−2が250μmピッチで8本成形されている。また光ファイバ被覆部を載置するのためにV溝成形面C−4より一段低い段差面C−3が成形されている。
【0054】
図1のようにV溝14の底面13には幅20μm程度の平面部(平坦部)がある。このV溝14の表面粗さを触針先端径5μmの表面粗さ計で測定したところ、V溝底面13の表面粗さはRaで0.04μmであった。つまりV溝底面13の平坦面は、図2に示す前記の凹凸溝先端平面部5を転写した面であり、型1の凹凸溝先端平面部5と同じ表面粗さに成形されることが分かった。―方。V溝14の斜面12の表面粗さは、Raで0.2μmとなった。またV溝底面13と斜面12とが接続する部分で、光ファイバ係合部の延在方向に対する垂直断面におけるV溝底面13の傾きと斜面12の傾きとは不連続となっている。さらに光ファイバ係合部15の上方向または下方向より光を照射した状態でのV溝底面13と斜面12とのコントラストは肉眼で明確に判別可能であった。
【0055】
上記の光ファイバ固定用部材のV溝精度を以下のように測定した。測定顕微鏡の倍率を画面上で100倍に設定し、光ファイバ固定用部材11のV溝底面13に対して垂直方向からみた画像を取り込んだ。なお照明光源はハロゲンランプを用い、照明による温度上昇を防ぐため、熱線吸収フィルタで熱線をカットし、光ファイバ固定用部材11のV溝底面に対して垂直方向から照射し、ピントはV溝底面に合わせた。次にV溝底面の両側のエッジ(底面と斜面の境界)を画像処理により自動検出させ、両エッジの中間位置を計算させてV溝底面13の中心位置を求めた。同様な操作を各V溝14で繰返し、V溝底面13の中心位置間の距離を測定することでV溝14のピッチ精度を測定した。実施例の光ファイバ固定用部材11では、V溝底面と斜面での画像の明るさが異なり、そのコントラストから容易にV溝底面の両側のエッジを正確に自動検出することができた。その結果、V溝ピッチ測定において、同一測定画像での解析誤差が0.1μm程度に収まった。
【0056】
以上は素材としてガラスを用いた場合であるが、モールド成形可能であり、硬化状態において透明な高分子材料を素材とした場合についても同様である。
【0057】
上記光ファイバ固定用部材の光ファイバ係合部に、次に示す▲1▼〜▲3▼の成膜をそれぞれ行い、斜面と底面でのコントラストをより大きくすることができた。
【0058】
▲1▼斜面または底面のいずれか一方に、反射膜または反射防止膜のいずれか一方を成膜
▲2▼斜面に反射防止膜を、底面に反射膜を成膜
▲3▼斜面に反射膜を、底面に反射防止膜を成膜
【実施例2】
実施例1の光ファイバ固定用部材のV溝ピッチ精度を、測定顕微鏡を用いて以下のように測定した。測定顕微鏡の観察台に金属製ミラーを置き、その上に光ファイバ固定用部材を設置した。またV溝の長手方向からV溝底面に対し60度上方から照明光を当て、反射光が直接測定顕微鏡の光学系に入らないようにした。観察はV溝底面に対し垂直方向から行い、ピントをV溝底面に合わせた。上記の配置により、実施例の光ファイバ固定用部材のV溝底面のみが明るく映しだされた。実施例1と同様な方法でV溝ピッチを測定したところ、同様な測定精度で測定ができた。肉眼による比較では、実施例1の設定にくらべてV溝底面の判別が容易であった。
【0059】
【実施例3】
金属製ミラーのかわりに黒色の表面処理をしたアルミ板を置き、照明光を若干強めた以外は実施例2と全く同様の方法でV溝ピッチを測定した。上記の配置により、実施例の光ファイバ固定用部材のV溝底面のみを黒色に映しだすことができた。実施例1と同様な方法でV溝ピッチを測定したところ、同様な測定精度で測定ができた。肉眼による比較では、実施例2の設定にくらべてもV溝底面の判別が容易であった。
【0060】
【実施例4】
実施例1の光ファイバ固定用部材のV溝精度を触針式の形状測定機で、以下のようにして測定した。サンプル設置台としてX−Yステージと回転ステージからなる精密ステージを用い、回転ステージ上にサンプル固定用の治具を固定した。なお固定用治具は、実施例3のアルミ板と同様に、上面が黒色のものを用いた。光ファイバ固定用部材は、V溝方向を触針のスキャン方向とほぼ直角に向けた状態で本固定用治具上に固定した。またV溝底面の観察のため、V溝方向と平行でV溝底面に対し45度上方に傾けて顕微鏡を設置し、V溝底面に垂直な方向から光を照射した。
【0061】
まず顕微鏡を見ながら、触針をV溝底面に落とし、次にYステ−ジを駆動して、触針のスキャン方向と直角方向に光ファイバ固定用部材を移動させる。この時、V溝の方向と触針のスキャン方向が正確に直角でないと、ステージ駆動により触針の先端がV溝底面から外れる。触針の先端がV溝底面から外れた場合には、回転ステージを微調整し、V溝底面から触針が外れなくなるまで光ファイバ固定用部材の方向を調整する。顕微鏡に映る光ファイバ固定用部材の観察像は、V溝底面の平坦部のみが黒く映るため、V溝の斜面と底面との境界位置の判別が非常に容易であり、したがって方向合わせも非常に容易であった。前記方向調整により、光ファイバ係合部の延在方向すなわちV溝方向を正しく求めることができ、このV溝方向と触針のスキャン方向との直角度の誤差を0.64度以下にすることができ、触針のスキャン方向を正確に調整できた。
【0062】
Xステージを駆動して、光ファイバ係合部の表面を触針で溝方向と直角になぞり、光ファイバ係合部の輪郭断面形状を測定する。次に得られた輪郭断面形状を解析ソフトで解析し、光ファイバ係合部のピッチや深さの精度を求めた。光ファイバ係合部のV溝方向と触針のスキャン方向との直角度が正確に合っているため、測定における許容誤差を0.1μm以下にすることができた。
【0063】
【実施例5】
実施例1の光ファイバ固定用部材を用い、図5に示すように、光ファイバ固定用部材Cの光ファイバ係合部C−1の各々にシングルモード光ファイバFを係合配置し、透明なガラスからなる押さえブロックMを用いて光ファイバを挟持するとともに、紫外線硬化型樹脂で接着固定した。次いで光ファイバ固定用部材Cと押さえブロックMとで固定された側の光ファイバ端面を光ファイバ固定用部材端面と押さえブロック端面とともに研磨して光ファイバアレイYを作製した。この光ファイバアレイについて実施例2、3と同じようにして光ファイバ係合部の底面を判別し、係合固定されたシングルモ―ド光ファイバの位置が光軸方向に沿ってずれのないことを容易に確認することができた。さらに図6に示すように、この光ファイバアレイYと光導波路素子Wとを光ファイバと光導波路とが光接続するように接続して光導波路モジュールを得た。
【0064】
本実施例で得られた光ファイバアレイおよび光導波路モジュールは光ファイバの端面位置だけでなく端面に連なる光ファイバの少なくとも端面付近で光軸が光ファイバ係合部の方向に正確に沿っているものであった。
【0065】
【発明の効果】
本発明によれば、光学式測定や触針測定によって光ファイバ係合部の中心が高精度に求まり、その結果、容易に光ファイバアレイを製造できる光ファイバ固定用部材を得ることができる。
【0066】
また、このような光ファイバ固定用部材を用いることにより、光ファイバ入出力端部付近で光ファイバが光ファイバ固定用部材の光ファイバ係合部の中心に位置しているかを容易に検査でき、光ファイバの端面位置だけでなく端面に連なる光ファイバの少なくとも端面付近で光軸が光ファイバ係合部の方向に正確に沿っている光ファイバアレイ、光導波路モジュールを得ることができる。
【0067】
さらに本発明の寸法精度の測定方法によれば、光ファイバ固定用部材の光ファイバ係合部のピッチや深さの寸法精度を正確に測定することができる。
【図面の簡単な説明】
【図1】実施形態の光ファイバ固定用部材の光ファイバ係合部における横断面図である。
【図2】実施形態のV溝成形用凹凸溝型の斜め上方から見た斜視図である。
【図3】実施形態の光ファイバ固定用部材用成形型による光ファイバ固定用部材の製造方法を説明する工程図であり、(a) はプレス前の正断面図、(b) は同側断面図、(c) はプレス中の正断面図、(d) は同側断面図である。
【図4】実施形態の光ファイバ固定用部材の斜視図である。
【図5】実施形態の光ファイバアレイを示す説明図であり、(a) は斜視図、(b) は正面図である。
【図6】実施形態の光導波路モジュールの斜視図である。
【符号の説明】
11 光ファイバ固定用部材
12 斜面
13 底面
14 V溝
15 光ファイバ係合部
F 光ファイバ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical fiber fixing member for positioning and engaging an optical fiber end portion, an optical fiber array in which the optical fiber end portion is positioned and fixed, an optical waveguide module, and a method for measuring the dimensional accuracy of the optical fiber fixing member.
[0002]
[Prior art]
An optical fiber fixing member is used as a member for positioning and fixing an optical input / output end of an optical fiber with high accuracy. Such an optical fiber fixing member is disclosed, for example, in Japanese Patent Application Laid-Open No. 8-292332 (hereinafter referred to as a publication) as an optical fiber fixing substrate. This substrate is formed with a fixing groove for accommodating and positioning the optical fiber on the surface thereof by press molding. The cross-sectional shape of the fixing groove is V-shaped, and the bottom of the fixing groove is pointed or flat. Further, the above publication discloses an optical fiber array in which an optical fiber is accommodated in a fixing groove and pressed by a lid.
[0003]
[Problems to be solved by the invention]
After the optical fiber fixing member is manufactured by a method such as grinding or press molding, it is necessary to inspect whether or not the optical fiber engaging portion for positioning and engaging the optical fiber end portion is formed within a predetermined accuracy. . For example, when positioning and engaging a plurality of optical fibers, if the pitch accuracy of each optical fiber engaging portion is not within a predetermined range, it can be used for an optical fiber array that requires low optical connection loss. Can not. Conventionally, pitch dimension accuracy measurement methods include an optical measurement method for measuring from an image with a measurement microscope or the like, and a stylus measurement method using a shape measuring machine using a stylus.
[0004]
(1) When measuring the pitch dimension of each optical fiber engagement portion from an image with a measurement microscope or the like, for example, a method of measuring the pitch between the centers of the bottom surfaces of the optical fiber engagement portions can be used.
[0005]
However, if the bottom surface of the optical fiber engaging portion is sharp as disclosed in the above publication, it is difficult to obtain image contrast for detecting the center position of the bottom surface of the optical fiber engaging portion. Further, as disclosed in the above publication, even if the bottom surface of the optical fiber engaging portion is flat, if the bottom surface is a rough surface, the inclined surface constituting the fixing groove and the flat bottom surface are obtained from image processing. Difficult to distinguish. Therefore, the pitch may not be automatically measured by image processing with a measuring microscope or the like.
[0006]
For example, if the bottom surface is sharp, the slopes that support the optical fiber side surfaces of the optical fiber engaging part are in direct contact with each other, making it difficult to automatically focus on the boundary line between the slopes. Then, the reflectance with respect to the illumination light on the two slopes is close, and the boundary line between the slopes is not clear. Even if the boundary line can be observed with the naked eye, the boundary line is often mistaken for the detection of the boundary line by image processing.
[0007]
On the other hand, even if the bottom surface is flat, the illumination light is irregularly reflected by the bottom surface when the bottom surface is a rough surface. Therefore, both the bottom and the slope appear whitish, and the contrast at the boundary between the bottom and the slope is lowered. Further, when the boundary between the bottom surface and each slope is composed of a gentle curved surface, the contrast at the boundary between the bottom surface and each slope is small, and it becomes more difficult to determine the boundary from the image.
[0008]
As described above, there is a problem in that it is difficult to find the center position of the optical fiber engaging portion unless the image contrast between the flat bottom surface and the slope is low and the boundary line between the bottom surface and the slope is not clear.
[0009]
(2) On the other hand, in the measurement method using a stylus type shape measuring machine, the surface of the optical fiber engaging portion is grooved with the stylus having a tip radius of about 1 to 30 μm (the optical axis of the optical fiber engaged). ) At a right angle to the contour cross-sectional shape of the optical fiber engaging portion. Next, the obtained contour cross-sectional shape is analyzed with analysis software to determine the accuracy of the pitch and depth of the optical fiber engaging portion.
[0010]
However, in order to accurately measure the pitch, the perpendicularity between the groove direction of the optical fiber engaging portion (optical axis direction of the optical fiber, the extending direction of the optical fiber engaging portion) and the measuring direction (scanning direction of the stylus) must be It is necessary to adjust precisely.
[0011]
If this right-angle alignment is not accurate, the pitch is measured to be larger by ΔP = P ((1 / cos Δθ) −1) (ΔP: pitch error, Δθ: deviation angle from right angle, P: True pitch)), for example, a typical optical fiber fixing member with 8 V-grooves at a pitch of 250 μm—the cumulative pitch is 250 × 7 = 1750 μm. Therefore, even if Δθ is 1 degree, the pitch is measured as large as 0.27 μm. In a fixing member for a single mode optical fiber, since the recent pitch tolerance is ± 0.5 μm or less, an error of 0.27 μm in measurement is not an acceptable error. Conversely, in order to make the allowable error in measurement 0.1 μm or less, the squareness error must be 0.64 ° or less.
[0012]
Thus, also in the accuracy measurement by the stylus type shape measuring machine, it is necessary to accurately match the scanning direction of the stylus. Therefore, if it is difficult to detect the position of the bottom surface of the groove of the optical fiber engaging portion, a great effort is required to adjust the scanning direction of the stylus. Also, in order to realize automation of the alignment of the scanning direction, it is necessary to detect the position of the groove bottom surface of the optical fiber engaging portion with good contrast on the observation image.
[0013]
(3) The above problems also occur when an optical fiber array is assembled by engaging an optical fiber with an optical fiber engaging portion. For example, when the optical fiber is engaged with the optical fiber engaging portion, the vicinity of the optical fiber engaging portion is magnified from above with a microscope or the like so that the optical axis of the optical fiber is positioned at the center of the optical fiber engaging portion. Fine-tune the position of the optical fiber with a precision stage. At this time, in the conventional optical fiber fixing member, the center position of the optical fiber engaging portion is not clear, and particularly when engaging a multi-fiber optical fiber, a great effort is required. In order to automate the operation of engaging the optical fiber with the optical fiber engaging portion, it is necessary to recognize the center position of the optical fiber engaging portion by image processing. However, since the boundary detection capability by image processing is inferior to the naked eye, it is necessary to increase the contrast at the boundary.
[0014]
(4) After assembling the optical fiber array comprising the optical fiber fixing member, the optical fiber, and the holding block, the optical axis of the optical fiber is near the input / output end of the optical fiber and the end along the optical fiber. It may be necessary to inspect whether the center of the optical fiber engaging portion is along. At this time, if either the optical fiber fixing member or the pressing block is transparent, the vicinity of the optical fiber engaging portion where the optical fiber is engaged and fixed can be observed with a microscope. However, in the conventional optical fiber array, since the center of the reference optical fiber engaging portion is difficult to understand accurately as described above, a high-precision position accuracy inspection requires a great amount of labor.
[0015]
The present invention has been made under the above-mentioned background, and the problem is that the center position of the optical fiber engaging portion is obtained with high accuracy by a microscope or the like, and as a result, the shape measurement of a measuring microscope or a stylus type is performed. The optical fiber fixing member that enables accurate measurement of the optical fiber engaging portion with a machine and that can easily manufacture an optical fiber array, and that the optical fiber is an optical fiber fixing member near the optical fiber input / output end. An optical fiber array capable of easily inspecting whether it is located at the center of the joint, an optical waveguide module including such an optical fiber array, and an optical fiber fixing for measuring the dimensional accuracy of the optical fiber fixing member An object of the present invention is to provide a method for measuring the dimensional accuracy of a member.
[0016]
[Means for Solving the Problems]
In order to solve the above-described problems, the present inventors have determined the intensity of light reflected or transmitted by the bottom surface of the optical fiber engaging portion when light is applied to the optical fiber engaging portion of the optical fiber fixing member. The difference in the intensity of light reflected or transmitted by the inclined surface for supporting the side surface of the optical fiber must be large, and the intensity of the reflected or transmitted light near the boundary between the bottom surface and the inclined surface of the optical fiber engaging portion Found that it is necessary to change rapidly.
[0017]
  The present invention has been completed based on such knowledge, and in an optical fiber fixing member for positioning and engaging an optical fiber end, two inclined surfaces for supporting the side surface of the optical fiber end; An optical fiber engaging portion having a bottom surface located between the two slopes, the bottom surface being flatAnd the surface roughness Ra is 1.0 μm or less and smaller than the surface roughness of the inclined surface, and the inclined surface of the optical fiber engaging portion is formed so as to rise from the flat bottom surface, When light is applied to the bottom surface, there is a difference between the intensity of light reflected or transmitted by the bottom surface of the optical fiber engaging portion and the intensity of light reflected or transmitted by the inclined surface, and near the boundary between the bottom surface and the inclined surface. In the optical fiber fixing member, and in the optical fiber fixing member, the reflection film or the antireflection film is selected for the inclined surface and the bottom surface. Optical fiber fixing member characterized in that it is formed into a film,In the above-described optical fiber fixing member, a plurality of the optical fiber engaging portions are provided, and a flat bottom surface of the optical fiber engaging portions is configured to be positioned on the same plane. An optical fiber fixing member, wherein the optical fiber fixing member is obtained by molding a moldable material, and in the optical fiber fixing member, the material is a glass material, The gist of the optical fiber fixing member is any one of a polymer material and a composite material composed of a polymer material and an inorganic filler.
[0018]
  The optical fiber fixing member described above, the optical fiber engaged with the optical fiber engaging portion, and the side surface of the optical fiber engaged with the optical fiber engaging portion are pressed, and the optical fiber end portion is An optical fiber array having at least the optical fiber fixing member transparent, and the optical fiber array and an optical waveguide optically connected to the optical fiber array. An optical waveguide module having an element The
[0019]
  Further, in the above-described method for measuring the dimensional accuracy of the optical fiber fixing member, the boundary position between the inclined surface and the bottom surface using the contrast of the observation image between the inclined surface and the bottom surface of the optical fiber engaging portion of the optical fiber fixing member. And measuring the dimensional accuracy of the optical fiber engaging portion by measuring the pitch of the two or more optical fiber engaging portions based on the boundary position. In the measuring method of dimensional accuracy and the measuring method of dimensional accuracy of the above-mentioned optical fiber fixing member using a stylus type shape measuring machine, the slope and bottom surface of the optical fiber engaging portion of the optical fiber fixing member, The boundary position between the inclined surface and the bottom surface is determined using the contrast of the observed image, the extending direction of the optical fiber engaging portion is obtained based on the boundary position, and the obtained extending direction is used as a reference. The shape measurement The pitch and / or depth of the two or more optical fiber engaging portions is adjusted based on the contour cross-sectional shape of the optical fiber engaging portion obtained by adjusting the measuring direction of the machine and tracing the adjusted measuring direction with a stylus. The gist of the method is to measure the dimensional accuracy of the optical fiber fixing member, which is characterized by measuring the dimensional accuracy.
[0020]
In order to trace the optical fiber engaging portion with the stylus, the stylus of the shape measuring machine may be moved either by moving the fixing base that fixes the optical fiber fixing member. Also good.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0022]
The optical fiber fixing member of the present invention has an optical fiber engaging portion for positioning and engaging an optical fiber end portion on the surface. The optical fiber engaging portion is a flat surface that supports the side surface of the optical fiber when the end portion of the optical fiber is engaged, and is positioned between the two inclined surfaces so as not to contact the optical fiber. Includes the bottom.
[0023]
Here, a typical shape of the optical fiber engaging portion has a concave portion, and two inclined surfaces serving as opposing surfaces of the concave portion for supporting the side surface of the optical fiber end portion are formed from the top to the bottom of the concave portion. The distance between the opposing surfaces is gradually narrowed as it goes, and the bottom of the concave portion where the slope ends forms the bottom surface.
[0024]
The first aspect of the present invention is a portion where the bottom surface and the slope are connected in a cross section perpendicular to the optical axis of the optical fiber supported by the two slopes of the optical fiber engaging portion, that is, a boundary between the bottom surface and the slope. The slope of the bottom and the slope of the slope are discontinuous and are not connected by an arc.
[0025]
At this time, the slope of the optical fiber engaging part rises suddenly from the flat bottom surface, and when light is irradiated from the-direction, the reflection direction by the bottom surface does not match the reflection direction by the slope, and the reflection direction from the bottom surface along the slope is changed. When viewed with the naked eye, the reflection direction changes abruptly at the boundary between the bottom and the slope.
[0026]
When the light is irradiated from the direction perpendicular to the flat bottom surface, and the reflected light from each part of the optical fiber fixing member is viewed from the light irradiation direction, the intensity of the reflected light is reflected by regular reflection at the bottom surface of the optical fiber engaging portion. Since the incident direction of light and the reflection direction do not coincide with each other on the slope, the intensity of the reflected light is small.
[0027]
Furthermore, when observing from the direction perpendicular to the bottom surface of the optical fiber engaging portion with a microscope, the illumination light can be irradiated from the vertical direction by epi-illumination. At this time, if the focus of the microscope is adjusted to the bottom surface, From the boundary of the slope to the slope, it quickly deviates from the depth of focus of the microscope, and only the flat bottom is clearly observed. In this way, the boundary line between the bottom surface and the slope can be recognized.
[0028]
On the other hand, in the section perpendicular to the optical axis of the optical fiber supported by the two inclined surfaces of the optical fiber engaging portion, the inclination is continuously inclined from the bottom surface to the inclined surface in the portion where the bottom surface and the inclined surface are connected. In an optical fiber engaging part that is shaped to be connected to a slope by an arc even if it is a flat bottom, for example, when light is irradiated as described above, the light and darkness of the bottom and the slope occurs. The boundary is blurred and cannot be distinguished.
[0029]
  Next, in the second embodiment of the present invention, the contrast between the bottom surface and the slope when the optical fiber engaging portion is irradiated with light from above or below the flat bottom surface of the optical fiber engaging portion. Reflective film to be largerOrAn antireflection film is selectively formed on the slope and the bottom. The direction of light applied to the bottom surface may be from the vertical direction or from an oblique direction.
[0030]
As this form, a part in which a high contrast is generated by the shape of the optical fiber engaging part as in the first form described above, or a reflective film is selectively formed only on the bottom by a method such as lithography, or a part excluding the bottom In some cases, an antireflection film is selectively formed, or a reflection film and an antireflection film are used together to increase the intensity of reflected light only at the bottom surface. When a reflection film or an antireflection film is used, the slope of the bottom surface and the slope of the slope may be discontinuous at the boundary between the bottom surface and the slope.
[0031]
Furthermore, in the third embodiment of the present invention, the surface roughness of the flat bottom surface of the optical fiber engaging portion is set to 1.0 μm or less in terms of Ra. By reducing the surface roughness of the bottom surface, irregular reflection due to the bottom surface can be reduced, and the contrast between the slope and the bottom surface can be increased. Further, when the surface roughness of the bottom surface is reduced, light scattering on the surface is reduced, so that the amount of light transmitted to the bottom surface of the optical fiber fixing member increases. Therefore, when the surface on which the optical fiber fixing member is installed has a high reflectance, only the bottom surface can be brightly illuminated by the return light reflected from the installation surface. On the other hand, if a black surface having a low reflectance is used for the surface on which the optical fiber fixing member is installed, only the bottom surface is made black, and the inclined surface is light-scattered so as to appear white. Even in the third embodiment, the slope of the bottom surface and the slope of the slope may be discontinuous at the boundary between the bottom surface and the slope.
[0032]
As described above, when light transmission at the bottom surface is used, it is preferable not to directly enter the reflected light from the bottom surface into a microscope or the like in order to increase the contrast. That is, it is desirable to shift the direction of illumination from the direction of observation with a microscope or the like. When measuring dimensions directly from an image like a measuring microscope, it is necessary to observe from the direction perpendicular to the bottom surface in order to prevent distortion of the observed image. Therefore, it is desirable to arrange the illumination direction so as to be shifted from the vertical axis.
[0033]
on the other hand. When the stylus is in the way and it is difficult to observe from the vertical direction like a stylus type shape measuring machine, the bottom surface may be observed from an oblique direction. In this case, it is preferable that the observation direction is inclined by 30 to 70 degrees with respect to the bottom surface because the contrast between the slope and the bottom surface is increased.
[0034]
As described above, the surface roughness of the bottom surface of the optical fiber engaging portion is preferably as small as possible, but if the surface roughness is 1.0 μm or less in terms of Ra, a practical contrast can be obtained, and the surface roughness should be 0.5 μm or less. It was found that very good contrast can be obtained.
[0035]
Also, combining the first form and the second form, the first form and the third form, the second form and the third form, the first form, the second form and the third form. You can also. For example, according to the optical fiber fixing member that combines the first form and the second form, and according to the optical fiber fixing member that combines the first form and the third form, An optical fiber fixing member can be obtained in which the contrast of the slope is large and the boundary line can be clearly distinguished.
[0036]
Further, when the optical fiber engaging portion is observed with a microscope by setting the opening angle of the two inclined surfaces for supporting the side surface of the end portion of the optical fiber to be in the range of 50 to 100, preferably 50 to 90 degrees, the focus is lightened. When matched with the bottom surface of the fiber engaging portion, the slope near the boundary with the bottom surface is blurred out of the depth of focus, so that only the bottom surface can be observed more clearly.
[0037]
In the case of an optical fiber fixing member having a plurality of optical fiber engaging portions, the flat bottom surface of each optical fiber engaging portion is preferably located on the same plane. In such an optical fiber fixing member, when a plurality of optical fiber engaging portions are allowed to enter the field of view of the microscope, each optical fiber engaging portion can be focused on the bottom surface, and the pitch between the optical fiber engaging portion centers can be set. It is easy to measure and evaluate the interval.
[0038]
The material for the optical fiber fixing member may be any material that can be finely processed or molded, such as glass, crystallized glass, and a polymer material (for example, resin) that is transparent in a cured state. A transparent glass that can be observed from the back side and a glass having a low thermal expansion coefficient is particularly preferable. Examples of processing methods include grinding and molding. In particular, in the case of molding, the mold for transferring the optical fiber engaging portion can be of a shape that is reversed with respect to the shape of the optical fiber engaging portion to be molded. It is preferable that the molding surface of the mold for transferring the bottom surface is at least flat and further in a smooth state.
[0039]
For example, when a mold material having a smooth surface is ground with a grindstone, a molding surface that transfers the inclined surface of the optical fiber engagement portion is processed with a grindstone, and the bottom surface of the optical fiber engagement portion is between these molding surfaces. A part of the smooth surface of the mold material is left as a molding surface for transferring the material. In this way, after processing the molding surface for transferring the slope, it is not necessary to process the molding surface for transferring the bottom surface of the optical fiber engaging portion in a separate process, and the bottom surface of each optical fiber engaging portion is transferred. Since the molding surfaces are on the same plane, there is no need to match the height of the molding surfaces. Further, a sharp edge is formed between the molding surface for transferring the bottom surface and the molding surface for transferring the inclined surface, and this edge portion forms a boundary line between the bottom surface and the inclined surface of the optical fiber engaging portion.
[0040]
In the case of molding, glass having a low yield point and a small average thermal expansion coefficient between the molding temperature and room temperature is preferable. As such glass, SiO2, B2OThreeAnd some containing ZnO. Molding uses an ordinary method for producing a high-precision molded product. Further, in terms of mass productivity, etc., it does not reach mold molding, but grinding is also possible. In this case, it is preferable to make the bottom surface of the optical fiber engaging portion smooth by a smooth surface finishing grindstone.
[0041]
The optical fiber fixing member described so far is a transparent member, and the optical fiber is engaged with the optical fiber engaging portion, and the optical fiber is pressed from the upper surface by the holding block, and the optical fiber end portion is lighted. An optical fiber array can be obtained by being sandwiched between fiber fixing members. In such an optical fiber array, the optical fiber engaging portion and the optical fiber end portion engaged and fixed to the optical fiber engaging portion can be observed with a microscope from the back side of the surface on which the optical fiber engaging portion is formed. . Observing from the direction perpendicular to the bottom surface of the optical fiber engaging portion clearly distinguishes the bottom surface of the optical fiber engaging portion as described above, so that not only the end surface of the optical fiber but also the end portion of the optical fiber connected to the end surface is an optical fiber. It can be easily inspected whether the engagement portion is accurately engaged and fixed. As the pressing block, for example, a plate-like member made of a material such as glass used for an optical fiber fixing member can be used.
[0042]
The portion of the holding block that contacts the side surface of the optical fiber is desirably a flat surface so that the side surface of the optical fiber can be reliably pressed.
[0043]
In assembling the above optical fiber array, for example, the optical fiber end is engaged with the optical fiber engaging portion, an adhesive such as a photo-curing resin or a thermosetting resin is applied thereto, and the optical fiber is applied with the holding block. The side surface of the optical fiber engaged with the engaging portion is pressed so that the optical fiber is held between the holding block and the optical fiber fixing member. In this state, the adhesive is cured, and the end portion of the optical fiber is fixed to the optical fiber fixing member. The optical fiber fixing member and the presser block in the present invention are not limited to those made of a transparent material, but the end portion of the optical fiber engaged and fixed as described above is observed or the photocurable resin is cured. For this purpose, it is preferable to use a transparent material.
[0044]
In the above optical fiber array having an adhesive in part or all of the space surrounded by at least any two members of the optical fiber engaging portion, the optical fiber, and the holding block of the optical fiber array, the optical fiber engagement It is preferable that the refractive index difference between the adhesive and the optical fiber fixing member is large because the one having a higher reflectance on the bottom surface of the part can easily distinguish the bottom surface. After the optical fiber array is assembled, the optical connection side end face of the optical fiber array is polished.
[0045]
Using the optical fiber array described so far, an optical waveguide module can be obtained by optically connecting the optical fiber array and the optical waveguide element. Examples of the optical waveguide element include a branched optical waveguide element, a light receiving element, a light emitting element, and an optical waveguide element provided with other optical elements. Further, there is an optical waveguide module in which an optical fiber array is optically connected through an optical waveguide element, in which at least one of the optical fiber arrays is the optical fiber array of the present invention.
[0046]
【Example】
Examples of the present invention will be described below.
[0047]
[Example 1]
A cemented carbide base material containing tungsten carbide as a main component was precision processed to obtain a cemented carbide block with a base having a width of 5 mm, a length of 5 mm, and a height of 14 mm. Only the upper surface of the cemented carbide block was subjected to surface processing so that the surface roughness Ra was 0.04 μm. Nine V-grooves with an opening angle of 60 degrees were processed at 250 μm intervals on the upper surface of the cemented carbide block using a dicing saw and a diamond grindstone so as to be aligned in the center with a width of 5 mm. In the processing, the V groove depth was set so that an unprocessed surface (upper surface described above) having a width of about 20 μm remained between the V grooves.
[0048]
Next, planar processing is performed from the bottom surface of the V-grooves at both ends toward the outside of the V-groove to the same depth as that of the V-groove, and as shown in FIG. A V-groove mold 1 having 4 was obtained.
[0049]
By the above molding die manufacturing method, the flat portion 5 having a width of about 20 μm and a surface roughness Ra of 0.04 μm is formed at the tip of the concave-convex groove 4 of the V-groove molding die 1.
[0050]
This V-groove forming mold was combined with other mold parts to form an optical fiber fixing member forming mold as shown in FIG. That is, the above-described V-groove forming die B, the forming die D for transferring and forming the pedestal portion on which the optical fiber coating portion is placed, and the V-groove forming die B and the forming die D are integrated by the fixed frame E The cavity Z was configured using a mold, and a barrel mold F for molding the side surface of the optical fiber fixing member and a lower mold G for molding the bottom surface of the optical fiber fixing member.
[0051]
In order to give moldability to the molding surface of each mold, a carbon-based release film H was formed in advance by 500 angstroms by an ion plating method.
[0052]
Next, SiO213.3 wt%, B2OThree32.2 wt%, ZnO 44.5 wt%, Al2OThree5.5 wt%, Li2It contains 4.5 wt% of O, and SnO2Was preformed hot to obtain a glass preform J having a width of 3.8 mm, a length of 10.5 mm, and a thickness of 2.05 mm with a curved edge. The glass preform J is placed in the mold Z of the mold Z as shown in FIG. 3, and the mold is heated to 560 ° C. in an inert atmosphere, and the mold is 150 kgf / cm.2The glass preform J was press-molded for 90 seconds. Then, it cooled to room temperature, weakening the applied pressure, and took out the molded article C from the type | mold.
[0053]
As shown in FIG. 4, eight V-grooves C-2 constituting the optical fiber engaging portion C-1 are formed on the upper surface of the optical fiber fixing member C, which is a molded product, at a pitch of 250 μm. Further, a step surface C-3 that is one step lower than the V-groove forming surface C-4 is formed in order to place the optical fiber covering portion.
[0054]
As shown in FIG. 1, the bottom surface 13 of the V-groove 14 has a flat portion (flat portion) having a width of about 20 μm. When the surface roughness of the V groove 14 was measured with a surface roughness meter having a stylus tip diameter of 5 μm, the surface roughness of the V groove bottom surface 13 was 0.04 μm in Ra. In other words, the flat surface of the V-groove bottom surface 13 is a surface to which the above-mentioned concave / convex groove tip flat portion 5 shown in FIG. 2 is transferred, and is found to be molded to the same surface roughness as the concave / convex groove tip flat portion 5 of the mold 1. It was. ―How. The surface roughness of the slope 12 of the V groove 14 was 0.2 μm in Ra. Further, at the portion where the V-groove bottom surface 13 and the inclined surface 12 are connected, the inclination of the V-groove bottom surface 13 and the inclination of the inclined surface 12 in the vertical section with respect to the extending direction of the optical fiber engaging portion are discontinuous. Furthermore, the contrast between the V-groove bottom surface 13 and the inclined surface 12 in a state where light is irradiated from above or below the optical fiber engaging portion 15 was clearly discernable with the naked eye.
[0055]
The V-groove accuracy of the optical fiber fixing member was measured as follows. The magnification of the measuring microscope was set to 100 times on the screen, and an image viewed from the vertical direction with respect to the V groove bottom surface 13 of the optical fiber fixing member 11 was captured. The illumination light source uses a halogen lamp, and in order to prevent temperature rise due to illumination, heat rays are cut by a heat ray absorption filter and irradiated from the vertical direction with respect to the bottom surface of the V-groove of the optical fiber fixing member 11. To match. Next, the edges on both sides of the V-groove bottom surface (the boundary between the bottom surface and the slope) were automatically detected by image processing, and the center position of both edges was calculated to obtain the center position of the V-groove bottom surface 13. A similar operation was repeated for each V-groove 14, and the pitch accuracy of the V-groove 14 was measured by measuring the distance between the center positions of the V-groove bottom surface 13. In the optical fiber fixing member 11 of the example, the brightness of the image on the bottom surface of the V groove is different from that on the inclined surface, and the edges on both sides of the bottom surface of the V groove can be easily and accurately detected easily from the contrast. As a result, in the V-groove pitch measurement, the analysis error in the same measurement image was about 0.1 μm.
[0056]
The above is the case where glass is used as the material, but the same applies to the case where a polymer material that can be molded and is transparent in the cured state is used.
[0057]
The following (1) to (3) films were formed on the optical fiber engaging portion of the optical fiber fixing member, respectively, and the contrast on the slope and bottom surface could be further increased.
[0058]
(1) Either a reflection film or an antireflection film is formed on either the slope or the bottom.
(2) Antireflection film on the slope and reflection film on the bottom
(3) A reflection film is formed on the slope and an antireflection film is formed on the bottom.
[Example 2]
The V-groove pitch accuracy of the optical fiber fixing member of Example 1 was measured as follows using a measurement microscope. A metal mirror was placed on the observation table of the measurement microscope, and an optical fiber fixing member was placed thereon. In addition, illumination light was applied from the upper side of the V-groove to the bottom of the V-groove at 60 degrees so that the reflected light did not directly enter the optical system of the measurement microscope. Observation was performed from the direction perpendicular to the bottom surface of the V groove, and the focus was adjusted to the bottom surface of the V groove. With the above arrangement, only the bottom surface of the V groove of the optical fiber fixing member of the example was projected brightly. When the V-groove pitch was measured by the same method as in Example 1, it was possible to measure with the same measurement accuracy. In comparison with the naked eye, the V-groove bottom surface was easily discriminated compared to the setting in Example 1.
[0059]
[Example 3]
A V-groove pitch was measured in the same manner as in Example 2 except that a black surface-treated aluminum plate was placed in place of the metal mirror and the illumination light was slightly increased. With the above arrangement, only the bottom surface of the V-groove of the optical fiber fixing member of the example could be projected in black. When the V-groove pitch was measured by the same method as in Example 1, it was possible to measure with the same measurement accuracy. In comparison with the naked eye, the bottom of the V-groove was easily discriminated compared to the setting of Example 2.
[0060]
[Example 4]
The V-groove accuracy of the optical fiber fixing member of Example 1 was measured with a stylus type shape measuring machine as follows. A precision stage composed of an XY stage and a rotary stage was used as a sample mounting table, and a sample fixing jig was fixed on the rotary stage. The fixing jig used was a black upper surface similar to the aluminum plate of Example 3. The optical fiber fixing member was fixed on the fixing jig with the V-groove direction being substantially perpendicular to the scanning direction of the stylus. In order to observe the bottom surface of the V-groove, a microscope was installed parallel to the V-groove direction and inclined 45 degrees above the bottom surface of the V-groove, and light was irradiated from a direction perpendicular to the bottom surface of the V-groove.
[0061]
First, while looking at the microscope, the stylus is dropped on the bottom surface of the V-groove, and then the Y stage is driven to move the optical fiber fixing member in a direction perpendicular to the scanning direction of the stylus. At this time, if the direction of the V-groove and the scanning direction of the stylus are not exactly perpendicular, the tip of the stylus is detached from the bottom of the V-groove by driving the stage. When the tip of the stylus is detached from the bottom surface of the V-groove, the rotary stage is finely adjusted, and the direction of the optical fiber fixing member is adjusted until the stylus is not detached from the bottom surface of the V-groove. In the observation image of the optical fiber fixing member reflected in the microscope, only the flat part of the bottom surface of the V-groove is reflected in black, so that it is very easy to determine the boundary position between the slope and bottom surface of the V-groove, and therefore the direction alignment is also very high. It was easy. By adjusting the direction, the extending direction of the optical fiber engaging portion, that is, the V-groove direction can be obtained correctly, and the squareness error between the V-groove direction and the scanning direction of the stylus should be 0.64 degrees or less. And the stylus scan direction was accurately adjusted.
[0062]
The X stage is driven, the surface of the optical fiber engaging portion is traced at right angles to the groove direction with a stylus, and the profile cross-sectional shape of the optical fiber engaging portion is measured. Next, the obtained contour cross-sectional shape was analyzed with analysis software, and the accuracy of the pitch and depth of the optical fiber engaging portion was obtained. Since the perpendicularity between the V-groove direction of the optical fiber engaging portion and the scanning direction of the stylus exactly matches, the tolerance in measurement could be 0.1 μm or less.
[0063]
[Example 5]
Using the optical fiber fixing member of Example 1, as shown in FIG. 5, a single mode optical fiber F is engaged and disposed in each of the optical fiber engaging portions C-1 of the optical fiber fixing member C, and transparent. The holding fiber M made of glass was used to hold the optical fiber, and it was bonded and fixed with an ultraviolet curable resin. Next, the end face of the optical fiber fixed by the optical fiber fixing member C and the holding block M was polished together with the end face of the optical fiber fixing member and the holding block end face to produce an optical fiber array Y. With respect to this optical fiber array, the bottom surface of the optical fiber engaging portion is discriminated in the same manner as in Examples 2 and 3, and it is confirmed that the position of the single-mode optical fiber that is engaged and fixed is not displaced along the optical axis direction. It was easy to confirm. Further, as shown in FIG. 6, the optical fiber array Y and the optical waveguide element W were connected so that the optical fiber and the optical waveguide were optically connected to obtain an optical waveguide module.
[0064]
The optical fiber array and the optical waveguide module obtained in the present embodiment have not only the position of the end face of the optical fiber but also the optical axis accurately along the direction of the optical fiber engaging portion at least near the end face of the optical fiber connected to the end face. Met.
[0065]
【The invention's effect】
According to the present invention, the center of the optical fiber engaging portion is obtained with high accuracy by optical measurement or stylus measurement, and as a result, an optical fiber fixing member that can easily manufacture an optical fiber array can be obtained.
[0066]
Further, by using such an optical fiber fixing member, it is possible to easily inspect whether the optical fiber is located at the center of the optical fiber engaging portion of the optical fiber fixing member in the vicinity of the optical fiber input / output end, It is possible to obtain an optical fiber array and an optical waveguide module in which the optical axis is accurately along the direction of the optical fiber engaging portion at least in the vicinity of the end face of the optical fiber connected to the end face as well as the end face position of the optical fiber.
[0067]
Furthermore, according to the dimensional accuracy measuring method of the present invention, the dimensional accuracy of the pitch and depth of the optical fiber engaging portion of the optical fiber fixing member can be accurately measured.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of an optical fiber engaging portion of an optical fiber fixing member according to an embodiment.
FIG. 2 is a perspective view of the concave-convex groove mold for forming a V-groove according to the embodiment as viewed obliquely from above.
FIGS. 3A and 3B are process diagrams for explaining a method of manufacturing an optical fiber fixing member by the optical fiber fixing member forming die according to the embodiment, wherein FIG. 3A is a front sectional view before pressing, and FIG. (C) is a front sectional view during pressing, and (d) is a sectional side view.
FIG. 4 is a perspective view of an optical fiber fixing member according to the embodiment.
5A and 5B are explanatory views showing an optical fiber array according to the embodiment, in which FIG. 5A is a perspective view, and FIG. 5B is a front view.
FIG. 6 is a perspective view of the optical waveguide module of the embodiment.
[Explanation of symbols]
11 Optical fiber fixing member
12 Slope
13 Bottom
14 V groove
15 Optical fiber engaging part
F optical fiber

Claims (9)

光ファイバ端部を位置決め係合するための光ファイバ固定用部材において、
前記光ファイバ端部の側面を支持するための2つの斜面と前記2つの斜面の間に位置する底面を有する光ファイバ係合部を備え、
前記底面が平坦に形成され、かつその表面粗さRaが1.0μm以下であって前記斜面の表面粗さより小さく形成されるとともに、前記光ファイバ係合部の斜面が前記平坦な底面から立ち上がるように形成され、前記底面に光を照射したとき、前記光ファイバ係合部の底面によって反射または透過する光の強度と前記斜面によって反射または透過する光の強度に差があり、前記底面と前記斜面との境界付近で前記反射光や透過光の強度が変化するようにしたことを特徴とする光ファイバ固定用部材。
In the optical fiber fixing member for positioning and engaging the optical fiber end,
An optical fiber engagement portion having two slopes for supporting a side surface of the optical fiber end portion and a bottom surface located between the two slopes;
The bottom surface is formed flat and the surface roughness Ra is 1.0 μm or less and smaller than the surface roughness of the inclined surface, and the inclined surface of the optical fiber engaging portion rises from the flat bottom surface. When the bottom surface is irradiated with light, there is a difference between the intensity of light reflected or transmitted by the bottom surface of the optical fiber engaging portion and the intensity of light reflected or transmitted by the slope, and the bottom surface and the slope An optical fiber fixing member characterized in that the intensity of the reflected light or transmitted light is changed near the boundary between
請求項1に記載の光ファイバ固定用部材において、反射膜又は反射防止膜を前記斜面と前記底面に選択的に成膜したことを特徴とする光ファイバ固定用部材。2. The optical fiber fixing member according to claim 1, wherein a reflection film or an antireflection film is selectively formed on the inclined surface and the bottom surface. 請求項1又は2に記載の光ファイバ固定用部材において、前記光ファイバ係合部が複数設けられ、これら光ファイバ係合部の平坦な底面が同―平面上に位置するように構成されていることを特徴とする光ファイバ固定用部材。 3. The optical fiber fixing member according to claim 1 , wherein a plurality of the optical fiber engaging portions are provided, and a flat bottom surface of the optical fiber engaging portions is positioned on the same plane. An optical fiber fixing member. モールド成形が可能な素材をモールド成形して得られることを特徴とする請求項1ないし3のいずれかに記載の光ファイバ固定用部材。4. The optical fiber fixing member according to claim 1 , wherein the optical fiber fixing member is obtained by molding a moldable material. 素材がガラス材料、高分子材料、高分子材料と無機フィラーからなるコンポジット材料のいずれか1つであることを特徴とする請求項4に記載の光ファイバ固定用部材。The optical fiber fixing member according to claim 4 , wherein the material is any one of a glass material, a polymer material, and a composite material composed of a polymer material and an inorganic filler. 請求項1ないし5のいずれかに記載の光ファイバ固定用部材と、前記光ファイバ係合部に係合された光ファイバと、前記光ファイバ係合部に係合された光ファイバ側面を押圧し、前記光ファイバ端部を前記光ファイバ固定用部材とで挟持する押さえブロックとを備え、少なくとも前記光ファイバ固定用部材が透明である光ファイバアレイ。6. The optical fiber fixing member according to claim 1 , pressing an optical fiber engaged with the optical fiber engaging portion, and an optical fiber side surface engaged with the optical fiber engaging portion. An optical fiber array comprising a holding block that sandwiches the optical fiber end portion with the optical fiber fixing member, and at least the optical fiber fixing member is transparent. 請求項6に記載された光ファイバアレイと、前記光ファイバアレイと光接続された光導波路素子とを有する光導波路モジュール。An optical waveguide module comprising the optical fiber array according to claim 6 and an optical waveguide element optically connected to the optical fiber array. 請求項1ないし5のいずれかに記載の光ファイバ固定用部材の寸法精度の測定方法において、光ファイバ固定用部材の光ファイバ係合部の斜面と底面との観察像のコントラストを利用して前記斜面と底面との境界位置を判別し、前記境界位置をもとに2個以上の前記光ファイバ係合部のピッチを測定することにより光ファイバ係合部の寸法精度を測定することを特徴とする光ファイバ固定用部材の寸法精度の測定方法。 In the measuring method of the dimensional accuracy of the optical fiber fixing member according to any one of claims 1 to 5 , the contrast of the observation image between the inclined surface and the bottom surface of the optical fiber engaging portion of the optical fiber fixing member is used. Measuring the dimensional accuracy of the optical fiber engaging portion by determining the boundary position between the slope and the bottom surface and measuring the pitch of two or more optical fiber engaging portions based on the boundary position; Measuring method of dimensional accuracy of optical fiber fixing member. 触針式の形状測定機を用いた請求項1ないし5のいずれかに記載の光ファイバ固定用部材の寸法精度の測定方法において、光ファイバ固定用部材の光ファイバ係合部の斜面と底面との観察像のコントラストを利用して前記斜面と底面との境界位置を判別し、前記境界位置をもとにして前記光ファイバ係合部の延在方向を求め、求めた延在方向を基準として前記形状測定機の測定方向を調整し、調整した測定方向に触針でなぞって得られる前記光ファイバ係合部の輪郭断面形状をもとに2個以上の前記光ファイバ係合部のピッチおよび/または深さの寸法精度を測定することを特徴とする光ファイバ固定用部材の寸法精度の測定方法。 Claims 1 using shape measuring stylus type in dimensional accuracy measuring method of the optical fiber fixing member according to any one of 5, the inclined surface and the bottom surface of the optical fiber engagement portion of an optical fiber fixing member The boundary position between the inclined surface and the bottom surface is determined using the contrast of the observed image, the extending direction of the optical fiber engaging portion is obtained based on the boundary position, and the obtained extending direction is used as a reference. The pitch of two or more optical fiber engaging portions based on the profile cross-sectional shape of the optical fiber engaging portion obtained by adjusting the measuring direction of the shape measuring machine and tracing the adjusted measuring direction with a stylus A method for measuring the dimensional accuracy of an optical fiber fixing member, wherein the dimensional accuracy of depth is measured.
JP25245498A 1997-09-18 1998-09-07 Measuring method of dimensional accuracy of optical fiber fixing member, optical fiber array, optical waveguide module, and optical fiber fixing member Expired - Fee Related JP4056143B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP25245498A JP4056143B2 (en) 1997-09-18 1998-09-07 Measuring method of dimensional accuracy of optical fiber fixing member, optical fiber array, optical waveguide module, and optical fiber fixing member
US09/153,135 US6134371A (en) 1997-09-18 1998-09-15 Optical fiber fixing member, optical fiber array, optical waveguide module and method of measuring dimensional accuracy of optical fiber fixing member
EP98117760A EP0903599A3 (en) 1997-09-18 1998-09-18 Optical fiber fixing member, optical fiber array, optical waveguide module and method of measuring dimensional accuracy of optical fiber fixing member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25305397 1997-09-18
JP9-253053 1997-09-18
JP25245498A JP4056143B2 (en) 1997-09-18 1998-09-07 Measuring method of dimensional accuracy of optical fiber fixing member, optical fiber array, optical waveguide module, and optical fiber fixing member

Publications (2)

Publication Number Publication Date
JPH11153723A JPH11153723A (en) 1999-06-08
JP4056143B2 true JP4056143B2 (en) 2008-03-05

Family

ID=26540722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25245498A Expired - Fee Related JP4056143B2 (en) 1997-09-18 1998-09-07 Measuring method of dimensional accuracy of optical fiber fixing member, optical fiber array, optical waveguide module, and optical fiber fixing member

Country Status (3)

Country Link
US (1) US6134371A (en)
EP (1) EP0903599A3 (en)
JP (1) JP4056143B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324332B1 (en) * 1997-07-31 2001-11-27 Hoyo Corporation Optical fiber fixing member, method of manufacturing the optical fiber fixing member, optical fiber array, and method of manufacturing the optical fiber array
US6473553B1 (en) * 1998-04-17 2002-10-29 Seagate Technology Llc Apparatus for holding and engaging micro-machined objects and method for making same
JP2001343547A (en) 2000-03-30 2001-12-14 Ngk Insulators Ltd Optical fiber array
DE10017008C1 (en) * 2000-04-05 2001-08-23 Siemens Ag Device for flap actuation in optical fiber splicers
JP2002151781A (en) * 2000-11-10 2002-05-24 Mitsubishi Electric Corp Light element module
KR100444268B1 (en) * 2002-06-05 2004-08-12 주식회사 한택 Apparatus and method for measuring beam using array type photo devices
US9004733B2 (en) * 2012-04-05 2015-04-14 Corning Cable Systems Llc Optical fiber installation tool having a passive illumination feature
US11215762B2 (en) * 2018-08-15 2022-01-04 Advanced Semiconductor Engineering, Inc. Optical device package and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5533158A (en) * 1994-09-12 1996-07-02 The Whitaker Corporation Electrostatic bonding of optical fibers to substrates
JP3853866B2 (en) * 1995-02-21 2006-12-06 日本碍子株式会社 Optical fiber fixing substrate
US6195495B1 (en) * 1997-01-17 2001-02-27 Ngk Insulators, Ltd. Optical transmitting member-holding structure

Also Published As

Publication number Publication date
EP0903599A3 (en) 1999-09-01
JPH11153723A (en) 1999-06-08
EP0903599A2 (en) 1999-03-24
US6134371A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
US6240235B1 (en) Optical fiber fixing member and method for manufacturing the same
US6587618B2 (en) Collimator array and method and system for aligning optical fibers to a lens array
EP0541820B1 (en) Method of connecting an optical waveguide to an optical fiber
US10816735B2 (en) Lensed connector ferrule assemblies and methods of fabricating the same
EP0256539A2 (en) Method and apparatus of measuring outer diameter and structure of optical fiber
JP4056143B2 (en) Measuring method of dimensional accuracy of optical fiber fixing member, optical fiber array, optical waveguide module, and optical fiber fixing member
US20020118925A1 (en) Substrate for mounting optical parts, method of manufacturing same, and assembly using the substrate
EP0826944B1 (en) Method of measuring positions of optical transmission members
US7123355B2 (en) Method for determining core positions of optical element array and an apparatus for determining core positions thereof
JPH0980250A (en) Automatic positioning mechanism for optical fiber splice
JP2004334057A (en) Optical waveguide and its manufacturing method
JP5851794B2 (en) Optical axis alignment method and optical fiber array unit manufacturing method
US7310136B2 (en) Method and apparatus for measuring prism characteristics
US7221830B2 (en) Method and apparatus for connecting optical transmission module and core position detection method for optical waveguide
CN118090145B (en) Optical fiber core identification method for coupling encapsulation
US20230358690A1 (en) Inspection tool and inspection method
US20230152534A1 (en) Optical connector, ferrule, and method for manufacturing optical connector
JPH10253831A (en) Light transmitting plate and manufacture therefor
JP2003194667A (en) Optical fiber end face inspection device
JPH11160562A (en) Optical fiber fixing member and manufacture therefor
KR100473580B1 (en) Array optical collimator using silicon block
JPH0875422A (en) Dimension measuring method and machining method for optical wave guide parts with guide groove
KR100412173B1 (en) Light Guide Panel with asymmetric prisms, the manufacuturing method of it and the core of die for it
KR20120086588A (en) Array optical collimator
JPH07157144A (en) Dimension measuring method for optical part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees