JP4055844B2 - Watertight structure of concrete sheet pile - Google Patents

Watertight structure of concrete sheet pile Download PDF

Info

Publication number
JP4055844B2
JP4055844B2 JP2002131531A JP2002131531A JP4055844B2 JP 4055844 B2 JP4055844 B2 JP 4055844B2 JP 2002131531 A JP2002131531 A JP 2002131531A JP 2002131531 A JP2002131531 A JP 2002131531A JP 4055844 B2 JP4055844 B2 JP 4055844B2
Authority
JP
Japan
Prior art keywords
concrete sheet
joint
groove
ridge
sheet pile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002131531A
Other languages
Japanese (ja)
Other versions
JP2003321833A (en
Inventor
康元 糸島
Original Assignee
村上興業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 村上興業株式会社 filed Critical 村上興業株式会社
Priority to JP2002131531A priority Critical patent/JP4055844B2/en
Publication of JP2003321833A publication Critical patent/JP2003321833A/en
Application granted granted Critical
Publication of JP4055844B2 publication Critical patent/JP4055844B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Bulkheads Adapted To Foundation Construction (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、護岸や土溜め壁等に広く採用されるコンクリート矢板を、複数連ねて設置する場合に、相互に隣接するコンクリート矢板同士の接合面の水密を確保する、コンクリート矢板の水密構造に関する。
【0002】
【従来の技術】
従来から、コンクリート矢板には幾つかの種類がある。例えば、その断面形状に由来して、平形、溝形、又は波形等と称するタイプが周知である。コンクリート矢板は、河川や湾岸の護岸、土溜め壁の他、築島や止水壁等を構築するための建材として、各種の建築工事において広く採用されている。
【0003】
このようなコンクリート矢板を地盤に打ち込むには、図5に一般的な施工状況を例示するように、先ず、コンクリート矢板1を位置決めするための枠組Fを施工現場に立ち上げる。一方、コンクリート矢板1の上端にバイブロハンマーHを取り付け、このバイブロハンマーHをクレーン等で吊り下げることにより、コンクリート矢板1を直立した姿勢とする。この状態で、コンクリート矢板1を枠組Fの間に落とし込み、コンクリート矢板1の下端を地盤に突き立てる。更に、バイブロハンマーHによってコンクリート矢板1に超音波振動を付与すると、コンクリート矢板1は徐々に地盤の中へ沈んで行くことになる。
【0004】
以上の手順で設置されたコンクリート矢板1の施工状態を、図6に示した。同図は、コンクリート矢板1を横並びに2体連ねて設置した状態を、水平断面として表したものである。詳しくは、コンクリート矢板1の接合面10には、継手目地材Jが設けられている。継手目地材Jは、合成樹脂の押出加工により成形されている。継手目地材Jの長手方向は、コンクリート矢板1の長手(図5の上下)方向に一致する。図6に示す通り、継手目地材J同士を互いに噛み合わせることにより、相隣接するコンクリート矢板1同士の間の水密が確保されている。
【0005】
【発明が解決しようとする課題】
しかしながら、コンクリート矢板1は、本来、直立した姿勢で地盤に鉛直方向から真っ直ぐに打ち込まれるのであるが、地盤が軟弱である等の場合には、打ち込む過程でコンクリート矢板1の姿勢が安定せず、相隣接するコンクリート矢板1同士の間の隙間が大きく開くことがある。或いは、継手目地材J同士が激しく擦れて、継手目地材Jが溶融することもあった。このような場合には、上記のような水密効果が充分に達成できないという問題が起こる。
【0006】
そこで、本発明の目的は、相隣接するコンクリート矢板同士の間の水密効果を確実に保持できるコンクリート矢板の水密構造を提供することにある。
【0007】
【課題を解決するための手段】
本発明は、隣接するコンクリート矢板同士の接合面の水密構造に係るものであって、前記コンクリート矢板同士の接合面にそれぞれ没入して形成され、前記接合面の内方に曲率中心を定めた湾曲状の内面を有する溝部と、前記コンクリート矢板同士の接合面にそれぞれ突出して設けられ、湾曲状の外面を有し、前記接合面から突出する長さを、前記溝部の最大深さよりも短くした凸条と、前記凸条の外面に設けられた高弾性シール材とを備え、前記コンクリート矢板同士のそれぞれの前記溝部に、それぞれの前記凸条を嵌入した状態で、前記溝部の内面と前記凸条の外面との隙間に、前記高弾性シール材が介在することを特徴とする。
【0008】
また、本発明は、隣接するコンクリート矢板同士の接合面の水密構造に係るものであって、前記コンクリート矢板同士の接合面にそれぞれ没入して形成され、前記接合面の内方に曲率中心を定めた湾曲状の内面を有する溝部と、前記コンクリート矢板同士の接合面にそれぞれ突出して設けられ、湾曲状の外面を有する凸条と、前記溝部の内面に設けられた高弾性シール材とを備え、前記コンクリート矢板同士のそれぞれの前記溝部に、それぞれの前記凸条を嵌入した状態で、前記溝部の内面と前記凸条の外面との隙間に、前記高弾性シール材が介在することを特徴とする。
【0009】
更に、本発明に係るコンクリート矢板の水密構造は、前記溝部及び前記凸条が硬質樹脂から成り、前記高弾性シール材が高弾性軟質樹脂から成るものである。更に、本発明に係るコンクリート矢板の水密構造は、前記凸条の内部に、前記コンクリート矢板を構成するコンクリートを充填する空洞を形成したものである。
【0010】
【発明の実施の形態】
本発明の実施の形態に係るコンクリート矢板の水密構造を、図1乃至図3に基づき説明する。以下において、従来の技術と同様の構成については、同符号を付しその図示は省略する。
【0011】
図1に示すように、コンクリート矢板1の継手目地材2は、断面を湾曲状又は略円弧状とした溝部3と、断面を湾曲状又は略円弧状とし溝部3に嵌入可能な凸条4と、該凸条4の外面に突出した高弾性シール材5と、コンクリート矢板1の接合面10に埋め込まれる複数のアンカー6と、接合面10に沿った当接面7とを備えるものである。
【0012】
同図には、互いに同形逆向きに対を成す2つの継手目地材2を各々表しているが、これら2つの継手目地材2は、実質的に同一の部材を反転したものである。即ち、図2(a)に斜視図で示した一方の継手目地材2を、その上下の向きをその儘にして、矢印Yで指した長手方向の両端が反対になるように置き換えると、同図(b)に示した他方の継手目地材2に等しいものとなる。
【0013】
矢印Yで指した長手方向は、図1に示したコンクリート矢板1の長手方向と一致する。つまり、矢印Yで指したコンクリート矢板1の長手方向が、例えば施工時において鉛直方向に略一致するのであれば、図1及び図3に各々表した継手目地材2の断面は、コンクリート矢板1及び継手目地材2を、それぞれ水平方向に横切った切り口における形状である。
【0014】
継手目地材2の製造方法は、限定されるものではないが、継手目地材2を合成樹脂又は金属の押出し成形によって得られるサッシバーとして製造することが望ましい。この場合、継手目地材2の材質としては、所謂かじりや食い込みが起こり難く、またクラック等が発生し難い材質が好ましい。更に好ましくは、塩化ビニルを適用するのが良い。特に、溝部3及び凸条4を硬質塩化ビニルで構成し、高弾性シール材5を高弾性軟質塩化ビニルで構成することが望ましい。
【0015】
図1に示すように、隣接するコンクリート矢板1同士の接合面10を対面させた状態で、一方の継手目地材2の溝部3が、他方の継手目地材2の凸条4に対応するように配置されている。溝部3の曲率中心Oは接合面10の内方に位置する。この内方とは、図示より明らかなように、接合面10よりもコンクリート矢板1の内部の方へ入り込んだ位置を指す。凸条4は、接合面10から突出し、その内部の空洞にコンクリート矢板1を構成するコンクリートが充填されているので、高い剛性を有する。
【0016】
一方の継手目地材2の溝部3の溝口は、他方の継手目地材2の凸条4に向かって開放しているが、凸条4の側部は溝部3寄りに突出している。これは、図3に示すように、一方の継手目地材2の溝部3に他方の継手目地材2の凸条4が一旦嵌入した状態で、これらの溝部3と凸条4とが離脱するのを規制するためである。
【0017】
即ち、図3に示した状態で、両方の継手目地材2の凸条4の側面同士が互いに食い込み合うことになり、しかも、これらの凸条4は、硬質塩化ビニルから成る上、その内部には、既述した通り、コンクリート矢板1を構成するコンクリートが充填されているので、弾性的に殆ど変形しない。このため、両方の継手目地材2のそれぞれの溝部3に凸条4が一旦嵌入すると、容易に離脱することはない。
【0018】
高弾性シール材5は、継手目地材2に一体に形成された中空の略円形断面のチューブであり、その長手方向は凸条4の長手方向に沿っている。一方の継手目地材2の溝部3に他方の継手目地材2の凸条4が嵌入したとき、高弾性シール材5は溝部3の内面に押圧されて潰れる。溝部3と凸条4の間で潰れた高弾性シール材5は、僅かに平らに成形した凸条4の先端と、溝部3の内面との間の隙間に納まることになる。この状態で、両方の継手目地材2のそれぞれの高弾性シール材5がそれぞれの溝部3の内面に相互に密着するので、これら2カ所の密着部により、隣接するコンクリート矢板1同士の接合面10の水密を確実に達成できる。
【0019】
しかも、溝部3と凸条4とは、それぞれの断面形状を略円弧状としていることに加え、溝部3及び凸条4の間には僅かながら隙間が設けられているので、図3の矢印Rで指したように、一方の継手目地材2の凸条4の周りに他方の継手目地材2の溝部3が回動しても、高弾性シール材5が溝部3に内接しつつ溝部3の内面に沿って摺動できる。
【0020】
このため、例えばコンクリート矢板1を地盤に打ち込むに際して、隣接するコンクリート矢板1同士が相対的に矢印Rで指した方向に位置ずれ、即ち、隣接するコンクリート矢板1同士が互いに傾斜する姿勢となっても、高弾性シール材5が溝部3から離れることがないので、隣接するコンクリート矢板1同士の接合面10の水密を確実に保持できる。
【0021】
また、隣接するコンクリート矢板1同士の接合面10が少々接近し過ぎた場合でも、高弾性シール材5が溝部3と凸条4との間に介在するので、溝部3と凸条4とが直接に強く擦られることがない。これらの接合面10同士が更に強い力で接触したとしても、凸条4が接合面10に沿った当接面7から突出する長さが、溝部3の最大深さよりも僅かに短く設定されているので、両方の継手目地材2の当接面7同士が当接し、これ以上は高弾性シール材5が溝部3に強く押し付けられることがない。このため、隣接するコンクリート矢板1同士の接合面10の水密を安定して達成できる。
【0022】
尚、図4(a)に示すように、複数条の高弾性シール材5を凸条4に形成しても良く、或いは、同図(b)に示すように、1条又は複数条の高弾性シール材5を溝部3の内面に形成しても良い。
【0023】
以上に例示した本実施の形態に係るコンクリート矢板の水密構造は、本願発明の技術的思想を実質的に限定するものと解してはならない。本発明は、その要旨を逸脱しない範囲で、当業者の創意と工夫により、適宜に改良、変更又は追加をしながら実施されるものである。
【0024】
【発明の効果】
本発明に係るコンクリート矢板の水密構造によれば、一方の継手目地材の溝部に他方の継手目地材の凸条が嵌入したとき、高弾性シール材は溝部の内面に押圧されて潰れる。このように潰れた高弾性シール材が溝部の内面に密着するので、隣接するコンクリート矢板同士の接合面の水密を確実に達成できる。
【0025】
しかも、溝部と凸条とは、それぞれの断面形状を湾曲状としているので、一方の継手目地材の凸条の周りに他方の継手目地材の溝部が回動しても、高弾性シール材が溝部に内接しつつ溝部の内面に沿って摺動できる。従って、例えばコンクリート矢板を地盤に打ち込むに際して、隣接するコンクリート矢板同士が相対的に傾斜しても、高弾性シール材が溝部から離れることがないので、隣接するコンクリート矢板同士の接合面の水密を確実に保持できる。
【0026】
従って、地盤の中に埋没したコンクリート矢板の継手目地材を、施工者等が直接目視で検査する事ができなくても、隣接するコンクリート矢板同士の間に水等が僅かでも通り抜けることはなく、施工の信頼性を向上することができる。
【0027】
また、隣接するコンクリート矢板同士の接合面が少々接近し過ぎた場合でも、高弾性シール材が溝部と凸条との間に介在するので、溝部と凸条とが直接に強く擦られることがない。従って、従来のように継手目地材が熱溶融する恐れが無く、これによって隣接するコンクリート矢板同士の接合面の水密が損なわれるという問題を予防できる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係るコンクリート矢板の接合面に設けた継手目地材の断面図。
【図2】 本発明の実施の形態に係る継手目地材の斜視図。
【図3】 本発明の実施の形態に係るコンクリート矢板の水密構造を示す断面図。
【図4】 本発明の実施の形態に係るコンクリート矢板の接合面に設けた継手目地材の変形例の断面図。
【図5】 従来のコンクリート矢板の施工状況を示す斜視図。
【図6】 従来のコンクリート矢板同士の水密構造を示す断面図。
【符号の説明】
1:コンクリート矢板
2:継手目地材
3:溝部
4:凸条
5:高弾性シール材
6:アンカー
10:接合端面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a water-tight structure of a concrete sheet pile that secures the water-tightness of a joint surface between adjacent concrete sheet piles when a plurality of concrete sheet piles widely used for a revetment, a sedimentation wall, and the like are installed in series.
[0002]
[Prior art]
Conventionally, there are several types of concrete sheet piles. For example, a type referred to as a flat shape, a groove shape, or a corrugated shape is well known due to its cross-sectional shape. Concrete sheet piles are widely used in various construction work as building materials for building riverside and bay bank revetments, earth retaining walls, as well as islands and water barriers.
[0003]
In order to drive such a concrete sheet pile into the ground, a frame F for positioning the concrete sheet pile 1 is first set up at the construction site, as illustrated in FIG. On the other hand, a vibro hammer H is attached to the upper end of the concrete sheet pile 1 and the vibro hammer H is suspended by a crane or the like, so that the concrete sheet pile 1 is in an upright posture. In this state, the concrete sheet pile 1 is dropped between the frames F, and the lower end of the concrete sheet pile 1 is pushed to the ground. Further, when ultrasonic vibration is applied to the concrete sheet pile 1 by the vibro hammer H, the concrete sheet pile 1 gradually sinks into the ground.
[0004]
The construction state of the concrete sheet pile 1 installed in the above procedure is shown in FIG. The figure shows a state in which two concrete sheet piles 1 are installed side by side as a horizontal section. Specifically, a joint joint material J is provided on the joint surface 10 of the concrete sheet pile 1. The joint joint material J is formed by extrusion of synthetic resin. The longitudinal direction of the joint joint material J coincides with the longitudinal direction (up and down in FIG. 5) of the concrete sheet pile 1. As shown in FIG. 6, the joint joint material J is engaged with each other to ensure watertightness between the adjacent concrete sheet piles 1.
[0005]
[Problems to be solved by the invention]
However, the concrete sheet pile 1 is originally driven straight into the ground in an upright position from the vertical direction. However, when the ground is soft or the like, the posture of the concrete sheet pile 1 is not stabilized in the process of driving, A gap between adjacent concrete sheet piles 1 may be greatly opened. Alternatively, the joint joint material J may be rubbed vigorously and the joint joint material J may be melted. In such a case, there arises a problem that the above water-tight effect cannot be sufficiently achieved.
[0006]
Then, the objective of this invention is providing the watertight structure of the concrete sheet pile which can hold | maintain the watertight effect between the concrete sheet piles adjacent to each other reliably.
[0007]
[Means for Solving the Problems]
The present invention relates to a watertight structure of joint surfaces between adjacent concrete sheet piles, each of which is formed by immersing into the joint surfaces of the concrete sheet piles, and has a curvature centered on the inside of the joint surface. a groove having a Jo inner surface, provided to protrude on the bonding surface of the concrete sheet pile together, the convex have a curved outer surface, the length protruding from the bonding surface, which is shorter than the maximum depth of the groove And a highly elastic sealing material provided on the outer surface of the ridge, and the inner surface of the groove and the ridge in a state in which the ridge is inserted into each groove of the concrete sheet piles. The high elastic sealing material is interposed in a gap between the outer surface of the first and second outer surfaces.
[0008]
Further, the present invention relates to a watertight structure of joint surfaces between adjacent concrete sheet piles, each formed by immersing into the joint surfaces of the concrete sheet piles, and defining a center of curvature inside the joint surface. A groove portion having a curved inner surface, a protrusion provided on the joint surface between the concrete sheet piles, and a ridge having a curved outer surface, and a highly elastic sealing material provided on the inner surface of the groove portion, The highly elastic sealing material is interposed in a gap between the inner surface of the groove and the outer surface of the ridge in a state where the ridge is inserted into the groove of each of the concrete sheet piles. .
[0009]
Furthermore, in the watertight structure of the concrete sheet pile according to the present invention, the groove and the ridge are made of a hard resin, and the high elastic sealing material is made of a high elastic soft resin. Furthermore, the watertight structure of the concrete sheet pile according to the present invention is such that a cavity filled with the concrete constituting the concrete sheet pile is formed inside the ridge.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
A watertight structure of a concrete sheet pile according to an embodiment of the present invention will be described with reference to FIGS. In the following, the same components as those in the conventional technology are denoted by the same reference numerals and the illustration thereof is omitted.
[0011]
As shown in FIG. 1, the joint joint material 2 of the concrete sheet pile 1 includes a groove portion 3 having a curved or substantially arc-shaped section, and a ridge 4 having a curved or substantially arc-shaped section and capable of being fitted into the groove portion 3. The high elastic sealing material 5 protruding from the outer surface of the ridge 4, the plurality of anchors 6 embedded in the joint surface 10 of the concrete sheet pile 1, and the contact surface 7 along the joint surface 10 are provided.
[0012]
In the drawing, two joint joint materials 2 that are paired in the same shape and opposite direction are shown, but these two joint joint materials 2 are obtained by inverting substantially the same members. That is, if one joint joint material 2 shown in a perspective view in FIG. 2 (a) is replaced so that the both ends in the longitudinal direction indicated by the arrow Y are opposite with the up-and-down direction thereof as the hook, This is equivalent to the other joint joint material 2 shown in FIG.
[0013]
The longitudinal direction indicated by the arrow Y coincides with the longitudinal direction of the concrete sheet pile 1 shown in FIG. That is, if the longitudinal direction of the concrete sheet pile 1 pointed by the arrow Y substantially coincides with the vertical direction at the time of construction, for example, the cross sections of the joint joint material 2 shown in FIG. 1 and FIG. It is the shape in the cut | interruption which crossed the joint joint material 2 in the horizontal direction, respectively.
[0014]
Although the manufacturing method of the joint joint material 2 is not limited, It is desirable to manufacture the joint joint material 2 as a sash bar obtained by extrusion molding of a synthetic resin or a metal. In this case, a material for the joint joint material 2 is preferably a material that hardly causes so-called galling or biting and hardly causes cracks. More preferably, vinyl chloride is applied. In particular, it is desirable that the grooves 3 and the ridges 4 are made of hard vinyl chloride, and the high elastic sealing material 5 is made of high elastic soft vinyl chloride.
[0015]
As shown in FIG. 1, with the joint surfaces 10 of the adjacent concrete sheet piles 1 facing each other, the groove portion 3 of one joint joint material 2 corresponds to the ridge 4 of the other joint joint material 2. Has been placed. The center of curvature O of the groove 3 is located inward of the joint surface 10. As is apparent from the drawing, this inward refers to a position that enters the interior of the concrete sheet pile 1 rather than the joint surface 10. Since the protrusion 4 protrudes from the joint surface 10 and the concrete constituting the concrete sheet pile 1 is filled in the cavity inside, the protrusion 4 has high rigidity.
[0016]
The groove opening of the groove portion 3 of one joint joint material 2 is open toward the convex strip 4 of the other joint joint material 2, but the side portion of the convex strip 4 projects closer to the groove portion 3. This is because, as shown in FIG. 3, the groove 3 and the protrusion 4 are separated from each other in a state in which the protrusion 4 of the other joint joint material 2 is once inserted into the groove 3 of the joint joint material 2. This is to regulate the above.
[0017]
That is, in the state shown in FIG. 3, the side surfaces of the ridges 4 of both joint joint materials 2 bite each other, and these ridges 4 are made of hard vinyl chloride and inside thereof. As described above, since the concrete constituting the concrete sheet pile 1 is filled, it hardly deforms elastically. For this reason, once the protrusions 4 are inserted into the respective groove portions 3 of both joint joint materials 2, they are not easily detached.
[0018]
The highly elastic sealing material 5 is a hollow tube having a substantially circular cross section formed integrally with the joint joint material 2, and the longitudinal direction thereof is along the longitudinal direction of the ridges 4. When the protrusion 4 of the other joint joint material 2 is fitted into the groove portion 3 of one joint joint material 2, the highly elastic sealing material 5 is pressed against the inner surface of the groove portion 3 and crushed. The highly elastic sealing material 5 crushed between the groove 3 and the ridge 4 is placed in a gap between the tip of the ridge 4 formed slightly flat and the inner surface of the groove 3. In this state, since the high elastic sealing materials 5 of the joint joint materials 2 are in close contact with the inner surfaces of the groove portions 3, the joint surfaces 10 between the adjacent concrete sheet piles 1 are brought together by these two close contact portions. Can be reliably achieved.
[0019]
In addition to the fact that the groove 3 and the ridge 4 have a substantially arcuate cross-sectional shape, and a slight gap is provided between the groove 3 and the ridge 4, the arrow R in FIG. As pointed out above, even if the groove 3 of the other joint joint material 2 rotates around the ridge 4 of one joint joint material 2, the highly elastic sealing material 5 is inscribed in the groove 3 and the groove 3 Can slide along the inner surface.
[0020]
Therefore, for example, when the concrete sheet piles 1 are driven into the ground, the adjacent concrete sheet piles 1 are relatively displaced in the direction indicated by the arrow R, that is, the adjacent concrete sheet piles 1 are inclined to each other. Since the highly elastic sealing material 5 is not separated from the groove portion 3, the watertightness of the joint surface 10 between the adjacent concrete sheet piles 1 can be reliably maintained.
[0021]
Further, even when the joint surfaces 10 between the adjacent concrete sheet piles 1 are slightly too close, since the highly elastic sealing material 5 is interposed between the groove 3 and the ridge 4, the groove 3 and the ridge 4 are directly connected. Will not be rubbed hard. Even if these joining surfaces 10 come into contact with each other with a stronger force, the length of the protrusion 4 protruding from the contact surface 7 along the joining surface 10 is set to be slightly shorter than the maximum depth of the groove 3. Therefore, the contact surfaces 7 of the joint joint materials 2 are in contact with each other, and the high-elastic seal material 5 is not strongly pressed against the groove portion 3 beyond this. For this reason, the watertightness of the joint surface 10 between the adjacent concrete sheet piles 1 can be stably achieved.
[0022]
As shown in FIG. 4 (a), a plurality of high elastic sealing materials 5 may be formed on the convex stripes 4. Alternatively, as shown in FIG. The elastic sealing material 5 may be formed on the inner surface of the groove 3.
[0023]
The watertight structure of the concrete sheet pile according to this embodiment illustrated above should not be construed as substantially limiting the technical idea of the present invention. The present invention can be carried out without departing from the gist of the present invention, with appropriate improvements, changes or additions based on the ingenuity and ingenuity of those skilled in the art.
[0024]
【The invention's effect】
According to the watertight structure of the concrete sheet pile according to the present invention, when the convex line of the other joint joint material is inserted into the groove part of one joint joint material, the highly elastic sealing material is pressed against the inner surface of the groove part and crushed. Since the crushed highly elastic sealing material is in close contact with the inner surface of the groove portion, it is possible to reliably achieve water-tightness at the joint surface between adjacent concrete sheet piles.
[0025]
In addition, since the cross-sectional shape of each of the groove portion and the ridge is curved, even if the groove portion of the other joint joint material rotates around the ridge of one joint joint material, the highly elastic sealing material is It can slide along the inner surface of the groove portion while inscribed in the groove portion. Therefore, for example, when the concrete sheet pile is driven into the ground, even if the adjacent concrete sheet piles are relatively inclined, the highly elastic sealing material does not leave the groove portion, so that the water tightness of the joint surface between the adjacent concrete sheet piles is ensured. Can be retained.
[0026]
Therefore, even if the joint joint material of the concrete sheet pile buried in the ground cannot be directly visually inspected by the installer, water or the like does not pass between the adjacent concrete sheet piles, Construction reliability can be improved.
[0027]
In addition, even when the joint surfaces of adjacent concrete sheet piles are too close, the highly elastic sealing material is interposed between the groove and the ridge, so that the groove and the ridge are not directly rubbed strongly. . Therefore, there is no fear that the joint joint material is thermally melted as in the prior art, thereby preventing the problem that the watertightness of the joint surface between the adjacent concrete sheet piles is impaired.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a joint joint material provided on a joint surface of a concrete sheet pile according to an embodiment of the present invention.
FIG. 2 is a perspective view of a joint joint material according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a watertight structure of a concrete sheet pile according to an embodiment of the present invention.
FIG. 4 is a cross-sectional view of a modification of the joint joint material provided on the joint surface of the concrete sheet pile according to the embodiment of the present invention.
FIG. 5 is a perspective view showing a construction situation of a conventional concrete sheet pile.
FIG. 6 is a cross-sectional view showing a conventional watertight structure between concrete sheet piles.
[Explanation of symbols]
1: Concrete sheet pile 2: Joint joint material 3: Groove part 4: Projection 5: High elastic sealing material 6: Anchor 10: Joining end face

Claims (4)

隣接するコンクリート矢板同士の接合面の水密構造であって、
前記コンクリート矢板同士の接合面にそれぞれ没入して形成され、前記接合面の内方に曲率中心を定めた湾曲状の内面を有する溝部と、
前記コンクリート矢板同士の接合面にそれぞれ突出して設けられ、湾曲状の外面を有し、前記接合面から突出する長さを、前記溝部の最大深さよりも短くした凸条と、
前記凸条の外面に設けられた高弾性シール材とを備え、
前記コンクリート矢板同士のそれぞれの前記溝部に、それぞれの前記凸条を嵌入した状態で、前記溝部の内面と前記凸条の外面との隙間に、前記高弾性シール材が介在することを特徴とするコンクリート矢板の水密構造。
It is a watertight structure of the joint surface between adjacent concrete sheet piles,
A groove portion having a curved inner surface formed by immersing each in the joint surface between the concrete sheet piles, and defining a center of curvature inside the joint surface;
Protrudes respectively to the bonding surface of the concrete sheet pile together, have a curved outer surface, a ridge lengths projecting from said joint plane, which is shorter than the maximum depth of the groove,
A highly elastic sealing material provided on the outer surface of the ridge,
The highly elastic sealing material is interposed in a gap between the inner surface of the groove and the outer surface of the ridge in a state where the ridge is inserted into the groove of each of the concrete sheet piles. Watertight structure of concrete sheet pile.
隣接するコンクリート矢板同士の接合面の水密構造であって、
前記コンクリート矢板同士の接合面にそれぞれ没入して形成され、前記接合面の内方に曲率中心を定めた湾曲状の内面を有する溝部と、
前記コンクリート矢板同士の接合面にそれぞれ突出して設けられ、湾曲状の外面を有する凸条と、
前記溝部の内面に設けられた高弾性シール材とを備え、
前記コンクリート矢板同士のそれぞれの前記溝部に、それぞれの前記凸条を嵌入した状態で、前記溝部の内面と前記凸条の外面との隙間に、前記高弾性シール材が介在することを特徴とするコンクリート矢板の水密構造。
It is a watertight structure of the joint surface between adjacent concrete sheet piles,
A groove portion having a curved inner surface formed by immersing each in the joint surface between the concrete sheet piles, and defining a center of curvature inside the joint surface;
Protruding strips provided on the joint surfaces of the concrete sheet piles, each having a curved outer surface,
A highly elastic sealing material provided on the inner surface of the groove,
The highly elastic sealing material is interposed in a gap between the inner surface of the groove and the outer surface of the ridge in a state where the ridge is inserted into the groove of each of the concrete sheet piles. Watertight structure of concrete sheet pile.
前記溝部及び前記凸条が硬質樹脂から成り、前記高弾性シール材が高弾性軟質樹脂から成る請求項1又は2に記載のコンクリート矢板の水密構造。  The watertight structure of a concrete sheet pile according to claim 1 or 2, wherein the groove and the ridge are made of a hard resin, and the high elastic sealing material is made of a high elastic soft resin. 前記凸条の内部に、前記コンクリート矢板を構成するコンクリートを充填する空洞を形成した請求項1から3の何れか1項に記載のコンクリート矢板の水密構造。Wherein the inner ridge, watertight concrete sheet pile according to any one of claims 1-3 which forms a cavity for filling the concrete constituting the concrete sheet pile.
JP2002131531A 2002-05-07 2002-05-07 Watertight structure of concrete sheet pile Expired - Fee Related JP4055844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002131531A JP4055844B2 (en) 2002-05-07 2002-05-07 Watertight structure of concrete sheet pile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002131531A JP4055844B2 (en) 2002-05-07 2002-05-07 Watertight structure of concrete sheet pile

Publications (2)

Publication Number Publication Date
JP2003321833A JP2003321833A (en) 2003-11-14
JP4055844B2 true JP4055844B2 (en) 2008-03-05

Family

ID=29544129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002131531A Expired - Fee Related JP4055844B2 (en) 2002-05-07 2002-05-07 Watertight structure of concrete sheet pile

Country Status (1)

Country Link
JP (1) JP4055844B2 (en)

Also Published As

Publication number Publication date
JP2003321833A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
JP4055844B2 (en) Watertight structure of concrete sheet pile
JP4656966B2 (en) Joint structure of underground concrete structure and its construction method
EP0297730A1 (en) Improved waterstops
JP2005023570A (en) Pile for underpass side wall and water cut-off method of underpass side wall
CN111188368A (en) Anti-seepage layer pre-stressed fixing sleeve
JP4451177B2 (en) Inter-block joint structure
US3605357A (en) Seal structure with tear strip
JP3185661B2 (en) Joint material
EP1181418B1 (en) Method to build a waterproof, creep limit increasing cutoff
JP2537743B2 (en) Construction method of concrete wall joint and waterproof material
JP3487530B2 (en) Watertight joints and joint joints for concrete sheet piles
JP3824086B2 (en) Revetment sheet pile cap block mounting structure
JP2989573B2 (en) Grouting method for concrete sheet pile
JP4441696B2 (en) Joint for water stop of concrete joints
JP3586395B2 (en) Flexible seismic joint of concrete members
JPH0978569A (en) Steel pipe sheet pile
JP2003064673A (en) Foundation pile
JP2002146772A (en) Cutoff structure of steel sheet pile joint section and its construction method
EP0575075B1 (en) Method of joining waterstops and connectors for use therein
JPS61113912A (en) Flexible guide for seal member for joint between embankment blocks
JP3298711B2 (en) Tunnel construction method using elements for tunnel lining
JP2003138557A (en) Steel sheet pile and construction method for steel sheet pile wall
KR102073074B1 (en) Box culvert With Rubber
JP3852333B2 (en) Steel sheet pile construction method
JP2005200826A (en) Joint seal material of caisson

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees