JP4052536B2 - Purification equipment for highly viscous soil contaminated with microorganisms - Google Patents

Purification equipment for highly viscous soil contaminated with microorganisms Download PDF

Info

Publication number
JP4052536B2
JP4052536B2 JP05969599A JP5969599A JP4052536B2 JP 4052536 B2 JP4052536 B2 JP 4052536B2 JP 05969599 A JP05969599 A JP 05969599A JP 5969599 A JP5969599 A JP 5969599A JP 4052536 B2 JP4052536 B2 JP 4052536B2
Authority
JP
Japan
Prior art keywords
contaminated soil
container
stirring
exhaust
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05969599A
Other languages
Japanese (ja)
Other versions
JP2000254634A (en
Inventor
研介 藤井
和男 峠
洋二 石川
正喜 八木
亮太 赤井
泰 織田
耕一 沼田
暢宏 樋口
志紀 濱崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP05969599A priority Critical patent/JP4052536B2/en
Publication of JP2000254634A publication Critical patent/JP2000254634A/en
Application granted granted Critical
Publication of JP4052536B2 publication Critical patent/JP4052536B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、汚染土に含まれている有機塩素系化合物等の汚染物質を浄化する微生物による高粘性汚染土の浄化装置に関する。
【0002】
【従来の技術】
土壌内には、トリクロロエチレンなどの有機塩素系化合物や、重油やガソリンなどの石油系炭化水素が含まれていることがあり、このような土壌をそのまま放置すると、上述した有機塩素系化合物等の汚染物質が地下水等を介して環境に拡散するおそれがある。そのため、かかる汚染土壌に対しては所定の浄化処理を行なねばならない。
【0003】
一方、微生物の活性を利用して環境中の汚染物質を分解無害化する技術、すなわちバイオレメディエーションの研究が進んできており、従来から原油による海洋汚染などの浄化に適用されてきたが、最近では汚染土壌へも適用されるようになってきた。
【0004】
バイオレメディエーションを用いて汚染土壌中の汚染物質を浄化するにあたっては、まず、汚染土壌を掘削して掘削汚染土を仮用地に移動し、次いで、仮用地にて掘削汚染土内の汚染物質を微生物で分解する。そして、汚染物質が分解処理された後は、処理土を元の位置に埋め戻すといった手順が一般的である。
【0005】
【発明が解決しようとする課題】
しかしながら、粘性の高い汚染土の場合には、汚染土の通気性が悪いために好気性分解菌の活性を上げることができず、該汚染土内の汚染物質を分解するのに長時間を要したり、場合によっては微生物分解自体が実質的に不可能になるという問題を生じていた。
【0006】
また、汚染土に生石灰を混合攪拌することで、汚染土内に含まれている水分と生石灰との化学反応に伴う水和熱を発生させ、かかる水和熱を利用して汚染物質を気化処理する方法も検討開発されている(特開平7−275837号公報参照)が、かかる方法では、汚染土が生石灰により強アルカリ性となり、埋め戻した後でアルカリ成分が地下水等に拡散したり生態系に悪影響を及ぼすといった事態が懸念される。
【0007】
本発明は、上述した事情を考慮してなされたもので、環境に影響を及ぼしたりそれを防止するためのpH調整等の後処理を行うことなく、かつ粘性の高い汚染土であっても効率的に汚染物質を浄化することが可能な微生物による高粘性汚染土の浄化装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る微生物による高粘性汚染土の浄化装置は請求項1に記載したように、汚染物質が含まれた汚染土を気密状態で収容可能な容器と、該容器内の汚染土を攪拌する攪拌手段と、前記汚染物質を分解する分解菌を前記容器内に投入する分解菌投入手段と、前記容器内に対して給排気を行う給排気手段とからなり、前記攪拌手段を、回転軸に攪拌部材が突設された一対の攪拌機構を前記容器内に並設するとともに、該一対の攪拌機構を、互いに逆回転するようにかつ一方の攪拌機構に設けられた攪拌部材の回転範囲が他方の攪拌機構の回転軸近傍に及ぶように構成し、前記分解菌投入手段を、菌体懸濁液タンクに収容された前記分解菌としてのMO7株を菌体供給管から圧送ポンプで前記容器内に供給するように構成し、前記給排気手段を給気設備及び排気設備で構成し、前記給気設備を給気ポンプを用いて給気管から前記容器内に空気を送り込むように構成し、前記排気設備を排気ポンプを用いて前記容器内の気体を排気管から引き抜き該気体に含まれる汚染物質であるTCEをガス処理設備で捕集可能に構成したものである。
【0012】
微生物による高粘性汚染土の浄化装置においては、汚染物質が含まれた汚染土を容器内に収容して気密状態とし、次いで、容器内の汚染土を攪拌手段で攪拌しながら給排気手段による通気を行うとともに、汚染物質を分解する分解菌を分解菌投入手段を介して容器内に投入する。
【0013】
このようにすると、給排気手段による通気作用と攪拌手段による攪拌作用とによって、汚染物質は、汚染土内からの気化が促進されるとともに、上述した通気及び攪拌作用による良好な好気性環境の下、汚染土に添加された分解菌の活性が高くなり、汚染土内の汚染物質は、分解菌が出す分解酵素によって速やかに分解される。
【0014】
また、通常であれば、通気が困難な粘性の高い汚染土であっても、攪拌手段によって汚染土を攪拌しつつ給排気手段による通気を行うため、汚染土と周囲の気体との接触性が高まる。したがって、該汚染土内の汚染物質は、速やかに気化回収されるとともに、分解菌によって効率よく微生物分解される。
【0015】
対象となる汚染物質としては、好気性環境下で微生物分解可能なものを全て含むものとし、分解菌については、かかる汚染物質に応じて最適なものを選択すればよい。
【0016】
例えば、汚染物質が自然界に存在する原油等であれば、土中に生息する頻度の高い微生物、例えばシュードモナス属の菌体をそのまま利用することができる。なお、汚染物質を分解できる微生物の菌体数が汚染土内にあまり存在しない場合には、他の自然環境で生息している微生物から対象となる汚染物質を分解できる微生物をスクリーニングにより単離し、育種するようにしてもよい。
【0017】
一方、汚染物質がトリクロロエチレンなどの人為的に合成された有機溶剤であって、これを唯一の炭素源として直接分解できる微生物の入手が困難である場合には、共代謝すなわち別の物質を分解する際に付加的に分解を行わせる作用を利用すればよい。例えば、空気とともにメタンを容器内に給気して土中に存在する若しくは土中に別途供給されたメタン資化性細菌を活性化させ、該細菌が有する酸化酵素で上述の有機溶剤を分解する方法や、フェノール、トルエンなどの芳香族化合物を分解菌投入手段若しくは給排気手段を介して容器内に供給し、土中に存在する若しくは土中に別途供給された芳香族資化性細菌(シュードモナス属細菌の中に多数存在する)に芳香族化合物を分解させ、その際の共代謝によって有機溶剤を分解する等の方法が考えられる。なお、本明細書では、上述のメタンや芳香族化合物を共代謝物質と呼ぶことにする。
【0018】
その他、上述した内容と一部重複するが、トリクロロエチレンを微生物分解可能な分解菌としては、メタン資化性菌であるメチロシナス トリコスポリウム(Methylosinus tricosporium)OB3(特表平4−501667、特開平5−212371)やメチロシナス トリコスポリウム(Methylosinus tricosporium)TUKUBA(特開平2−92274、特開平3−292970)、シュードモナス属であるシュードモナス プチダ(Pseudomonus putida)F1(特開昭64−34499)、シュードモナス プチダ(Pseudomonus putida)BH(藤田ら;ケミカルエンジニアリング,39,6,p494−498,1994)、シュードモナス プチダ(Pseudomonus putida)UC−R5,UC−P2(特開昭62−84780)、シュードモナス プチダ(Pseudomonus putida)KWI−9(特開平6−70753)、シュードモナス メンドシナ(Pseudomonus mendocina)KR1(特開平2−503866,5−502593)、シュードモナスセパシア(Pseudomonus cepacia)G4(特開平4−502277)、シュードモナス セパシア(Pseudomonus cepacia)KK01(特開平6−296711)、アルカリジーナス ユートロフス(Alcaligenes eutropus)JMP134(A.R.Harker Appl.Environ.Microbiol.,56,4,1179-1181,1990)、アルカリジーナス ユートロフス(Alcaligenes eutropus)KS01(特開平7−123976)、アンモニア酸化細菌であるニトロソモナス ユーロパエア(Nitrosomonus europaea)(D.Arciero et al.Biochem.Biophys.Res.Commun.,159,2,640-643,1989)、コリネバクテリウム属細菌(Corynebacterium)J1(特開平8−66182)等が知られている。
【0019】
なお、MO7株(国際出願番号PCT/JP97/02872、国際公開番号WO98/07831、FERM BP―5624)を用いれば、上述した細菌よりも高い効率でかつ直接的にトリクロロエチレンを分解することができる。
【0020】
汚染物質の気化回収工程と分解菌の投入分解工程とは互いに無関係に進行させるようにしてもかまわないが、かかる気化回収工程を投入分解工程よりも先行させるようにしたならば、攪拌通気による汚染物質の気化回収によって汚染物質の濃度が予め低下し、分解菌による分解効果がより表れやすい濃度まで下がった時点で分解菌が投入されることとなる。
【0021】
したがって、汚染物質が高濃度であるときには攪拌通気で、低濃度であるときには分解菌による微生物分解でそれぞれ汚染物質を浄化することが可能となり、攪拌通気や微生物分解をそれぞれに適した濃度で行い、その結果として、全体の浄化効率を大幅に向上させることができる。
【0022】
攪拌手段をどのように構成するかについては任意であるが、かかる攪拌手段を、回転軸に攪拌部材が突設された一対の攪拌機構を前記容器内に並設するとともに、該一対の攪拌機構を、互いに逆回転するようにかつ一方の攪拌機構に設けられた攪拌部材の回転範囲が他方の攪拌機構の回転軸近傍に及ぶように構成したならば、汚染土が均等に攪拌され、その粘性が高い場合であっても、これを空気等にまんべんなく接触させることが可能となる。
【0023】
【発明の実施の形態】
以下、本発明に係る微生物による微生物による高粘性汚染土の浄化装置の実施の形態について、添付図面を参照して説明する。なお、従来技術と実質的に同一の部品等については同一の符号を付してその説明を省略する。
【0024】
図1は、本実施形態に係る微生物による汚染土の浄化装置を示した全体図である。同図でわかるように、本実施形態に係る汚染土の浄化装置1は、汚染物質としてのトリクロロエチレン(以下、TCEと呼ぶ)が含まれた高粘性の汚染土2を投入用ハッチ19から投入するとともにこれを気密状態で収容可能な容器3と、該容器内の汚染土を攪拌する攪拌手段4と、TCEを分解する分解菌を容器3内に投入する分解菌投入手段5と、容器3内に対して給排気を行う給排気手段としての給気設備6及び排気設備7とからなる。
【0025】
分解菌投入手段5は、分解菌、例えばMO7株(国際出願番号PCT/JP97/02872、国際公開番号WO98/07831、FERM BP―5624)を菌体懸濁液タンク8に収容しておき、これを菌体供給管10から圧送ポンプ9で容器3内に供給できるように構成してある。なお、分解菌の活性が高まるよう、必要に応じて栄養塩や共代謝物質等を併せて供給できるように構成しておくのがよい。
【0026】
給気設備6は、気体、主として空気を給気ポンプ11を用いて給気管18から容器3内に送り込むように構成してあるが、必要であれば、TCE分解菌の生育に最適な条件を考慮して酸素濃度や気体温度等を適宜設定するとともに、メタンなどの共代謝物質を併せて供給できるように構成しておくのがよい。
【0027】
排気設備7は、排気ポンプ12を用いて容器3内の気体を排気管14から引き抜くとともに、該気体に含まれるTCEを活性炭への吸着作用等を利用したガス処理設備13で捕集可能に構成してある。
【0028】
なお、本実施形態に係る汚染土の浄化装置1には、上述した設備機器の他に、TCEが除去された土を処理土15として例えば処理土ストックヤードまで搬送するためのベルトコンベヤ16を備えている。かかるベルトコンベヤ16は、その搬送ベルトが容器3の底面に設けた開閉式排出口17の直下にくるように設置位置を調整しておく。
【0029】
図2は、容器3周辺を示した水平断面図及び鉛直断面図である。これらの図でわかるように、攪拌手段4は、回転軸22に攪拌部材25が放射状に突設されてなる一対の攪拌機構21a、21bを容器3内に並設するとともに、該一対の攪拌機構を構成する回転軸22、22の基端側に歯車26、26を取り付けて互いに噛合させるとともに、攪拌機構21bの側の歯車26にモータ27の出力軸28を連結することによって、攪拌機構21a、21bが互いに逆回転するように構成してある。
【0030】
ここで、攪拌機構21a、21bは、図3でよくわかるように、一方の攪拌機構に設けられた攪拌部材25の回転範囲が他方の攪拌機構の回転軸22近傍に及ぶように構成してある。なお、攪拌部材25は、回転軸22の周面に突設されたロッド23とその先端に溶接等で固定されたほぼ矩形状の攪拌板24とからなり、同図に示す回転範囲は、攪拌機構21a、21bを回転させたときの攪拌板24の先端軌跡を示したものである。
【0031】
図4は、かかる攪拌機構21a、21bの詳細平面図、図5は、図4のA―A線、B―B線、C―C線方向から見た矢視図であり、図5からは、攪拌機構21a、21bが互いに干渉することなく、しかも一方の攪拌機構に設けられた攪拌部材25の先端が他方の攪拌機構の回転軸22近傍を通過するようにして逆回転する様子がわかる。
【0032】
ここで、攪拌板24は、攪拌機構21a、21bを回転させたときに、汚染土2が回転軸22の材軸に沿った方向に押し出されるように傾斜をつけてあるが、図4のA―A線、B―B線方向から見たときの攪拌板24の傾斜角度を比べればわかるように、攪拌板24による押し出し方向が互いに逆方向になっており、したがって、汚染土2が一方向に全体移動することはない。
【0033】
一方、容器3の底面に設けられた開閉式排出口17、17は、図3に示すように容器本体側に回動自在に接合してあり、これを両側に開くことによって処理を終えた土を真下に落下させることができるようになっている。
【0034】
本実施形態に係る微生物による汚染土の浄化装置及び方法においては、まず、汚染物質であるTCEが含まれた汚染土2を投入用ハッチ19から容器3内に投入して気密状態とし、次いで、容器3内に収容された汚染土2を攪拌手段4で攪拌しながら給気設備6による給気及び排気設備7による排気を行って容器3内を通気する。
【0035】
このようにすると、給気設備6及び排気設備7による通気作用と攪拌手段4による攪拌作用とによって、汚染土2内からのTCEの気化が促進され、汚染土2内のTCE濃度が低下する。ここで、攪拌機構21a、21bによる攪拌は図5でよくわかるように、いわば2軸逆回転方式による攪拌となり、汚染土2を均質に攪拌する。すなわち、オーガスクリュー等を用いた従来のラインミキサーのごとき攪拌手段では、攪拌対象物の粘性が高い場合、該攪拌対象物が全体移動したり攪拌手段に付着するだけであって局所的に見ればほとんど攪拌されていないといった事態が生じるが、本実施形態のような2軸逆回転方式だと、汚染土2は、全体移動せずに局所的に攪拌されることとなり、均質な攪拌が可能となる。
【0036】
なお、汚染土2から気化したTCEは、排気管14から引き抜かれた後、ガス処理設備13で適宜回収される。
【0037】
汚染土2内のTCE濃度がある程度低下したならば、次に、上述した通気及び攪拌をそのまま維持した状態で菌体懸濁液タンク8に収容された分解菌を菌体供給管10から圧送ポンプ9で容器3内に供給する。
【0038】
このようにすると、通気及び攪拌作用による良好な好気性環境の下、容器内3に投入された分解菌の活性が高くなり、該分解菌から出る分解酵素によって汚染土2内のTCEが速やかに分解され、TCE濃度はさらに低下する。なお、MO7株を分解菌として用いる場合には、TCE濃度が例えば100mg/kg以下に低下するまで分解菌の投入を待つようにすることが考えられる。
【0039】
このような微生物分解工程においては、給気設備6から容器3内に気体を送り込む際、必要に応じてTCE分解菌の生育に最適な酸素濃度や気体温度に設定するとともに、やはり必要に応じて、微生物分解に必要な共代謝物質や栄養塩等を分解菌投入手段5や給気設備6を介して容器3内に供給する。
【0040】
このようにして汚染土2のTCE濃度が十分に低下したならば、容器3の開閉式排出口17を開いて落下させ、これを処理土15としてベルトコンベヤ16で例えば処理土ストックヤードまで搬送する。
【0041】
以上説明したように、本実施形態に係る微生物による汚染土の浄化装置及び方法によれば、給気設備6及び排気設備7による通気作用と攪拌手段4による攪拌作用との相乗効果によって、TCEの汚染土2内からの気化が促進されるとともに、かかる通気及び攪拌作用による良好な好気性環境の下、汚染土2に添加された分解菌の活性が高くなって、汚染土2内のTCEが分解菌によって速やかに微生物分解されることとなり、かくして汚染土2内のTCEを効率よく浄化することが可能となる。
【0042】
特に、攪拌手段4によって汚染土2を攪拌しつつ通気を行うため、高粘性の汚染土2であっても周囲の気体との接触性が高まり、かくして、気化回収及び微生物分解によるTCEの浄化を高粘性汚染土に対しても確実かつ効率的に行うことが可能となる。
【0043】
また、TCE浄化にあたり、従来のように水や生石灰を使用しないので、スラリーを処理したりpH調整したりといった後処理が不要となり、埋め戻し等の作業に速やかに移行することができる。そのため、環境への影響を懸念することなく、土壌浄化を短工期に行うことが可能となる。
【0044】
また、本実施形態に係る微生物による汚染土の浄化方法によれば、攪拌手段4による攪拌を行いながらの給気設備6及び排気設備7による気化回収工程をまずは一定期間行い、しかる後に分解菌投入手段5による分解菌の投入分解工程を行う、すなわち、攪拌通気によるTCEの気化回収によってTCE濃度を予め低下させ、分解菌による分解効果がより表れやすい濃度まで下がった時点で分解菌を投入するようにしたので、TCEが高濃度であるときには攪拌通気で、低濃度であるときには分解菌による微生物分解でそれぞれTCEを浄化することが可能となる。
【0045】
したがって、攪拌通気工程や微生物分解工程がそれぞれに適した濃度で行われることとなり、その結果として、微生物の菌体数が少ない場合であってもTCEを効率よく浄化することが可能となる。
【0046】
また、本実施形態に係る微生物による汚染土の浄化装置1によれば、攪拌手段4を、回転軸22に攪拌部材25が突設された一対の攪拌機構21a、21bを容器3内に並設するとともに、該一対の攪拌機構を、互いに逆回転するようにかつ一方の攪拌機構に設けられた攪拌部材25の回転範囲が他方の攪拌機構の回転軸22近傍に及ぶように構成したので、高粘性の汚染土2を攪拌機構21a、21bの回転軸22に付着させることなく、容器3内で均等に攪拌し、空気等にまんべんなく接触させることが可能となる。
【0047】
したがって、汚染土2に含まれるTCEを上述した攪拌通気による気化回収や微生物分解によって確実に浄化することが可能となる。
【0048】
本実施形態では、気化回収工程を分解菌の投入分解工程よりも先行させるようにしたが、本発明に係る微生物による汚染土の浄化方法は、かかる手順に限定されるものではなく、例えば気化回収工程と分解菌による微生物分解工程とを同時進行させてもかまわない。
【0049】
また、本実施形態では、高粘性の汚染土に適用した例を挙げて説明したが、粘性の低いものにも適用できることは言うまでもない。
【0050】
【発明の効果】
以上述べたように、本発明の微生物による高粘性汚染土の浄化装置によれば、通気及び攪拌作用によって汚染物質の気化が促進されるとともに、かかる通気及び攪拌作用による良好な好気性環境の下、汚染土に添加された分解菌の活性が高くなって、汚染土内の汚染物質が分解菌によって速やかに分解されるので、結局、汚染土内の汚染物質を効率よく浄化することが可能となる。特に、攪拌手段によって汚染土を攪拌しつつ通気を行うため、高粘性の汚染土であっても周囲の気体との接触性が高まり、かくして、気化回収及び微生物分解による汚染物質の浄化を高粘性汚染土に対しても確実かつ効率的に行うことが可能となる。
【0051】
また、本発明に係る微生物による汚染土の浄化装置によれば、汚染土の粘性が高い場合であっても、該汚染土を容器内で確実かつ均等に攪拌し、これを空気等にまんべんなく接触させることが可能となり、高粘性汚染土に対する浄化の確実性や効率をさらに高めることができるという効果も奏する。
【0053】
【図面の簡単な説明】
【図1】本実施形態に係る微生物による汚染土の浄化装置の全体図。
【図2】本実施形態に係る微生物による汚染土の浄化装置の容器周辺の図であり、(a)は水平断面図、(b)は鉛直断面図。
【図3】本実施形態に係る微生物による汚染土の浄化装置を別方向から見たときの鉛直断面図。
【図4】攪拌機構の詳細平面図。
【図5】図4のA―A線、B―B線、C―C線方向から見た矢視図。
【符号の説明】
1 汚染土の浄化装置
2 汚染土
3 容器
4 攪拌手段
5 分解菌投入手段
6 給気設備(給排気手段)
7 排気設備(給排気手段)
21a、21b 攪拌機構
22 回転軸
25 攪拌部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a highly viscous contaminated soil purification apparatus using microorganisms that purifies contaminants such as organochlorine compounds contained in the contaminated soil .
[0002]
[Prior art]
The soil may contain organochlorine compounds such as trichlorethylene and petroleum hydrocarbons such as heavy oil and gasoline. If such soil is left as it is, contamination of the above-mentioned organochlorine compounds will occur. Substances may diffuse into the environment through groundwater. Therefore, a predetermined purification process must be performed for such contaminated soil.
[0003]
On the other hand, research on bioremediation, a technology for degrading and detoxifying environmental pollutants using the activity of microorganisms, has been progressing and has been applied to the purification of marine pollution by crude oil. It has also been applied to contaminated soil.
[0004]
When purifying pollutants in contaminated soil using bioremediation, first excavate the contaminated soil and move the excavated contaminated soil to a temporary site, and then remove the pollutants in the excavated contaminated soil to microorganisms on the temporary site. Disassemble with. Then, after the pollutant is decomposed, a general procedure is to fill the treated soil back to the original position.
[0005]
[Problems to be solved by the invention]
However, in the case of highly contaminated soil, the activity of the aerobic degrading bacteria cannot be increased because of the poor air permeability of the contaminated soil, and it takes a long time to decompose the contaminants in the contaminated soil. In some cases, the microbial degradation itself is substantially impossible.
[0006]
In addition, by mixing and stirring quick lime in the contaminated soil, heat of hydration accompanying the chemical reaction between the moisture contained in the contaminated soil and quick lime is generated, and the contaminant is vaporized using this heat of hydration. However, in this method, the contaminated soil becomes strongly alkaline due to quick lime, and after being backfilled, the alkaline component diffuses into groundwater or the like, or into the ecosystem. There are concerns about adverse effects.
[0007]
The present invention has been made in consideration of the above-mentioned circumstances, and does not require post-treatment such as pH adjustment to affect or prevent the environment, and is efficient even in highly contaminated contaminated soil. An object of the present invention is to provide an apparatus for purifying highly viscous contaminated soil by microorganisms, which is capable of purifying contaminants .
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a highly viscous contaminated soil purification apparatus using microorganisms according to the present invention as described in claim 1, a container capable of containing contaminated soil containing a contaminant in an airtight state, and the container The agitation means for agitating the contaminated soil, decomposing bacteria introduction means for introducing the degrading bacteria that decompose the contaminants into the container, and air supply / exhaust means for supplying and exhausting the inside of the container, The stirring means is provided with a pair of stirring mechanisms having a stirring member projecting from the rotating shaft in parallel in the container, and the pair of stirring mechanisms are provided in one stirring mechanism so as to rotate in reverse with respect to each other. The rotation range of the stirring member extends to the vicinity of the rotation axis of the other stirring mechanism, and the degrading bacteria charging means is used as the cell supply pipe for the MO7 strain as the degrading bacteria stored in the cell suspension tank. To feed into the container with a pressure pump Configured, the supply and exhaust means is composed of air supply equipment and exhaust equipment, the supply of air facility configured to pump air into the container from the supply pipe with the air supply pump, exhaust pump the exhaust system The TCE, which is a contaminant contained in the gas, is drawn out from the exhaust pipe using the gas processing facility so that it can be collected by the gas processing facility.
[0012]
In the device for purifying highly viscous contaminated soil by microorganisms, contaminated soil containing pollutants is contained in a container to make it airtight, and then the aerated air is supplied and exhausted while the contaminated soil in the container is stirred by the stirring means. At the same time, a degrading bacterium that decomposes the pollutant is introduced into the container through the degrading bacterium introduction means.
[0013]
In this way, the pollutant is promoted to be vaporized from the contaminated soil by the aeration action by the air supply / exhaust means and the agitation action by the agitation means, and in a favorable aerobic environment by the aeration and agitation action described above. The activity of the decomposing bacteria added to the contaminated soil becomes high, and the pollutants in the contaminated soil are rapidly decomposed by the decomposing enzyme produced by the decomposing bacteria.
[0014]
Also, normally, even if it is a highly viscous contaminated soil that is difficult to ventilate, the air supply / exhaust means is aerated while the contaminated soil is agitated by the agitating means, so the contact between the contaminated soil and the surrounding gas is good. Rise. Therefore, the pollutants in the contaminated soil are quickly vaporized and recovered, and are efficiently microbially decomposed by the decomposing bacteria.
[0015]
The target pollutants include all those that can be microbially decomposed in an aerobic environment. As for the decomposing bacteria, an optimal one may be selected according to such pollutants.
[0016]
For example, if the pollutant is naturally occurring crude oil or the like, microorganisms that frequently inhabit the soil, such as Pseudomonas cells, can be used as they are. In addition, if the number of microorganisms capable of degrading pollutants does not exist in the contaminated soil, the microorganisms that can degrade the target pollutants from microorganisms living in other natural environments are isolated by screening, You may make it breed.
[0017]
On the other hand, if the pollutant is an artificially synthesized organic solvent such as trichlorethylene and it is difficult to obtain a microorganism that can be directly decomposed using it as the sole carbon source, it will co-metabolize, that is, decompose another substance. What is necessary is just to utilize the effect | action which performs an additional decomposition | disassembly at the time. For example, methane is supplied into the container together with air to activate methane-assimilating bacteria that exist in the soil or that are separately supplied to the soil, and decompose the organic solvent with the oxidase that the bacteria have. Aromatic assimilating bacteria (Pseudomonas) present in the soil or supplied separately in the soil by supplying a method, aromatic compounds such as phenol and toluene into the container via the degrading bacteria charging means or the air supply / exhaust means A method in which an aromatic compound is decomposed in a large number of bacteria belonging to the genus and the organic solvent is decomposed by co-metabolism at that time. In the present specification, the above methane and aromatic compounds are referred to as co-metabolites.
[0018]
In addition, although partially overlapping with the contents described above, as a degrading bacterium capable of microbially degrading trichlorethylene, Methylosinus tricosporium OB3 (Japanese Translation of PCT International Publication No. 4-501667, Japanese Patent Laid-Open No. Hei 5) -212371), Methylosinus tricosporium TUKUBA (Japanese Patent Laid-Open No. 2-92274, Japanese Patent Laid-Open No. 3-292970), Pseudomonus putida F1 (Japanese Patent Laid-Open No. 64-34499), Pseudomonas putida PH (Pseudomonus putida) BH (Fujita et al; Chemical Engineering, 39,6, p494-498, 1994), Pseudomonus putida UC-R5, UC-P2 (JP-A 62-84780), Pseudomonus putida (Pseudomonus putida) KWI-9 (Japanese Patent Laid-Open No. 6-70753), Pseudomonus mendocina KR1 (Japanese Patent Laid-Open No. 2-503866, 5-502593), Pseudomonus cepacia G4 (Japanese Patent Laid-Open No. 4-502277), Pseudomonus cepacia KK01 (JP-A-6-296711), Alcaligenes eutropus JMP134 (ARHarker Appl. Environ. Microbiol., 56, 4, 1179-1181, 1990), Alkalineus eutropus KS01 (JP-A-7-123976) ), Nitrosomonus europaea (D. Arciero et al. Biochem. Biophys. Res. Commun., 159, 2, 640-643, 1989), an ammonia oxidizing bacterium, Corynebacterium J1 (Japanese Patent Laid-Open No. 8-66182) is known.
[0019]
In addition, if MO7 stock | strain (international application number PCT / JP97 / 02872, international publication number WO98 / 07831, FERM BP-5624) is used, it can decompose | disassemble trichlorethylene directly more efficiently than the bacteria mentioned above.
[0020]
The vaporization and recovery process of pollutants and the input and decomposition process of degrading bacteria may proceed independently of each other. However, if such a vaporization and recovery process is preceded by the input and decomposition process, contamination by stirring aeration will occur. When the concentration of the pollutant is reduced in advance by vaporization and recovery of the substance and the decomposition effect by the decomposing bacteria is reduced to a concentration more easily appearing, the degrading bacteria are introduced.
[0021]
Therefore, it is possible to purify the pollutant by stirring aeration when the pollutant is at a high concentration, and microbial decomposition by degrading bacteria when the concentration is low, and perform the aeration and microbial decomposition at a concentration suitable for each, As a result, the overall purification efficiency can be greatly improved.
[0022]
The configuration of the agitating means is arbitrary, but the agitating means includes a pair of agitating mechanisms in which an agitating member protrudes from the rotating shaft, and the pair of agitating mechanisms. Are configured so that the rotation range of the stirring member provided in one stirring mechanism extends to the vicinity of the rotation axis of the other stirring mechanism, the contaminated soil is uniformly stirred and its viscosity is Even if this is high, it can be evenly contacted with air or the like.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of a highly viscous contaminated soil purification apparatus using microorganisms according to the present invention will be described with reference to the accompanying drawings. Note that components that are substantially the same as those of the prior art are assigned the same reference numerals, and descriptions thereof are omitted.
[0024]
FIG. 1 is an overall view showing a device for purifying contaminated soil by microorganisms according to the present embodiment. As shown in the figure, the contaminated soil purification apparatus 1 according to this embodiment inputs a highly viscous contaminated soil 2 containing trichlorethylene (hereinafter referred to as TCE) as a contaminant from an input hatch 19. In addition, the container 3 that can store the container in an airtight state, the stirring unit 4 that stirs the contaminated soil in the container, the decomposing bacteria input unit 5 that inputs the degrading bacteria that decompose TCE into the container 3, and the inside of the container 3 It comprises an air supply facility 6 and an exhaust facility 7 as air supply / exhaust means for supplying and exhausting air.
[0025]
The degrading bacteria charging means 5 contains decomposing bacteria such as MO7 strain (International Application No. PCT / JP97 / 02872, International Publication No. WO98 / 07831, FERM BP-5624) in the cell suspension tank 8, Can be supplied from the fungus body supply pipe 10 into the container 3 by the pressure feed pump 9. In addition, it is good to comprise so that a nutrient salt, a co-metabolite, etc. can be supplied together as needed so that the activity of decomposing bacteria may increase.
[0026]
The air supply facility 6 is configured to feed gas, mainly air, into the container 3 from the air supply pipe 18 using the air supply pump 11, but if necessary, conditions optimal for the growth of TCE-degrading bacteria are set. In consideration of this, it is preferable that the oxygen concentration, the gas temperature, and the like are appropriately set and the co-metabolites such as methane can be supplied together.
[0027]
The exhaust facility 7 is configured to draw out the gas in the container 3 from the exhaust pipe 14 using the exhaust pump 12 and to collect the TCE contained in the gas by the gas processing facility 13 using an adsorption action or the like on activated carbon. It is.
[0028]
In addition to the equipment described above, the contaminated soil purification apparatus 1 according to the present embodiment includes a belt conveyor 16 for transporting the soil from which TCE has been removed to the treated soil stock yard as treated soil 15, for example. ing. The belt conveyor 16 has its installation position adjusted so that the conveyor belt comes directly under the open / close discharge port 17 provided on the bottom surface of the container 3.
[0029]
FIG. 2 is a horizontal sectional view and a vertical sectional view showing the periphery of the container 3. As can be seen from these drawings, the stirring means 4 includes a pair of stirring mechanisms 21a and 21b each having a stirring member 25 radially projecting on the rotating shaft 22 and provided in the container 3 side by side. Gears 26, 26 are attached to the base end sides of the rotary shafts 22, 22 constituting the meshing gears and meshed with each other, and the output shaft 28 of the motor 27 is connected to the gear 26 on the side of the stirring mechanism 21b. 21b is configured to rotate in the reverse direction.
[0030]
Here, as can be clearly seen in FIG. 3, the stirring mechanisms 21a and 21b are configured such that the rotation range of the stirring member 25 provided in one stirring mechanism extends to the vicinity of the rotating shaft 22 of the other stirring mechanism. . The stirring member 25 is composed of a rod 23 protruding from the peripheral surface of the rotating shaft 22 and a substantially rectangular stirring plate 24 fixed to the tip thereof by welding or the like. The rotation range shown in FIG. The tip locus of the stirring plate 24 when the mechanisms 21a and 21b are rotated is shown.
[0031]
FIG. 4 is a detailed plan view of the stirring mechanisms 21a and 21b. FIG. 5 is a view as seen from the direction of the lines AA, BB and CC in FIG. Thus, it can be seen that the stirring mechanisms 21a and 21b do not interfere with each other, and the tip of the stirring member 25 provided in one stirring mechanism rotates in the reverse direction so as to pass near the rotation shaft 22 of the other stirring mechanism.
[0032]
Here, the stirring plate 24 is inclined so that when the stirring mechanisms 21a and 21b are rotated, the contaminated soil 2 is pushed out in the direction along the material axis of the rotating shaft 22, but the A in FIG. As can be understood by comparing the inclination angles of the stirring plate 24 when viewed from the direction of the A line and the BB line, the pushing directions by the stirring plate 24 are opposite to each other. Never move across.
[0033]
On the other hand, as shown in FIG. 3, the open / close-type discharge ports 17 and 17 provided on the bottom surface of the container 3 are rotatably joined to the container body side, and the soil that has been processed by opening the both sides to both sides is finished. Can be dropped right below.
[0034]
In the apparatus and method for purifying contaminated soil with microorganisms according to the present embodiment, first, the contaminated soil 2 containing TCE as a contaminant is introduced into the container 3 from the input hatch 19 to be airtight, While the contaminated soil 2 contained in the container 3 is agitated by the agitating means 4, air is supplied from the air supply equipment 6 and exhausted from the exhaust equipment 7 to ventilate the container 3.
[0035]
If it does in this way, vaporization of TCE from inside the contaminated soil 2 will be promoted by the aeration action by the air supply equipment 6 and the exhaust equipment 7 and the stirring action by the stirring means 4, and the TCE concentration in the contaminated earth 2 will decrease. Here, as is well understood in FIG. 5, the stirring by the stirring mechanisms 21a and 21b is a so-called two-axis reverse rotation method, and the contaminated soil 2 is uniformly stirred. That is, in a stirring means such as a conventional line mixer using an auger screw or the like, if the stirring object has a high viscosity, the stirring object only moves as a whole or adheres to the stirring means. Although there is a situation in which almost no agitation occurs, in the case of the biaxial reverse rotation method as in this embodiment, the contaminated soil 2 is agitated locally without moving as a whole, and homogeneous agitation is possible. Become.
[0036]
Note that the TCE vaporized from the contaminated soil 2 is withdrawn from the exhaust pipe 14 and then appropriately recovered by the gas processing facility 13.
[0037]
If the TCE concentration in the contaminated soil 2 is reduced to some extent, then, the decomposing bacteria stored in the cell suspension tank 8 with the above-described aeration and stirring maintained as they are are pumped from the cell supply pipe 10. 9 to supply into the container 3.
[0038]
In this way, the activity of the decomposing bacteria introduced into the container 3 becomes high under a good aerobic environment due to aeration and agitation action, and the TCE in the contaminated soil 2 is rapidly released by the decomposing enzyme from the decomposing bacteria. Degraded, the TCE concentration is further reduced. When the MO7 strain is used as a degrading bacterium, it may be possible to wait for the input of the degrading bacterium until the TCE concentration is reduced to, for example, 100 mg / kg or less.
[0039]
In such a microbial decomposition process, when gas is fed into the container 3 from the air supply facility 6, the oxygen concentration and gas temperature are set as appropriate for the growth of the TCE-degrading bacteria as necessary, and also as necessary. Then, co-metabolites, nutrient salts, and the like necessary for microbial decomposition are supplied into the container 3 through the decomposing bacteria input means 5 and the air supply facility 6.
[0040]
If the TCE concentration of the contaminated soil 2 is sufficiently lowered in this way, the open / close-type discharge port 17 of the container 3 is opened and dropped, and this is transported to the treated soil stock yard by the belt conveyor 16 as treated soil 15. .
[0041]
As described above, according to the apparatus and method for cleaning contaminated soil by microorganisms according to the present embodiment, the synergistic effect of the aeration action by the air supply equipment 6 and the exhaust equipment 7 and the stirring action by the stirring means 4 allows Vaporization from within the contaminated soil 2 is promoted, and the activity of decomposing bacteria added to the contaminated soil 2 becomes high under a good aerobic environment due to such aeration and stirring action, so that the TCE in the contaminated soil 2 is increased. The microorganisms are rapidly decomposed by the decomposing bacteria, and thus the TCE in the contaminated soil 2 can be efficiently purified.
[0042]
In particular, since the aeration is performed while the contaminated soil 2 is agitated by the agitating means 4, the contact with the surrounding gas is enhanced even with the highly viscous contaminated soil 2, and thus the TCE purification by vaporization recovery and microbial decomposition is achieved. It is possible to carry out reliably and efficiently even for highly viscous contaminated soil.
[0043]
In addition, since TCE purification does not use water or quicklime as in the prior art, post-treatment such as treating the slurry or adjusting the pH is not necessary, and it is possible to move quickly to operations such as backfilling. Therefore, soil purification can be performed in a short period of time without concern about the impact on the environment.
[0044]
In addition, according to the method for purifying contaminated soil by microorganisms according to the present embodiment, the vaporization recovery process by the air supply equipment 6 and the exhaust equipment 7 while stirring by the stirring means 4 is first performed for a certain period, and then the decomposition bacteria are input. Introducing the degrading bacteria by means 5, the TCE concentration is lowered in advance by TCE vaporization and recovery by stirring aeration, and the degrading bacteria are introduced when the degradation effect due to the degrading bacteria is lowered to a concentration more likely to appear. Therefore, it is possible to purify the TCE by stirring aeration when the TCE is at a high concentration and by microbial decomposition with degrading bacteria when the TCE is at a low concentration.
[0045]
Therefore, the stirring and aeration process and the microbial decomposition process are performed at concentrations suitable for each, and as a result, even when the number of microbial cells is small, TCE can be efficiently purified.
[0046]
In addition, according to the apparatus 1 for purifying contaminated soil with microorganisms according to the present embodiment, the stirring means 4 and the pair of stirring mechanisms 21 a and 21 b in which the stirring member 25 is protruded from the rotating shaft 22 are arranged in parallel in the container 3. In addition, since the pair of stirring mechanisms are configured so as to rotate in reverse to each other and the rotation range of the stirring member 25 provided in one stirring mechanism extends to the vicinity of the rotation shaft 22 of the other stirring mechanism. Without sticking the viscous contaminated soil 2 to the rotating shafts 22 of the stirring mechanisms 21a and 21b, it is possible to uniformly stir in the container 3 and evenly contact with air or the like.
[0047]
Therefore, the TCE contained in the contaminated soil 2 can be reliably purified by the above-described vaporization recovery by agitation and microbial decomposition.
[0048]
In the present embodiment, the vaporization recovery step is preceded by the decomposing bacteria input decomposition step. However, the method for purifying contaminated soil by microorganisms according to the present invention is not limited to such a procedure. The process and the microbial decomposition process using the decomposing bacteria may be performed simultaneously.
[0049]
Further, in the present embodiment, an example in which the present invention is applied to highly viscous contaminated soil has been described, but it goes without saying that the present invention can also be applied to low viscosity soil.
[0050]
【The invention's effect】
As described above, according to the apparatus for purifying highly viscous contaminated soil using microorganisms of the present invention, vaporization of contaminants is promoted by aeration and agitation action, and under a favorable aerobic environment due to such aeration and agitation action. As the activity of degrading bacteria added to the contaminated soil increases, the pollutants in the contaminated soil are quickly decomposed by the decomposing bacteria, and as a result, it is possible to efficiently purify the pollutants in the contaminated soil. Become. In particular, since the aeration is performed while stirring the contaminated soil by the agitation means, the contact property with the surrounding gas is increased even in the case of highly viscous contaminated soil, and thus the high-viscosity purification by evaporation recovery and microbial decomposition is achieved. It becomes possible to carry out reliably and efficiently even for contaminated soil.
[0051]
Further, according to the apparatus for purifying contaminated soil with microorganisms according to the present invention, even if the viscosity of the contaminated soil is high, the contaminated soil is reliably and evenly stirred in the container, and evenly contacted with air or the like. It is also possible to improve the certainty and efficiency of purification for highly viscous contaminated soil.
[0053]
[Brief description of the drawings]
FIG. 1 is an overall view of an apparatus for purifying contaminated soil by microorganisms according to the present embodiment.
FIGS. 2A and 2B are views around a container of a device for purifying soil contaminated with microorganisms according to the present embodiment, wherein FIG. 2A is a horizontal sectional view, and FIG. 2B is a vertical sectional view;
FIG. 3 is a vertical sectional view of the apparatus for purifying contaminated soil by microorganisms according to the present embodiment when viewed from another direction.
FIG. 4 is a detailed plan view of a stirring mechanism.
5 is a view as seen from the direction of the lines AA, BB, and CC in FIG. 4;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Contaminated soil purification apparatus 2 Contaminated soil 3 Container 4 Agitation means 5 Decomposing bacteria introduction means 6 Air supply equipment (supply / exhaust means)
7 Exhaust equipment (supply / exhaust means)
21a, 21b Stirring mechanism 22 Rotating shaft 25 Stirring member

Claims (1)

汚染物質が含まれた汚染土を気密状態で収容可能な容器と、該容器内の汚染土を攪拌する攪拌手段と、前記汚染物質を分解する分解菌を前記容器内に投入する分解菌投入手段と、前記容器内に対して給排気を行う給排気手段とからなり、前記攪拌手段を、回転軸に攪拌部材が突設された一対の攪拌機構を前記容器内に並設するとともに、該一対の攪拌機構を、互いに逆回転するようにかつ一方の攪拌機構に設けられた攪拌部材の回転範囲が他方の攪拌機構の回転軸近傍に及ぶように構成し、前記分解菌投入手段を、菌体懸濁液タンクに収容された前記分解菌としてのMO7株を菌体供給管から圧送ポンプで前記容器内に供給するように構成し、前記給排気手段を給気設備及び排気設備で構成し、前記給気設備を給気ポンプを用いて給気管から前記容器内に空気を送り込むように構成し、前記排気設備を排気ポンプを用いて前記容器内の気体を排気管から引き抜き該気体に含まれる汚染物質であるTCEをガス処理設備で捕集可能に構成したことを特徴とする微生物による高粘性汚染土の浄化装置A container capable of containing contaminated soil containing a contaminant in an airtight state, a stirring means for stirring the contaminated soil in the container, and a degrading bacteria input means for introducing a degrading bacterium for decomposing the contaminant into the container And a supply / exhaust means for supplying and exhausting air to and from the container. The stirring mechanism is configured to rotate in the reverse direction to each other and the rotation range of the stirring member provided in one stirring mechanism extends to the vicinity of the rotation axis of the other stirring mechanism. The MO7 strain as the degrading bacterium contained in the suspension tank is configured to be supplied into the container with a pressure pump from a microbial cell supply pipe, and the air supply / exhaust means is configured with an air supply facility and an exhaust facility , From the air supply pipe using the air supply pump to the air supply equipment Serial configured to force air into the container, the collection can be the TCE is a pollutant gas of the exhaust system in the vessel using an exhaust pump included in the pull-out the gas from the exhaust pipe in a gas processing facility A device for purifying highly viscous contaminated soil with microorganisms , characterized by comprising .
JP05969599A 1999-03-08 1999-03-08 Purification equipment for highly viscous soil contaminated with microorganisms Expired - Fee Related JP4052536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05969599A JP4052536B2 (en) 1999-03-08 1999-03-08 Purification equipment for highly viscous soil contaminated with microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05969599A JP4052536B2 (en) 1999-03-08 1999-03-08 Purification equipment for highly viscous soil contaminated with microorganisms

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004357984A Division JP3741286B2 (en) 2004-12-10 2004-12-10 Purification method of contaminated soil by microorganisms

Publications (2)

Publication Number Publication Date
JP2000254634A JP2000254634A (en) 2000-09-19
JP4052536B2 true JP4052536B2 (en) 2008-02-27

Family

ID=13120613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05969599A Expired - Fee Related JP4052536B2 (en) 1999-03-08 1999-03-08 Purification equipment for highly viscous soil contaminated with microorganisms

Country Status (1)

Country Link
JP (1) JP4052536B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4746798B2 (en) * 2001-01-30 2011-08-10 高砂熱学工業株式会社 Contaminant purification method and purification device
JP4925924B2 (en) * 2007-05-29 2012-05-09 学校法人立命館 Method and system for bioremediation

Also Published As

Publication number Publication date
JP2000254634A (en) 2000-09-19

Similar Documents

Publication Publication Date Title
US5833855A (en) Situ bioremediation of contaminated groundwater
US5279963A (en) System for the decontamination of a contaminated gas
US5610065A (en) Integrated chemical/biological treatment of organic waste
KR101474308B1 (en) Apparatus for remediation of contaminated soil
US5840191A (en) Process for the treatment of contaminated material
Cho et al. Effect of soil moisture on bioremediation of chlorophenol-contaminated soil
JP4767472B2 (en) Purification method of contaminated soil by microorganisms
JP4052536B2 (en) Purification equipment for highly viscous soil contaminated with microorganisms
JP3741286B2 (en) Purification method of contaminated soil by microorganisms
JP3970109B2 (en) Soil purification method
JP2006198476A (en) Method for making contaminated deposit harmless
JP2005021748A (en) Wall for preventing diffusion of volatile organic compound, method for constructing wall, and method for purifying volatile organic compound
JP2879808B2 (en) How to clean contaminated soil
WO2004078375A1 (en) Additive for use in restoration of contaminated soil, ground water or sediment soil
JP3176849B2 (en) Microorganism treatment method for soil contaminated with organochlorine compounds
JP2003164850A (en) Method and apparatus for bio-remedying contaminated soil or groundwater
JP3430505B2 (en) Purification method of soil contaminated by microorganisms
JP2005262174A (en) Method for decontaminating contaminated bottom sediment
JP3961193B2 (en) Purification method of contaminated soil
JP2000005741A (en) Original site purifying system of contaminated soil by microorganisms
JP2006239559A (en) Purification method and apparatus for substance polluted with organic chloride compound
JP3616932B2 (en) Microbial treatment method for wastewater containing organochlorine compounds
KR0170626B1 (en) Biological treatment of soil contamination and its apparatus
Chimote Use of bioremediation to clean the environment
Kim et al. Hazardous waste treatment technologies

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040730

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041210

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20041216

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101214

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111214

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121214

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131214

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees