JP4055997B2 - Fire protection system for enclosed spaces - Google Patents

Fire protection system for enclosed spaces Download PDF

Info

Publication number
JP4055997B2
JP4055997B2 JP2003097290A JP2003097290A JP4055997B2 JP 4055997 B2 JP4055997 B2 JP 4055997B2 JP 2003097290 A JP2003097290 A JP 2003097290A JP 2003097290 A JP2003097290 A JP 2003097290A JP 4055997 B2 JP4055997 B2 JP 4055997B2
Authority
JP
Japan
Prior art keywords
enriched air
air
nitrogen
carbon dioxide
fire prevention
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003097290A
Other languages
Japanese (ja)
Other versions
JP2004298516A (en
Inventor
隆 能美
高橋  清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Priority to JP2003097290A priority Critical patent/JP4055997B2/en
Publication of JP2004298516A publication Critical patent/JP2004298516A/en
Application granted granted Critical
Publication of JP4055997B2 publication Critical patent/JP4055997B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、RDF(ゴミの固形燃料)貯槽、サイロ、貯炭場、ごみ処理場、ゴム、プラスチック貯槽などの可燃性物質が多量に備蓄される比較的密閉された閉鎖空間の防火システムに関するものであり、特に、通常人の出入りのない、若しくは、人の出入りの少ない、可燃性物質が多量に備蓄される比較的密閉された閉鎖空間の防火システムに関するものである。
【0002】
【従来技術】
大気中の物質が燃焼するためには、空気中に10数%の酸素が必要である。この事実を利用して、火災時に酸素濃度15%以下の不燃性ガスを放出して酸素濃度を低下させて消火を行う設備が存在している(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開平7−237907号公報
【0004】
【発明が解決しようとする課題】
しかしながら、RDF(ゴミの固形燃料)貯槽、サイロ、貯炭場、ごみ処理場、ゴム、プラスチック貯槽などの可燃性物質が多量に備蓄される比較的密閉された閉鎖空間では、嫌気性発酵による熱の蓄積や可燃性ガスの発生、酸化による熱の蓄積などにより可燃性物質が自然発火し燻焼火災に至ることがある。このような火災は多量の可燃性物質に囲まれており、酸欠状態で燃焼するため大火に至らないため、ガスによる消火は可能である。しかし、燻焼状態で燃焼した可燃性物質は炭化するので、炭化した可燃性物質を閉鎖空間外に搬出する作業が煩雑になったり、また、消火が遅れると、炭化した可燃性物質は、閉鎖空間全体にガスが浸透するのを塞いだりして消火が困難になったりと、甚大な被害を被る。
【0005】
この発明は、可燃性物質が備蓄される比較的密閉された閉鎖空間において火災が発生しないようにすることを目的とする。
【0006】
【課題を解決するための手段】
第1の発明は、可燃性物質が備蓄される比較的密閉された閉鎖空間内の空気を吸引する第3の吸引手段と、該空気を酸素富化空気と窒素富化空気に分離する第2の窒素富化手段と、該酸素富化空気を燃焼させて可燃性ガス及び酸素を低減した二酸化炭素富化空気を得る第2の燃焼手段と、該二酸化炭素富化空気を冷却する第2の冷却手段と、該二酸化炭素富化空気および前記窒素富化空気を前記閉鎖空間内に供給する第3の循環経路とを有する第3の防火装置を備えたことを特徴とする。
【0007】
第2の発明は、可燃性物質が備蓄される比較的密閉された閉鎖空間内の空気を吸引する第4の吸引手段と、該空気を燃焼させて可燃性ガス及び酸素を低減した二酸化炭素富化空気を得る第3の燃焼手段と、該二酸化炭素富化空気を冷却する第3の冷却手段と、該二酸化炭素富化空気から酸素を低減した二酸化炭素および窒素富化空気を得る第3の窒素富化手段と、該二酸化炭素および窒素富化空気を前記閉鎖空間内に供給する第4の循環経路とを有する第4の防火装置を備えたことを特徴とする。
【0008】
また、二酸化炭素富化空気、窒素富化空気、二酸化炭素および窒素富化空気は、閉鎖空間内への外気の流入が可能な流入口付近に供給されることを特徴とする。
【0009】
また、空気は、閉鎖空間内への外気の流入が可能な流入口に接続された経路から取り込まれることを特徴とする。
【0013】
【発明の実施の形態】
本発明者は、可燃性物質が備蓄される比較的密閉された閉鎖空間で火災が発生すると、前述のように被害が発生することに鑑み、該被害が発生しないようにするためには、火災が発生しないようにすればよいと考えた。
【0014】
そのため、燃焼の三要素である可燃物、酸素、温度を極力抑えるようにすれば良いと考えた。特には、燃焼の三要素のうちの酸素に関して、閉鎖空間内の酸素濃度を低減して不燃焼酸素濃度以下にすることであり、さらには、備蓄される可燃性物質以外に発生する可燃性ガスを抑制すること、備蓄される可燃性物質の温度を低下させることである。
【0015】
そこで、防災システムとして、第1の吸引手段により可燃性物質が備蓄される比較的密閉された閉鎖空間内の空気を吸引し、この吸引した空気を第1の燃焼手段により燃焼させて可燃性ガス及び酸素を低減した二酸化炭素富化空気を得て、この得られた二酸化炭素富化空気を第1の循環経路により閉鎖空間内に供給し循環させる第1の防火装置を備えた。これにより、閉鎖空間内の酸素濃度を低減して不燃焼酸素濃度以下にして、また、備蓄される可燃性物質から発生した可燃性ガスを低減させることとした。なお、得られた二酸化炭素富化空気を第1の冷却手段により冷却して、この冷却した二酸化炭素富化空気を第1の循環経路により閉鎖空間内に供給し循環させることで、備蓄される可燃性物質の湿度上昇による酸化反応及び温度上昇を抑えた。
【0016】
また、防災システムとして、第1の防火装置の他に、第2の吸引手段により可燃性物質が備蓄される比較的密閉された閉鎖空間内の空気を吸引し、この吸引した空気から第1の窒素富化手段により酸素を低減した窒素富化空気を得て、この得られた窒素富化空気を第2の循環経路により閉鎖空間内に供給し循環させる第2の防火装置を備えた。このように第1の防火装置と第2の防火装置を併用することで、大容量の閉鎖空間であっても、閉鎖空間内の酸素濃度を低減して不燃焼酸素濃度以下にしやすくすることができる。
【0017】
この他の防災システムの形態として、第3の吸引手段により可燃性物質が備蓄される比較的密閉された閉鎖空間内の空気を吸引し、この吸引した空気を第2の窒素富化手段により酸素富化空気と窒素富化空気に分離し、この分離した酸素富化空気を第2の燃焼手段により燃焼させて可燃性ガス及び酸素を低減した二酸化炭素富化空気を得て、この得られた二酸化炭素富化空気を第2の冷却手段により冷却し、この冷却した二酸化炭素富化空気および分離した窒素富化空気を第3の循環経路により閉鎖空間内に供給し循環させる第3の防火装置を備えた。これにより、第1の防火装置と第2の防火装置を備えた防災システムと同等の効果が得られる他に、閉鎖空間内から吸引した空気の酸素濃度を効率よく低減させて閉鎖空間内に戻すことができ、また、循環経路および吸引手段が1つで済むので設備効率がよい。
【0018】
また、この他の防災システムの形態として、第4の吸引手段により可燃性物質が備蓄される比較的密閉された閉鎖空間内の空気を吸引し、この吸引した空気を第3の燃焼手段により燃焼させて可燃性ガス及び酸素を低減した二酸化炭素富化空気を得て、この得られた二酸化炭素富化空気を第3の冷却手段により冷却し、この冷却した二酸化炭素富化空気から第3の窒素富化手段により酸素を低減した二酸化炭素および窒素富化空気を得て、この得られた二酸化炭素および窒素富化空気を第4の循環経路により閉鎖空間内に供給し循環させる第4の防火装置を備えた。これにより、第1の防火装置と第2の防火装置を備えた防災システムと同等の効果が得られる他に、閉鎖空間内から吸引した空気の酸素濃度を効率よく低減させて閉鎖空間内に戻すことができ、また、循環経路および吸引手段が1つで済むので設備効率がよい。
【0019】
なお、第1〜第4の防火装置により得られた二酸化炭素富化空気、窒素富化空気、二酸化炭素および窒素富化空気は、閉鎖空間内への外気の流入が可能な流入口付近に供給されるようにすると、燃焼可能な酸素濃度を有する外気と接触する流入口付近の酸素濃度を素早く低下させるため、より効果的に防火が行える。
【0020】
また、第1〜第4の防火装置により取り込まれる空気は、閉鎖空間内への外気の流入が可能な流入口付近から取り込まれるようにすると、取り込むことで酸素濃度が高めの流入口付近の酸素濃度を低下させることができる。
【0021】
さらに、第1〜第4の防火装置により取り込まれる空気は、閉鎖空間内への外気の流入が可能な流入口に接続された経路から取り込まれ、この空気から得られた二酸化炭素富化空気、窒素富化空気、二酸化炭素および窒素富化空気が流入口から閉鎖空間内に供給されるようにすると、流入口から燃焼可能な酸素濃度を有する外気が流入しなくなるため、より効果的に防火が行える。
【0022】
なお、酸素濃度測定装置により閉鎖空間内の酸素濃度を測定し、制御盤によりこの酸素濃度測定装置により測定された酸素濃度を不燃焼酸素濃度に維持するように前記第1〜第4の防火装置の制御を行うようにすると、より高精度に酸素濃度管理が行える。
【0023】
ところで、前記第1〜第4防火装置により得られる二酸化炭素富化空気、窒素富化空気、二酸化炭素および窒素富化空気のうち、二酸化炭素富化空気は、空気との比重が大きく浸透性に優れており、冷却効果もある。そのため、二酸化炭素富化空気は、特に閉鎖空間内への外気の流入が可能であり、且つ常時可燃性物質により覆われている流入口付近に供給されるとよい。これにより、長時間滞留している可燃性物質内に浸透して可燃性物質の蓄熱を除去して効果的に防火が行える。
【0024】
【実施例】
この発明の第1実施例を図1により説明する。なお、この実施例では、閉鎖空間の防火システムの一例としてRDF(ゴミ固形燃料)貯槽1の防火システムについて説明する。そのため、防火システムの説明に先立って、まず、RDF貯槽1が用いられるRDF発電設備について説明する。
【0025】
RDF発電設備(図示せず)とは、家庭の生ゴミや紙、木屑、プラスチックなどの可燃性のゴミを固形化し、燃料として発電に再利用するものであり、ゴミを熱圧縮、成形してRDF2を製造する製造設備(図示せず)と、RDF2を備蓄するRDF貯槽1と、RDF2を発電のために燃焼する燃焼設備(図示せず)とを有している。可燃性物質の一例としてのRDF2は、数cm単位で成形されており、貯留性、輸送性、燃焼性に優れる。
【0026】
RDF製造設備(図示せず)で製造されたRDF2は、ベルトコンベア(図示せず)で略四角筒状の搬入経路3内を搬送される。そして、RDF貯槽1の上部に設けられた搬入口4からRDF貯槽1内に適宜搬入され、RDF貯槽1内の下部から滞積されて備蓄される。また、RDF貯槽1の下部に設けられた搬出口5から適宜搬出され、図示しないベルトコンベアで略四角筒状の搬出経路6内を搬送されて燃焼設備(図示せず)に送られる。
【0027】
このように、RDF貯槽1は、流入口の一例としての搬入口4および搬出口5から搬入経路3および搬出経路6を介して外気の流入が可能であるが、可燃性物質が備蓄される比較的密閉された閉鎖空間7であり、その容積は例えば4000m3の大容積を有する。また、メンテナンス時などを除いて、通常下部から1/2程度の内容積がRDF2が滞積されて備蓄されている。
【0028】
この閉鎖空間7は、搬入口4および搬出口5から酸素濃度22%程度の燃焼可能な酸素濃度を有する外気が流入可能であり、また、下部のRDF2ほど滞積時間が長期であり、且つその上方向にも滞積していることから、RDF2の酸化及び嫌気性発酵による熱の蓄積及び水素やメタン等の可燃性ガスの発生により自然発火や爆発の恐れがある。
【0029】
そのため、この第1実施例の防火システムは、第1の防火装置10と第2の防火装置20と酸素濃度測定装置30と制御盤40とを備えた構成となっており、これにより、閉鎖空間7内の酸素濃度を低減して不燃焼酸素濃度以下にして、また、備蓄されるRDF2以外に発生する可燃性ガスの抑制、備蓄されるRDF2の温度の低下を行い、RDF貯槽1内において火災が発生しないようにしている。
【0030】
まず、第1の防火装置10について説明すると、第1の防火装置10は、第1の吸引手段の一例としてのポンプ11と、第1の燃焼手段の一例としてのボイラー12と、第1の冷却手段の一例としての冷却装置13と、第1の循環経路の一例としての循環経路14とを有する。
【0031】
この第1の防火装置10は、例えば搬出口5付近に設けられた循環経路14の取込口15からポンプ11により閉鎖空間7内の空気が取り込まれる。そして、この吸引した空気を必要であれば圧縮して、ボイラー12により燃焼させる。すると、吸引空気中の可燃性ガスおよび酸素が燃焼により消費され、二酸化炭素が生成されることにより、可燃性ガスおよび酸素が低減され、且つ二酸化炭素が増加した二酸化炭素富化空気が得られる。この二酸化炭素富化空気は、冷却装置13により冷却されて、水分除去及び常温に戻され、例えば搬入口4および搬出口5付近に設けられた循環経路14の放出口16a、16bを経て閉鎖空間7内に供給される。
【0032】
つぎに、第2の防火装置20について説明すると、第2の防火装置20は、第2の吸引手段の一例としてのポンプ21と、第1の窒素富化手段の一例としての酸素富化空気と窒素富化空気とを分離する酸素透過性に優れた窒素富化膜22と、第2の循環経路の一例としての循環経路23とを有する。
【0033】
この第2の防火装置20は、例えば搬出口5付近に設けられた循環経路23の取込口24からポンプ21により閉鎖空間7内の空気が取り込まれる。そして、この吸引した空気を必要であれば圧縮して、酸素富化空気と窒素富化空気とを分離する酸素透過性に優れた窒素富化膜に接触させる。すると、吸引空気から、酸素が分離されて大気中に排出され、酸素を低減した窒素富化空気が得られる。この窒素富化空気は、例えば搬入口4および搬出口5付近に設けられた循環経路23の放出口25a、25bを経て閉鎖空間7内に供給される。
【0034】
なお、窒素富化膜としては、例えば、ポリジメチルシロキサン等の有機高分子からなる均一膜または複合膜であり、さらに前記窒素富化膜が中空部を有する円筒形をなし、これを1ユニットとし、ユニットを多数集合したモジュール型とすると、空気から窒素富化空気を効率よく得ることができる。
【0035】
最後に、酸素濃度測定装置30および制御盤40について説明すると、酸素濃度測定装置30は閉鎖空間7内の酸素濃度を測定するものであり、制御盤40は第1の防火装置10と第2の防火装置20と酸素濃度測定装置30に連結されており、酸素濃度測定装置30により測定された酸素濃度を不燃焼酸素濃度に維持するように第1の防火装置10および第2の防火装置20の運転制御を行うものである。
【0036】
次に、本実施例の作動について説明する。制御盤40の指示に基づいて、第1の防火装置10および第2の防火装置20が始動すると、閉鎖空間7内の空気が取り込まれ、生成した二酸化炭素富化空気および窒素富化空気が閉鎖空間7内に戻される。酸素濃度測定装置30は、閉鎖空間7内の酸素濃度を計測しており、その測定結果を刻々と制御盤40に出力する。
【0037】
第1の防火装置10および第2の防火装置20による二酸化炭素富化空気および窒素富化空気の供給は、閉鎖空間7内が燃焼不可能な酸素濃度(不燃焼酸素濃度)になるまで続けられるとともに、ポンプ11、21の運転速度を制御することで二酸化炭素富化空気および窒素富化空気の供給量をコントロールしながら、閉鎖空間7内の酸素濃度を不燃焼酸素濃度に維持する。不燃焼酸素濃度は、例えば10%程度であるが、設置条件等により適宜決定される。
【0038】
この防火システムは、第1の防火装置10により、閉鎖空間7内から吸引した空気から二酸化炭素富化空気を生成して閉鎖空間7内に戻すことを繰り返し行うことにより、閉鎖空間7内を不燃焼酸素濃度以下にして、不燃焼雰囲気とすることができ、また、閉鎖空間7内で生成した可燃性ガスも燃焼により消費されるので、閉鎖空間7内の可燃性ガスが低減され、爆発の恐れがなくなる。さらに、二酸化炭素富化空気を冷却して閉鎖空間7内に戻すので、RDF2の酸化反応および蓄熱を防止し、また、RDF2の水分含有率が上昇して後工程の燃焼設備(図示せず)での燃焼時にダイオキシンが発生することを防止することができる。
【0039】
また、この防火システムは、第2の防火装置20により、閉鎖空間7内から吸引した空気から窒素富化空気を生成して閉鎖空間7に戻すことを繰り返し行うことにより、閉鎖空間7内を不燃焼酸素濃度以下にして、不燃焼雰囲気とすることができる。
【0040】
さらに、この防火システムは、第1の防火装置10と第2の防火装置20を併用することで、大容量の閉鎖空間7であっても、閉鎖空間7内の酸素濃度を低減して不燃焼酸素濃度以下にしやすくすることができる。なお、貯槽1の大きさや貯蔵物の対象に応じて、第1の防火装置10又は第2の防火装置20の一方としてもよい。
【0041】
この発明の第2実施例を図2により説明する。この第2実施例と前記第1実施例との主な相違点は、第1の防火装置10および第2の防火装置20の代わりに、第3の防火装置50および第4の防火装置60が設けられていることである。
【0042】
まず、第3の防火装置50について説明すると、第3の防火装置50は、第3の吸引手段の一例としてのポンプ51と、第2の窒素富化手段の一例としての窒素富化膜52と、第2の燃焼手段の一例としてのボイラー53と、第2の冷却手段の一例としての冷却装置54と、第3の循環経路の一例としての循環経路55とを有する。
【0043】
この第3の防火装置50は、例えば搬出口5付近に設けられた循環経路55の取込口56からポンプ51により閉鎖空間7内の空気が取り込まれる。そして、この吸引した空気を必要であれば圧縮して、酸素富化空気と窒素富化空気とを分離する酸素透過性に優れた窒素富化膜52に接触させる。すると、吸引空気から酸素富化空気と窒素富化空気が得られる。この分離された窒素富化空気は、例えば搬出口5付近に設けられた循環経路55の放出口57aを経て閉鎖空間7内に供給される。また、分離された酸素富化空気をボイラー53により燃焼させる。すると、酸素富化空気中の可燃性ガスおよび酸素が燃焼により消費され、二酸化炭素が生成されることにより、可燃性ガスおよび酸素が低減され、且つ二酸化炭素が増加した二酸化炭素富化空気が得られる。この二酸化炭素富化空気は、冷却装置54により冷却されて、水分除去及び常温に戻され、例えば搬入口4および搬出口5付近に設けられた循環経路55の放出口57b、57cを経て閉鎖空間7内に供給される。なお、窒素富化空気を搬入口4近くからも閉鎖空間7内に供給するようにしてもよい。
【0044】
つぎに、第4の防火装置60について説明すると、第4の防火装置60は、第4の吸引手段の一例としてのポンプ61と、第3の燃焼手段の一例としてのボイラー62と、第3の冷却手段の一例としての冷却装置63と、第3の窒素富化手段の一例としての酸素富化空気と窒素富化空気とを分離する酸素透過性に優れた窒素富化膜64と、第4の循環経路の一例としての循環経路65とを有する。
【0045】
この第4の防火装置60は、例えば搬出口5付近に設けられた循環経路65の取込口66からポンプ61により閉鎖空間7内の空気が取り込まれる。そして、この吸引した空気を必要であれば圧縮して、ボイラー62により燃焼させる。すると、吸引空気中の可燃性ガスおよび酸素が燃焼により消費され、二酸化炭素が生成されることにより、可燃性ガスおよび酸素が低減され、且つ二酸化炭素が増加した二酸化炭素富化空気が得られる。この二酸化炭素富化空気は、冷却装置63により冷却されて、水分除去及び常温に戻される。つぎに、冷却した二酸化炭素富化空気を酸素富化空気と窒素富化空気とを分離する酸素透過性に優れた窒素富化膜64に接触させる。すると、二酸化炭素富化空気から酸素富化空気が除去された二酸化炭素および窒素富化空気が得られる。この二酸化炭素および窒素富化空気は、例えば搬入口4および搬出口5付近に設けられた循環経路65の放出口67a、67bを経て閉鎖空間7内に供給される。
【0046】
次に、本実施例の作動について説明する。制御盤40の指示に基づいて、第3の防火装置50および第4の防火装置60が始動すると、閉鎖空間7内の空気が取り込まれ、生成した窒素富化空気、二酸化炭素富化空気、二酸化炭素および窒素富化空気が閉鎖空間7内に戻される。酸素濃度測定装置30は、閉鎖空間7内の酸素濃度を計測しており、その測定結果を刻々と制御盤40に出力する。
【0047】
第3の防火装置50および第4の防火装置60による窒素富化空気、二酸化炭素富化空気、二酸化炭素および窒素富化空気の供給は、閉鎖空間7内が燃焼不可能な酸素濃度(不燃焼酸素濃度)になるまで続けられるとともに、ポンプ51、61の運転速度を制御することで窒素富化空気、二酸化炭素富化空気、二酸化炭素および窒素富化空気の供給量をコントロールしながら、閉鎖空間7内の酸素濃度を不燃焼酸素濃度に維持する。不燃焼酸素濃度は、例えば10%程度であるが、設置条件等により適宜決定される。
【0048】
この防火システムは、第3の防火装置50により、閉鎖空間7内から吸引した空気から窒素富化空気および二酸化炭素富化空気を生成して閉鎖空間7内に戻すことを繰り返し行うことにより、閉鎖空間7内を不燃焼酸素濃度以下にして、不燃焼雰囲気とすることができ、また、閉鎖空間7内で生成した可燃性ガスも燃焼により消費されるので、閉鎖空間7内の可燃性ガスが低減され、爆発の恐れがなくなる。さらに、二酸化炭素富化空気を冷却して閉鎖空間7内に戻すので、RDF2の酸化反応および蓄熱を防止し、また、RDF2の水分含有率が上昇して後工程の燃焼設備(図示せず)での燃焼時にダイオキシンが発生することを防止することができる。このように第1実施例の第1の防火装置10と第2の防火装置20を備えた防災システムと同等の効果が得られる他に、閉鎖空間7内から吸引した空気の酸素濃度を効率よく低減させて閉鎖空間7内に戻すことができ、また、循環経路55および吸引手段51が1つで済むので設備効率がよい。
【0049】
また、この防火システムは、第4の防火装置60により、閉鎖空間7内から吸引した空気から二酸化炭素窒素および窒素富化空気を生成して閉鎖空間7内に戻すことを繰り返し行うことにより、閉鎖空間7内を不燃焼酸素濃度以下にして、不燃焼雰囲気とすることができ、また、閉鎖空間7内で生成した可燃性ガスも燃焼により消費されるので、閉鎖空間7内の可燃性ガスが低減され、爆発の恐れがなくなる。さらに、二酸化炭素窒素および窒素富化空気を冷却して閉鎖空間7内に戻すので、RDF2の酸化反応および蓄熱を防止し、また、RDF2の水分含有率が上昇して後工程の燃焼設備(図示せず)での燃焼時にダイオキシンが発生することを防止することができる。このように第1実施例の第1の防火装置10と第2の防火装置20を備えた防災システムと同等の効果が得られる他に、閉鎖空間7内から吸引した空気の酸素濃度を効率よく低減させて閉鎖空間7内に戻すことができ、また、循環経路65および吸引手段61が1つで済むので設備効率がよい。また、貯槽1の容量等によって、第3の防火装置50あるいは第4の防火装置60のいずれか一方としてもよい。
【0050】
なお、前記全実施例における第1〜第3の窒素富化手段は、酸素及び窒素分子の分別が可能な分子ふるいとしてもよい。分子ふるいは、例えばゼオライト(沸石)や活性炭等を用いることができ、特に工業的酸素濃縮法(PSA)として知られる方法を適用することが好ましい。この工業的酸素濃縮法は、例えばゼオライトまたは活性炭の酸素吸着−脱着時間の間隔と窒素吸着−脱着時間の間隔が相違することを利用し、それぞれの気体含有率の多いフラクション(分画)を所定時間でもって選択的に取り出すものである。このようにすれば、空気中の窒素と酸素が分別され、窒素富化空気および酸素富化空気が生成される。
【0051】
また、前記全実施例における第1および第3の窒素富化手段は、酸素吸着性の固体を用いても良い。この固体は、圧縮空気と接触させることで、圧縮空気に含まれる酸素を吸着し、窒素富化空気を生成するものである。このタイプの固体としては、例えば、アスコルビン酸ナトリウム、ヘキサノール、ヘプタノールのような有機物質や、鉄、銅、亜鉛、すず等の金属や、硫酸鉄、硫化鉄、酸化鉄や、イオウと炭酸カリウムのような組合せの多硫化化合物とカリウム化合物の混合物、あるいは前記の複数の混合物などが挙げられるが、酸素との反応の際に著しく発熱するため、生成した窒素富化空気を冷却して閉鎖空間内に戻すことが望ましい。
【0052】
さらに、前記全実施例における第1および第3の窒素富化手段は、酸素を吸着することのできる液体を用いても良い。この液体は、圧縮空気と接触させることで、圧縮空気に含まれる酸素を吸着し、窒素富化空気を生成するものである。このタイプの液体としては、例えば、人工血液等が挙げられる。
【0053】
前記全実施例において、第1〜第4の防火装置により生成された二酸化炭素富化空気、窒素富化空気、二酸化炭素および窒素富化空気は、閉鎖空間内への外気の流入が可能な流入口付近に供給されるようにしたので、燃焼可能な酸素濃度を有する外気と接触する流入口付近の酸素濃度を素早く低下させるため、より効果的に防火が行える。
【0054】
また、前記全実施例において、第1〜第4の防火装置に取り込まれる空気は、閉鎖空間内への外気の流入が可能な流入口付近から取り込まれるようにしたので、取り込むことで酸素濃度が高めの流入口付近の酸素濃度を低下させることができる。
【0055】
特に、前記全実施例において、搬出口付近の可燃性物質は、酸素濃度22%程度の燃焼可能な酸素濃度を有する外気が流入可能であり、また、閉鎖空間内における滞積時間が長期であり、且つその上方向にも滞積していることから、酸化及び嫌気性発酵による熱の蓄積及び水素やメタン等の可燃性ガスの発生により自然発火や爆発の恐れが一番高い。そのため、閉鎖空間内への外気の流入が可能であり、且つ常時可燃性物質(RDF)で覆われている閉鎖空間の下部の搬出口付近から、第1〜第4の防火装置により空気を取り込み、また、第1〜第4の防火装置により生成された二酸化炭素富化空気、窒素富化空気、二酸化炭素および窒素富化空気が供給されるようにしたので、より火災が発生しやすい箇所を効果的に防火を行うことができる。
【0056】
なお、前記第1〜第4防火装置により得られる二酸化炭素富化空気、窒素富化空気、二酸化炭素および窒素富化空気のうち、二酸化炭素富化空気は、空気との比重が大きく浸透性に優れており、冷却効果もある。そのため、二酸化炭素富化空気は、特に搬出口付近に供給されるとよい。これにより、長時間滞留している可燃性物質内に浸透して可燃性物質の蓄熱を除去して効果的に防火が行える。
【0057】
さらに、前記全実施例において、第1〜第4の防火装置に取り込まれる空気は、閉鎖空間内への外気の流入が可能な搬入口や搬出口等の流入口に接続された経路、例えば搬入経路や搬出経路から取り込まれ、この空気から得られた二酸化炭素富化空気、窒素富化空気、二酸化炭素および窒素富化空気が搬入口や搬出口等の流入口から閉鎖空間内に供給されるようにすると、流入口から燃焼可能な酸素濃度を有する外気が流入しなくなるため、より効果的に防火が行える。
【0058】
なお、前記防火システムは、閉鎖空間の防火システムとして、閉鎖空間内で火災が発生しないようにしたものであるが、万が一火災が発生してしまった場合の消火システムとして使用しても良い。
【0059】
【発明の効果】
以上のように構成したので、可燃性物質が備蓄される比較的密閉された閉鎖空間の空気を有効利用して、閉鎖空間内を不燃焼酸素濃度として不燃焼雰囲気とすることができ、閉鎖空間内で火災が発生しないようにすることができる。
【図面の簡単な説明】
【図1】本発明の第1実施例を示す図である。
【図2】本発明の第2実施例を示す図である。
【符号の説明】
2 RDF(可燃性物質)
7 閉鎖空間
10 第1の防火装置
11 ポンプ(第1の吸引手段)
12 ボイラー(第1の燃焼手段)
13 冷却装置(第1の冷却手段)
14 循環経路(第1の循環経路)
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a fire prevention system for a relatively enclosed space in which a large amount of flammable substances are stored, such as RDF (solid waste fuel) storage tanks, silos, coal storage grounds, garbage disposal grounds, rubber and plastic storage tanks. In particular, the present invention relates to a fire prevention system for a relatively sealed closed space in which a large amount of combustible material is stocked, in which a person usually does not enter or exit, or a person does not enter or exit.
[0002]
[Prior art]
In order for substances in the atmosphere to burn, oxygen in the air needs to be several tens of percents. Utilizing this fact, there is a facility that extinguishes fire by releasing an incombustible gas having an oxygen concentration of 15% or less in a fire to reduce the oxygen concentration (see, for example, Patent Document 1).
[0003]
[Patent Document 1]
JP 7-237907 A
[0004]
[Problems to be solved by the invention]
However, in a relatively closed space where a large amount of flammable substances are stored, such as RDF (solid waste fuel) storage tanks, silos, coal storage grounds, waste disposal sites, rubber and plastic storage tanks, Combustible substances may ignite spontaneously due to accumulation, generation of flammable gases, heat accumulation due to oxidation, etc., leading to a fire. Such a fire is surrounded by a large amount of flammable substances and burns in an oxygen-deficient state, so it does not lead to a large fire and can be extinguished with gas. However, since the combustible material combusted in the smoldering state is carbonized, the work of carrying out the carbonized combustible material out of the enclosed space becomes complicated, and if the fire extinguishing is delayed, the carbonized combustible material is closed. If the gas penetrates the entire space, it becomes difficult to extinguish the fire.
[0005]
An object of the present invention is to prevent a fire from occurring in a relatively sealed space where flammable substances are stored.
[0006]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a third suction means for sucking air in a relatively sealed closed space where a combustible substance is stored, and a second suction means for separating the air into oxygen-enriched air and nitrogen-enriched air. Nitrogen enrichment means, second combustion means for combusting the oxygen-enriched air to obtain a carbon dioxide-enriched air with reduced combustible gas and oxygen, and a second for cooling the carbon dioxide-enriched air A third fire prevention device having a cooling means and a third circulation path that supplies the carbon dioxide-enriched air and the nitrogen-enriched air into the enclosed space is provided.
[0007]
According to a second aspect of the present invention, there is provided a fourth suction means for sucking air in a relatively sealed space where combustible substances are stored, and carbon dioxide rich in which combustible gas and oxygen are reduced by burning the air. A third combustion means for obtaining enriched air; a third cooling means for cooling the carbon dioxide enriched air; and a third combustion means for obtaining carbon dioxide and nitrogen enriched air with reduced oxygen from the carbon dioxide enriched air. It is characterized by comprising a fourth fire prevention device having nitrogen enriching means and a fourth circulation path for supplying the carbon dioxide and nitrogen enriched air into the enclosed space.
[0008]
Further, the carbon dioxide-enriched air, the nitrogen-enriched air, the carbon dioxide, and the nitrogen-enriched air are characterized in that they are supplied in the vicinity of an inflow port where outside air can flow into the enclosed space.
[0009]
In addition, the air is taken in from a path connected to an inflow port that allows inflow of outside air into the closed space.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
In light of the fact that when a fire occurs in a relatively closed space where flammable substances are stored, the present inventor will cause damage as described above. I thought it would be good to prevent this from occurring.
[0014]
For this reason, we thought it would be best to suppress the three combustible elements, combustibles, oxygen, and temperature as much as possible. In particular, with respect to oxygen among the three elements of combustion, the oxygen concentration in the enclosed space is reduced to below the incombustible oxygen concentration, and further, combustible gas generated in addition to the combustible substances stored. Is to reduce the temperature of the combustible material stored.
[0015]
Therefore, as a disaster prevention system, air in a relatively closed space where combustible substances are stored is sucked by the first suction means, and the sucked air is burned by the first combustion means to burn the combustible gas. And a carbon dioxide-enriched air with reduced oxygen, and a first fire prevention device that circulates by supplying the obtained carbon dioxide-enriched air into the enclosed space through the first circulation path. As a result, the oxygen concentration in the enclosed space is reduced to be equal to or lower than the incombustible oxygen concentration, and the combustible gas generated from the stored combustible substance is reduced. The obtained carbon dioxide-enriched air is cooled by the first cooling means, and the cooled carbon dioxide-enriched air is supplied and circulated in the closed space through the first circulation path, so that it is stored. Oxidation reaction and temperature rise due to increased humidity of flammable substances were suppressed.
[0016]
Further, as a disaster prevention system, in addition to the first fire prevention device, the second suction means sucks air in a relatively sealed closed space where flammable substances are stored, and the first air is sucked from the sucked air. A nitrogen-enriched air with reduced oxygen was obtained by the nitrogen-enriching means, and a second fire protection device was provided for supplying and circulating the obtained nitrogen-enriched air into the closed space through the second circulation path. In this way, by using the first fire prevention device and the second fire prevention device in combination, even in a large-capacity closed space, the oxygen concentration in the closed space can be reduced and easily reduced to an incombustible oxygen concentration or less. it can.
[0017]
As another form of the disaster prevention system, the air in the relatively closed space where the flammable substance is stored is sucked by the third suction means, and the sucked air is oxygenated by the second nitrogen enrichment means. Separation into enriched air and nitrogen enriched air, and the separated oxygen enriched air is combusted by the second combustion means to obtain a carbon dioxide enriched air in which combustible gas and oxygen are reduced. A third fire prevention device that cools the carbon dioxide-enriched air by the second cooling means, and supplies and circulates the cooled carbon dioxide-enriched air and the separated nitrogen-enriched air into the closed space through the third circulation path. Equipped with. Thereby, in addition to obtaining the same effect as the disaster prevention system including the first fire prevention device and the second fire prevention device, the oxygen concentration of the air sucked from the enclosed space is efficiently reduced and returned to the enclosed space. Moreover, since only one circulation path and suction means are required, the equipment efficiency is high.
[0018]
As another form of the disaster prevention system, the fourth suction means sucks air in a relatively sealed closed space where combustible substances are stored, and the sucked air is burned by the third combustion means. The carbon dioxide-enriched air with reduced combustible gas and oxygen is obtained, and the obtained carbon dioxide-enriched air is cooled by the third cooling means. Carbon dioxide and nitrogen-enriched air with reduced oxygen are obtained by the nitrogen-enriching means, and the obtained carbon dioxide and nitrogen-enriched air are supplied and circulated in the enclosed space through the fourth circulation path. Equipped with equipment. Thereby, in addition to obtaining the same effect as the disaster prevention system including the first fire prevention device and the second fire prevention device, the oxygen concentration of the air sucked from the enclosed space is efficiently reduced and returned to the enclosed space. Moreover, since only one circulation path and suction means are required, the equipment efficiency is high.
[0019]
The carbon dioxide-enriched air, nitrogen-enriched air, carbon dioxide, and nitrogen-enriched air obtained by the first to fourth fire prevention devices are supplied in the vicinity of the inlet where the outside air can flow into the enclosed space. By doing so, the oxygen concentration in the vicinity of the inflow port that comes into contact with the outside air having combustible oxygen concentration is quickly reduced, so that fire prevention can be performed more effectively.
[0020]
Moreover, if the air taken in by the first to fourth fire prevention devices is taken from the vicinity of the inlet where the outside air can flow into the closed space, the oxygen in the vicinity of the inlet having a higher oxygen concentration is obtained by taking in the air. The concentration can be reduced.
[0021]
Furthermore, the air taken in by the first to fourth fire prevention devices is taken in from a path connected to an inflow port that allows inflow of outside air into the enclosed space, and carbon dioxide-enriched air obtained from this air, If nitrogen-enriched air, carbon dioxide, and nitrogen-enriched air are supplied into the closed space from the inlet, the outside air having a combustible oxygen concentration does not flow from the inlet, so that fire prevention is more effective. Yes.
[0022]
The first to fourth fire protection devices measure the oxygen concentration in the enclosed space with the oxygen concentration measuring device and maintain the oxygen concentration measured with the oxygen concentration measuring device with the control panel at the incombustible oxygen concentration. If this control is performed, the oxygen concentration can be managed with higher accuracy.
[0023]
By the way, among the carbon dioxide-enriched air, nitrogen-enriched air, carbon dioxide and nitrogen-enriched air obtained by the first to fourth fire prevention devices, the carbon dioxide-enriched air has a large specific gravity with air and is permeable. Excellent and has cooling effect. Therefore, the carbon dioxide-enriched air is preferably supplied in the vicinity of the inflow port in which outside air can flow into the enclosed space and is always covered with a combustible substance. Thereby, it permeates into the combustible substance staying for a long time, and the heat storage of the combustible substance is removed to effectively prevent fire.
[0024]
【Example】
A first embodiment of the present invention will be described with reference to FIG. In this embodiment, a fire prevention system for an RDF (garbage solid fuel) storage tank 1 will be described as an example of a fire prevention system in a closed space. Therefore, prior to the description of the fire prevention system, first, an RDF power generation facility in which the RDF storage tank 1 is used will be described.
[0025]
RDF power generation equipment (not shown) is to solidify combustible garbage such as household garbage, paper, wood scrap, and plastic and reuse it for power generation as fuel. It has a manufacturing facility (not shown) for manufacturing RDF2, an RDF storage tank 1 for storing RDF2, and a combustion facility (not shown) for burning RDF2 for power generation. RDF2 as an example of a combustible substance is molded in units of several centimeters, and is excellent in storage, transportability, and combustibility.
[0026]
The RDF 2 manufactured by an RDF manufacturing facility (not shown) is transported in a substantially square cylindrical carrying-in path 3 by a belt conveyor (not shown). And it is suitably carried in into the RDF storage tank 1 from the inlet 4 provided in the upper part of the RDF storage tank 1, and is accumulated from the lower part in the RDF storage tank 1 and stockpiled. Moreover, it is suitably carried out from the carry-out port 5 provided in the lower part of the RDF storage tank 1, is conveyed in the substantially square cylindrical carrying-out path 6 by a belt conveyor (not shown), and is sent to a combustion facility (not shown).
[0027]
As described above, the RDF storage tank 1 allows inflow of outside air through the carry-in route 3 and the carry-out route 6 from the carry-in port 4 and the carry-out port 5 as an example of the inflow port, but the combustible substance is stored. A closed space 7 that is hermetically sealed and has a large volume of, for example, 4000 m 3. In addition, except for maintenance, etc., the internal volume of about 1/2 from the lower part is usually stored with RDF2 accumulated.
[0028]
The closed space 7 is capable of flowing in outside air having a combustible oxygen concentration of about 22% from the carry-in port 4 and the carry-out port 5, and the lower RDF 2 has a longer accumulation time, and its Since it is also accumulated in the upward direction, there is a risk of spontaneous ignition or explosion due to the accumulation of heat due to oxidation of RDF2 and anaerobic fermentation and the generation of flammable gases such as hydrogen and methane.
[0029]
For this reason, the fire prevention system of the first embodiment is configured to include the first fire prevention device 10, the second fire prevention device 20, the oxygen concentration measurement device 30, and the control panel 40. 7 to reduce the oxygen concentration below the non-combustible oxygen concentration, to suppress combustible gas generated in addition to the stored RDF2, to reduce the temperature of the stored RDF2, fire in the RDF storage tank 1 It is trying not to occur.
[0030]
First, the first fire prevention device 10 will be described. The first fire prevention device 10 includes a pump 11 as an example of a first suction unit, a boiler 12 as an example of a first combustion unit, and a first cooling unit. The cooling device 13 is an example of the means, and the circulation path 14 is an example of the first circulation path.
[0031]
In the first fire protection device 10, for example, air in the closed space 7 is taken in by the pump 11 from the intake port 15 of the circulation path 14 provided near the carry-out port 5. Then, if necessary, the sucked air is compressed and burned by the boiler 12. Then, combustible gas and oxygen in the suction air are consumed by combustion, and carbon dioxide is generated, whereby carbon dioxide-enriched air in which the combustible gas and oxygen are reduced and carbon dioxide is increased is obtained. This carbon dioxide-enriched air is cooled by the cooling device 13 to remove water and return to room temperature, and is, for example, closed space via the discharge ports 16a and 16b of the circulation path 14 provided near the carry-in port 4 and the carry-out port 5. 7 is supplied.
[0032]
Next, the second fire protection device 20 will be described. The second fire protection device 20 includes a pump 21 as an example of a second suction unit, and oxygen-enriched air as an example of a first nitrogen enrichment unit. A nitrogen-enriched membrane 22 having excellent oxygen permeability for separating nitrogen-enriched air and a circulation path 23 as an example of a second circulation path are included.
[0033]
In the second fire protection device 20, for example, the air in the closed space 7 is taken in by the pump 21 from the intake port 24 of the circulation path 23 provided in the vicinity of the carry-out port 5. Then, if necessary, the sucked air is compressed and brought into contact with a nitrogen-enriched film excellent in oxygen permeability for separating oxygen-enriched air and nitrogen-enriched air. Then, oxygen is separated from the suction air and discharged into the atmosphere, and nitrogen-enriched air with reduced oxygen is obtained. This nitrogen-enriched air is supplied into the closed space 7 via the discharge ports 25a and 25b of the circulation path 23 provided near the carry-in port 4 and the carry-out port 5, for example.
[0034]
The nitrogen-enriched film is, for example, a uniform film or a composite film made of an organic polymer such as polydimethylsiloxane, and the nitrogen-enriched film has a cylindrical shape having a hollow portion, which is a unit. If a module type in which a large number of units are assembled, nitrogen-enriched air can be efficiently obtained from air.
[0035]
Finally, the oxygen concentration measuring device 30 and the control panel 40 will be described. The oxygen concentration measuring device 30 measures the oxygen concentration in the closed space 7, and the control panel 40 includes the first fire prevention device 10 and the second fire prevention device 10. The first fire prevention device 10 and the second fire prevention device 20 are connected to the fire prevention device 20 and the oxygen concentration measurement device 30 so as to maintain the oxygen concentration measured by the oxygen concentration measurement device 30 at the non-combustion oxygen concentration. Operation control is performed.
[0036]
Next, the operation of this embodiment will be described. When the first fire protection device 10 and the second fire protection device 20 are started based on an instruction from the control panel 40, the air in the closed space 7 is taken in and the generated carbon dioxide-enriched air and nitrogen-enriched air are closed. It is returned to the space 7. The oxygen concentration measuring device 30 measures the oxygen concentration in the closed space 7 and outputs the measurement result to the control panel 40 every moment.
[0037]
The supply of carbon dioxide-enriched air and nitrogen-enriched air by the first fire prevention device 10 and the second fire prevention device 20 is continued until the oxygen concentration in the closed space 7 becomes an incombustible oxygen concentration (non-combustion oxygen concentration). At the same time, the oxygen concentration in the closed space 7 is maintained at the incombustible oxygen concentration while controlling the supply rates of the carbon dioxide-enriched air and the nitrogen-enriched air by controlling the operation speeds of the pumps 11 and 21. The incombustible oxygen concentration is, for example, about 10%, but is appropriately determined depending on installation conditions and the like.
[0038]
In this fire prevention system, the first fire prevention device 10 repeatedly generates carbon dioxide-enriched air from the air sucked from the closed space 7 and returns it to the closed space 7, thereby preventing the inside of the closed space 7. The combustion oxygen concentration can be reduced to a non-combustion atmosphere, and the combustible gas generated in the closed space 7 is also consumed by the combustion, so that the combustible gas in the closed space 7 is reduced and explosion occurs. No fear. Furthermore, since the carbon dioxide-enriched air is cooled and returned to the closed space 7, the oxidation reaction and heat storage of RDF 2 are prevented, and the water content of RDF 2 rises to increase the post-stage combustion equipment (not shown). It is possible to prevent dioxins from being generated during combustion.
[0039]
In addition, this fire prevention system repeatedly generates nitrogen-enriched air from the air sucked from the enclosed space 7 by the second fire prevention device 20 and returns it to the enclosed space 7, thereby preventing the inside of the enclosed space 7. The combustion oxygen concentration can be reduced to a non-combustion atmosphere.
[0040]
Furthermore, this fire prevention system uses the first fire prevention device 10 and the second fire prevention device 20 in combination to reduce the oxygen concentration in the closed space 7 even if it is a large-capacity closed space 7, thereby preventing non-combustion. The oxygen concentration can be easily reduced. In addition, it is good also as one of the 1st fire prevention apparatus 10 or the 2nd fire prevention apparatus 20 according to the magnitude | size of the storage tank 1, or the object of stored goods.
[0041]
A second embodiment of the present invention will be described with reference to FIG. The main difference between the second embodiment and the first embodiment is that a third fire prevention device 50 and a fourth fire prevention device 60 are used instead of the first fire prevention device 10 and the second fire prevention device 20. It is provided.
[0042]
First, the third fire prevention device 50 will be described. The third fire prevention device 50 includes a pump 51 as an example of a third suction unit, and a nitrogen enriched film 52 as an example of a second nitrogen enrichment unit. And a boiler 53 as an example of the second combustion means, a cooling device 54 as an example of the second cooling means, and a circulation path 55 as an example of the third circulation path.
[0043]
In the third fire prevention device 50, for example, air in the closed space 7 is taken in by a pump 51 from an intake port 56 of a circulation path 55 provided in the vicinity of the carry-out port 5. Then, if necessary, the sucked air is compressed and brought into contact with a nitrogen-enriched film 52 having excellent oxygen permeability that separates oxygen-enriched air and nitrogen-enriched air. Then, oxygen-enriched air and nitrogen-enriched air are obtained from the suction air. The separated nitrogen-enriched air is supplied into the closed space 7 through, for example, the discharge port 57a of the circulation path 55 provided near the carry-out port 5. Further, the separated oxygen-enriched air is burned by the boiler 53. Then, the combustible gas and oxygen in the oxygen-enriched air are consumed by combustion, and carbon dioxide is generated to obtain carbon dioxide-enriched air in which the combustible gas and oxygen are reduced and carbon dioxide is increased. It is done. This carbon dioxide-enriched air is cooled by the cooling device 54 to be removed from water and returned to room temperature. For example, the closed space passes through the discharge ports 57b and 57c of the circulation path 55 provided near the carry-in port 4 and the carry-out port 5. 7 is supplied. Nitrogen-enriched air may also be supplied into the closed space 7 from near the carry-in port 4.
[0044]
Next, the fourth fire protection device 60 will be described. The fourth fire protection device 60 includes a pump 61 as an example of a fourth suction unit, a boiler 62 as an example of a third combustion unit, and a third A cooling device 63 as an example of a cooling means, a nitrogen-enriched film 64 having excellent oxygen permeability for separating oxygen-enriched air and nitrogen-enriched air as an example of a third nitrogen-enriching means, and a fourth And a circulation path 65 as an example of the circulation path.
[0045]
In the fourth fire protection device 60, for example, air in the closed space 7 is taken in by a pump 61 from an intake port 66 of a circulation path 65 provided near the carry-out port 5. Then, if necessary, the sucked air is compressed and burned by the boiler 62. Then, combustible gas and oxygen in the suction air are consumed by combustion, and carbon dioxide is generated, whereby carbon dioxide-enriched air in which the combustible gas and oxygen are reduced and carbon dioxide is increased is obtained. The carbon dioxide-enriched air is cooled by the cooling device 63 to remove moisture and return to normal temperature. Next, the cooled carbon dioxide-enriched air is brought into contact with a nitrogen-enriched film 64 having excellent oxygen permeability that separates oxygen-enriched air and nitrogen-enriched air. Then, carbon dioxide and nitrogen enriched air from which oxygen enriched air has been removed from the carbon dioxide enriched air is obtained. This carbon dioxide and nitrogen-enriched air is supplied into the closed space 7 via, for example, the discharge ports 67a and 67b of the circulation path 65 provided near the carry-in port 4 and the carry-out port 5.
[0046]
Next, the operation of this embodiment will be described. When the third fire protection device 50 and the fourth fire protection device 60 are started based on an instruction from the control panel 40, the air in the closed space 7 is taken in, and the generated nitrogen-enriched air, carbon dioxide-enriched air, and carbon dioxide are generated. Carbon and nitrogen enriched air is returned to the enclosed space 7. The oxygen concentration measuring device 30 measures the oxygen concentration in the closed space 7 and outputs the measurement result to the control panel 40 every moment.
[0047]
The supply of nitrogen-enriched air, carbon dioxide-enriched air, carbon dioxide, and nitrogen-enriched air by the third fire prevention device 50 and the fourth fire prevention device 60 is an oxygen concentration (non-combustion) in which the enclosed space 7 cannot be combusted. Oxygen concentration) and by controlling the operation speed of the pumps 51 and 61 to control the supply amount of nitrogen-enriched air, carbon dioxide-enriched air, carbon dioxide and nitrogen-enriched air, The oxygen concentration in 7 is maintained at the unburned oxygen concentration. The incombustible oxygen concentration is, for example, about 10%, but is appropriately determined depending on installation conditions and the like.
[0048]
The fire prevention system is closed by repeatedly generating the nitrogen-enriched air and the carbon dioxide-enriched air from the air sucked from the enclosed space 7 by the third fire prevention device 50 and returning it to the enclosed space 7. The inside of the space 7 can be made to have an incombustible oxygen concentration or less to create an incombustible atmosphere, and the combustible gas generated in the closed space 7 is also consumed by combustion. Reduced and no risk of explosion. Furthermore, since the carbon dioxide-enriched air is cooled and returned to the closed space 7, the oxidation reaction and heat storage of RDF 2 are prevented, and the water content of RDF 2 rises to increase the post-stage combustion equipment (not shown). It is possible to prevent dioxins from being generated during combustion. As described above, the same effect as the disaster prevention system including the first fire prevention device 10 and the second fire prevention device 20 of the first embodiment can be obtained, and the oxygen concentration of the air sucked from the enclosed space 7 can be efficiently obtained. It can be reduced and returned to the closed space 7, and since only one circulation path 55 and suction means 51 are required, the facility efficiency is high.
[0049]
The fire prevention system is closed by repeatedly generating carbon dioxide nitrogen and nitrogen-enriched air from the air sucked from the closed space 7 by the fourth fire prevention device 60 and returning it to the closed space 7. The inside of the space 7 can be made to have an incombustible oxygen concentration or less to create an incombustible atmosphere, and the combustible gas generated in the closed space 7 is also consumed by combustion. Reduced and no risk of explosion. Further, since the carbon dioxide nitrogen and the nitrogen-enriched air are cooled and returned to the closed space 7, the oxidation reaction and heat storage of RDF 2 are prevented, and the water content of RDF 2 is increased, so that combustion equipment (see FIG. Dioxin can be prevented from being generated during combustion at the time of (not shown). As described above, the same effect as the disaster prevention system including the first fire prevention device 10 and the second fire prevention device 20 of the first embodiment can be obtained, and the oxygen concentration of the air sucked from the enclosed space 7 can be efficiently obtained. It can be reduced and returned to the closed space 7, and since only one circulation path 65 and suction means 61 are required, the facility efficiency is high. Further, either the third fire prevention device 50 or the fourth fire prevention device 60 may be used depending on the capacity of the storage tank 1 or the like.
[0050]
The first to third nitrogen enriching means in all the embodiments may be molecular sieves capable of separating oxygen and nitrogen molecules. As the molecular sieve, for example, zeolite (zeolite), activated carbon or the like can be used, and it is particularly preferable to apply a method known as an industrial oxygen concentration method (PSA). This industrial oxygen concentration method utilizes the fact that, for example, the oxygen adsorption-desorption time interval of zeolite or activated carbon is different from the nitrogen adsorption-desorption time interval, and each fraction (fraction) having a high gas content is determined. It is taken out selectively with time. In this way, nitrogen and oxygen in the air are separated, and nitrogen-enriched air and oxygen-enriched air are generated.
[0051]
Further, the first and third nitrogen enriching means in all the embodiments may use an oxygen-adsorbing solid. When this solid is brought into contact with compressed air, oxygen contained in the compressed air is adsorbed to generate nitrogen-enriched air. Examples of this type of solid include organic substances such as sodium ascorbate, hexanol, heptanol, metals such as iron, copper, zinc, tin, iron sulfate, iron sulfide, iron oxide, sulfur and potassium carbonate. Examples of such a mixture include a mixture of a polysulfide compound and a potassium compound, or a mixture of a plurality of the above-mentioned compounds. However, since the reaction with oxygen generates a significant amount of heat, the generated nitrogen-enriched air is cooled to form a closed space. It is desirable to return to
[0052]
Further, the first and third nitrogen enriching means in all the embodiments may use a liquid capable of adsorbing oxygen. This liquid, when brought into contact with compressed air, adsorbs oxygen contained in the compressed air and generates nitrogen-enriched air. Examples of this type of liquid include artificial blood.
[0053]
In all the embodiments, the carbon dioxide-enriched air, nitrogen-enriched air, carbon dioxide, and nitrogen-enriched air generated by the first to fourth fire prevention devices are flows that allow inflow of outside air into the enclosed space. Since the gas is supplied in the vicinity of the inlet, the oxygen concentration in the vicinity of the inflow port in contact with the outside air having combustible oxygen concentration is quickly reduced, so that fire prevention can be performed more effectively.
[0054]
In all the above embodiments, the air taken into the first to fourth fire prevention devices is taken from the vicinity of the inlet where the outside air can flow into the closed space. The oxygen concentration in the vicinity of the higher inlet can be reduced.
[0055]
In particular, in all of the above embodiments, the combustible material in the vicinity of the carry-out port can flow in outside air having a combustible oxygen concentration of about 22%, and the accumulation time in the enclosed space is long. In addition, since it is also accumulated in the upward direction, there is the highest risk of spontaneous ignition and explosion due to the accumulation of heat due to oxidation and anaerobic fermentation and the generation of flammable gases such as hydrogen and methane. Therefore, inflow of outside air into the closed space is possible, and air is taken in by the first to fourth fire prevention devices from the vicinity of the outlet at the lower part of the closed space that is always covered with the flammable substance (RDF). In addition, since carbon dioxide-enriched air, nitrogen-enriched air, carbon dioxide and nitrogen-enriched air generated by the first to fourth fire prevention devices are supplied, a place where a fire is more likely to occur Fire protection can be performed effectively.
[0056]
Of the carbon dioxide-enriched air, nitrogen-enriched air, carbon dioxide and nitrogen-enriched air obtained by the first to fourth fire prevention devices, the carbon dioxide-enriched air has a large specific gravity with air and is permeable. Excellent and has cooling effect. Therefore, the carbon dioxide-enriched air is particularly preferably supplied near the carry-out port. Thereby, it permeates into the combustible substance staying for a long time, and the heat storage of the combustible substance is removed to effectively prevent fire.
[0057]
Further, in all of the above embodiments, the air taken into the first to fourth fire prevention devices is connected to an inflow port such as a carry-in port or a carry-out port that allows inflow of outside air into the closed space, for example, carry-in The carbon dioxide-enriched air, nitrogen-enriched air, carbon dioxide, and nitrogen-enriched air, which are taken from the route and the carry-out route and obtained from this air, are supplied into the enclosed space from the inflow port such as the carry-in port and the carry-out port If it does in this way, since the external air which has a combustible oxygen concentration will not flow in from an inflow port, fire prevention can be performed more effectively.
[0058]
In addition, although the said fire prevention system is a fire prevention system of a closed space, it was made not to generate a fire within a closed space, However, You may use it as a fire extinguishing system when a fire should occur by any chance.
[0059]
【The invention's effect】
Since it comprised as mentioned above, the air of the comparatively sealed enclosed space where a combustible substance is stocked can be used effectively, and the inside of an enclosed space can be made into an incombustible oxygen concentration as an incombustible atmosphere. It is possible to prevent a fire from occurring.
[Brief description of the drawings]
FIG. 1 is a diagram showing a first embodiment of the present invention.
FIG. 2 is a diagram showing a second embodiment of the present invention.
[Explanation of symbols]
2 RDF (flammable material)
7 closed space
10 First fire protection device
11 Pump (first suction means)
12 Boiler (first combustion means)
13 Cooling device (first cooling means)
14 Circulation route (first circulation route)

Claims (4)

可燃性物質が備蓄される比較的密閉された閉鎖空間内の空気を吸引する第3の吸引手段と、該空気を酸素富化空気と窒素富化空気に分離する第2の窒素富化手段と、該酸素富化空気を燃焼させて可燃性ガス及び酸素を低減した二酸化炭素富化空気を得る第2の燃焼手段と、該二酸化炭素富化空気を冷却する第2の冷却手段と、該二酸化炭素富化空気および前記窒素富化空気を前記閉鎖空間内に供給する第3の循環経路とを有する第3の防火装置を備えたことを特徴とする閉鎖空間の防火システム。  A third suction means for sucking air in a relatively sealed space where the combustible substance is stored; and a second nitrogen enrichment means for separating the air into oxygen-enriched air and nitrogen-enriched air A second combustion means for combusting the oxygen-enriched air to obtain carbon dioxide-enriched air with reduced combustible gas and oxygen; a second cooling means for cooling the carbon dioxide-enriched air; A closed space fire prevention system comprising a third fire prevention device having a third circulation path for supplying carbon-enriched air and the nitrogen-enriched air into the closed space. 可燃性物質が備蓄される比較的密閉された閉鎖空間内の空気を吸引する第4の吸引手段と、該空気を燃焼させて可燃性ガス及び酸素を低減した二酸化炭素富化空気を得る第3の燃焼手段と、該二酸化炭素富化空気を冷却する第3の冷却手段と、該二酸化炭素富化空気から酸素を低減した二酸化炭素および窒素富化空気を得る第3の窒素富化手段と、該二酸化炭素および窒素富化空気を前記閉鎖空間内に供給する第4の循環経路とを有する第4の防火装置を備えたことを特徴とする閉鎖空間の防火システム。  A fourth suction means for sucking air in a relatively sealed enclosed space in which combustible substances are stored, and third for obtaining carbon dioxide-enriched air in which the combustible gas and oxygen are reduced by burning the air. A third cooling means for cooling the carbon dioxide-enriched air, a third nitrogen-enriching means for obtaining carbon dioxide and nitrogen-enriched air with reduced oxygen from the carbon dioxide-enriched air, A closed space fire prevention system comprising a fourth fire prevention device having a fourth circulation path for supplying the carbon dioxide and nitrogen-enriched air into the closed space. 二酸化炭素富化空気、窒素富化空気、二酸化炭素および窒素富化空気は、閉鎖空間内への外気の流入が可能な流入口付近に供給されることを特徴とする請求項1又は2記載の閉鎖空間の防火システム。Carbon dioxide-enriched air, nitrogen-enriched air, carbon dioxide and nitrogen-enriched air, according to claim 1 or 2, characterized in that it is supplied in the vicinity of the outside air inflow capable inlet into the closed space Fire protection system for enclosed spaces. 空気は、閉鎖空間内への外気の流入が可能な流入口に接続された経路から取り込まれることを特徴とする請求項1乃至3記載の防火システム。The fire prevention system according to any one of claims 1 to 3 , wherein the air is taken in from a path connected to an inflow port through which outside air can flow into the enclosed space.
JP2003097290A 2003-03-31 2003-03-31 Fire protection system for enclosed spaces Expired - Fee Related JP4055997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003097290A JP4055997B2 (en) 2003-03-31 2003-03-31 Fire protection system for enclosed spaces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003097290A JP4055997B2 (en) 2003-03-31 2003-03-31 Fire protection system for enclosed spaces

Publications (2)

Publication Number Publication Date
JP2004298516A JP2004298516A (en) 2004-10-28
JP4055997B2 true JP4055997B2 (en) 2008-03-05

Family

ID=33409121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003097290A Expired - Fee Related JP4055997B2 (en) 2003-03-31 2003-03-31 Fire protection system for enclosed spaces

Country Status (1)

Country Link
JP (1) JP4055997B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110898359B (en) * 2019-12-23 2023-09-12 山西潞安环保能源开发股份有限公司常村煤矿 Goaf gas injection fire prevention and extinguishing system and fire prevention and extinguishing method

Also Published As

Publication number Publication date
JP2004298516A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
US6393821B1 (en) Method for collection and use of low-level methane emissions
ES2709657T3 (en) Submarine with a CO2 capture device
JP6490972B2 (en) Low temperature pyrolysis furnace, low temperature pyrolysis treatment system, and low temperature pyrolysis treatment method
KR20090019816A (en) A gas conditioning system
RU2009122645A (en) METHOD OF INERTING IN ORDER TO REDUCE THE RISK OF FIRE IN AN ENCLOSED SPACE AND THE DEVICE FOR IMPLEMENTING THIS METHOD
US7334391B2 (en) Electric power supply equipment
Bryner et al. Carbon monoxide production in compartment fires: reduced-scale enclosure test facility
JP2012132667A (en) Method of low-temperature thermal decomposition and furnace for low-temperature thermal decomposition
JP2019528412A (en) Circulating inert medium sealing system using air supply driving device and QHSE storage and transport method
JP4055997B2 (en) Fire protection system for enclosed spaces
JP2008202845A (en) Combustible treatment equipment
KR100917426B1 (en) Treatment method for land fill gas of organic wast materials
JP3413136B2 (en) Waste tire regeneration treatment method and waste tire regeneration treatment device
CN104736205B (en) Fire prevention in storage warehouse
JP2005270349A (en) Fire prevention system of rdf reservoir
AU2014287896A1 (en) An integrated waste incinerating and purifying apparatus
US20130263766A1 (en) Combustion of Oil From a Marine Oil Spill
CN108428487A (en) Mobile radioactive liquid goods and materials burning processing system and method
KR20110026234A (en) Starting combustion control process and apparatus of fluidized bed material boiler
CN215259825U (en) Ventilating and deodorizing pipeline for garbage tunnel
JP2009019814A (en) System for controlling combustion of crematory and method of controlling combustion of crematory
CN211424408U (en) Intelligent electronic equipment recovery processing device
JPH109538A (en) Method for incinerating municipal refuse
CN203082892U (en) Rural garbage harmless treatment device
KR100922404B1 (en) The combustible gas collector using waste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees