JP4051144B2 - Joint structure and joining method of single shields in the outer shell leading tunnel method - Google Patents

Joint structure and joining method of single shields in the outer shell leading tunnel method Download PDF

Info

Publication number
JP4051144B2
JP4051144B2 JP31736998A JP31736998A JP4051144B2 JP 4051144 B2 JP4051144 B2 JP 4051144B2 JP 31736998 A JP31736998 A JP 31736998A JP 31736998 A JP31736998 A JP 31736998A JP 4051144 B2 JP4051144 B2 JP 4051144B2
Authority
JP
Japan
Prior art keywords
washer
main girder
spherical
shields
bolt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31736998A
Other languages
Japanese (ja)
Other versions
JP2000145397A (en
Inventor
卓 平井
義文 藤井
信明 近
忠浩 福本
成樹 野村
孝雄 寺本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Civil Engineering and Construction Co Ltd
Original Assignee
Takenaka Civil Engineering and Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Civil Engineering and Construction Co Ltd filed Critical Takenaka Civil Engineering and Construction Co Ltd
Priority to JP31736998A priority Critical patent/JP4051144B2/en
Publication of JP2000145397A publication Critical patent/JP2000145397A/en
Application granted granted Critical
Publication of JP4051144B2 publication Critical patent/JP4051144B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Lining And Supports For Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、超大断面トンネルを小断面のシールド工法で施工する外殻先行トンネル工法の技術分野に属し、さらに言えば、外殻を形成する単体シールド相互の接合部構造及び接合方法に関する。
【0002】
【従来の技術】
超大断面トンネルの外殻を小断面のシールド工法で先行施工する方法として、図6に例示したように、トンネルの外殻部分を小断面のシールド工法による単体シールドKの連鎖で形成し、隣接する単体シールドKを相互に一連に接合した後に内側の本体トンネルTを掘削して完成する、所謂外殻先行トンネル工法が提案されている(例えば特開平7−224587号公報記載の施工方法を参照。)。この外殻先行トンネル工法によれば、縦×横が20m×30m程度の超大断面矩形トンネルの構築も、余堀り無しに容易に可能である。因みに、個々の単体シールドKの大きさは、縦×横が2.5m×(5.0〜7.5m)程度である。
【0003】
ところで、前記外殻先行トンネル工法の施工に際しては、縦方向及び横方向に隣り合う単体シールドK、K同士の間に、シールド機の推進に支障がないだけの間隔L1又はL2を確保して施工が進められる。従って、各単体シールドKを構築した後には、前記間隔部分L1、L2の土を掘削し、一連に一体的に接合する工程が実施される。
【0004】
しかるに、前記のように施工された隣接の単体シールドK、K同士は、図7に例示したように、鉛直方向、水平方向、及び軸方向に大なり小なりの施工誤差を生じる。このため各接合部構造は前記の施工誤差を前提とし許容する構成でなくてはならない。
【0005】
そこで従来、単体シールド同士を接合する接合部構造としては、例えば図8に示したように、D51(外径が51mm)の鉄筋Sを長く配置する鉄筋コンクリート造構造の接合手段が検討されてきた。
【0006】
【本発明が解決しようとする課題】
しかし、従来の図8のような鉄筋コンクリート造構造の接合手段の場合は、次のような問題点が指摘されている。
【0007】
▲1▼単体シールドKの内側に鉄筋Sを配筋するため、引張鉄筋の有効高さが鋼殻1の桁高分だけ小さくなる。その結果、所定の曲げモーメントを確保するには鉄筋Sの量が多くなるので、合理的、経済的な接合部構造とは言えない。因みに、鉄筋Sの配置及び配筋量は、図9A、Bに例示したようになる。
【0008】
▲2▼接合部の鉄筋応力を鋼殻本体へ伝達するためには、鉄筋Sの単体シールド側への定着長(図8中の符号Wを参照)が長くなり、図8の左右方向に隣り合う接合部と交差する場合がある。たとえ交差しないまでも、長い鉄筋Sが単体シールドKの内部に多く突出する結果、鉄筋Sの組み立て作業に支障をきたすほか、単体シールドKの内部空間の利用に種々な制約を受け、各種の関連作業や資材類の運送に支障が生ずる。
【0009】
▲3▼長さ数mのD51の鉄筋S、それも1段〜3段組の鉄筋を狭い単体シールドの内部空間で組み立てなければならず、鉄筋Sの組み立て作業は困難を極める。
【0010】
したがって、本発明の目的は、隣接する単体シールドの鋼殻主桁同士をボルトにより直接、且つ簡便に接合して応力の伝達を確実にすること、及び単体シールド相互間の施工誤差、或いは接合部幅の変更が生じても一切測量する必要がなく、適宜に対応できて融通性、施工性に優れ合理的な接合部構造及び接合方法を提供することである。
【0011】
本発明の異なる目的は、単体シールドの内部空間の有効利用率が高く、運搬車(鋼車)などの利用ができ、他の工種との並行作業が容易に可能であり、工期の大幅な短縮を図れる接合部構造及び接合方法を提供することである。
【0012】
【課題を解決するための手段】
上述の課題を解決するための手段として、請求項1に記載した発明に係る外殻先行トンネル工法における単体シールド相互の接合部構造は、超大断面トンネルの外殻を小断面の単体シールドKの連鎖で形成する外殻先行トンネル工法において、隣接する単体シールドK、K同士の間にシールド機の推進に支障がない間隔を確保して施工した後に前記間隔部分L 、L の土を掘削して、単体シールドを構成する鋼殻1、1の主桁2、2同士が鋳鋼製の板状のエンドプレート3と鋳鋼製の球形状のワッシャー5を介してボルト6とナット7で接合される接合部構造であり、
単体シールドKを構成する鋼殻1の主桁2は、超大断面トンネルの周方向に複数平行に設けられ、前記主桁2の角隅部における主桁2、2間に、厚肉で剛性が高い鋳鋼製のエンドプレート3が同主桁2と直角方向に溶接接合して、隣接する単体シールドK、Kのエンドプレート3、3同士が対面する配置に設けられていること、
前記球形状ワッシャー5のナット当接面5aを除く外周面5bは、隣接する単体シールドK、Kの鋼殻1、1の主桁2、2の位置ずれに相当する角度θに回転自在な球形状に形成され、前記エンドプレート3には、複数のボルト孔4が、該ボルト孔4のワッシャー当接部前記球形状ワッシャー5の外周面5bを受容する球面凹状の受容部4aに形成され、つづいて前記受容部4aを基点として鋼殻1の主桁2の位置ずれを許容する角度θの末広がり形状の孔に形成されており、前記エンドプレート3の受容部4a内に受容された球形状ワッシャー5に通したボルト6と、同ボルト6にねじ込んだナット7とで接合されていることを特徴とする。
【0013】
請求項2記載の発明に係る外殻先行トンネル工法における単体シールド相互の接合方法は、超大断面トンネルの外殻を小断面の単体シールドKの連鎖で形成する外殻先行トンネル工法において、隣接する単体シールドK、K同士の間にシールド機の推進に支障がない間隔を確保して施工した後に前記間隔部分L 、L の土を掘削して、単体シールドを構成する鋼殻1、1の主桁2、2同士を鋳鋼製の板状のエンドプレート3と鋳鋼製の球形状のワッシャー5を使用してボルト6とナット7により接合する方法であり、
単体シールドKを構成する鋼殻1の主桁2は、超大断面トンネルの周方向に複数平行に設け、前記主桁2の角隅部における主桁2、2間に、厚肉で剛性が高い鋳鋼製のエンドプレート3を同主桁2と直角方向に溶接接合して、隣接する単体シールドK、Kのエンドプレート3、3同士を対面する配置に設けること、
前記球形状ワッシャー5のナット当接面5aを除く外周面5bを、隣接する単体シールドK、Kの鋼殻1、1主桁2、2の位置ずれに相当する角度θに回転自在な球形状に形成すること、
エンドプレート3に、複数のボルト孔4を、該ボルト孔4のワッシャー当接部前記球形状ワッシャー5の外周面5bを回転自在に受容する球面凹状の受容部4aに形成し、つづいて前記受容部4aを基点として鋼殻1主桁2の位置ずれを許容する角度θの末広がり形状の孔に形成すること
前記対面するエンドプレート3同士の対応する各ボルト孔4にボルト6を通し、そのボルト端部に前記球形状ワッシャー5を通して受容部4a内に定着させた後、ナット7をねじ込んで球形状ワッシャー5のナット当接面5aに締め付けて接合すること、をそれぞれ特徴とする。
【0014】
【発明の実施の形態及び実施例】
請求項1に記載した発明に係る外殻先行トンネル工法における単体シールド相互の接合部構造は、図1〜図4に実施形態を示したように、隣接する単体シールドK、K同士を接合する場合に、特に単体シールドKを構成する鋼殻1の主桁2、2同士をエンドプレート3と球形状ワッシャー5を介してボルト6とナット7で接合される。
【0015】
本実施形態における単体シールドKは、トンネル高さが2500mmであり、その鋼殻1は4本の主桁2を平行に配置して構成され(図2参照)、その桁高が300mm、幅寸が1200mmである。なお、鋼殻1は、一般的にはスキンプレート1aと主桁2とで構成されている(図5参照)。
【0016】
図1は左右に隣接する単体シールドK、K(鋼殻1、1)相互の鉛直方向の位置ずれ(ずれ角度θ)に対応する接合部構造を示している。本実施形態では、接合部の間隔L2が約200mmで、発生した位置ずれ量L3は約100mm、ずれ角度θが約12°の場合を示している。
【0017】
球形状ワッシャー5は、図3に示したように、鋳鋼製であり、半径36mmの球体の中心部に直径38mmのボルト孔5dを貫通させると共に、平坦なナット座面5aから厚さが44mmの半球形状に形成されている。よって、この球形状ワッシャー5は、上記隣接する単体シールドK、Kの鋼殻主桁2、2の位置ずれに相当する角度θ(但し、θ≦12°)に対して回転自在な構成である(図1参照)。
【0018】
一方、エンドプレート3も鋳鋼製であり、厚肉(厚さ80mm)で剛性が高い板状に形成されている。このエンドプレート3は、縦×横の大きさが355×1200mmであり、図2に示した鋼殻1の4本の各主桁2…の角隅部における主桁2、2間に、同主桁2…と直角方向に溶接接合され、隣接する単体シールドK、Kのエンドプレート3、3同士が対面する配置に設けられている。主桁2との溶接を容易かつ確実ならしめるため、エンドプレート3における主桁2の接合部分に予め凸部を設けることが好適に実施される(図示は省略)。
【0019】
前記エンドプレート3にボルト孔4が必要数形成されている。当該ボルト孔4は、図2に示したように、主桁2に沿ってその両側に6個所ずつ均等な配置で合計18個設けられている。各ボルト孔4のワッシャー当接部は、図4に拡大して示したように、前記球形状ワッシャー5の球形外周面5bを受容するべく、球形状ワッシャー5の外径と略同径の球面凹状の受容部4aに形成されている。そして、ボルト孔4は前記受容部4aにおける口径を50mmとして、前記鋼殻主桁2の位置ずれ角度θに対してボルト6の傾きを許容する末広がり形状(円錐形状)に形成されている。
【0020】
次に、上記の構成に基いて、請求項2に記載した発明に係る外殻先行トンネル工法における単体シールド相互の接合方法を説明する。上述したように、隣接する単体シールドの鋼殻主桁同士をエンドプレート3と球形状ワッシャー5を使用してボルト6とナット7で接合する方法として好適に実施される。
【0021】
図1のように、隣接する単体シールドK、Kそれぞれのエンドプレート3、3の対応するボルト孔4、4に、所定長さのボルト6(φ=36mm)を通し、同ボルト6の両端部に前記球形状ワッシャー5を通して凹状受容部4a内へ定着させる。ボルト6を通すことによって接合するべき鋼殻主桁2、2同士の位置ずれ量L3、ずれ角度θ等の如何に拘らず、球形状ワッシャー5は受容部4a内へきっちり納まり、施工現場において測量等することは一切無用である。
【0022】
しかる後、前記ボルト6の端部のネジ部分6aへナット7(外径61mm)をねじ込み、同ナット7を球形状ワッシャー5のナット当接面5aへ強く締め付けて接合作業を完了する。ナット7及び球形状ワッシャー5とボルト6、並びに厚肉で剛性の高いエンドプレート3とが鋼殻主桁2を直接接合するため、隣接する単体シールドの主桁2、2間の応力伝達は確実に行われる。
【0023】
その上、前記球形状ワッシャー5が、鋼殻主桁2の前記図1に例示した鉛直方向の位置ずれだけでなく、水平方向や軸方向の位置ずれ等、あらゆる態様で位置ずれした単体シールドK、Kに対して自在に適応し、鋼殻主桁相互の応力を確実に伝達できる自在性、融通性がある。上記実施形態の場合、鋼殻主桁2、2の間隔が400mmであるため、鉛直方向、水平方向、軸方向に、いずれも最大200mmの誤差が生じても、当該球形状ワッシャー5をエンドプレート3内で回転させてボルト6は適正方向に配置され、鋼殻主桁2、2相互間の応力伝達を確実なものにする。
【0024】
また、上述したように、単体シールドの主桁2、2相互の接合部は、球形状ワッシャー5とエンドプレート3を介してボルト6、ナット7により接合した単純な構造であるため、単体シールドKの内部空間の障害物は発生せず、単体シールドK内で人の往来、材料の運搬通路を大きく確保することができる。
【0025】
【発明の奏する効果】
請求項1、2に記載した発明に係る単体シールド相互の接合部構造及び接合方法は、球形状ワッシャーと厚肉のエンドプレートを介して、ボルト、ナットによって、隣接する単体シールドの鋼殻主桁同士が直接、且つ簡便に接合され、応力伝達が確実に行われ、高品質の単体シールドが提供される。
【0026】
しかも、単体シールド相互間の施工誤差、或いは接合部幅の変更に対しては、回転自在な球形状ワッシャーによりボルトを適正方向に配置できるので、施工現場により個別に異なる施工誤差をいちいち測量する必要がなく、作業効率の飛躍的な進歩が図られる。
【0027】
また、単体シールドの内部空間の有効利用率が高く、運搬者(鋼車)などの利用ができ、他の工種との並行作業が容易に可能であるから、工期の大幅な短縮にも寄与する。
【図面の簡単な説明】
【図1】本発明に係る接合部構造を主要部分について示した正面図である。
【図2】図1のA−A線矢視方向に見たエンドプレートの裏面図である。
【図3】球形状ワッシャーを示した側面図と一部破断した正面図である。
【図4】図1のエンドプレート部分を拡大して示した断面図である。
【図5】鋼殻の構造を示した断面図である。
【図6】外殻先行トンネル工法の実施例を示す断面図である。
【図7】隣接する単体シールドの位置ずれの説明図である。
【図8】隣接する単体シールドを接合する従来技術の説明図である。
【図9】A、Bは従来の接合鉄筋の配置説明図である。
【符号の説明】
K 単体シールド
1 鋼殻
2 主桁
3 エンドプレート
4 ボルト孔
4a 受容部
5 球形状ワッシャー
5a ナット当接面
5b 外周面
6 ボルト
7 ナット
θ 位置ずれ角度
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of an outer shell advanced tunnel method for constructing a super large section tunnel by a shield method with a small cross section, and more specifically, relates to a joint structure and a joining method for single shields forming an outer shell.
[0002]
[Prior art]
As shown in FIG. 6, the outer shell portion of the tunnel is formed by a chain of single shields K by the shield method with a small cross section, as shown in FIG. A so-called outer shell leading tunnel construction method has been proposed in which the single body shields K are joined together in series and then excavated to complete the inner main body tunnel T (see, for example, the construction method described in JP-A-7-224587). ). According to this outer shell leading tunnel construction method, it is possible to easily construct an ultra-large-section rectangular tunnel having a length × width of about 20 m × 30 m without further excavation. Incidentally, the size of each single-piece shield K is about 2.5 m × (5.0 to 7.5 m) in length × width.
[0003]
By the way, when constructing the outer shell preceding tunnel construction method, an interval L 1 or L 2 is secured between the single shields K, K adjacent to each other in the vertical and horizontal directions so as not to interfere with the propulsion of the shield machine. Construction is proceeded. Therefore, after each single shield K is constructed, a step of excavating the soil of the interval portions L 1 and L 2 and integrally joining them in series is performed.
[0004]
However, the adjacent single shields K, K constructed as described above cause large or small construction errors in the vertical direction, the horizontal direction, and the axial direction as illustrated in FIG. For this reason, each joint structure must be allowed to be constructed on the assumption of the construction error.
[0005]
Therefore, conventionally, as a joint structure for joining the single shields, for example, as shown in FIG. 8, a joining method of a reinforced concrete structure in which a D51 (outer diameter is 51 mm) rebar S is arranged long has been studied.
[0006]
[Problems to be solved by the present invention]
However, in the case of the conventional joining means of the reinforced concrete structure as shown in FIG. 8, the following problems are pointed out.
[0007]
(1) Since the reinforcing bar S is arranged inside the single shield K, the effective height of the tensile reinforcing bar is reduced by the digit height of the steel shell 1. As a result, the amount of rebar S increases to secure a predetermined bending moment, so it cannot be said to be a rational and economical joint structure. Incidentally, the arrangement and the amount of the reinforcing bar S are as illustrated in FIGS. 9A and 9B.
[0008]
(2) In order to transmit the reinforcing bar stress of the joint to the steel shell body, the fixing length of the reinforcing bar S to the single shield side (refer to the symbol W in FIG. 8) becomes long, and it is adjacent to the horizontal direction in FIG. May intersect with mating joints. Even if they do not intersect, the long rebar S protrudes inside the single shield K. As a result, the assembling work of the rebar S is hindered, and there are various restrictions on the use of the internal space of the single shield K. This hinders work and transportation of materials.
[0009]
{Circle around (3)} D51 rebar S of several m in length, that is, one to three rebars must be assembled in a narrow single shield internal space, and the rebar S assembly work is extremely difficult.
[0010]
Therefore, the object of the present invention is to join the steel shell main girders of adjacent single shields directly and simply by bolts to ensure the transmission of stress, and the construction error between the single shields or joints. There is no need to survey at all even if the width is changed, and it is possible to respond appropriately and to provide a reasonable joint structure and joining method with excellent flexibility and workability.
[0011]
A different object of the present invention is that the effective utilization rate of the internal space of the single shield is high, and it is possible to use a transport vehicle (steel vehicle), etc., and it is easy to perform parallel work with other types of work, and the construction period is greatly shortened. It is providing the junction structure and joining method which can aim at.
[0012]
[Means for Solving the Problems]
As a means for solving the above-mentioned problem, the joint structure between the single shields in the outer shell preceding tunnel method according to the first aspect of the present invention is that the outer shell of the super large cross section tunnel is connected to the single shield K having a small cross section. In the outer shell advanced tunnel construction method formed in step 1, after constructing the adjacent shields K and K with a space that does not hinder the propulsion of the shield machine , excavate the soil in the space portions L 1 and L 2. Thus, the main girders 2 and 2 of the steel shells 1 and 1 constituting the single shield are joined together by bolts 6 and nuts 7 via a plate-like end plate 3 made of cast steel and a spherical washer 5 made of cast steel. A joint structure,
A plurality of main girders 2 of the steel shell 1 constituting the single shield K are provided in parallel in the circumferential direction of the super large cross-section tunnel, and are thick and rigid between the main girders 2 and 2 at the corners of the main girder 2. The end plate 3 made of high cast steel is welded and joined to the main girder 2 in a direction perpendicular to the end, and the adjacent single shields K and K are disposed so that the end plates 3 and 3 face each other.
The outer peripheral surface 5b with the exception of the nut contact face 5a of the washer 5 in the sphere-shaped, a rotatable corresponding to the angle θ to the displacement of the main girder 2,2 unitary shield K, K of the steel shell 1, 1 adjacent is formed in a spherical shape, the said end plate 3, a plurality of bolt holes 4, the washer abutting portion of the bolt holes 4 in the receiving portion 4a of the spherical concave for receiving the outer circumferential surface 5b of the washer 5 in the spherical is formed, the receiving portion 4a is formed in the pores of the diverging shape of an angle that allows the displacement of the main girder 2 of the steel shell 1 theta as a base point is received in the receiving portion 4a of the end plate 3 Following and a bolt 6 through the washer 5 of spherical shape, characterized in that it is joined by a nut 7 which is screwed to the bolt 6.
[0013]
The method for joining the single shields in the outer shell leading tunnel method according to the second aspect of the present invention is the outer shell leading tunnel method in which the outer shell of the super large section tunnel is formed by a chain of small section single shields K. shield K, drilled the interval portions L 1, L 2 of the soil after construction to ensure the spacing is no problem in the propulsion of the shield machine during K between, the steel shells 1,1 which constitute a unitary shield It is a method of joining the main girders 2 and 2 with a bolt 6 and a nut 7 using a plate-like end plate 3 made of cast steel and a spherical washer 5 made of cast steel ,
A plurality of main girders 2 of the steel shell 1 constituting the single shield K are provided in parallel in the circumferential direction of the super-large cross section tunnel, and are thick and rigid between the main girders 2 and 2 at the corners of the main girder 2. An end plate 3 made of cast steel is welded and joined to the main girder 2 in a direction perpendicular thereto, and the end plates 3 and 3 of the adjacent unitary shields K and K are provided to face each other;
A rotatable outer peripheral surface 5b with the exception of the nut contact face 5a of the washer 5 in the spherical shape, the adjacent single shield K, the angle θ corresponding to the displacement of the main girder 2,2 of the steel shells 1,1 K Forming into a spherical shape,
The end plate 3, a plurality of bolt holes 4, formed in the receiving portion 4a of the spherical concave washer abutting portion of the bolt hole 4 is rotatably receiving the outer peripheral surface 5b of the washer 5 in the spherical, followed by Forming a hole having a divergent shape with an angle θ that allows displacement of the main girder 2 of the steel shell 1 with the receiving portion 4a as a base point;
Through a bolt 6 in the bolt holes 4 corresponding end plate 3 each other to the face, after being fixed to the receiving portion 4a through the washer 5 in the spherical to the bolt end, the spherical shape is screwed a nut 7 It is characterized by being fastened and joined to the nut contact surface 5a of the washer 5.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
The joint structure between the single shields in the outer shell preceding tunnel construction method according to the invention described in claim 1 is the case where the adjacent single shields K and K are joined together as shown in the embodiment in FIGS. In particular, the main girders 2 and 2 of the steel shell 1 constituting the unitary shield K are joined together by bolts 6 and nuts 7 via the end plate 3 and the spherical washer 5.
[0015]
The single shield K in the present embodiment has a tunnel height of 2500 mm, and its steel shell 1 is configured by arranging four main girders 2 in parallel (see FIG. 2). Is 1200 mm. The steel shell 1 is generally composed of a skin plate 1a and a main girder 2 (see FIG. 5).
[0016]
FIG. 1 shows a joint structure corresponding to a vertical position shift (shift angle θ) between single shields K, K (steel shells 1, 1) adjacent to the left and right. In the present embodiment, the case is shown in which the joint interval L 2 is about 200 mm, the generated positional deviation L 3 is about 100 mm, and the deviation angle θ is about 12 °.
[0017]
As shown in FIG. 3, the spherical washer 5 is made of cast steel, penetrates a bolt hole 5d having a diameter of 38 mm through the center of a sphere having a radius of 36 mm, and has a thickness of 44 mm from the flat nut seat surface 5a. It is formed in a hemispherical shape. Therefore, the spherical washer 5 is configured to be rotatable with respect to an angle θ (where θ ≦ 12 °) corresponding to the displacement of the steel shell main girders 2 and 2 of the adjacent single shields K and K. (See FIG. 1).
[0018]
On the other hand, the end plate 3 is also made of cast steel, and is formed in a plate shape that is thick (thickness 80 mm) and has high rigidity. The end plate 3 has a size of 355 × 1200 mm in length × width, and is the same between the main girders 2 and 2 at the corners of the four main girders 2 of the steel shell 1 shown in FIG. It is welded and joined to the main girders 2 in a direction perpendicular to each other, and is provided in an arrangement in which the end plates 3 and 3 of the adjacent single shields K and K face each other . In order to make the welding with the main beam 2 easy and reliable, it is preferable to provide a projection in advance at the joint portion of the main plate 2 in the end plate 3 (not shown).
[0019]
A necessary number of bolt holes 4 are formed in the end plate 3. As shown in FIG. 2, a total of 18 bolt holes 4 are provided along the main girder 2 at six locations on both sides thereof. The washer contact portion of each bolt hole 4 is a spherical surface having substantially the same diameter as the outer diameter of the spherical washer 5 so as to receive the spherical outer peripheral surface 5b of the spherical washer 5 as shown in FIG. It is formed in a concave receiving portion 4a. The bolt hole 4 has a diameter of 50 mm at the receiving portion 4a, and is formed in a divergent shape (conical shape) that allows the bolt 6 to be inclined with respect to the positional deviation angle θ of the steel shell main beam 2.
[0020]
Next, based on the above configuration, a method for joining single shields in the outer shell preceding tunnel construction method according to the invention described in claim 2 will be described. As described above, the steel shell main girders of the adjacent single shields are suitably implemented as a method of joining with the bolt 6 and the nut 7 using the end plate 3 and the spherical washer 5.
[0021]
As shown in FIG. 1, a bolt 6 (φ = 36 mm) having a predetermined length is passed through the corresponding bolt holes 4 and 4 of the end plates 3 and 3 of the adjacent single shields K and K, and both end portions of the bolt 6 are passed. To the concave receiving portion 4a through the spherical washer 5. Regardless of the position deviation L3 between the steel shell main girders 2 and 2 to be joined by passing the bolt 6 and the deviation angle θ, the spherical washer 5 fits in the receiving portion 4a and is measured at the construction site. It is useless at all.
[0022]
Thereafter, a nut 7 (outer diameter 61 mm) is screwed into the screw portion 6a at the end of the bolt 6, and the nut 7 is strongly tightened to the nut abutting surface 5a of the spherical washer 5 to complete the joining operation. Since the nut 7 and the spherical washer 5 and the bolt 6 and the thick and rigid end plate 3 directly join the steel shell main girder 2, the stress transmission between the adjacent main girder 2 and 2 of the single shield is reliable. To be done.
[0023]
Moreover, the single-piece shield K in which the spherical washer 5 is displaced not only in the vertical direction illustrated in FIG. 1 but also in the horizontal and axial directions of the steel shell main girder 2 in all aspects. , K is freely adaptable to K, and has the flexibility and flexibility to transmit the stress between steel shell main girders reliably. In the case of the above embodiment, since the distance between the steel shell main girders 2 and 2 is 400 mm, the spherical washer 5 is attached to the end plate even if an error of 200 mm at maximum occurs in any of the vertical direction, the horizontal direction, and the axial direction. The bolt 6 is arranged in the proper direction by being rotated in the position 3, and the stress transmission between the steel shell main girders 2 and 2 is ensured.
[0024]
Further, as described above, the joint part between the main girders 2 and 2 of the single shield has a simple structure in which the joint 6 is joined by the bolt 6 and the nut 7 via the spherical washer 5 and the end plate 3. No obstacles occur in the interior space of the apparatus, and it is possible to secure a large passage of people and a material conveyance path within the single shield K.
[0025]
[Effects of the invention]
The joint structure and joining method of the single shields according to the first and second aspects of the invention include a steel shield main girder of a single shield adjacent to each other by bolts and nuts via a spherical washer and a thick end plate. They are directly and simply joined together to ensure stress transmission and provide a high-quality single shield.
[0026]
Moreover, for construction errors between single shields or changes in the joint width, bolts can be placed in the proper direction with a rotatable spherical washer, so it is necessary to measure different construction errors individually at each construction site. There is no progress, and a dramatic improvement in work efficiency is achieved.
[0027]
In addition, the effective use rate of the internal space of the single shield is high, and it can be used by a transporter (steel car), etc., and can be easily operated in parallel with other types of work, contributing to a significant reduction in the work period. .
[Brief description of the drawings]
FIG. 1 is a front view showing a main part of a joint structure according to the present invention.
2 is a back view of the end plate as viewed in the direction of arrows AA in FIG.
FIG. 3 is a side view showing a spherical washer and a front view partially broken.
4 is an enlarged cross-sectional view showing an end plate portion of FIG. 1. FIG.
FIG. 5 is a cross-sectional view showing the structure of a steel shell.
FIG. 6 is a cross-sectional view showing an embodiment of the outer shell leading tunnel method.
FIG. 7 is an explanatory diagram of a positional shift between adjacent single shields.
FIG. 8 is an explanatory diagram of a conventional technique for joining adjacent single shields.
FIGS. 9A and 9B are diagrams for explaining the arrangement of conventional joining reinforcing bars. FIGS.
[Explanation of symbols]
K Single shield 1 Steel shell 2 Main girder 3 End plate 4 Bolt hole 4a Receiving part 5 Spherical washer 5a Nut contact surface 5b Outer peripheral surface 6 Bolt 7 Nut θ Position shift angle

Claims (2)

超大断面トンネルの外殻を小断面の単体シールドの連鎖で形成する外殻先行トンネル工法において、隣接する単体シールド同士の間にシールド機の推進に支障がない間隔を確保して施工した後に前記間隔部分の土を掘削して、単体シールドを構成する鋼殻の主桁同士が鋳鋼製の板状のエンドプレートと鋳鋼製の球形状のワッシャーを介してボルトとナットで接合される接合部構造であり、
単体シールドを構成する鋼殻の主桁は、超大断面トンネルの周方向に複数平行に設けられ、前記主桁の角隅部における主桁間に、厚肉で剛性が高い鋳鋼製のエンドプレートが同主桁と直角方向に溶接接合して、隣接する単体シールドのエンドプレート同士が対面する配置に設けられていること、
前記球形状ワッシャーのナット当接面を除く外周面は、隣接する単体シールドの鋼殻主桁の位置ずれに相当する角度に回転自在な球形状に形成され、前記エンドプレートには、複数のボルト孔が、該ボルト孔のワッシャー当接部前記球形状ワッシャーの外周面を受容する球面凹状の受容部に形成され、つづいて前記受容部を基点として鋼殻主桁の位置ずれを許容する角度の末広がり形状の孔に形成されており、前記エンドプレートの受容部内に受容された球形状ワッシャーに通したボルトと、同ボルトにねじ込んだナットとで接合されていることを特徴とする、外殻先行トンネル工法における単体シールド相互の接合部構造。
In the outer shell leading tunnel construction method in which the outer shell of a super-large-section tunnel is formed by a chain of single-section shields with a small cross-section, the gap is set after securing an interval that does not hinder the propulsion of the shield machine between adjacent single shields. It is a joint structure in which the main girder of the steel shell constituting the single shield is joined with bolts and nuts via a cast steel plate-like end plate and a cast steel spherical washer by excavating the soil of the part Yes,
The main girder of the steel shell that constitutes the single shield is provided in parallel in the circumferential direction of the super large section tunnel, and a thick-walled and rigid cast steel end plate is provided between the main girder at the corners of the main girder. It is welded and joined to the main girder in a direction perpendicular to the main girder, and it is provided in an arrangement where the end plates of adjacent single shields face each other,
The outer peripheral surface except the nut abutment surface of the washer of the spherical shape is formed in a rotatable spherical shape corresponding to an angle to the main girder of the positional deviation of the steel shell of the adjacent single shield, the end plate has a plurality bolt holes are formed a washer abutting portion of the bolt hole in the receiving part of the spherical concave for receiving the outer peripheral surface of the washer of the spherical, the main girder of the positional deviation of the steel shell as the base of the receptacle and subsequently is formed in the pores of the diverging shape of an angle to allow, characterized in that a bolt through the washer spherical shape received in the receptacle of the end plates are joined by a nut screwed to the bolt The joint structure of single shields in the outer shell leading tunnel method.
超大断面トンネルの外殻を小断面の単体シールドの連鎖で形成する外殻先行トンネル工法において、隣接する単体シールド同士の間にシールド機の推進に支障がない間隔を確保して施工した後に前記間隔部分の土を掘削して、単体シールドを構成する鋼殻の主桁同士を鋳鋼製の板状のエンドプレートと鋳鋼製の球形状のワッシャーを使用してボルトとナットにより接合する方法であり、
単体シールドを構成する鋼殻の主桁は、超大断面トンネルの周方向に複数平行に設け、前記主桁の角隅部における主桁間に、厚肉で剛性が高い鋳鋼製のエンドプレートを同主桁と直角方向に溶接接合して、隣接する単体シールドのエンドプレート同士を対面する配置に設けること、
前記球形状ワッシャーのナット当接面を除く外周面を、隣接する単体シールドの鋼殻主桁の位置ずれに相当する角度に回転自在な球形状に形成すること、
エンドプレートに、複数のボルト孔を、該ボルト孔のワッシャー当接部前記球形状ワッシャーの外周面を回転自在に受容する球面凹状の受容部に形成し、つづいて前記受容部を基点として鋼殻主桁の位置ずれを許容する角度の末広がり形状の孔に形成すること
前記対面するエンドプレート同士の対応するボルト孔にボルトを通し、そのボルト端部に前記球形状ワッシャーを通して受容部内に定着させた後、ナットをねじ込んで球形状ワッシャーのナット当接面に締め付けて接合すること、
をそれぞれ特徴とする、外殻先行トンネル工法における単体シールド相互の接合方法。
In the outer shell leading tunnel construction method in which the outer shell of a super-large-section tunnel is formed by a chain of single-section shields with a small cross-section, the gap is set after securing an interval that does not hinder the propulsion of the shield machine between adjacent single shields. It is a method of excavating the soil of the part, joining the main girders of the steel shell constituting the single shield with bolts and nuts using a cast steel plate-like end plate and a cast steel spherical washer,
A plurality of main girders of the steel shell constituting the single shield are provided in parallel with the circumferential direction of the super large section tunnel, and a thick and rigid cast steel end plate is connected between the main girders at the corners of the main girder. Welded in a direction perpendicular to the main girder, and provided in an arrangement where the end plates of adjacent single shields face each other,
The outer circumferential surface except the nut abutment surface of the washer of the spherical shape, to form a rotatable spherical shape corresponding to an angle to the main girder of the positional deviation of the steel shell of the adjacent single shield,
The end plate, a plurality of bolt holes, the washer abutting portion of the bolt hole is formed in the receiving portion of the spherical concave rotatably receiving the outer peripheral surface of the washer of the spherical, as a base point to the receiving portion Following Forming a hole with a divergent shape at an angle that allows displacement of the main girder of the steel shell;
Through a bolt into the corresponding bolt holes of the end plates between which the face, after being fixed to the receptacle through a washer of said spherical in its bolt end, tightening the nut contact surface of the washer of the spherical shape by screwing nuts Joining,
A method of joining single shields in the outer shell advanced tunnel method characterized by
JP31736998A 1998-11-09 1998-11-09 Joint structure and joining method of single shields in the outer shell leading tunnel method Expired - Fee Related JP4051144B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31736998A JP4051144B2 (en) 1998-11-09 1998-11-09 Joint structure and joining method of single shields in the outer shell leading tunnel method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31736998A JP4051144B2 (en) 1998-11-09 1998-11-09 Joint structure and joining method of single shields in the outer shell leading tunnel method

Publications (2)

Publication Number Publication Date
JP2000145397A JP2000145397A (en) 2000-05-26
JP4051144B2 true JP4051144B2 (en) 2008-02-20

Family

ID=18087489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31736998A Expired - Fee Related JP4051144B2 (en) 1998-11-09 1998-11-09 Joint structure and joining method of single shields in the outer shell leading tunnel method

Country Status (1)

Country Link
JP (1) JP4051144B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103649566A (en) * 2011-07-08 2014-03-19 丹尼尔和科菲森梅克尼齐有限公司 Tie rod with locking system at the ends

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002180796A (en) * 2000-12-13 2002-06-26 Ishikawajima Constr Materials Co Ltd Tunnel structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103649566A (en) * 2011-07-08 2014-03-19 丹尼尔和科菲森梅克尼齐有限公司 Tie rod with locking system at the ends
CN103649566B (en) * 2011-07-08 2015-10-07 丹尼尔和科菲森梅克尼齐有限公司 There is in end the pull bar of locking system

Also Published As

Publication number Publication date
JP2000145397A (en) 2000-05-26

Similar Documents

Publication Publication Date Title
JP4051144B2 (en) Joint structure and joining method of single shields in the outer shell leading tunnel method
JP4359376B2 (en) Joint structure and joining method of single shields in outer shell advanced tunnel method
JPH10140670A (en) Reinforcement connecting structure between precast concrete blocks and method thereof
JP4359375B2 (en) Joint structure and joining method of single shields in outer shell advanced tunnel method
JPH10227199A (en) Construction method of large sectional tunnel
JP3896179B2 (en) Steel joint structure
JP4040174B2 (en) segment
JP4584498B2 (en) Mounting structure of reinforcing ring and joint plate
JP3950202B2 (en) Steel segment fitting for outer shield method
JP4287542B2 (en) Segment structure
JP3826348B2 (en) Construction method of composite wall with mountain retaining core and underground outer wall
JPH0941884A (en) Segment and lining method using the segment
JP2988370B2 (en) Segment joint structure
JP4066279B2 (en) Steel segment connection structure reinforcement structure
JPS63201299A (en) Steel segment and execution method of tunnel by using steel segment
JP2847143B2 (en) Tubular wall for excavation hole lining
JPH10115197A (en) Joint structure of steel material and reinforcing plate used therein
JP2982743B2 (en) Segment joint structure
JPH11287097A (en) Segment
JP2627707B2 (en) Joint structure between underground continuous wall and underground skeleton
JP2007071018A (en) Steel joining structure
JP3410437B2 (en) Segment ring and segment ring lining method
JPH10339098A (en) Segment
JPH11270293A (en) Steel segment and tunnel lining body compressing steel segment
JP2002322900A (en) Construction method of tunnel wall body and concrete infilling steel segment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees