JP4052653B2 - Radio correction clock - Google Patents

Radio correction clock Download PDF

Info

Publication number
JP4052653B2
JP4052653B2 JP2004189137A JP2004189137A JP4052653B2 JP 4052653 B2 JP4052653 B2 JP 4052653B2 JP 2004189137 A JP2004189137 A JP 2004189137A JP 2004189137 A JP2004189137 A JP 2004189137A JP 4052653 B2 JP4052653 B2 JP 4052653B2
Authority
JP
Japan
Prior art keywords
magnetic field
receiving coil
bias
bias magnetic
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004189137A
Other languages
Japanese (ja)
Other versions
JP2006010542A (en
Inventor
則雄 宮内
Original Assignee
則雄 宮内
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 則雄 宮内 filed Critical 則雄 宮内
Priority to JP2004189137A priority Critical patent/JP4052653B2/en
Publication of JP2006010542A publication Critical patent/JP2006010542A/en
Application granted granted Critical
Publication of JP4052653B2 publication Critical patent/JP4052653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Clocks (AREA)
  • Electromechanical Clocks (AREA)
  • Details Of Aerials (AREA)

Description

本発明は、金属外装部を有する電波修正時計がその時計ケースの内部に有し、受信コイルによって標準電波を受信する高性能なアンテナの構造とそれを用いた最適な受信手段を有する電波修正時計に関する。 The present invention provides a radio-controlled timepiece having a high-performance antenna structure having a radio-controlled timepiece having a metal exterior part and receiving a standard radio wave by a receiving coil, and an optimal receiving means using the same. About.

近年、タイムコードを有する長波の標準電波を受信して、使用中の時計の時刻を当該標準時の時刻に自動的に合わせる電波修正時計が商品化されているが、腕時計においては、小型と、薄型と、特に、高級感が重要な問題であって、それを実現するためには、少なくとも、磁心にマグネットワイヤーを巻回すことによって形成された受信コイルを有し、長波を受信するバーアンテナを、高級感を出すことができる金属外装部を有する時計ケースに内臓する必要があるが、そうすると、主に長波の金属外装部で生じる渦流損失によって該アンテナの受信性能が低下してしまい、長波を受信できないという問題が発生する。 In recent years, radio-controlled timepieces that receive long-wave standard radio waves with time codes and automatically adjust the time of the clock in use to the standard time have been commercialized. However, wristwatches are small and thin. In particular, luxury is an important issue, and in order to realize it, at least a bar antenna having a receiving coil formed by winding a magnet wire around a magnetic core and receiving a long wave, It is necessary to incorporate a watch case with a metal exterior that can give a sense of quality, but if this is done, the reception performance of the antenna will be degraded due to eddy current loss that occurs mainly in the metal exterior of the long wave, and long waves will be received. The problem of not being able to occur.

その問題を解決するために、図9に示す従来のアンテナ90は磁心91からなり、該磁心91はマグネットワイヤーを巻回すことによって受信コイル92を形成した受信コイル形成部91aとギャップ93を有する非受信コイル形成部91bからなっている(受信コイル92の両端に直列に接続されたLC共振回路を形成する共振用のコンデンサは図では省略してある)。 In order to solve the problem, the conventional antenna 90 shown in FIG. 9 includes a magnetic core 91, and the magnetic core 91 has a receiving coil forming portion 91 a in which a receiving coil 92 is formed by winding a magnet wire and a non-magnetic gap 91. A reception coil forming portion 91b is formed (resonance capacitors that form LC resonance circuits connected in series to both ends of the reception coil 92 are omitted in the figure).

まず、アンテナ90に対して、以下に示す数1からす数5の関係式が成り立つ。数1は受信コイル92のインダクタンスLとコンデンサの容量CからなるLC共振回路のQ値の、長波の角周波数ωと、インダクタンスLと、長波の渦流損失抵抗を含む受信コイル92の抵抗Rの関係式であって、数2はインダクタンスLの受信コイル92の巻数nと磁束97の閉磁路96の磁気抵抗Rの関係式であって、数3は該磁気抵抗Rの受信コイル形成部91aの磁気抵抗Rmaとギャップ93を含む非受信コイル形成部91bの磁気抵抗Rmbの和で表されることを示しており、数4は磁気抵抗Rmaの交流透磁率μと、磁路長lmaと、磁路断面積Smaの関係式であって、数5は磁気抵抗Rmbの交流透磁率μと、磁路長lmbと、磁路断面積Smbと、ギャップ長lmgと、ギャップ断面積Smgと、実効交流透磁率μbeの関係式である。 First, for the antenna 90, the following relational expression of Formula 1 to Formula 5 is established. Equation 1 shows the relationship between the long-wave angular frequency ω, the inductance L, and the resistance R of the reception coil 92 including the long-wave eddy current loss resistance, of the Q value of the LC resonance circuit composed of the inductance L of the reception coil 92 and the capacitance C of the capacitor. a formula, the number 2 is a relational expression of the magnetoresistance R m of closed magnetic circuit 96 turns n and the magnetic flux 97 of the receiving coil 92 of the inductance L, the number 3 is the receive coil forming portion 91a of the magnetoresistive R m and number 4 is an alternating magnetic permeability mu a magnetoresistive R ma indicates that represented by the sum of the reluctance R mb the non-receiving coil forming part 91b that includes a magnetoresistive R ma and the gap 93, the magnetic path The relational expression between the length l ma and the magnetic path cross-sectional area S ma , where Equation 5 is the AC permeability μ b of the magnetic resistance R mb , the magnetic path length l mb , the magnetic path cross-sectional area S mb, and the gap length and l mg, and the gap cross-sectional area S mg, effective NagareToru is a relational expression of the permeability μ be.

上記の数1から数5の関係式を使って、40kHzの長波94がアンテナ90に到来した時の前記共振用のコンデンサの両極間に生じる検出電圧Vを説明する。 The detected voltage V generated between the two poles of the resonance capacitor when the 40 kHz long wave 94 arrives at the antenna 90 will be described using the above relational expressions 1 to 5.

前記長波94は磁心91の通路95aと95bを通過するが、通路95bにはギャップ93があってそれによって通路95bの実効交流透磁率μbeは通路95aの交流透磁率μに比べ小さくなり、該長波94の大部分は通路95aを通過し、受信コイル92には電磁誘導によって受信コイル誘起起電力vが発生する。 The long wave 94 passes through the passages 95a and 95b of the magnetic core 91, but the passage 95b has a gap 93 so that the effective AC permeability μ be of the passage 95b is smaller than the AC permeability μ a of the passage 95a. Most of the long wave 94 passes through the passage 95a, and a reception coil induced electromotive force v is generated in the reception coil 92 by electromagnetic induction.

その後、その受信コイル誘起起電力vによってLC共振回路に生じる電流が発生する磁束97は閉磁路96を回るが、その時、インダクタンスLが数3から数5の関係式から求まる磁気抵抗Rを使って数2から求まり、そのインダクタンスLにより、数1に示すQ値が求まるが、磁路96bに存在するギャップ93による磁気抵抗Rmbの増大は若干であり(ギャップ93における磁束97の外部への漏れは少なく、受信コイル形成部91a側にある金属外装部98での渦流損失は小さい)、この時のQ値は比較的大きな値となるので、長波を受信するのに必要である、前記受信コイル92に直列に接続する共振用のコンデンサ(容量C)の両極間に発生する検出電圧Vは、前記受信コイル誘起起電力vのQ倍、すなわち、Q・vとなって、前記アンテナ90を金属外装部98を有する時計に内臓することが可能となった。
特開2004−144481
Thereafter, the magnetic flux 97 which current is generated which occurs LC resonance circuit by the receiver coil induces electromotive force v is around a closed magnetic circuit 96, uses that time, the reluctance R m inductance L is obtained from the number 5 relationship from a few 3 The Q value shown in Equation 1 can be obtained from the inductance L. However, the increase in the magnetic resistance R mb due to the gap 93 existing in the magnetic path 96b is slight (external to the magnetic flux 97 in the gap 93). There is little leakage, and the eddy current loss at the metal exterior 98 on the side of the receiving coil forming portion 91a is small.) Since the Q value at this time is a relatively large value, it is necessary to receive long waves. A detection voltage V generated between both poles of a resonance capacitor (capacitance C) connected in series to the coil 92 is Q times the reception coil induced electromotive force v, that is, Q · v. , The antenna 90 has become possible to built a timepiece having a metal outer portion 98.
JP-A-2004-144481

しかしながら、基本技術に関わる改良すべき2つの問題がある。1つの問題は以下のようである。図9に示すアンテナ90において、該アンテナ90の受信コイル92に発生する受信コイル誘起起電力vを増大するには通路95aの交流透磁率μを通路95bの実効交流透磁率μbeに比べより高くする必要があり、つまり、ギャップ93のギャップ長93aを長くする必要があり、一方、前記検出電圧V大きくするために、前記Q値を大きく取ろうとすると、数1の関係式からインダクタンスLを大きくする必要があるが、数2から数5の関係式より、磁心91の閉磁路96の磁気抵抗Rmをできるだけ小さくする必要があり、磁心91のギャップ93を含む磁路96bの磁気抵抗Rmbを小さくするために、例えば、ギャップ長93aを短くする必要があり、一方ではギャップ93のギャップ長93aを長くする必要がある、一方では該ギャップ長93aを短くする必要があるという、相反する要求のため両方の要求を共に満たすことができないという問題があった。 However, there are two problems related to the basic technology that should be improved. One problem is as follows. In the antenna 90 shown in FIG. 9, than to increase the receive coil induced electromotive force v generated in the reception coil 92 of the antenna 90 than the AC magnetic permeability mu a passage 95a in the effective AC permeability mu BE passage 95b In other words, the gap length 93a of the gap 93 needs to be increased. On the other hand, in order to increase the detection voltage V, if the Q value is increased, the inductance L is calculated from the relational expression (1). it is necessary to increase, but from a few 2 number 5 relations, it is necessary to minimize the magnetic resistance Rm of the closed magnetic path 96 of the magnetic core 91, the magnetic resistance of the magnetic path 96b including gaps 93 of the magnetic core 91 R mb For example, it is necessary to shorten the gap length 93a, and on the other hand, it is necessary to increase the gap length 93a of the gap 93. However, there is a problem that it is not possible to satisfy both requirements because of conflicting requirements that the gap length 93a needs to be shortened.

もう1つの問題は磁心91の加工組み立てに関する問題であって、長波94の受信においてアンテナ90の受信性能を安定化させるためには、つまり、前記検出電圧Vを安定化させるためには、1つには、前記長波94が通過する磁心91の通路95aと95bのそれぞれの交流透磁率μと実効交流透磁率μbeを安定化させる必要があって、2つには、前記LC共振回路の前記Q値を安定化させる必要があって、該実効交流透磁率μbeと該Q値に関わるギャップ93のギャップ長93aのばらつきを量産上でコントロールする必要があるが、そのばらつきのコントロールは特に組み立てにおいて困難であった。 Another problem is related to the processing and assembling of the magnetic core 91. In order to stabilize the reception performance of the antenna 90 in the reception of the long wave 94, that is, to stabilize the detection voltage V, there is one problem. It is necessary to stabilize the AC permeability μ a and the effective AC permeability μ be of the passages 95a and 95b of the magnetic core 91 through which the long wave 94 passes. It is necessary to stabilize the Q value, and it is necessary to control the variation of the effective AC magnetic permeability μ be and the gap length 93a of the gap 93 related to the Q value in mass production. It was difficult to assemble.

基準信号を出力する基準信号発生手段と、該基準信号に基づき計時情報を出力する計時手段と、該計時情報をもとに時刻を表示する表示手段と、基準時刻情報を持つ標準電波を受信する、受信コイルと、さらに、バイアス磁界を発生するバイアス磁界発生コイルが形成された断面積が大きい受信コイル形成部と該受信コイル形成部より断面積が小さい非受信コイル形成部からなる磁心から構成されるアンテナと、該アンテナに接続する受信手段と、該受信手段からの受信情報に基づき前記計時手段の出力時刻情報を修正する時刻情報修正手段を有し、金属外装部を有する時計ケースからなる電波修正時計において、該時計ケースの内部にある前記アンテナはリング状の一体の磁心からなり該受信コイルに直列に接続する共振コンデンサとの共振時に該受信コイルが発生する磁束が該磁心から外部に漏れない閉磁路上を回り、さらに、ダンピング制御コンデンサが該バイアス磁界発生コイルに並列に接続されたLCバイアス磁界発生回路はスイッチとバイアス発生電流制限抵抗を介して電源とグランドに接続され、前記受信手段はパルス生成手段を有し、該パルス生成手段から、受信する標準電波の周波数より高い周波数を有するバイアス磁界発生パルスを前記スイッチに入力することによって、該スイッチはオンされ、バイアス磁界発生電流がバイアス磁界発生コイルに供給されて、前記磁心にバイアス磁界が印加され、標準電波の受信時において、前記磁心の受信コイル形成部の交流透磁率が最大付近にあるように、また、前記非受信コイル形成部の交流透磁率が該受信コイル形成部の交流透磁率に比べ十分小さくなるように、前記パルス生成手段のバイアス磁界発生パルスにより、前記磁心にバイアス磁界が印加され、その後、共振時には受信コイル形成部と前記非受信コイル形成部のB−Hカーブ上の動作点が原点付近になるように前記バイアス磁界は減衰振動してゼロにされるReference signal generating means for outputting a reference signal, timing means for outputting time information based on the reference signal, display means for displaying time based on the time information, and receiving a standard radio wave having reference time information A magnetic core comprising a receiving coil, a receiving coil forming part having a large cross-sectional area on which a bias magnetic field generating coil for generating a bias magnetic field is formed, and a non-receiving coil forming part having a smaller cross-sectional area than the receiving coil forming part. that antenna and a receiving means for connecting to the antenna, have a time information correction means for correcting the output time information of the clock means based on the received information from said receiving means, radio wave comprising a watch case having a metal outer portion in timepiece, the antenna on the inside of said time meter casing consists magnetic core of the ring-shaped integral, the resonant capacitor connected in series to the receiving coil Futoki flux which the receiving coil is generated, Ri turn the magnetic sincerely closed magnetic path that does not leak to the outside, further, LC bias field generation circuit damping control capacitor connected in parallel to the bias magnetic field generating coil switch and the bias generator Connected to the power supply and ground via a current limiting resistor, the receiving means has a pulse generating means, from which a bias magnetic field generating pulse having a frequency higher than the frequency of the standard radio wave to be received is input to the switch Thus, the switch is turned on, the bias magnetic field generation current is supplied to the bias magnetic field generation coil, the bias magnetic field is applied to the magnetic core, and the AC transmission of the reception coil forming unit of the magnetic core is received when the standard radio wave is received. The AC permeability of the non-receiving coil forming section is such that the magnetic permeability is near the maximum, and the receiving coil A bias magnetic field is applied to the magnetic core by a bias magnetic field generation pulse of the pulse generating means so that the magnetic permeability is sufficiently smaller than the AC permeability of the component, and then, at resonance, the receiving coil forming unit and the non-receiving coil forming unit The bias magnetic field is damped and zeroed so that the operating point on the BH curve is near the origin .

前記標準電波の受信に入る前に、前記磁心全体を初期化するために、前記パルス生成手段の出力する磁心初期化磁界発生パルスにより、減衰振動を有する、前記バイアス磁界に比べ十分大きな磁心初期化磁界が前記バイアス磁界発生コイルによって前記磁心に印加される。 Prior to the reception of the standard radio wave, in order to initialize the entire magnetic core, the magnetic core initialization magnetic field initialization pulse generated by the pulse generation means outputs a sufficiently large magnetic core initialization compared to the bias magnetic field. A magnetic field is applied to the magnetic core by the bias magnetic field generating coil.

現在あるアンテナ90より高性能なアンテナとそれを用いた受信手段を使うことによってより小型、薄型のアンテナが可能であり、それを内臓した、より小型、薄型の金属外装部を有する電波修正時計が可能である。 By using an antenna with higher performance than the existing antenna 90 and a receiving means using the antenna, a smaller and thinner antenna is possible, and a radio-controlled timepiece having a smaller and thinner metal exterior portion incorporating the antenna is provided. Is possible.

以下、本発明の実施の形態を図面に基づいて詳述する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に本発明の第1のアンテナの平面構成図を示す。40kHzの長波4を受信するアンテナ10はリング状の一体の磁心1からなり、該磁心1はマグネットワイヤーを巻回すことによって長波4を受信するための受信コイル2と受信時にバイアス磁界を発生するバイアス磁界発生コイル3を形成した、断面積が大きい受信コイル形成部1aと該受信コイル形成部1aに比べ十分断面積が小さい非受信コイル形成部1bからなっており、共振時(受信コイル2に直列に接続する共振用のコンデンサは省略してある)に前記受信コイル2が発生する磁束7が該磁心1から外部に漏れない閉磁路6上を回る構造となっている。 FIG. 1 shows a plan view of a first antenna of the present invention. An antenna 10 that receives a long wave 4 of 40 kHz comprises a ring-shaped integral magnetic core 1, and the magnetic core 1 is wound around a magnet coil and a receiving coil 2 for receiving the long wave 4 and a bias that generates a bias magnetic field at the time of reception. The magnetic field generating coil 3 is formed of a receiving coil forming portion 1a having a large cross-sectional area and a non-receiving coil forming portion 1b having a sufficiently small cross-sectional area compared to the receiving coil forming portion 1a, and at resonance (in series with the receiving coil 2). The magnetic flux 7 generated by the receiving coil 2 travels on a closed magnetic path 6 that does not leak to the outside from the magnetic core 1.

以下、図2に示す本発明のアンテナを用いた電波受信のフローチャートと図3に示す受信手段のブロック図に従って、本発明のアンテナ10を用いた電波受信方法を説明する。 Hereinafter, a radio wave receiving method using the antenna 10 of the present invention will be described with reference to a flowchart of radio wave reception using the antenna of the present invention shown in FIG. 2 and a block diagram of the receiving means shown in FIG.

まず、図4に示す本発明にかかわる電波修正時計のブロック図を説明する。電波修正時計40は基準信号を出力する基準信号発生手段41と、該基準信号に基づき計時情報を出力する計時手段42と、該計時情報をもとに時刻を表示する表示手段43と、前記基準時刻情報を持つ標準電波を受信するアンテナ10と、該アンテナ10に接続する受信手段44と、該受信手段44からの受信情報に基づき前記計時手段42の出力時刻情報を修正する時刻情報修正手段45を有している。 First, a block diagram of the radio-controlled timepiece according to the present invention shown in FIG. 4 will be described. The radio-controlled timepiece 40 includes a reference signal generating unit 41 that outputs a reference signal, a time measuring unit 42 that outputs time information based on the reference signal, a display unit 43 that displays time based on the time information, and the reference An antenna 10 for receiving a standard radio wave having time information, a receiving means 44 connected to the antenna 10, and a time information correcting means 45 for correcting the output time information of the time measuring means 42 based on the received information from the receiving means 44. have.

次に、図3に示す受信手段のブロック図を説明する。アンテナ10の受信コイル30a(図1に示す受信コイル2に相当する)とそれに直列に接続する共振用のコンデンサ30b(該コンデンサ30bの容量Cは受信コイル30aのインダクタンスLと、長波の角周波数ωが1/√LCになるように合わせる)からなるLC共振回路30のコンデンサ30bの両極を電圧検出手段38に接続し、該電圧検出手段38は検出電圧38aをコード復調手段39に出力し、該コード復調手段39は該検出電圧38aからコードを復調し、該復調コード信号39aを図4に示す時刻情報修正手段45に出力する。 Next, a block diagram of the receiving means shown in FIG. 3 will be described. A receiving coil 30a of the antenna 10 (corresponding to the receiving coil 2 shown in FIG. 1) and a resonance capacitor 30b connected in series thereto (the capacitance C of the capacitor 30b is an inductance L of the receiving coil 30a and an angular frequency ω of a long wave) Are connected to the voltage detection means 38, and the voltage detection means 38 outputs the detection voltage 38a to the code demodulation means 39. The code demodulating means 39 demodulates the code from the detected voltage 38a and outputs the demodulated code signal 39a to the time information correcting means 45 shown in FIG.

パルス生成手段36は、受信用基準信号発生手段35からの基準信号35aを入力して電圧検出手段38に電圧検出パルス36aを出力し、また、前記磁心1にバイアス磁界を印加するためのバイアス磁界発生パルス36bをスイッチ37に出力する。 The pulse generation means 36 receives the reference signal 35 a from the reception reference signal generation means 35 and outputs a voltage detection pulse 36 a to the voltage detection means 38, and a bias magnetic field for applying a bias magnetic field to the magnetic core 1. The generated pulse 36b is output to the switch 37 .

アンテナ10のバイアス磁界発生コイル31a(図1に示すバイアス磁界発生コイル3に相当する)にダンピング制御コンデンサ31bを並列に接続したLCバイアス磁界発生回路31はスイッチ37とバイアス磁界発生電流制限抵抗33を介して電源32とグランド34に接続されている。 An LC bias magnetic field generation circuit 31 in which a damping control capacitor 31b is connected in parallel to a bias magnetic field generation coil 31a (corresponding to the bias magnetic field generation coil 3 shown in FIG. 1) of the antenna 10 includes a switch 37 and a bias magnetic field generation current limiting resistor 33. The power source 32 and the ground 34 are connected to each other.

次に、図2に示す本発明のアンテナを用いた電波受信のフローチャートを使って40kHzの長波の受信方法を説明する。 Next, a method for receiving a long wave of 40 kHz will be described with reference to a flowchart of radio wave reception using the antenna of the present invention shown in FIG.

図2に示すように、図3に示すパルス生成手段36から受信する標準電波の周波数より高い周波数(例えば、長波の8倍の周波数)を有するバイアス磁界発生パルス36b(図2おいてバイアス磁界発生パルス21に相当する)をスイッチ37に入力することによって、該スイッチ37はオンされ、パルス状のバイアス磁界発生電流22がバイアス磁界発生コイル31aに供給され、前記磁心1にバイアス磁界が印加される。該バイアス磁界発生電流22は、図5のバイアス磁界発生電流の波形図に示すように、立上がり部22aと、飽和部22bと、立下り部22cと、減衰振動部22dからなっており、該飽和部22bの時間において、図6に示す電波受信時のB−Hカーブ上の動作図で、図1に示す磁心1の受信コイル形成部1aは磁界H1で磁束密度B1の可逆磁化範囲の動作点P1に、非受信コイル形成部1bは磁界H2で磁束密度B2の動作点P2位置にあって、図7に示す交流透磁率μの磁束密度Bに対する変化図で、受信コイル形成部1aは交流透磁率μが最大付近の交流透磁率μ1である動作点P1(B1、μ1)に、非受信コイル形成部1bは交流透磁率μが1付近の交流透磁率μ2である動作点P2(B2、μ2)になっており、交流透磁率μ2は交流透磁率μ1にくらべ十分に小さいので、アンテナ10に到来した長波はほとんど受信コイル2の通路5aを通り、受信コイル2に受信コイル誘起起電力20を発生させる。なお、図2に示す受信コイル誘起起電力20は見易くするためにバイアス磁界発生パルス21でなく一定のバイアス磁界発生電圧がスイッチ37に入力され、スイッチ37が常時オンした場合の受信コイル誘起起電力20になっている。ところで、受信コイル誘起起電力20の位相とバイアス磁界発生パルス21の位相の関係は電波受信の度に変わるが、バイアス磁界発生パルス21の周波数に少なくとも長波の8倍の周波数を使えば、長波の波形を捕らえるには問題ない。次に、該受信コイル誘起起電力20によって図3に示すLC共振回路30に生じる電流によってコンデンサ30bの電極間に生じる電圧を検出する方法を説明する。 As shown in FIG. 2, a bias magnetic field generation pulse 36b ( a bias magnetic field generation in FIG. 2 ) having a frequency higher than the frequency of the standard radio wave received from the pulse generation means 36 shown in FIG. by entering corresponding to the pulse 21) to the switch 37, the switch 37 is turned on, pulsed bias magnetic field generating current 22 is supplied to the bias magnetic field generating coils 31a, a bias magnetic field Ru is applied to the magnetic core 1 . As shown in the waveform diagram of the bias magnetic field generation current in FIG. 5, the bias magnetic field generation current 22 includes a rising portion 22a, a saturation portion 22b, a falling portion 22c, and a damped oscillation portion 22d. FIG. 6 is an operation diagram on the BH curve at the time of radio wave reception shown in FIG. 6 at the time of the part 22b, and the receiving coil forming part 1a of the magnetic core 1 shown in FIG. In P1, the non-receiving coil forming unit 1b is located at the operating point P2 of the magnetic flux density B2 in the magnetic field H2, and is a variation diagram of the AC permeability μ with respect to the magnetic flux density B shown in FIG. In the operating point P1 (B1, μ1) where the magnetic permeability μ is the AC permeability μ1 near the maximum, the non-receiving coil forming unit 1b operates at the operating point P2 (B2, μ2) where the AC permeability μ is the AC permeability μ2 near 1. The AC permeability μ2 is Since it is sufficiently smaller than the AC permeability μ1, most of the long waves that have arrived at the antenna 10 pass through the path 5a of the receiving coil 2 and generate a receiving coil induced electromotive force 20 in the receiving coil 2. In order to make the receiving coil induced electromotive force 20 shown in FIG. 2 easier to see, the receiving coil induced electromotive force when the constant bias magnetic field generating voltage is input to the switch 37 instead of the bias magnetic field generating pulse 21 and the switch 37 is always turned on. It is 20. By the way, the relationship between the phase of the receiving coil induced electromotive force 20 and the phase of the bias magnetic field generation pulse 21 changes every time radio waves are received, but if the frequency of the bias magnetic field generation pulse 21 is at least eight times longer than the long wave, There is no problem in capturing the waveform. Next, a method for detecting the voltage generated between the electrodes of the capacitor 30b by the current generated in the LC resonance circuit 30 shown in FIG.

図5に示すように、バイアス磁界発生コイル31aに供給されたバイアス磁界発生電流22は立下り部22cで急激に立下り、その後減衰振動部22dを有しゼロになる。図6に示すB−Hカーブ上ではどうなるかというと、動作点P1は磁束密度Bがゼロの動作点P0(H0,B0)に向かって可逆磁化カーブ上を減衰振動しながらもどり、一方、動作点P2は同様に磁束密度Bがゼロの動作点P0(H0,B0)に向かって経路Lb上を減衰振動しながらもどり、図7では動作点P0(B0,μ0)で、その時の交流透磁率は磁束密度B0がゼロに対応する最大交流透磁率μ0になる。 As shown in FIG. 5, the bias magnetic field generating current 22 supplied to the bias magnetic field generating coil 31a falls sharply at the falling part 22c, and then has a damping vibration part 22d and becomes zero. What happens on the BH curve shown in FIG. 6 is that the operating point P1 returns to the operating point P0 (H0, B0) where the magnetic flux density B is zero while oscillating and oscillating on the reversible magnetization curve. Similarly, the point P2 returns to the operating point P0 (H0, B0) where the magnetic flux density B is zero while oscillating damped on the path Lb. In FIG. 7, the operating point P0 (B0, μ0) is the AC magnetic permeability at that time. Becomes the maximum AC permeability μ0 corresponding to the magnetic flux density B0 being zero.

図2に示すように、バイアス磁界発生電流22が減衰振動部22dを通ってゼロになった直後にパルス生成手段36は電圧検出手段38に電圧検出パルス36a(図2においては電圧検出パルス23に相当する)を入力すると、受信コイル30aのインダクタンスLとコンデンサ30bの容量Cは長波の角周波数ωが1/√LCに等しくなる共振の条件を満たして、電圧検出手段38は前記受信コイル誘起起電力20の振幅vの減衰率αに受信コイル30aのQ値(数1に示すQ値の関係式が適用できる)を掛けたα・Q・vとなる振幅Vの検出電圧24(38a)をコード復調手段39に次の電圧検出パルス36aの立ち上がりまで保持出力する。ただし、前記受信コイル誘起起電力20がLC共振回路30に生じる電流によって発生する磁束7が磁心1の外部に漏れない閉磁路6上を回るが、該閉磁路6の磁路6bにギャップはないのでその磁気抵抗Rmbは数6のようになる。 As shown in FIG. 2, immediately after the bias magnetic field generating current 22 becomes zero through the damped oscillation part 22d, the pulse generating means 36 sends the voltage detecting pulse 38a to the voltage detecting pulse 36a (in FIG. Are equivalent to each other), the inductance L of the receiving coil 30a and the capacitance C of the capacitor 30b satisfy the resonance condition in which the long-wave angular frequency ω is equal to 1 / √LC. A detection voltage 24 (38a) of amplitude V, which is α · Q · v, obtained by multiplying the attenuation rate α of the amplitude v of the power 20 by the Q value of the receiving coil 30a (a relational expression of the Q value shown in Equation 1 can be applied). The code demodulation means 39 is held and output until the next rise of the voltage detection pulse 36a. However, the magnetic flux 7 generated by the current generated in the LC resonance circuit 30 by the receiving coil induced electromotive force 20 travels on the closed magnetic path 6 where it does not leak to the outside of the magnetic core 1, but there is no gap in the magnetic path 6 b of the closed magnetic path 6. Therefore, the magnetoresistance R mb is as shown in Equation 6.

この減衰率αはバイアス磁界発生電流22が立下る直前から電圧検出手段38が検出電圧24を検出するまでの時間(主にバイアス磁界発生電流22の減衰振動部22dの時間)に関係するので、バイアス磁界発生電流制限抵抗33とダンピング制御コンデンサ31bの容量を最適化してその時間を短くすることによって1に近い問題ない値にすることが望ましい。なお、バイアス磁界発生コイル3に印加されたバイアス磁界発生電流22の立下り22cと振動減衰部22dは受信コイル2とバイアス磁界発生コイル3の電磁結合により前記検出電圧24の波形に影響を及ぼすが、その周波数は該検出電圧24の周波数に比べかなり高いので、その影響は電圧検出手段38にローパスフィルターを設けることによって除去できる。 Since the attenuation rate α is related to the time from the time immediately before the bias magnetic field generation current 22 falls to the time when the voltage detection means 38 detects the detection voltage 24 (mainly, the time of the damping vibration part 22d of the bias magnetic field generation current 22). It is desirable to optimize the capacitance of the bias magnetic field generation current limiting resistor 33 and the damping control capacitor 31b and shorten the time so as to have a value close to 1 with no problem. The falling 22c of the bias magnetic field generating current 22 applied to the bias magnetic field generating coil 3 and the vibration attenuating unit 22d affect the waveform of the detection voltage 24 by electromagnetic coupling between the receiving coil 2 and the bias magnetic field generating coil 3. Since the frequency is considerably higher than the frequency of the detection voltage 24, the influence can be eliminated by providing the voltage detection means 38 with a low-pass filter.

さらに、図10に従って、本発明の第2の受信手段を説明する。該受信手段144は図4に示す本発明にかかわる電波修正時計のブロック図で、図3に示す本発明の第1の受信手段44に置き換わることができ、受信手段144の受信手段44と異なる点は、電源32と、バイアス磁界発生アンテナ10のバイアス磁界発生コイル31a(図1に示すバイアス磁界発生コイル3に相当する)にダンピング制御コンデンサ31bを並列に接続したLCバイアス磁界発生回路31に接続するスイッチ37とグランド34間に接続するバイアス磁界電流制限抵抗33を、初期化スイッチ108とバイアス磁界電流制限抵抗103bの並列接続の磁心初期化磁界電流制限抵抗103aとの直列接続に置き換えた点である。 Further, the second receiving means of the present invention will be described with reference to FIG. The receiving means 144 is a block diagram of the radio-controlled timepiece according to the present invention shown in FIG. 4, and can be replaced with the first receiving means 44 of the present invention shown in FIG. 3, and is different from the receiving means 44 of the receiving means 144. Is connected to an LC bias magnetic field generation circuit 31 in which a damping control capacitor 31b is connected in parallel to a power source 32 and a bias magnetic field generation coil 31a of the bias magnetic field generation antenna 10 (corresponding to the bias magnetic field generation coil 3 shown in FIG. 1). The bias magnetic field current limiting resistor 33 connected between the switch 37 and the ground 34 is replaced with a series connection of a parallel connection of the initialization switch 108 and the bias magnetic field current limiting resistor 103b. .

長波の受信を開始する前に、パルス生成手段106が出力する磁心初期化磁界発生信号106cによって初期化スイッチ108がオンされ、パルス生成手段106が出力する磁心初期化磁界発生パルス106b(この時は、バイアス磁界発生パルスではなく、磁心初期化磁界を発生するためのパルス)でスイッチ37がオンされると、磁心初期化磁界発生電流制限抵抗103aに従って磁心初期化磁界電流がバイアス磁界発生コイル31aに供給されその後、スイッチ37はオフされ、ダンピング制御コンデンサ31bにより該磁心初期化磁界電流は減衰振動しながらゼロにされる(該磁心初期化磁界発生電流の電流波形は図5に示すバイアス磁界発生電流の波形と同様な波形となる)。 Before starting the reception of the long wave, the initialization switch 108 is turned on by the magnetic core initialization magnetic field generation signal 106c output from the pulse generation means 106, and the magnetic core initialization magnetic field generation pulse 106b (at this time) output from the pulse generation means 106 When the switch 37 is turned on with a pulse for generating a magnetic core initialization magnetic field instead of a bias magnetic field generation pulse ), the magnetic core initialization magnetic field current is applied to the bias magnetic field generation coil 31a according to the magnetic core initialization magnetic field generation current limiting resistor 103a. After that, the switch 37 is turned off, and the magnetic core initialization magnetic field current is made zero while being damped and oscillated by the damping control capacitor 31b (the current waveform of the magnetic core initialization magnetic field generation current is the bias magnetic field generation current shown in FIG. It will be the same waveform as

図7に示す電波受信におけるB−Hカーブ上の動作図で説明すると、前記磁心初期化磁界発生電流は図1に示すアンテナ10の磁心1の受信コイル形成部1aと非受信コイル形成部1bを十分に飽和させる磁心初期化磁界を発生し、受信コイル形成部1aではB−Hカーブ上の動作点P3(H3、B3)から経路Li上を減衰振動しながら動作点P0(H0,B0)に達し、同様に、非受信コイル形成部1bもB−Hカーブ上のさらに高い飽和磁束密度の動作点(図示せず)から経路Li上を減衰振動しながら動作点P0(H0,B0)に達し、何らかの原因によって磁心1が帯磁していたとしても、電波受信の前に消磁されるので、受信時には、初期化スイッチ108はオフされ、バイアス磁界発生電流制限抵抗103bと磁心初期化磁界発生電流制限抵抗103aの合成抵抗によって決まる、受信コイル形成部1aと非受信コイル形成部1bにそれぞれ、常に一定のバイアス磁界H1とH2を印加できるので安定な検出電圧を取得することができ、電波受信性能がより安定化する。 Referring to the operation diagram on the BH curve in radio wave reception shown in FIG. 7, the magnetic core initialization magnetic field generation current is generated by the receiving coil forming portion 1a and the non-receiving coil forming portion 1b of the magnetic core 1 of the antenna 10 shown in FIG. A magnetic core initializing magnetic field that sufficiently saturates is generated, and the receiving coil forming unit 1a moves from the operating point P3 (H3, B3) on the BH curve to the operating point P0 (H0, B0) while performing damped oscillation on the path Li. Similarly, the non-receiving coil forming portion 1b also reaches the operating point P0 (H0, B0) from the operating point (not shown) of the higher saturation magnetic flux density on the BH curve while oscillating damped on the path Li. Even if the magnetic core 1 is magnetized for some reason, it is demagnetized before radio wave reception. Therefore, at the time of reception, the initialization switch 108 is turned off, and the bias magnetic field generation current limiting resistor 103b and the magnetic core initialization magnetic field are turned off. Since constant bias magnetic fields H1 and H2 can always be applied to the receiving coil forming unit 1a and the non-receiving coil forming unit 1b determined by the combined resistance of the raw current limiting resistor 103a, a stable detection voltage can be obtained. Receive performance is more stable.

図8に本発明の第2のアンテナの平面構成図を示す。長波84を受信するアンテナ80はリング状の一体の磁心81からなり、該磁心81はマグネットワイヤーを巻回すことによって長波84を受信するための受信コイル82と受信時にバイアス磁界を発生するバイアス磁界発生コイル83を形成した、断面積が大きい受信コイル形成部81aと該受信コイル形成部81aに比べ十分断面積が小さい非受信コイル形成部81bからなっており、基本的に共振時(受信コイル82に直列に接続する共振用のコンデンサは省略してある)に前記受信コイル82が発生する磁束87が該磁心81から外部に漏れない閉磁路86上を回る構造となっている。図1に示す本発明の第1のアンテナ10と異なる点は、磁心81が受信コイル82とバイアス磁界発生コイル83を形成した受信コイル形成部81aに紙面の表側から非受信コイル形成部81bを重ね合わせることによって一体化した構造である点であり、アンテナ80は非受信コイル形成部81bを受信コイル形成部81aに重ね合わせる前に、受信コイル形成部81aにマグネットワイヤーを巻回すことができる構造となっている。他の点はアンテナ10と同様であり説明を省略する。 FIG. 8 is a plan view of the second antenna of the present invention. The antenna 80 for receiving the long wave 84 is composed of a ring-shaped integral magnetic core 81. The magnetic core 81 is wound around a magnet wire to generate a bias magnetic field for generating a bias magnetic field when receiving the reception coil 82 for receiving the long wave 84. The coil 83 is formed of a receiving coil forming part 81a having a large cross-sectional area and a non-receiving coil forming part 81b having a sufficiently small cross-sectional area compared to the receiving coil forming part 81a. A resonance capacitor connected in series is omitted), and the magnetic flux 87 generated by the receiving coil 82 circulates on a closed magnetic path 86 that does not leak from the magnetic core 81 to the outside. 1 differs from the first antenna 10 of the present invention shown in FIG. 1 in that a magnetic core 81 overlaps a receiving coil forming portion 81a in which a receiving coil 82 and a bias magnetic field generating coil 83 are formed with a non-receiving coil forming portion 81b from the front side of the drawing. The antenna 80 has an integrated structure, and the antenna 80 has a structure in which a magnet wire can be wound around the receiving coil forming portion 81a before the non-receiving coil forming portion 81b is superimposed on the receiving coil forming portion 81a. It has become. The other points are the same as those of the antenna 10 and will not be described.

以上の説明により、本発明のアンテナ10あるいはアンテナ80は、従来のアンテナ90に比べアンテナ10に到来した長波はほとんど受信コイル2の通路5aを通るので、受信コイル2により大きな受信コイル誘起起電力20を発生し、また、LC共振回路の共振時に該受信コイル誘起起電力20による電流によって発生する磁束7は閉磁路6を基本的に外部に漏れることなく回るので、図1に示すように、非受信コイル形成部1b側にある金属外装部8での渦流損失はなく(受信コイル形成部1a側に金属外装部8があっても、同様にそれによる渦流損失はなく、また、図において省略された、その他の金属製の電子部品による渦流損失もない)、従来のアンテナ90に比べより大きなQ値、つまり、より大きな検出電圧24を出力する高感度で高性能なアンテナであって、小型化、薄型化に適していることが分かる。 According to the above description, the antenna 10 or the antenna 80 of the present invention has a larger reception coil induced electromotive force 20 than the reception coil 2 because the long wave arriving at the antenna 10 almost passes through the path 5a of the reception coil 2 as compared with the conventional antenna 90. In addition, the magnetic flux 7 generated by the current generated by the receiving coil induced electromotive force 20 at the time of resonance of the LC resonance circuit rotates basically without leaking to the outside through the closed magnetic path 6, and therefore, as shown in FIG. There is no eddy current loss in the metal sheathing portion 8 on the receiving coil forming portion 1b side (even if the metal sheathing portion 8 is on the receiving coil forming portion 1a side, there is no eddy current loss due to this, and it is omitted in the figure) In addition, there is no eddy current loss due to other metal electronic parts), and a larger Q value than the conventional antenna 90, that is, a larger detection voltage 24 is output. A high-performance antenna sensitivity, compact, to be suitable for thinning seen.

以上の説明により、本発明のアンテナ10あるいはアンテナ80は、従来のアンテナ90に対し、それぞれの磁心1あるいは80はその加工組み立てにおいて受信性能のばらつきの発生の原因となるギャップを有しない一体構造であるので大量生産に適している。 From the above description, the antenna 10 or the antenna 80 of the present invention is different from the conventional antenna 90 in that each magnetic core 1 or 80 has an integrated structure that does not have a gap that causes a variation in reception performance in processing and assembly. It is suitable for mass production.

タイムコードを有する40kHzの長波の標準電波に対して説明してきたが、60kHz等の他の長波やさらに高い周波数であるVHF帯(100MHz付近)の超短波まで本発明のアンテナとそれを用いた電波受信方法が適用できることは言うまでもない。 The 40 kHz long wave standard radio wave having a time code has been described. However, other long waves such as 60 kHz and even higher frequency VHF band (near 100 MHz) ultra short wave and the radio wave reception using the antenna of the present invention. It goes without saying that the method is applicable.

以上の詳細な説明により示されたように、本発明のアンテナとそれを用いた受信手段を使用することによって、小型、薄型の金属外装部を有する電波修正時計、例えば、女性用電波修正時計を提供できる。 As shown in the above detailed description, by using the antenna of the present invention and the receiving means using the antenna, a radio-controlled timepiece having a small and thin metal exterior part, for example, a radio-controlled timepiece for women Can be provided.

本発明の第1のアンテナの平面構成図である。It is a plane lineblock diagram of the 1st antenna of the present invention. 本発明のアンテナを用いた電波受信のフローチャートである。It is a flowchart of the electromagnetic wave reception using the antenna of this invention. 本発明の第1の受信手段のブロック図である。It is a block diagram of the 1st receiving means of this invention. 本発明にかかわる電波修正時計のブロック図である。1 is a block diagram of a radio-controlled timepiece according to the present invention. バイアス磁界電流の波形図である。It is a wave form diagram of a bias magnetic field current. 電波受信におけるB−Hカーブ上の動作図である。It is an operation | movement figure on the BH curve in radio wave reception. 交流透磁率μの磁束密度Bに対する変化図である。It is a change figure with respect to the magnetic flux density B of alternating current permeability (mu). 本発明の第2のアンテナの平面構成図である。It is a plane block diagram of the 2nd antenna of this invention. 従来のアンテナの平面構成図である。It is a plane block diagram of the conventional antenna. 本発明の第2の受信手段のブロック図である。It is a block diagram of the 2nd receiving means of this invention.

符号の説明Explanation of symbols

10 80 90 アンテナ
1 81 91 磁心
1a 81a 91a 受信コイル形成部
1b 81b 91b 非受信コイル形成部
2 82 92 30a 受信コイル
3 83 バイアス磁界発生コイル
20 受信コイル誘起起電力
21 36b 106b バイアス磁界発生パルス
22 バイアス磁界発生電流
22d 減衰振動部
23 電圧検出パルス
24 38a 検出電圧
30 LC共振回路
30b 共振用コンデンサ
31 LCバイアス磁界発生回路
31a バイアス磁界発生コイル
31b ダンピング制御コンデンサ
33 103b バイアス磁界発生電流制限抵抗
35 105 受信用基準信号発生手段
36 106 パルス生成手段
37 スイッチ
38 電圧検出手段
4 84 94 長波
44 144 受信手段
5a 5b 85a 85b 95a 95b 電波通路
6 86 96 閉磁路
7 87 97 磁束
8 88 98 金属外装部
103a 初期化磁界発生電流制限抵抗
108 初期化スイッチ
10 80 90 Antenna 1 81 91 Magnetic core 1a 81a 91a Receiving coil forming unit 1b 81b 91b Non-receiving coil forming unit 2 82 92 30a Receiving coil 3 83 Bias magnetic field generating coil 20 Receiving coil induced electromotive force 21 36b 106b Bias magnetic field generating pulse 22 Bias Magnetic field generation current 22d Attenuation oscillation unit 23 Voltage detection pulse 24 38a Detection voltage 30 LC resonance circuit 30b Resonance capacitor 31 LC bias magnetic field generation circuit 31a Bias magnetic field generation coil 31b Damping control capacitor 33 103b Bias magnetic field generation current limiting resistor 35 105 For reception Reference signal generating means 36 106 Pulse generating means 37 Switch 38 Voltage detecting means 4 84 94 Long wave 44 144 Receiving means 5a 5b 85a 85b 95a 95b Radio wave path 6 86 96 Closed magnetic path 87 97 flux 8 88 98 metal outer section 103a initialization magnetic field generating current limiting resistor 108 initialization switch

Claims (2)

基準信号を出力する基準信号発生手段と、該基準信号に基づき計時情報を出力する計時手段と、該計時情報をもとに時刻を表示する表示手段と、基準時刻情報を持つ標準電波を受信する、受信コイルと、さらに、バイアス磁界を発生するバイアス磁界発生コイルが形成された断面積が大きい受信コイル形成部と該受信コイル形成部より断面積が小さい非受信コイル形成部からなる磁心から構成されるアンテナと、該アンテナに接続する受信手段と、該受信手段からの受信情報に基づき前記計時手段の出力時刻情報を修正する時刻情報修正手段を有し、金属外装部を有する時計ケースからなる電波修正時計において、該時計ケースの内部にある前記アンテナはリング状の一体の磁心からなり該受信コイルに直列に接続する共振コンデンサとの共振時に該受信コイルが発生する磁束が該磁心から外部に漏れない閉磁路上を回り、さらに、ダンピング制御コンデンサが該バイアス磁界発生コイルに並列に接続されたLCバイアス磁界発生回路はスイッチとバイアス発生電流制限抵抗を介して電源とグランドに接続され、前記受信手段はパルス生成手段を有し、該パルス生成手段から、受信する標準電波の周波数より高い周波数を有するバイアス磁界発生パルスを前記スイッチに入力することによって、該スイッチはオンされ、バイアス磁界発生電流がバイアス磁界発生コイルに供給されて、前記磁心にバイアス磁界が印加され、標準電波の受信時において、前記磁心の受信コイル形成部の交流透磁率が最大付近にあるように、また、前記非受信コイル形成部の交流透磁率が該受信コイル形成部の交流透磁率に比べ十分小さくなるように、前記パルス生成手段のバイアス磁界発生パルスにより、前記磁心にバイアス磁界が印加され、その後、共振時には受信コイル形成部と前記非受信コイル形成部のB−Hカーブ上の動作点が原点付近になるように前記バイアス磁界は減衰振動してゼロにされることを特徴とする電波修正時計。 Reference signal generating means for outputting a reference signal, timing means for outputting time information based on the reference signal, display means for displaying time based on the time information, and receiving a standard radio wave having reference time information A magnetic core comprising a receiving coil, a receiving coil forming part having a large cross-sectional area on which a bias magnetic field generating coil for generating a bias magnetic field is formed, and a non-receiving coil forming part having a smaller cross-sectional area than the receiving coil forming part. that antenna and a receiving means for connecting to the antenna, have a time information correction means for correcting the output time information of the clock means based on the received information from said receiving means, radio wave comprising a watch case having a metal outer portion in timepiece, the antenna on the inside of said time meter casing consists magnetic core of the ring-shaped integral, the resonant capacitor connected in series to the receiving coil Futoki flux which the receiving coil is generated, Ri turn the magnetic sincerely closed magnetic path that does not leak to the outside, further, LC bias field generation circuit damping control capacitor connected in parallel to the bias magnetic field generating coil switch and the bias generator Connected to the power supply and ground via a current limiting resistor, the receiving means has a pulse generating means, from which a bias magnetic field generating pulse having a frequency higher than the frequency of the standard radio wave to be received is input to the switch Thus, the switch is turned on, the bias magnetic field generation current is supplied to the bias magnetic field generation coil, the bias magnetic field is applied to the magnetic core, and the AC transmission of the reception coil forming unit of the magnetic core is received when the standard radio wave is received. The AC permeability of the non-receiving coil forming section is such that the magnetic permeability is near the maximum, and the receiving coil A bias magnetic field is applied to the magnetic core by a bias magnetic field generation pulse of the pulse generating means so that the magnetic permeability is sufficiently smaller than the AC permeability of the generating unit, and thereafter, at the time of resonance, the receiving coil forming unit and the non-receiving coil forming unit The radio-controlled timepiece according to claim 1, wherein the bias magnetic field is attenuated and oscillated to zero so that the operating point on the BH curve is near the origin . 前記標準電波の受信に入る前に、前記磁心全体を初期化するために、前記パルス生成手段の出力する磁心初期化磁界発生パルスにより、減衰振動を有する、前記バイアス磁界に比べ十分大きな磁心初期化磁界が前記バイアス磁界発生コイルによって前記磁心に印加されることを特徴とする請求項に記載の電波修正時計。 Prior to the reception of the standard radio wave, in order to initialize the entire magnetic core, the magnetic core initialization magnetic field initialization pulse generated by the pulse generation means outputs a sufficiently large magnetic core initialization compared to the bias magnetic field. The radio-controlled timepiece according to claim 1 , wherein a magnetic field is applied to the magnetic core by the bias magnetic field generating coil.
JP2004189137A 2004-06-28 2004-06-28 Radio correction clock Expired - Fee Related JP4052653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004189137A JP4052653B2 (en) 2004-06-28 2004-06-28 Radio correction clock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004189137A JP4052653B2 (en) 2004-06-28 2004-06-28 Radio correction clock

Publications (2)

Publication Number Publication Date
JP2006010542A JP2006010542A (en) 2006-01-12
JP4052653B2 true JP4052653B2 (en) 2008-02-27

Family

ID=35777957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004189137A Expired - Fee Related JP4052653B2 (en) 2004-06-28 2004-06-28 Radio correction clock

Country Status (1)

Country Link
JP (1) JP4052653B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165740A (en) * 2013-02-26 2014-09-08 Norio Miyauchi Antenna

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7848180B2 (en) 2005-10-28 2010-12-07 Casio Computer Co., Ltd. Antenna apparatus, receiving apparatus and watch using magnetic sensor
JP4687585B2 (en) * 2006-06-28 2011-05-25 カシオ計算機株式会社 Antenna circuit and clock
JP5041610B2 (en) * 2010-11-01 2012-10-03 則雄 宮内 Wireless charging apparatus and wireless charging method thereof
CN114864235A (en) * 2021-02-04 2022-08-05 中车株洲电力机车研究所有限公司 Iron core magnetic circuit multiplexing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165740A (en) * 2013-02-26 2014-09-08 Norio Miyauchi Antenna

Also Published As

Publication number Publication date
JP2006010542A (en) 2006-01-12

Similar Documents

Publication Publication Date Title
KR100649805B1 (en) Electronic timepiece comprising antenna
JPS61260321A (en) Position detecting device
KR100464093B1 (en) Fluxgate sensor integrated in print circuit board and method for manufacturing the same
WO2010071087A1 (en) Resonant receiving antenna and reception device
JP2009250667A (en) Radio wave receiver
EP2088483B1 (en) Electronic timepiece with internal antenna
JP2009186373A (en) Electronic timepiece with internal antenna
JP4052653B2 (en) Radio correction clock
JP2014153309A5 (en)
JP2003270308A (en) Magnetic field detecting element integrated on semiconductor substrate and manufacturing method therefor
CN110068390A (en) Piezoelectricity and electromagnetic coupling vibrating sensor
JP4427475B2 (en) MRI apparatus and auxiliary coil
JP2006201123A (en) Magnetic detector element
JP2010271081A (en) Magnetic sensor element and electronic goniometer using the same and method of detecting magnetic field
JP2007251819A (en) Antenna
Choi et al. Orthogonal fluxgate sensor fabricated with a Co-based amorphous wire embedded onto surface of alumina substrate
JP4273900B2 (en) Electronic clock with built-in antenna
JP5332796B2 (en) Electronic clock with built-in antenna
JP2002269615A (en) Coin identification device
JP6312078B2 (en) Step motor, step motor drive control method, timepiece movement, and timepiece
JP2006105864A (en) Antenna and radio controlled timepiece
JP2008263405A (en) Communication system
JP2007218765A (en) Electronic watch
JP4952398B2 (en) Electronics
JP5874338B2 (en) ANTENNA STRUCTURE, RADIO RECEIVING DEVICE, AND ANTENNA STRUCTURE MANUFACTURING METHOD

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070619

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070914

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees