JP4051431B2 - Colloidal gold solution and method for producing the same - Google Patents

Colloidal gold solution and method for producing the same Download PDF

Info

Publication number
JP4051431B2
JP4051431B2 JP2002235926A JP2002235926A JP4051431B2 JP 4051431 B2 JP4051431 B2 JP 4051431B2 JP 2002235926 A JP2002235926 A JP 2002235926A JP 2002235926 A JP2002235926 A JP 2002235926A JP 4051431 B2 JP4051431 B2 JP 4051431B2
Authority
JP
Japan
Prior art keywords
gold
solution
colloidal gold
solid
colloidal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002235926A
Other languages
Japanese (ja)
Other versions
JP2004073964A (en
Inventor
健次 加藤
直樹 松田
志美 祁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002235926A priority Critical patent/JP4051431B2/en
Publication of JP2004073964A publication Critical patent/JP2004073964A/en
Application granted granted Critical
Publication of JP4051431B2 publication Critical patent/JP4051431B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Cosmetics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Colloid Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、保存性に優れた金コロイド溶液及びその製法に関するものである。
【0002】
【従来の技術】
現在、金コロイド溶液は、医薬品、化粧品、食品及び塗料などの広範な分野に利用されており、特に、医療用の免疫反応を利用した様々な検査用試薬の基材や抗原抗体反応などを利用したバイオセンサーの基材などとして、また 健康関連素材や美容液などにも広く使用されている。
【0003】
従来、金コロイド溶液は、塩化金酸溶液に還元剤としてクエン酸塩溶液を加えて加熱することにより、金イオンを還元させてコロイドとする溶液内還元反応を用いて製造されている。ところが、この方法で調製された金コロイド液は、保存性が悪いために、使用する毎に調製する、いわゆる用事調製の形を採っているのが実状である。そのため、金コロイド液を使用しようとする際、その都度、金コロイド液を調製しなければならず、その調製に用いる試薬、加熱用の器具及び設備などを必要とする上に、その作業に多大な労力を要するなどの問題があった。
【0004】
【発明が解決しようとする課題】
本発明は、従来の技術における上記した実状に鑑みてなされたものである。すなわち、本発明の目的は、金微粒子が安定した分散状態で長期に亘り保存され、簡易に繰り返し使用できる高純度の金コロイド溶液を提供することにある。また、本発明の他の目的は、金塩の還元及び得られた金微粒子の安定した分散状態の保持に好適な有機化合物を用いて、金コロイド溶液を容易に調製できる製造方法を提供することにある。
【0005】
【課題を解決するための手段】
本発明の金コロイド溶液は、金塩を糖類で還元された金微粒子が分散している固体を、水に溶解させたことを特徴とする。
また、本発明の金コロイド溶液の製造方法は、金塩と糖類の混合溶液を加熱して蒸発乾固あるいは混合粉末を加熱融解させた後乾固させて得られた固体を、水に溶解させたことを特徴とする。上記の糖類としては、単糖類、二糖類及び多糖類から選ばれる1種以上を用いることが好ましい。また、金塩としては、塩化金酸を用いることが好ましい。
【0006】
【発明の実施の形態】
本発明は、金コロイド溶液を必要なときに簡単に繰り返し使用できるように、あらかじめ保存可能な金コロイド溶液の中間体として、長期に亘って保存できる固体状物を作製しておき、これを使用時に水に溶解させるのみで簡易に調製できる高純度の金コロイド溶液を提供するものであって、金塩の還元とその還元により生成する金微粒子を安定した分散状態で長期間固体として保存できる特定の有機物質として、糖類を用いるものである。
【0007】
本発明において、原料の金塩としては、塩化金酸、その水和物や塩類、金粉や金箔等を王水に溶解させたものなどが用いられる。その金塩を糖類に添加する量は、金イオンが還元されてコロイド状になる範囲であればよく、水に溶解した状態の金コロイド溶液中における金濃度としては0.0001〜0.1重量%の範囲が好ましい。
【0008】
金塩の還元に用いられる糖類としては、単糖類、二糖類、多糖類から選ばれる1種以上が挙げられる。その単糖類としては、炭水化物の基本構造となっている物質であって、式 C(HO)(式中、nは1〜10の整数である。)で表される炭水化物からなり、オキシメチレン基(−CHOH−)が直鎖状に連なった同族体であって、例えば、ペントース類、ヘキソース類等が含まれ、具体的にはフルクトース等が挙げられる。また、二糖類としては、麦芽糖、セロビオース等の還元性のもの、トレハロース、蔗糖等の非還元性のものが挙げられる。さらに、多糖類としては、セルロース、デンプン、グリコーゲンなどが挙げられる。
【0009】
これらの糖類は、通常、適宜水などと混合した溶液として用い、その溶液中に金塩を添加し溶解させて用いるが、単糖類及び二糖類等は、加熱されると糖類自体に含まれる水分により水飴状になることから、必ずしも水を添加した混合溶液として用いる必要はない。
【0010】
次に、金塩の溶解した溶液を、加熱して水分などを蒸発により乾固させて固体状物を生成させる。その加熱条件としては、金塩の溶解液から水分などが徐々に蒸発して乾燥し固体状物が得られる温度及び時間であれば良く、例えば、60〜120℃の加熱下に数分間から12時間放置するなどによって行う。
【0011】
得られた固体物は、蒸発乾固する過程で金イオンが還元されて、コロイド状金イオンが生成しているとともに、金粒子間に糖類などの還元剤が介在しているから、生成した金粒子同士の凝集がなく、個々の金粒子は分散し安定した状態で存在しているものと考えられる。
この固体状物は、コロイド状金粒子を長期間に亘り安定して保存しているものであり、別途調製して保存しておくと、金コロイド溶液の使用を必要とする時に適量の水に溶解させるのみで、金コロイド溶液を容易に得ることができる。
【0012】
【実施例】
以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
実施例1
金0.07gを王水20ml中に入れて溶解させた後、蒸発乾固させることによって塩化金酸を得た。これに水50ml及び蔗糖0.2gを加えて溶解させた後、70℃の乾燥機中に半日間放置して加熱乾燥させたところ、暗緑色の固形物が生成した。この固形物を水50mlに溶解させて金コロイド溶液を得た。得られた金コロイド溶液の光透過スペクトル図を、図1に示す。
上記の固形物は、蒸発乾固する過程の粘稠な溶液中において、金イオンが還元されてコロイド状になっているものと解される。その際、金イオンの周囲には糖分の膜が形成されるため、金粒子同士が密着して凝集することはなく、個々の金粒子は分散し安定した状態で存在しているものと考えられる。
【0013】
実施例2
実施例1における加熱乾燥条件である70℃の乾燥機中に半日間放置を、80℃の乾燥機中で12分間に代えたこと以外は、実施例1と全く同様にして、固形物を生成させ、その固形物から金コロイド溶液を得た。得られた金コロイド溶液の光透過スペクトル図を、図2に示す。
【0014】
実施例3
実施例1における加熱乾燥条件である70℃の乾燥機中に半日間放置を、120℃の乾燥機中で3分間に代えたこと以外は、実施例1と全く同様にして、固形物を生成させ、その固形物から金コロイド溶液を得た。得られた金コロイド溶液の光透過スペクトル図を、図3に示す。
【0015】
実施例4
澱粉0.3gを濃度7mMの塩化金酸溶液3mlと混合した溶液を、90℃で17時間加熱したところ、黒灰色の固形物が生成した。この固形物を水に溶かしたところ、赤紫色の金コロイドを得た。また、100℃に15時間加熱しても、同様に金コロイドが得られた。 得られた金コロイド溶液の光透過スペクトル図を、図4に示す。
一般に、澱粉は砂糖よりも水に難溶であるが、このように澱粉も砂糖と同じく金コロイド液を得ることができた。
なお、図1〜4において、横軸は波長であり、縦軸は吸光度であって、図によれば、金コロイド固有の吸収バンドが現れており、金コロイドが生成していることを確認できる。
実施例5
固体の砂糖と塩化金酸の混合粉末を、80℃で12分間加熱したところ、同じく金コロイドの前駆体を得ることができた。
【0016】
各実施例で得られた金コロイド溶液の色は、溶解当初は淡黄色であるが、時間が経つにつれて赤味を増し、10分経過後には赤ワインのような濃い赤色になった。この赤色液のスペクトル図は、金コロイド液の呈する特有のスペクトルであるとともに、いわゆるチンダル現象も確認されたことから、金コロイド液であることは明白である。この金コロイド溶液の色は、30分経過すると、ほぼ一定の濃度になった。また、この金コロイド溶液は非常に安定しており、数週間から数ヶ月間ほぼ一定であった。
本発明で得られる金コロイド溶液が安定性を有する主な理由は、従来のクエン酸等を還元剤とする場合とは異なり、得られた金コロイド溶液中に金属イオンが全く含まれない点にあるものと推定される。
【0017】
【発明の効果】
本発明によれば、金コロイドをあらかじめ水に容易に溶解する固体状態にできるから、必要な時に水に溶解させるのみで簡易に高純度の金コロイド溶液を提供できるとともに、数多くの金コロイド溶液の繰り返しの使用にも迅速に対応可能である。
また、本発明は、金微粒子の分散した安定な固体状態で保存できることは、金コロイド溶液の前駆体として長期に亘って保管できるばかりでなく、移送にも便利であり、利用価値の高いものである。
【図面の簡単な説明】
【図1】 本発明における一例の金コロイド溶液の光透過スペクトル図である。
【図2】 本発明における他の一例の金コロイド溶液の光透過スペクトル図である。
【図3】 本発明における他の一例の金コロイド溶液の光透過スペクトル図である。
【図4】 本発明における他の一例の金コロイド溶液の光透過スペクトル図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a colloidal gold solution having excellent storage stability and a method for producing the same.
[0002]
[Prior art]
Currently, colloidal gold solutions are used in a wide range of fields such as pharmaceuticals, cosmetics, foods, and paints, and in particular, use various base materials for test reagents and antigen-antibody reactions that utilize medical immune reactions. It is widely used as a base material for biosensors, as well as for health-related materials and serums.
[0003]
Conventionally, a colloidal gold solution has been produced using an in-solution reduction reaction in which gold ions are reduced to a colloid by adding a citrate solution as a reducing agent to a chloroauric acid solution and heating. However, since the colloidal gold solution prepared by this method has poor storage stability, it is actually in the form of a so-called errand preparation that is prepared every time it is used. Therefore, when trying to use a colloidal gold solution, the colloidal gold solution must be prepared each time, and it requires a reagent used for the preparation, a heating instrument and equipment, etc. There was a problem such as requiring a lot of labor.
[0004]
[Problems to be solved by the invention]
This invention is made | formed in view of the above-mentioned actual condition in a prior art. That is, an object of the present invention is to provide a high-purity gold colloid solution in which gold fine particles are stored in a stable dispersion state for a long period of time and can be used easily and repeatedly. Another object of the present invention is to provide a production method capable of easily preparing a colloidal gold solution using an organic compound suitable for reducing a gold salt and maintaining a stable dispersion state of the obtained gold fine particles. It is in.
[0005]
[Means for Solving the Problems]
The colloidal gold solution of the present invention is characterized in that a solid in which gold fine particles obtained by reducing a gold salt with a saccharide are dispersed is dissolved in water.
The method for producing a colloidal gold solution of the present invention is a method in which a mixed solution of gold salt and saccharide is heated to evaporate to dryness or a mixed powder is heated to melt and then solidified to dissolve in water. It is characterized by that. As said saccharide, it is preferable to use 1 or more types chosen from a monosaccharide, a disaccharide, and a polysaccharide. As the gold salt, chloroauric acid is preferably used.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, a colloidal gold solution that can be stored for a long time is prepared as an intermediate of a colloidal gold solution that can be stored in advance so that the colloidal gold solution can be used easily and repeatedly when necessary. It provides a high-purity gold colloid solution that can be easily prepared by simply dissolving it in water, and can be stored as a solid for a long time in a stable dispersion state by reducing gold salts and the resulting gold fine particles. As the organic substance, saccharides are used.
[0007]
In the present invention, as the raw material gold salt, chloroauric acid, hydrates and salts thereof, gold powder, gold foil and the like dissolved in aqua regia are used. The amount of the gold salt added to the saccharide may be in the range where the gold ions are reduced and become colloidal, and the gold concentration in the gold colloid solution dissolved in water is 0.0001 to 0.1 weight. % Range is preferred.
[0008]
Examples of the saccharide used for reducing the gold salt include one or more selected from monosaccharides, disaccharides, and polysaccharides. The monosaccharide is a substance having a basic structure of a carbohydrate, and consists of a carbohydrate represented by the formula C n (H 2 O) n (where n is an integer of 1 to 10). , An oxymethylene group (—CHOH—) in a straight chain, and includes, for example, pentoses and hexoses, and specifically includes fructose and the like. Examples of disaccharides include reducing substances such as maltose and cellobiose, and non-reducing substances such as trehalose and sucrose. Furthermore, examples of the polysaccharide include cellulose, starch, glycogen and the like.
[0009]
These saccharides are usually used as a solution mixed with water or the like as appropriate, and gold salts are added and dissolved in the solution. Monosaccharides and disaccharides are water contained in the saccharide itself when heated. Therefore, it is not always necessary to use as a mixed solution to which water is added.
[0010]
Next, the solution in which the gold salt is dissolved is heated to evaporate water and the like to dryness to produce a solid product. The heating condition may be a temperature and a time at which moisture and the like are gradually evaporated from the gold salt solution and dried to obtain a solid product. For example, the heating is performed at 60 to 120 ° C. for several minutes to 12 minutes. Do this by leaving it for a while.
[0011]
In the obtained solid material, gold ions are reduced in the process of evaporation to dryness, colloidal gold ions are generated, and a reducing agent such as saccharide is interposed between the gold particles. There is no aggregation between the particles, and it is considered that the individual gold particles are dispersed and exist in a stable state.
This solid material is one in which colloidal gold particles are stably stored for a long period of time, and if prepared separately and stored, it can be added to an appropriate amount of water when it is necessary to use a colloidal gold solution. A gold colloid solution can be easily obtained only by dissolving.
[0012]
【Example】
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
Example 1
0.07 g of gold was dissolved in 20 ml of aqua regia and dissolved, and then evaporated to dryness to obtain chloroauric acid. 50 ml of water and 0.2 g of sucrose were added thereto and dissolved, and then left to stand in a drier at 70 ° C. for half a day to heat and dry. As a result, a dark green solid was formed. This solid was dissolved in 50 ml of water to obtain a gold colloid solution. FIG. 1 shows a light transmission spectrum of the obtained colloidal gold solution.
It is understood that the solid matter is colloidal by reducing gold ions in a viscous solution in the process of evaporation to dryness. At that time, since a sugar film is formed around the gold ions, the gold particles do not adhere to each other and aggregate, and it is considered that the individual gold particles are dispersed and exist in a stable state. .
[0013]
Example 2
A solid material was produced in exactly the same manner as in Example 1 except that the half-day standing in the dryer at 70 ° C., which is the heating and drying condition in Example 1, was changed to 12 minutes in the dryer at 80 ° C. The colloidal gold solution was obtained from the solid. FIG. 2 shows a light transmission spectrum of the obtained gold colloid solution.
[0014]
Example 3
A solid material was produced in exactly the same manner as in Example 1 except that it was left for half a day in a dryer at 70 ° C., which is the heat drying condition in Example 1, for 3 minutes in a dryer at 120 ° C. The colloidal gold solution was obtained from the solid. FIG. 3 shows a light transmission spectrum of the obtained colloidal gold solution.
[0015]
Example 4
When a solution obtained by mixing 0.3 g of starch with 3 ml of a 7 mM chloroauric acid solution was heated at 90 ° C. for 17 hours, a blackish gray solid was formed. When this solid was dissolved in water, a red-purple gold colloid was obtained. Further, even when heated to 100 ° C. for 15 hours, a gold colloid was obtained in the same manner. FIG. 4 shows a light transmission spectrum of the obtained colloidal gold solution.
In general, starch is less soluble in water than sugar, and thus starch can obtain a colloidal gold solution like sugar.
1 to 4, the horizontal axis represents wavelength, and the vertical axis represents absorbance. According to the figure, an absorption band specific to gold colloid appears and it can be confirmed that gold colloid is generated. .
Example 5
When a mixed powder of solid sugar and chloroauric acid was heated at 80 ° C. for 12 minutes, a precursor of colloidal gold could be obtained.
[0016]
The color of the colloidal gold solution obtained in each example was pale yellow at the beginning of dissolution, but increased in redness over time, and became dark red like red wine after 10 minutes. The spectrum of the red liquid is a unique spectrum exhibited by the colloidal gold liquid, and the so-called Tyndall phenomenon has been confirmed, so it is clear that the red liquid is a colloidal gold liquid. The color of the colloidal gold solution became almost constant after 30 minutes. The colloidal gold solution was very stable and was almost constant for several weeks to several months.
The main reason why the colloidal gold solution obtained in the present invention is stable is that, unlike the conventional case where citric acid or the like is used as a reducing agent, the obtained colloidal gold solution does not contain any metal ions. Presumed to be.
[0017]
【The invention's effect】
According to the present invention, since the colloidal gold can be made into a solid state that can be easily dissolved in water in advance, a highly pure colloidal gold solution can be provided simply by dissolving in water when necessary. It can respond quickly to repeated use.
In addition, since the present invention can be stored in a stable solid state in which gold fine particles are dispersed, it can be stored for a long period of time as a precursor of a colloidal gold solution, and is also convenient for transport and has high utility value. is there.
[Brief description of the drawings]
FIG. 1 is a light transmission spectrum diagram of an example colloidal gold solution according to the present invention.
FIG. 2 is a light transmission spectrum diagram of another example gold colloid solution in the present invention.
FIG. 3 is a light transmission spectrum diagram of another example gold colloid solution in the present invention.
FIG. 4 is a light transmission spectrum diagram of another example gold colloid solution in the present invention.

Claims (6)

水に溶解させて金コロイド溶液とするための固体であって、金塩と糖類を混合し、その混合溶液を加熱して蒸発乾固させて得られたものであることを特徴とする固体。A solid for dissolving in water to form a colloidal gold solution, which is obtained by mixing a gold salt and a saccharide and heating the mixed solution to evaporate to dryness. 前記糖類が、単糖類、二糖類及び多糖類から選ばれる1種以上であることを特徴とする請求項1に記載の固体。 The solid according to claim 1, wherein the saccharide is at least one selected from monosaccharides, disaccharides, and polysaccharides . 前記金塩が、塩化金酸であることを特徴とする請求項1または2に記載の固体。 The solid according to claim 1 or 2, wherein the gold salt is chloroauric acid . 金塩と糖類を混合し、その混合溶液を加熱して蒸発乾固させて得られた固体を、水に溶解させることを特徴とする金コロイド溶液の製造方法。  A method for producing a colloidal gold solution, comprising mixing a gold salt and a saccharide, and heating the mixed solution to evaporate to dryness to dissolve the solid in water. 糖類が、単糖類、二糖類及び多糖類から選ばれる1種以上であることを特徴とする請求項4に記載の金コロイド溶液の製造方法。  The method for producing a colloidal gold solution according to claim 4, wherein the saccharide is at least one selected from monosaccharides, disaccharides and polysaccharides. 金塩が、塩化金酸であることを特徴とする請求項4または5に記載の金コロイド溶液の製造方法。  6. The method for producing a colloidal gold solution according to claim 4, wherein the gold salt is chloroauric acid.
JP2002235926A 2002-08-13 2002-08-13 Colloidal gold solution and method for producing the same Expired - Lifetime JP4051431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002235926A JP4051431B2 (en) 2002-08-13 2002-08-13 Colloidal gold solution and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002235926A JP4051431B2 (en) 2002-08-13 2002-08-13 Colloidal gold solution and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004073964A JP2004073964A (en) 2004-03-11
JP4051431B2 true JP4051431B2 (en) 2008-02-27

Family

ID=32020278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002235926A Expired - Lifetime JP4051431B2 (en) 2002-08-13 2002-08-13 Colloidal gold solution and method for producing the same

Country Status (1)

Country Link
JP (1) JP4051431B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060036476A (en) 2003-08-08 2006-04-28 가부시키가이샤 티슈 타겟팅 쟈판 Polypeptides having brain-disposition activity and utilization of the same
EP1782796A1 (en) * 2004-08-06 2007-05-09 Tissue Targeting Japan Inc. Carrier for migration into cerebral neuron containing metal colloid particle
JP4747007B2 (en) * 2006-03-03 2011-08-10 石原薬品株式会社 Photochemical circuit forming method and copper solution for forming photochemical circuit
DE102006054653A1 (en) * 2006-11-17 2008-05-21 Ada Cosmetic Gmbh Body or beauty care products
EP2254692B1 (en) 2008-01-09 2012-09-12 Umicore AG & Co. KG Method for preparing dispersions of precious metal nanoparticles and for isolating such nanoparticles from said dispersions
CN104646682B (en) * 2015-02-10 2017-01-18 上海理工大学 Method for preparing gold nanoparticles by using sugarcane extracting solution

Also Published As

Publication number Publication date
JP2004073964A (en) 2004-03-11

Similar Documents

Publication Publication Date Title
Chiou et al. Preparation and dissolution characteristics of several fast-release solid dispersions of griseofulvin
Slistan-Grijalva et al. Synthesis of silver nanoparticles in a polyvinylpyrrolidone (PVP) paste, and their optical properties in a film and in ethylene glycol
Liu et al. Investigation of Ag nanoparticles loading temperature responsive hybrid microgels and their temperature controlled catalytic activity
Babu et al. Evaluation of modified gum karaya as carrier for the dissolution enhancement of poorly water-soluble drug nimodipine
CN108238624B (en) Calcium carbonate hollow microsphere and preparation method thereof
KR101235873B1 (en) A process for the preparation of silver nano particles
JP4051431B2 (en) Colloidal gold solution and method for producing the same
BRPI1009122B1 (en) process for preparing stable metal nanoparticle suspensions and stable colloidal suspensions thus obtained
Navikaite et al. Interaction between κ-and ι-carrageenan and anthocyanins from Vaccinium myrtillus
US7611731B2 (en) Mesostructured silica/block copolymer monoliths as a controlled release device and methods of manufacture
CN102961389B (en) Composition containing glucosamine as well as preparation method and detection method thereof
CN117084984B (en) Method for efficiently preparing dimetanidazole premix
CN101360836B (en) Porous crystalline glucide, process for producing the same, and use
Silva et al. Gold nanoparticles produced using NaBH4 in absence and in the presence of one-tail or two-tail cationic surfactants: Characteristics and optical responses induced by aminoglycosides
EP2922412A1 (en) A method for producing sweetener compositions and sweetener compositions
CN103655500B (en) A kind of VITAMIN C TABLET and preparation method thereof
Susanthy et al. The Synthesis and Stability Study of Silver Nanoparticles Prepared by Using p-Aminobenzoic Acid as Reducing and Stabilizing Agent
CN104058416B (en) Silicon dioxide nano-particles, preparation method and application thereof
CN109499582B (en) Composite oxide mimic enzyme material and preparation method and application thereof
Abushammala et al. Microcrystalline cellulose powder tableting via networked cellulose-based gel material
US20050260265A1 (en) Mesostructured silica/block copolymer monoliths as a controlled release device and methods of manufacture
Shivalingam et al. Formulation and evaluation of solid dispersions of glipizide for dissolution rate enhancement
CN105980055A (en) Process for manufacturing supported nanocolloidal particles, and supported nanocolloidal particles
Chang et al. Application of thermal alkaline hydrolysis technology to improve the loading and in-vitro release of gallic acid in UiO-66
Gaddam et al. A Crystal Engineering design to enhance the Solubility, Dissolution, Stability and Micrometric properties of Omeprazole via Co-crystallization Techniques

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

R150 Certificate of patent or registration of utility model

Ref document number: 4051431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term