JP4053464B2 - Stress evaluation method and stress evaluation apparatus by X-ray diffraction - Google Patents

Stress evaluation method and stress evaluation apparatus by X-ray diffraction Download PDF

Info

Publication number
JP4053464B2
JP4053464B2 JP2003152214A JP2003152214A JP4053464B2 JP 4053464 B2 JP4053464 B2 JP 4053464B2 JP 2003152214 A JP2003152214 A JP 2003152214A JP 2003152214 A JP2003152214 A JP 2003152214A JP 4053464 B2 JP4053464 B2 JP 4053464B2
Authority
JP
Japan
Prior art keywords
ray
crystal
ray diffraction
stress
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003152214A
Other languages
Japanese (ja)
Other versions
JP2004354197A (en
Inventor
修一 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2003152214A priority Critical patent/JP4053464B2/en
Publication of JP2004354197A publication Critical patent/JP2004354197A/en
Application granted granted Critical
Publication of JP4053464B2 publication Critical patent/JP4053464B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、結晶上に異種物質を成膜したときに形成されるヘテロ界面において生じる局所的な応力を評価するX線回折による応力評価方法及び応力評価装置に関し、特にX線回折ピークの表面垂直方向の両側に出現するX線CTR散乱を用いてヘテロ界面に生じる応力を評価するX線回折による応力評価方法及び応力評価装置に関する。
【0002】
【従来の技術】
現在の半導体デバイス及び磁性デバイスには、多種多様なヘテロ接合界面が存在している。結晶かアモルファスかに拘わらず、単結晶基板上に薄膜を成長させたときには応力が発生して、界面近傍の結晶基板構成原子が膜側又は基板側に微小変位する。この局所的な歪みは、例えば半導体デバイスではキャリアの移動度変化やしきい値の変動を引き起こし、デバイスの特性及び信頼性に深刻な影響を与える。従って、結晶基板の歪み量を計測し、界面応力を評価する方法が要望されている。
【0003】
従来、薄膜と単結晶基板との界面における代表的な応力評価方法として、X線回折を利用した並傾法及び傾斜法が知られている。しかし、これらの方法では、薄膜全体の応力を評価することはできるものの、界面のごく近傍で発生する応力を検知することはできない。また、これらの方法は、薄膜を構成する結晶のX線回折ピークを計測するものであるので、薄膜がアモルファスである場合には適用できない。
【0004】
結晶基板自体のX線回折ピーク強度を測定することも考えられるが、その場合は歪み領域が界面近傍のせいぜい数原子層であるため、応力の有無を確認することさえできなくなる。
【0005】
近年、X線回折法を用いて半導体結晶基板の微小歪みを評価する方法として、極端に非対称なX線回折を用いる方法(榎本貴志, 表面科学, 23, 239, (2002))や、ブラッグ条件を満足した状態でX線CTR(Crystal truncation Rod)散乱を観測する方法(T. Takahashi, Phy. Rev. B, 62, 3630 (2000))が提案されている。しかし、いずれの方法においても、実験データの解析が極めて難しい動力学的回折理論を用いており、測定条件がかなり特殊である。
【0006】
特開平8−15184号公報にはエネルギー分散型X線回折を使用して試料の微小部の深さ方向及び面内のひずみ分布を測定する方法が記載されている。しかし、この方法においても、実験データから無歪み層によるエネルギー分布と歪み層によるエネルギー分布とを分離する必要があり、データの解析が難しいという欠点がある。
【0007】
【特許文献1】
特開平8−15184号公報
【非特許文献1】
榎本貴志, 表面科学, 23, 239, (2002)
【非特許文献2】
T. Takahashi, Phy. Rev. B, 62, 3630 (2000)
【非特許文献3】
I.K.Robinson, Phys. Rev. B 33, 3830, (1986)
【0008】
【発明が解決しようとする課題】
上述したように、並傾法及び傾斜法では結晶基板に生じた微小歪みを評価することができない。また、極端に非対称なX線回折を用いる方法や、ブラッグ条件を満足した状態でX線CTR散乱を観測する方法では、データ解析が難しく、測定条件が特殊で、評価する結晶基板が限定されてしまうことから汎用性に欠けるという欠点がある。更に、特開平8−15184号公報に記載された方法においても、データの解析が難しいという欠点がある。
【0009】
以上から、本発明の目的は、結晶と異種物質とのヘテロ界面に発生する応力を定量的に精度よく評価できるX線回折による応力評価方法及び応力評価装置を提供することである。
【0010】
【課題を解決するための手段】
上記した課題は、X線回折を用いて結晶と異種物質とのヘテロ界面に生じる応力を評価する応力評価方法において、X線回折ピークに対し表面垂直方向両側に出現するX線CTR散乱を測定する工程と前記X線CTR散乱の強度プロファイルを解析して得られる結晶原子の変位量から前記ヘテロ界面に生じる応力を評価する工程とを有し、前記X線CTR散乱の強度プロファイルにおいて前記X線回折ピークからの距離が等しい測定データ同士の強度比を計算し、それらの計算結果から描画される非対称性曲線を用いて前記結晶原子の変位量を求めることを特徴とする応力評価方法により解決する。
【0011】
この場合に、前記X線CTR散乱の強度プロファイルにおいて前記X線回折ピークからの距離が等しい測定データ同士の強度比を計算し、それらの計算結果から描画される非対称性曲線を用いて前記結晶原子の変位量を求めることができる。
【0012】
また、前記強度比の計算結果から描画される非対称性曲線と、予め用意された結晶原子の変位量毎の基準曲線とを比較して前記結晶原子の変位量を求めることができる。
【0013】
本発明においては、X線回折ピークの表面垂直方向両側に出現するX線CTR散乱の強度プロファイルを解析して結晶原子の変位量を求め、その結果から結晶と異種物質とのヘテロ界面の生じる応力を評価する。
【0014】
X線CTR散乱の強度プロファイルは、結晶表面の原子位置に敏感に反応する。但し、X線CTRの強度プロファイルは3〜4桁の強度範囲にわたっているので、解析時のデータに対する重み付けが難しく、また結晶表面の平坦性が悪いと強度の減衰が著しい。そこで、例えばX線回折ピークからの距離が等しい測定データ同士の強度比を計算し、それらの計算結果から描画される非対称性曲線を用いることにより、結晶原子の変位量を精度よく求めることができる。
【0015】
上記した課題は、X線回折装置により測定したX線CTR散乱の強度プロファイルを解析し、その解析結果から結晶原子の変位量を求め、前記結晶原子の変位量に基づいて結晶と異種物質とのヘテロ界面に生じる応力を評価するX線回折による応力評価装置であって、前記X線CTR散乱の強度プロファイルにおいて前記X線回折ピークからの距離が等しい測定データ同士の強度比を計算し、それらの計算結果から描画される非対称性曲線を用いて前記結晶原子の変位量を求めることを特徴とするX線回折による応力評価装置により解決する。
【0016】
この場合に、基板毎に測定すべきX線CTR散乱が関連付けされてなるデータベースを有することが好ましい。また、X線CTR散乱ピークの自動追尾機能を有することが好ましい。
【0017】
本発明においては、X線回折装置により測定したX線CTR散乱の強度プロファイルを解析する。例えば、X線回折ピークの表面垂直方向両側に出現しX線回折ピークからの距離が等しい測定データ同士の強度比を計算し、それらの計算結果から描画される非対称性曲線を基準曲線と比較して、結晶原子の変位量を求める。結晶原子の変位量とヘテロ界面に生じる応力とは密接な関係があるので、結晶原子の変位量がわかれば、結晶と異種物質とのヘテロ界面に生じる応力を評価することができる。これにより、ヘテロ界面に生じる応力を自動的にかつ精度よく評価することが可能になる。
【0018】
【発明の実施の形態】
以下、本発明の実施の形態について、添付の図面を参照して説明する。
【0019】
図1は、X線CTR散乱の測定方法を示す模式図である。
【0020】
X線発生装置11から出力されたX線ビームは、モノクロメータ12を通過して単色となり、スリット13によってビーム形状が成形された後、試料(結晶)10の表面に角度θで入射する。試料10を回転すると、ブラッグの条件(2dsin θ=nλ:但し、dは面間隔、θは入射角、λはX線の波長、nは自然数)を満足したときに、X線回折が観測される。検出器(カウンタ)15は、X線の入射方向に対し2θの方向に配置される。通常、試料10と検出器15との間にもスリット14が配置される。
【0021】
図2は、X線回折の概念を示す模式図である。この図2に示すように、CTR散乱はX線回折ピーク(ブラッグ点)の上方及び下方(試料の表面に垂直な方向)に現れる。このCTR散乱の強度分布は、結晶表面の原子の位置の変化に応じて敏感に変化する。
【0022】
図3は単結晶基板の上に薄膜が形成された状態を示す模式図である。単結晶基板20上に薄膜21を形成すると、薄膜21が結晶であるかアモルファスであるかに拘わらず、単結晶基板20と薄膜21との間に応力が発生して界面近傍の結晶格子に歪みが生じる。その結果、X線回折ピークの上側及び下側でCTR散乱の強度が変化する。
【0023】
図4は、横軸にX線回折の指数をとり、縦軸にX線回折強度をとって、単純立方格子(100)結晶基板の界面において結晶格子が−3%から+3%まで歪んだときのX線CTR散乱の予測プロファイルを示す図である。但し、X線回折強度の計算は文献(I.K.Robinson, Phys. Rev. B 33, 3830, (1986) )に記載された方法を参考にした。この図4からわかるように、歪みの方向及び歪みの量によりX線CTR散乱の強度分布が変化する。そして、X線回折ピーク(指数が1のところ)よりも下側では歪み量が負から正になるのにともなってX線回折強度が高くなるのに対し、X線回折ピークよりも上側では歪み量が負から正になるのにともなってX線回折強度が低くなる。
【0024】
X線CTR散乱の強度プロファイルは3〜4桁の強度範囲にわたっているので、解析時のデータに対する重み付けが難しい。また、結晶基板の平坦性が悪くなると強度の減衰も著しくなるので、さらに解析が困難となる。
【0025】
そこで、本願発明においては、X線回折ピーク(指数=1)から上下方向に等距離にある2点のX線回折強度の比を歪み量毎に演算する。例えば、図4から指数が0.95の位置と1.05の位置とにおけるX線強度を抽出して、−3%〜+3%の各歪み量毎にX線回折強度比を演算する。
【0026】
図5は、横軸にX線回折ピークからの距離をとり、縦軸にX線回折の強度比をとって、上記の演算の結果を示す図である。この図5に示すような基準曲線のデータを作成した後、実際の薄膜が形成された単結晶基板のCTR散乱の測定を行って、そのX線回折強度分布から、X線回折強度比をX線回折ピークからの距離毎に演算する。そして、最小二乗法により演算結果の値を近似する曲線(非対称性曲線)を求め、図5の基準曲線と比較して結晶原子の変位量(格子歪み量)を求める。その後、結晶基板の弾性的性質から応力を評価する。結晶原子の変位量が大きいほど応力が大きいということができるので、結晶原子の変位量から単結晶基板と薄膜とのヘテロ界面に生じる応力を定量的に評価することができる。また、このようなアルゴリズムを用いた解析プログラムにより、結晶原子の変位量の測定及び応力の定量的な評価を自動的に行うことができる。
【0027】
ところで、上述した例では単純立方格子(001)結晶基板についてシミュレーションをした結果を示しているが、実際には結晶基板の結晶構造により測定するX線CTR散乱を選択することが重要である。この場合、X線CTR散乱の選択には2つのポイントがある。第1のポイントは、精度良く、迅速に測定データの収集を行うために、強度の大きいX線回折ピークのCTR散乱を計測することである。第2のポイントは、強度比の精度をあげるため、無歪み状態でX線CTR散乱強度プロファイルがX線回折ピークに対し対称形であるX線CTR散乱を計測することである。
【0028】
例えば、表面方位が(001)の基板の場合、結晶構造が単純立方格子のときは(001)回折ピークのX線CTR散乱を使用し、結晶構造が体心立方格子又は面心立方格子のときは(002)回折ピークのX線CTR散乱を使用することが好ましい。また、一般的に用いられている表面方位が(001)のシリコン基板(ダイアモンド構造)のときは、(111)回折ピークのX線CTR散乱を使用することが好ましい。
【0029】
基板の種類と測定すべきX線回折ピークとを関連付けたデータベースを応力評価装置に設けることにより、試料をセットした際に結晶基板を選択するだけで、格子歪み量の測定及び応力の評価が可能となる。
【0030】
図6は、このような応力評価装置を示す模式図である。この応力評価装置30はコンピュータにより構成され、上述したアルゴリズムにより歪み量を解析して応力を評価する解析プログラム31と、基板の種類毎に測定すべきX線CTR散乱が関係付けされてなるデータベース32と、キーボード等の入力装置33と、ディスプレイ又はプリンタ等の出力装置34とを有している。そして、オペレータがX線回折装置35に基板をセットし、入力装置33を介して基板の種類を入力すると、応力解析装置30はX線回折装置35を制御して所定のX線CTR散乱を測定し、解析プログラム31に従って歪み量を解析して応力を評価し、その結果を出力装置34に出力する。
【0031】
X線回折装置のセッティングによって、しばしば測定データに除去しきれない系統誤差が残る。このような誤差の影響を小さくして解析精度を向上させるために、予め歪みのない結晶基板だけのX線回折を測定して非対称性曲線を求め、その非対称性曲線と理論値とのずれを歪み量の解析に使用することが好ましい
X線CTR散乱の測定は、通常のX線回折ピークの測定に比べて難しい。実際の測定では、30〜50点の検出器角度2θについて、試料の回転角度θを走査する。この場合、X線CTR散乱の出現位置はしばしば計算位置からずれる。そこで、応力解析装置に、X線回折ピークを自動的に追尾するピーク自動追尾機能を設けることが好ましい。このピーク自動追尾機能は、以下の手順によりX線回折ピークの位置を追尾して、測定値を補正する。
【0032】
(1)予め測定全領域のうちからいくつかの点(例えば、6点以上)を選んで予備測定を行う。
【0033】
(2)予備測定により観測されたピーク位置と計算値とのずれを2次曲線で近似する。ピーク位置は、正規分布曲線でプロファイルフィッティングすることにより求める。
【0034】
(3)上記の近似式を用いて走査軸θの位置の補正を行う。
【0035】
(4)実際の測定時においても、回折ピークのずれを逐次計算し、予め求めた2次曲線を補正しながら測定を行う。なお、上記(2)で求めた正規分布曲線の広がりに基づいて実際の測定値の走査範囲を設定してもよい。例えば、走査範囲を、正規分布曲線の半値幅の2〜3倍に設定する。
【0036】
図7に、実際の測定時にピーク自動追尾機能で計算された2次曲線の例を示す。この例では、回折ピークの位置と計算値とのずれは、y=−0.0767x2 +0.2706x−0.1943という2次曲線で近似されている。このようなピーク自動追尾機能を備えることにより、基板の表面の状態等による影響を小さくして、格子歪み量の測定を精度よく行うことができる。
【0037】
上述した応力評価方法及び応力評価装置により、LSIデバイスに用いられている酸化膜、電極及び配線等の電気特性に影響を与える結晶と薄膜との界面のごく近傍に発生する応力を、定量的に精度よく評価することができる。
【0038】
以下、上述した方法によりシリコン基板上にSiO2 膜を形成し、界面の結晶格子の歪み量を測定した結果について説明する。
【0039】
まず、表面にSiO2 膜(熱酸化膜)が形成されたシリコン基板を2枚用意し、各基板のSiO2 膜に対しそれぞれ異なる処理(処理A及び処理B)を施した。そして、上述した方法により、Siの(111)回折ピークの両側(表面垂直方向の両側)に出現するX線CTR散乱を測定し、その測定結果から図5に相当する非対称性曲線を描画した。その結果を図8に示す。図8に示すように、処理Aを施した試料の格子歪み量は−2.30%であり、処理Bを施した試料の格子歪み量は+1.16%であり、処理によって界面の結晶基板格子に誘起される格子歪みの向きが異なることが判明した。
【0040】
(付記1)X線回折を用いて結晶と異種物質とのヘテロ界面に生じる応力を評価する応力評価方法において、X線回折ピークに対し表面垂直方向両側に出現するX線CTR散乱を測定し、その強度プロファイルを解析して得られる結晶原子の変位量から前記ヘテロ界面に生じる応力を評価することを特徴とする応力評価方法。
【0041】
(付記2)前記X線CTR散乱の強度プロファイルにおいて前記X線回折ピークからの距離が等しい測定データ同士の強度比を計算し、それらの計算結果から描画される非対称性曲線を用いて前記結晶原子の変位量を求めることを特徴とする付記1に記載の応力評価方法。
【0042】
(付記3)前記強度比の計算結果から描画される非対称性曲線と、予め用意された結晶原子の変位量毎の基準曲線とを比較して前記結晶原子の変位量を求めることを特徴とする付記2に記載の応力評価方法。
【0043】
(付記4)予め結晶のみのX線CTR散乱強度の非対称性曲線を求め、その非対称性曲線を用いて前記ヘテロ界面のX線CTR散乱の計測時に生じる系統誤差を除去することを特徴とする付記3に記載の応力評価方法。
【0044】
(付記5)X線回折装置により測定したX線CTR散乱の強度プロファイルを解析し、その解析結果から結晶原子の変位量を求め、前記結晶原子の変位量に基づいて結晶と異種物質とのヘテロ界面に生じる応力を評価することを特徴とする応力評価プログラム。
【0045】
(付記6)X線回折装置により測定したX線CTR散乱の強度プロファイルを解析し、その解析結果から結晶原子の変位量を求め、前記結晶原子の変位量に基づいて結晶と異種物質とのヘテロ界面に生じる応力を評価することを特徴とするX線回折による応力評価装置。
【0046】
(付記7)基板毎に測定すべきX線CTR散乱が関連付けされてなるデータベースを有することを特徴とする付記6に記載のX線回折による応力評価装置。
【0047】
(付記8)X線CTR散乱ピークの自動追尾機能を有することを特徴とする付記6に記載のX線回折による応力評価装置。
【0048】
(付記9)予備測定を行ってX線CTR散乱の測定範囲を決定することを特徴とする付記6に記載のX線回折による応力評価装置。
【0049】
【発明の効果】
以上説明したように、本発明によれば、X線回折ピークの表面垂直方向両側に出現するX線CTR散乱の強度プロファイルを解析して結晶原子の変位量を求め、その結果から結晶と異種物質とのヘテロ界面の生じる応力を評価する。
【0050】
X線CTR散乱の強度プロファイルは、結晶表面の原子位置に敏感に反応する。但し、X線CTRの強度プロファイルは3〜4桁の強度範囲にわたっているので、解析時のデータに対する重み付けが難しく、また結晶表面の平坦性が悪いと強度の減衰が著しい。そこで、本発明においては、例えばX線回折ピークからの距離が等しい測定データ同士の強度比を計算し、それらの計算結果から描画される非対称性曲線を用いて結晶原子の変位量を精度よく求めてから、ヘテロ界面に生じる応力を評価する。
【0051】
また、本発明の応力評価装置によれば、X線回折装置により測定したX線CTR散乱の強度プロファイルを解析する。例えば、X線回折ピークの表面垂直方向両側に出現しX線回折ピークからの距離が等しい測定データ同士の強度比を計算し、それらの計算結果から描画される非対称性曲線を基準曲線と比較して、結晶原子の変位量を求める。結晶原子の変位量とヘテロ界面に生じる応力とは密接な関係があるので、結晶原子の変位量がわかれば、結晶と異種物質とのヘテロ界面に生じる応力を評価することができる。これにより、ヘテロ界面に生じる応力を自動的にかつ精度よく評価することが可能になる。
【図面の簡単な説明】
【図1】図1は、X線CTR散乱の測定方法を示す模式図である。
【図2】図2は、X線回折の概念を示す模式図である。
【図3】図3は、単結晶基板の上に薄膜が形成された状態を示す模式図である。
【図4】図4は、単純立方格子(100)結晶基板の界面において結晶格子が−3%から+3%まで歪んだときのX線CTR散乱の予測プロファイルを示す図である。
【図5】図5は、図4から指数が0.95の位置と1.05の位置とにおけるX線強度を抽出して、−3%〜+3%の各歪み量毎にX線回折強度比を演算した結果を示す基準曲線の図である。
【図6】図6は、本発明の実施の形態に係る応力評価装置を示す模式図である。
【図7】図7は、実際の測定時にピーク自動追尾機能で計算された2次曲線の例を示す図である。
【図8】図8は、表面にSiO2 膜が形成されたシリコン基板に処理A,Bを施し、それぞれシリコン基板とSiO2 膜との界面に生じた応力による結晶原子の位置ずれ量を測定した結果を示す図である。
【符号の説明】
10…試料、
11…X線発生装置、
12…モノクロメータ、
13,14…スリット、
15…検出器(カウンタ)、
21…単結晶基板、
22…薄膜、
30…応力解析装置、
31…解析プログラム、
32…データベース、
33…入力装置、
34…出力装置、
35…X線回折装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a stress evaluation method and stress evaluation apparatus by X-ray diffraction for evaluating a local stress generated at a heterointerface formed when a heterogeneous material is formed on a crystal, and in particular, a surface perpendicular to an X-ray diffraction peak. The present invention relates to a stress evaluation method by X-ray diffraction and a stress evaluation apparatus for evaluating stress generated at a heterointerface using X-ray CTR scattering appearing on both sides of a direction.
[0002]
[Prior art]
A wide variety of heterojunction interfaces exist in current semiconductor devices and magnetic devices. Regardless of whether it is crystalline or amorphous, when a thin film is grown on a single crystal substrate, a stress is generated, and the atoms constituting the crystal substrate near the interface are slightly displaced toward the film side or the substrate side. This local distortion causes, for example, a change in carrier mobility and a change in threshold value in a semiconductor device, and seriously affects device characteristics and reliability. Therefore, there is a demand for a method for measuring the strain amount of the crystal substrate and evaluating the interface stress.
[0003]
Conventionally, as a typical stress evaluation method at the interface between a thin film and a single crystal substrate, a parallel tilt method and a tilt method using X-ray diffraction are known. However, these methods can evaluate the stress of the entire thin film, but cannot detect the stress generated in the very vicinity of the interface. In addition, since these methods measure the X-ray diffraction peak of the crystal constituting the thin film, they cannot be applied when the thin film is amorphous.
[0004]
Although it is conceivable to measure the X-ray diffraction peak intensity of the crystal substrate itself, in that case, since the strain region is at most several atomic layers in the vicinity of the interface, it is impossible to even confirm the presence or absence of stress.
[0005]
In recent years, methods using extremely asymmetric X-ray diffraction (Takashi Enomoto, Surface Science, 23, 239, (2002)) and Bragg conditions have been used as methods for evaluating microscopic distortions of semiconductor crystal substrates using X-ray diffraction methods. A method of observing X-ray CTR (Crystal truncation Rod) scattering (T. Takahashi, Phy. Rev. B, 62, 3630 (2000)) has been proposed. However, both methods use dynamic diffraction theory, which is extremely difficult to analyze experimental data, and the measurement conditions are quite special.
[0006]
Japanese Patent Application Laid-Open No. 8-15184 describes a method of measuring the strain distribution in the depth direction and in the plane of a minute portion of a sample using energy dispersive X-ray diffraction. However, even in this method, it is necessary to separate the energy distribution due to the unstrained layer and the energy distribution due to the strained layer from the experimental data, and thus there is a drawback that it is difficult to analyze the data.
[0007]
[Patent Document 1]
JP-A-8-15184 [Non-Patent Document 1]
Takashi Enomoto, Surface Science, 23, 239, (2002)
[Non-Patent Document 2]
T. Takahashi, Phy. Rev. B, 62, 3630 (2000)
[Non-Patent Document 3]
IKRobinson, Phys. Rev. B 33, 3830, (1986)
[0008]
[Problems to be solved by the invention]
As described above, the slight tilt generated in the crystal substrate cannot be evaluated by the parallel tilt method and the tilt method. In addition, the method using extremely asymmetric X-ray diffraction and the method of observing X-ray CTR scattering while satisfying the Bragg condition are difficult to analyze data, the measurement conditions are special, and the crystal substrate to be evaluated is limited. Therefore, there is a drawback that it lacks versatility. Furthermore, the method described in JP-A-8-15184 also has a drawback that it is difficult to analyze data.
[0009]
In view of the above, an object of the present invention is to provide a stress evaluation method by X-ray diffraction and a stress evaluation apparatus capable of quantitatively and accurately evaluating a stress generated at a hetero interface between a crystal and a different substance.
[0010]
[Means for Solving the Problems]
Problems described above, the stress evaluation method for evaluating the stress generated in the hetero interface between the crystal and the heterogeneous material, measuring the X-ray CTR scattering appearing in the direction perpendicular to the surface on both sides with respect to X-ray diffraction peak by X-ray diffraction And a step of evaluating stress generated at the heterointerface from the amount of displacement of crystal atoms obtained by analyzing the intensity profile of the X-ray CTR scattering , and the X-ray in the intensity profile of the X-ray CTR scattering. Solved by a stress evaluation method characterized by calculating an intensity ratio between measurement data having the same distance from the diffraction peak and obtaining an amount of displacement of the crystal atom using an asymmetric curve drawn from the calculation results .
[0011]
In this case, an intensity ratio between measurement data having the same distance from the X-ray diffraction peak in the intensity profile of the X-ray CTR scattering is calculated, and the crystal atom is calculated using an asymmetric curve drawn from the calculation results. Can be obtained.
[0012]
Further, the amount of displacement of the crystal atoms can be obtained by comparing an asymmetric curve drawn from the calculation result of the intensity ratio with a reference curve prepared for each amount of displacement of crystal atoms.
[0013]
In the present invention, the X-ray CTR scattering intensity profiles appearing on both sides of the surface perpendicular to the surface of the X-ray diffraction peak are analyzed to determine the amount of displacement of crystal atoms, and from the result, the stress generated at the heterointerface between the crystal and the foreign material To evaluate.
[0014]
The intensity profile of X-ray CTR scattering is sensitive to the atomic position on the crystal surface. However, since the intensity profile of the X-ray CTR extends over an intensity range of 3 to 4 digits, it is difficult to weight the data at the time of analysis, and the intensity attenuation is significant if the flatness of the crystal surface is poor. Therefore, for example, by calculating the intensity ratio between measurement data having the same distance from the X-ray diffraction peak and using an asymmetric curve drawn from the calculation results, the displacement amount of the crystal atom can be obtained with high accuracy. .
[0015]
The above problem is to analyze the intensity profile of X-ray CTR scattering measured by an X-ray diffractometer, obtain the amount of displacement of crystal atoms from the analysis result, and based on the amount of displacement of crystal atoms, A stress evaluation apparatus by X-ray diffraction for evaluating stress generated at a heterointerface , wherein the intensity ratio between measurement data having the same distance from the X-ray diffraction peak in the intensity profile of the X-ray CTR scattering is calculated, This is solved by an X-ray diffraction stress evaluation apparatus characterized in that the amount of displacement of the crystal atom is obtained using an asymmetric curve drawn from the calculation result .
[0016]
In this case, it is preferable to have a database in which X-ray CTR scattering to be measured for each substrate is associated. Moreover, it is preferable to have an automatic tracking function of the X-ray CTR scattering peak.
[0017]
In the present invention, the intensity profile of X-ray CTR scattering measured by an X-ray diffractometer is analyzed. For example, the intensity ratio between measured data that appears on both sides of the surface of the X-ray diffraction peak in the vertical direction and the distance from the X-ray diffraction peak is the same is calculated, and the asymmetry curve drawn from these calculation results is compared with the reference curve. Thus, the amount of displacement of the crystal atoms is obtained. Since there is a close relationship between the amount of displacement of crystal atoms and the stress generated at the heterointerface, if the amount of displacement of crystal atoms is known, the stress generated at the heterointerface between the crystal and the foreign material can be evaluated. This makes it possible to automatically and accurately evaluate the stress generated at the heterointerface.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0019]
FIG. 1 is a schematic diagram showing a method for measuring X-ray CTR scattering.
[0020]
The X-ray beam output from the X-ray generator 11 passes through the monochromator 12 and becomes a single color. After the beam shape is formed by the slit 13, the X-ray beam enters the surface of the sample (crystal) 10 at an angle θ. When the sample 10 is rotated, X-ray diffraction is observed when the Bragg condition (2dsin θ = nλ: where d is the surface separation, θ is the incident angle, λ is the X-ray wavelength, and n is a natural number) is satisfied. The The detector (counter) 15 is arranged in the direction of 2θ with respect to the incident direction of X-rays. Usually, a slit 14 is also arranged between the sample 10 and the detector 15.
[0021]
FIG. 2 is a schematic diagram showing the concept of X-ray diffraction. As shown in FIG. 2, CTR scattering appears above and below the X-ray diffraction peak (Bragg point) (in a direction perpendicular to the surface of the sample). The intensity distribution of this CTR scattering changes sensitively according to changes in the position of atoms on the crystal surface.
[0022]
FIG. 3 is a schematic view showing a state in which a thin film is formed on a single crystal substrate. When the thin film 21 is formed on the single crystal substrate 20, regardless of whether the thin film 21 is crystalline or amorphous, stress is generated between the single crystal substrate 20 and the thin film 21 and the crystal lattice near the interface is distorted. Occurs. As a result, the intensity of CTR scattering changes above and below the X-ray diffraction peak.
[0023]
FIG. 4 shows an X-ray diffraction index on the horizontal axis and the X-ray diffraction intensity on the vertical axis, when the crystal lattice is distorted from −3% to + 3% at the interface of the simple cubic lattice (100) crystal substrate. It is a figure which shows the prediction profile of X-ray CTR scattering. However, the calculation of the X-ray diffraction intensity was based on the method described in the literature (IKRobinson, Phys. Rev. B 33, 3830, (1986)). As can be seen from FIG. 4, the intensity distribution of X-ray CTR scattering changes depending on the direction and amount of distortion. The X-ray diffraction intensity increases as the amount of distortion decreases from negative to positive below the X-ray diffraction peak (where the index is 1), whereas distortion occurs above the X-ray diffraction peak. As the quantity goes from negative to positive, the X-ray diffraction intensity decreases.
[0024]
Since the intensity profile of X-ray CTR scattering covers an intensity range of 3 to 4 digits, it is difficult to weight data at the time of analysis. Further, when the flatness of the crystal substrate is deteriorated, the attenuation of the strength becomes remarkable, so that the analysis becomes more difficult.
[0025]
Therefore, in the present invention, the ratio of the X-ray diffraction intensity at two points equidistant in the vertical direction from the X-ray diffraction peak (index = 1) is calculated for each strain amount. For example, the X-ray intensity at the position where the index is 0.95 and the position where the index is 1.05 is extracted from FIG. 4, and the X-ray diffraction intensity ratio is calculated for each strain amount of −3% to + 3%.
[0026]
FIG. 5 is a diagram showing the result of the above calculation, with the horizontal axis representing the distance from the X-ray diffraction peak and the vertical axis representing the X-ray diffraction intensity ratio. After preparing the reference curve data as shown in FIG. 5, the CTR scattering of the single crystal substrate on which the actual thin film is formed is measured, and the X-ray diffraction intensity ratio is calculated from the X-ray diffraction intensity distribution. Calculation is performed for each distance from the line diffraction peak. Then, a curve (asymmetric curve) that approximates the value of the calculation result is obtained by the method of least squares, and the displacement amount (lattice distortion amount) of the crystal atom is obtained by comparison with the reference curve of FIG. Thereafter, the stress is evaluated from the elastic properties of the crystal substrate. Since it can be said that the greater the amount of displacement of crystal atoms, the greater the stress, the amount of stress generated at the heterointerface between the single crystal substrate and the thin film can be quantitatively evaluated from the amount of displacement of crystal atoms. In addition, an analysis program using such an algorithm can automatically measure the displacement of crystal atoms and quantitatively evaluate stress.
[0027]
By the way, although the above-mentioned example shows the result of simulation for a simple cubic lattice (001) crystal substrate, it is actually important to select X-ray CTR scattering to be measured according to the crystal structure of the crystal substrate. In this case, there are two points in selecting X-ray CTR scattering. The first point is to measure CTR scattering of a high-intensity X-ray diffraction peak in order to collect measurement data with high accuracy and speed. The second point is to measure X-ray CTR scattering in which the X-ray CTR scattering intensity profile is symmetrical with respect to the X-ray diffraction peak in an undistorted state in order to increase the accuracy of the intensity ratio.
[0028]
For example, in the case of a substrate with a surface orientation of (001), when the crystal structure is a simple cubic lattice, X-ray CTR scattering of the (001) diffraction peak is used, and when the crystal structure is a body-centered cubic lattice or a face-centered cubic lattice Preferably uses X-ray CTR scattering of (002) diffraction peaks. In addition, when a generally used surface orientation is a (001) silicon substrate (diamond structure), it is preferable to use X-ray CTR scattering of a (111) diffraction peak.
[0029]
By providing a database that associates the type of substrate and the X-ray diffraction peak to be measured in the stress evaluation device, it is possible to measure the amount of lattice distortion and evaluate the stress simply by selecting the crystal substrate when setting the sample. It becomes.
[0030]
FIG. 6 is a schematic diagram showing such a stress evaluation apparatus. The stress evaluation apparatus 30 is configured by a computer, and an analysis program 31 that analyzes the amount of strain by the above-described algorithm and evaluates stress, and a database 32 that associates X-ray CTR scattering to be measured for each type of substrate. And an input device 33 such as a keyboard and an output device 34 such as a display or a printer. When the operator sets the substrate on the X-ray diffractometer 35 and inputs the type of the substrate via the input device 33, the stress analyzer 30 controls the X-ray diffractometer 35 to measure predetermined X-ray CTR scattering. Then, according to the analysis program 31, the amount of strain is analyzed to evaluate the stress, and the result is output to the output device 34.
[0031]
Depending on the setting of the X-ray diffractometer, systematic errors often remain in the measurement data. In order to reduce the influence of such errors and improve analysis accuracy, the X-ray diffraction of only a crystal substrate without distortion is measured in advance to obtain an asymmetry curve, and the deviation between the asymmetry curve and the theoretical value is calculated. Measurement of X-ray CTR scattering that is preferably used for analysis of strain is more difficult than measurement of ordinary X-ray diffraction peaks. In actual measurement, the sample rotation angle θ is scanned with respect to 30 to 50 detector angles 2θ. In this case, the appearance position of X-ray CTR scattering often deviates from the calculated position. Therefore, it is preferable to provide an automatic peak tracking function for automatically tracking the X-ray diffraction peak in the stress analyzer. This automatic peak tracking function tracks the position of the X-ray diffraction peak by the following procedure and corrects the measurement value.
[0032]
(1) Preliminary measurement is performed by selecting several points (for example, 6 points or more) from the entire measurement area in advance.
[0033]
(2) Approximate the deviation between the peak position observed by the preliminary measurement and the calculated value with a quadratic curve. The peak position is obtained by profile fitting with a normal distribution curve.
[0034]
(3) The position of the scanning axis θ is corrected using the above approximate expression.
[0035]
(4) Even during actual measurement, the deviation of the diffraction peak is sequentially calculated, and the measurement is performed while correcting the quadratic curve obtained in advance. Note that the scanning range of actual measurement values may be set based on the spread of the normal distribution curve obtained in (2) above. For example, the scanning range is set to 2 to 3 times the half width of the normal distribution curve.
[0036]
FIG. 7 shows an example of a quadratic curve calculated by the automatic peak tracking function during actual measurement. In this example, the deviation between the position of the diffraction peak and the calculated value is approximated by a quadratic curve of y = −0.0767x 2 + 0.2706x−0.1943. By providing such an automatic peak tracking function, it is possible to reduce the influence of the state of the surface of the substrate and to accurately measure the amount of lattice distortion.
[0037]
Using the stress evaluation method and stress evaluation apparatus described above, the stress generated in the immediate vicinity of the interface between the crystal and the thin film that affects the electrical characteristics of oxide films, electrodes, and wiring used in LSI devices can be quantitatively determined. It can be evaluated with high accuracy.
[0038]
Hereinafter, the results of forming a SiO 2 film on a silicon substrate by the above-described method and measuring the strain amount of the crystal lattice at the interface will be described.
[0039]
First, two silicon substrates having a SiO 2 film (thermal oxide film) formed on the surface were prepared, and different treatments (treatment A and treatment B) were performed on the SiO 2 film of each substrate. Then, the X-ray CTR scattering appearing on both sides of the Si (111) diffraction peak (both sides in the surface vertical direction) was measured by the method described above, and an asymmetric curve corresponding to FIG. 5 was drawn from the measurement result. The result is shown in FIG. As shown in FIG. 8, the amount of lattice distortion of the sample subjected to the treatment A is −2.30%, and the amount of lattice distortion of the sample subjected to the treatment B is + 1.16%. It was found that the direction of lattice strain induced in the lattice was different.
[0040]
(Supplementary note 1) In a stress evaluation method for evaluating stress generated at a heterointerface between a crystal and a foreign substance using X-ray diffraction, X-ray CTR scattering appearing on both sides in the surface vertical direction with respect to the X-ray diffraction peak is measured. A stress evaluation method characterized by evaluating stress generated at the heterointerface from a displacement amount of crystal atoms obtained by analyzing the intensity profile.
[0041]
(Supplementary Note 2) In the intensity profile of the X-ray CTR scattering, an intensity ratio between measurement data having the same distance from the X-ray diffraction peak is calculated, and the crystal atom is calculated using an asymmetric curve drawn from the calculation results. The stress evaluation method as set forth in appendix 1, wherein the amount of displacement is obtained.
[0042]
(Supplementary Note 3) The displacement amount of the crystal atom is obtained by comparing an asymmetric curve drawn from the calculation result of the intensity ratio with a reference curve prepared for each displacement amount of the crystal atom. The stress evaluation method according to attachment 2.
[0043]
(Supplementary note 4) An asymmetry curve of the X-ray CTR scattering intensity of only the crystal is obtained in advance, and a systematic error that occurs when measuring the X-ray CTR scattering at the heterointerface is removed using the asymmetry curve. 3. The stress evaluation method according to 3.
[0044]
(Appendix 5) Analyzing the intensity profile of X-ray CTR scattering measured by an X-ray diffractometer, obtaining the amount of displacement of crystal atoms from the analysis results, A stress evaluation program characterized by evaluating stress generated at an interface.
[0045]
(Appendix 6) Analyzing the intensity profile of X-ray CTR scattering measured by an X-ray diffractometer, obtaining the displacement amount of the crystal atom from the analysis result, and calculating the heterogeneity between the crystal and the dissimilar substance based on the displacement amount of the crystal atom. An apparatus for evaluating stress by X-ray diffraction, characterized by evaluating stress generated at an interface.
[0046]
(Supplementary note 7) The stress evaluation apparatus by X-ray diffraction according to supplementary note 6, which has a database in which X-ray CTR scattering to be measured for each substrate is associated.
[0047]
(Additional remark 8) The stress evaluation apparatus by the X-ray diffraction of Additional remark 6 characterized by having an automatic tracking function of an X-ray CTR scattering peak.
[0048]
(Supplementary note 9) The stress evaluation apparatus by X-ray diffraction according to supplementary note 6, wherein preliminary measurement is performed to determine a measurement range of X-ray CTR scattering.
[0049]
【The invention's effect】
As described above, according to the present invention, the intensity profile of X-ray CTR scattering that appears on both sides of the surface of the X-ray diffraction peak in the direction perpendicular to the surface is analyzed to determine the amount of displacement of crystal atoms. To evaluate the stress generated at the heterointerface.
[0050]
The intensity profile of X-ray CTR scattering is sensitive to the atomic position on the crystal surface. However, since the intensity profile of the X-ray CTR extends over an intensity range of 3 to 4 digits, it is difficult to weight the data at the time of analysis, and the intensity attenuation is significant if the flatness of the crystal surface is poor. Therefore, in the present invention, for example, the intensity ratio between the measurement data having the same distance from the X-ray diffraction peak is calculated, and the amount of displacement of the crystal atoms is accurately obtained using an asymmetric curve drawn from the calculation results. Then, the stress generated at the heterointerface is evaluated.
[0051]
Moreover, according to the stress evaluation apparatus of the present invention, the intensity profile of X-ray CTR scattering measured by the X-ray diffractometer is analyzed. For example, the intensity ratio between measured data that appears on both sides of the surface of the X-ray diffraction peak in the vertical direction and the distance from the X-ray diffraction peak is the same is calculated, and the asymmetry curve drawn from these calculation results is compared with the reference curve. Thus, the amount of displacement of the crystal atoms is obtained. Since there is a close relationship between the amount of displacement of crystal atoms and the stress generated at the heterointerface, if the amount of displacement of crystal atoms is known, the stress generated at the heterointerface between the crystal and the foreign material can be evaluated. This makes it possible to automatically and accurately evaluate the stress generated at the heterointerface.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a method for measuring X-ray CTR scattering.
FIG. 2 is a schematic diagram showing the concept of X-ray diffraction.
FIG. 3 is a schematic view showing a state in which a thin film is formed on a single crystal substrate.
FIG. 4 is a diagram showing a predicted profile of X-ray CTR scattering when the crystal lattice is distorted from −3% to + 3% at the interface of the simple cubic lattice (100) crystal substrate.
FIG. 5 shows the X-ray diffraction intensity extracted for each strain amount of −3% to + 3% by extracting the X-ray intensity at the position where the index is 0.95 and 1.05 from FIG. It is a figure of the reference | standard curve which shows the result of having calculated ratio.
FIG. 6 is a schematic diagram showing a stress evaluation apparatus according to an embodiment of the present invention.
FIG. 7 is a diagram illustrating an example of a quadratic curve calculated by an automatic peak tracking function during actual measurement.
Figure 8 is processed in the silicon substrate where the SiO 2 film is formed A, B subjected to the surface, respectively measuring the positional deviation amount of crystal atoms by interface resulting stress between the silicon substrate and the SiO 2 film It is a figure which shows the result.
[Explanation of symbols]
10 ... Sample,
11 ... X-ray generator,
12 ... Monochromator,
13, 14 ... slits,
15 ... Detector (counter),
21 ... single crystal substrate,
22 ... thin film,
30 ... Stress analyzer,
31 ... analysis program,
32 ... Database,
33 ... Input device,
34 ... Output device,
35: X-ray diffractometer.

Claims (4)

X線回折を用いて結晶と異種物質とのヘテロ界面に生じる応力を評価する応力評価方法において、
X線回折ピークに対し表面垂直方向両側に出現するX線CTR散乱を測定する工程と
前記X線CTR散乱の強度プロファイルを解析して得られる結晶原子の変位量から前記ヘテロ界面に生じる応力を評価する工程とを有し
前記X線CTR散乱の強度プロファイルにおいて前記X線回折ピークからの距離が等しい測定データ同士の強度比を計算し、それらの計算結果から描画される非対称性曲線を用いて前記結晶原子の変位量を求めることを特徴とする応力評価方法。
In a stress evaluation method for evaluating stress generated at a hetero interface between a crystal and a different substance using X-ray diffraction,
And measuring an X-ray CTR scattering appearing in the direction perpendicular to the surface on both sides with respect to X-ray diffraction peaks,
And a step of evaluating the stress generated in the hetero interface from the displacement amount of crystal atoms obtained by analyzing the intensity profile of the X-ray CTR scattering,
In the intensity profile of the X-ray CTR scattering, the intensity ratio between the measurement data having the same distance from the X-ray diffraction peak is calculated, and the amount of displacement of the crystal atoms is calculated using an asymmetric curve drawn from the calculation results. The stress evaluation method characterized by calculating | requiring .
前記強度比の計算結果から描画される非対称性曲線と、予め用意された結晶原子の変位量毎の基準曲線とを比較して前記結晶原子の変位量を求めることを特徴とする請求項1に記載の応力評価方法。And asymmetry curve to be drawn from the strength ratio calculation results in claim 1, characterized in that by comparing the reference curve of displacement of each of previously prepared crystals atom obtains a displacement amount of the crystal atoms The stress evaluation method as described. X線回折装置により測定したX線CTR散乱の強度プロファイルを解析し、その解析結果から結晶原子の変位量を求め、前記結晶原子の変位量に基づいて結晶と異種物質とのヘテロ界面に生じる応力を評価するX線回折による応力評価装置であって、
前記X線CTR散乱の強度プロファイルにおいて前記X線回折ピークからの距離が等しい測定データ同士の強度比を計算し、それらの計算結果から描画される非対称性曲線を用いて前記結晶原子の変位量を求めることを特徴とするX線回折による応力評価装置。
Analyzing the intensity profile of X-ray CTR scattering measured by an X-ray diffractometer, obtaining the displacement amount of the crystal atom from the analysis result, and the stress generated at the heterointerface between the crystal and the foreign material based on the displacement amount of the crystal atom A stress evaluation apparatus by X-ray diffraction for evaluating
In the intensity profile of the X-ray CTR scattering, the intensity ratio between the measurement data having the same distance from the X-ray diffraction peak is calculated, and the amount of displacement of the crystal atoms is calculated using an asymmetric curve drawn from the calculation results. An apparatus for evaluating stress by X-ray diffraction , characterized in that it is obtained .
基板毎に測定すべきX線CTR散乱が関連付けされてなるデータベースを有することを特徴とする請求項3に記載のX線回折による応力評価装置。The stress evaluation apparatus by X-ray diffraction according to claim 3 , further comprising a database in which X-ray CTR scattering to be measured for each substrate is associated.
JP2003152214A 2003-05-29 2003-05-29 Stress evaluation method and stress evaluation apparatus by X-ray diffraction Expired - Fee Related JP4053464B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003152214A JP4053464B2 (en) 2003-05-29 2003-05-29 Stress evaluation method and stress evaluation apparatus by X-ray diffraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003152214A JP4053464B2 (en) 2003-05-29 2003-05-29 Stress evaluation method and stress evaluation apparatus by X-ray diffraction

Publications (2)

Publication Number Publication Date
JP2004354197A JP2004354197A (en) 2004-12-16
JP4053464B2 true JP4053464B2 (en) 2008-02-27

Family

ID=34047488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003152214A Expired - Fee Related JP4053464B2 (en) 2003-05-29 2003-05-29 Stress evaluation method and stress evaluation apparatus by X-ray diffraction

Country Status (1)

Country Link
JP (1) JP4053464B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793988B (en) * 2019-11-21 2022-03-15 山东建筑大学 Method for representing amorphous-crystal transformation dynamic characteristics by high-energy X-ray

Also Published As

Publication number Publication date
JP2004354197A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
Lutterotti Total pattern fitting for the combined size–strain–stress–texture determination in thin film diffraction
Tweedie et al. X-ray characterization of composition and relaxation of AlxGa1− xN (≤ x≤ 1) layers grown on GaN/sapphire templates by low pressure organometallic vapor phase epitaxy
KR100578161B1 (en) A recording medium having a method for measuring the behavior of oxygen precipitates in a silicon single crystal, a process determination method for manufacturing a silicon single crystal wafer, and a program for measuring the behavior of oxygen precipitates in a silicon single crystal
US20050195941A1 (en) Diffractometer
Tanner et al. Measurement of aluminum concentration in epitaxial layers of Al x Ga1− x As on GaAs by double axis x‐ray diffractometry
US6907107B1 (en) Method and apparatus for the analysis of material composition
JP4053464B2 (en) Stress evaluation method and stress evaluation apparatus by X-ray diffraction
Moram et al. The effect of wafer curvature on x-ray rocking curves from gallium nitride films
Jordan‐Sweet et al. Unique x‐ray diffraction pattern at grazing incidence from misfit dislocations in SiGe thin films
Ulyanenkova et al. Characterization of SiGe thin films using a laboratory X-ray instrument
Reiher et al. Depth-resolving structural analysis of GaN layers by skew angle x-ray diffraction
Branger et al. Internal stress analysis in thin metallic films by combining curvature and X-ray diffraction methods
Benrakkad et al. Stress gradient and structural properties of atmospheric and reduced pressure deposited polysilicon layers for micromechanical sensors
Hearn Stress Measurements in Thin Films Deposited on Single Crystal Substrates Through X-Ray Topography Techniques
CN100392380C (en) External extended membrane high flux x-ray diffraction analysis for oxide semiconductor
Schifano et al. The restricted random dislocation distribution model to describe ensembles of dislocations with a screw component in ZnO layers with a mosaic structure
Zaumseil et al. Precise Measurement of Ge Depth Profiles in SiGe HBT's-a Comparison of Different Methods
Radamson et al. The role of low temperature growth defects for the stability of strained Si/Si1− xGex heterostructures
Goodman et al. Characterization of strained Si structures using SIMS and visible Raman
Dommann et al. Advanced x-ray analysis techniques to investigate aging of micromachined silicon actuators for space application
Mooney et al. High resolution x-ray diffraction measurements of strain relaxed SiGe/Si structures
Cabié et al. TEM measurement of the epitaxial stress of Si/SiGe lamellae prepared by FIB
Dommann et al. Quality Control On Strained Semiconductor Devices
Woitok High-resolution X-ray diffraction and fast routine evaluation of graded hetero-epitaxial layers
JP6142761B2 (en) X-ray analysis method and X-ray analysis apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4053464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees