JP4050714B2 - Ground fault detection relay device - Google Patents

Ground fault detection relay device Download PDF

Info

Publication number
JP4050714B2
JP4050714B2 JP2004074479A JP2004074479A JP4050714B2 JP 4050714 B2 JP4050714 B2 JP 4050714B2 JP 2004074479 A JP2004074479 A JP 2004074479A JP 2004074479 A JP2004074479 A JP 2004074479A JP 4050714 B2 JP4050714 B2 JP 4050714B2
Authority
JP
Japan
Prior art keywords
phase
potential
ground fault
sets
effective component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004074479A
Other languages
Japanese (ja)
Other versions
JP2005269698A (en
Inventor
孝志 川本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004074479A priority Critical patent/JP4050714B2/en
Publication of JP2005269698A publication Critical patent/JP2005269698A/en
Application granted granted Critical
Publication of JP4050714B2 publication Critical patent/JP4050714B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)

Description

本発明は、三相交流電源から変圧器により変換された直交位相の二組の単相電源で構成される系統の地絡検出継電装置に関する。   The present invention relates to a ground fault detection relay device for a system composed of two sets of quadrature single-phase power sources converted from a three-phase AC power source by a transformer.

一般に、交流き電負荷は単相負荷であり、電源系統として、単相電源による交流き電系統が構成される。この交流き電系統は、単相負荷を三相電源側でバランスさせるために、三相−二相変換変圧器を用いて得られる直交位相二組の単相電源で構成されている(例えば、特許文献1参照)。   Generally, an AC feeding load is a single-phase load, and an AC feeding system using a single-phase power source is configured as a power supply system. This AC feeding system is composed of two sets of single-phase power supplies of quadrature phase obtained by using a three-phase to two-phase conversion transformer in order to balance a single-phase load on the three-phase power supply side (for example, Patent Document 1).

このような交流き電系統を図2に示す。需要家の電力は、電力会社の送電設備2から供給され、三相電源で受電する。受電三相電源は需要家のき電変圧器3により、直交する位相の単相二組のA座電源、B座電源に変換され負荷に供給される。   Such an AC feeder system is shown in FIG. The electric power of the customer is supplied from the power transmission facility 2 of the electric power company and is received by a three-phase power source. The received three-phase power is converted into two sets of A-phase power and B-seat power having two phases orthogonal to each other and supplied to the load by the feeding transformer 3 of the customer.

一方、交流き電系統における地絡検出保護は、従来、二組の単相電源とも夫々の両端電位と対地電位との差電圧の大きさで地絡事故を判別して電源系統を開放するように構成していた。このような地絡保護を行うため、二組の単相電源A座、B座の電圧は、それぞれ2台の計器用変圧器5、6の中点が対地電位で分圧された二次電圧VA1、VA2、VB1、VB2を地絡検出継電装置1に入力している。   On the other hand, ground fault detection protection in an AC feeder system has conventionally been designed to open a power supply system by determining a ground fault according to the magnitude of the voltage difference between the potentials at both ends and ground potential of both sets of single-phase power supplies. Was configured. In order to perform such ground fault protection, the voltages of the two sets of single-phase power supplies A and B are respectively secondary voltages obtained by dividing the midpoint of the two instrument transformers 5 and 6 with the ground potential. VA1, VA2, VB1, and VB2 are input to the ground fault detection relay device 1.

受電三相と二組の単相変換電圧の定常電圧ベクトルを図3に示す。き電変圧器3における一次の受電三相ベクトルa,b,cは夫々120°位相の平衡ベクトルで、夫々の相間電圧Vで示されている。仮に変圧比を1:1とすると、変圧器二次の一方の単相電源A座は、三相電源b−c相と同相で電圧値Vである。また、変圧器二次の他方の単相電源B座は、三相電源a相と同相で電圧値V/√3であるが変圧比1:√3の昇圧変圧器4によりき電回路電圧Vが供給される。二組の単相電源電圧Vは、前述の計器用変圧器5で中点の対地電位により二次電圧VA1、VA2、VB1、VB2として均等に分圧され、地絡検出継電装置1に入力されている。   FIG. 3 shows steady voltage vectors of the received three-phase and two sets of single-phase conversion voltages. The primary power receiving three-phase vectors a, b, and c in the feeding transformer 3 are 120 ° phase balanced vectors, and are indicated by respective interphase voltages V. Assuming that the transformation ratio is 1: 1, one single-phase power source A seat of the transformer secondary is in phase with the three-phase power source bc phase and has a voltage value V. Further, the other single-phase power source B of the transformer secondary has the voltage value V / √3 in the same phase as the three-phase power source a-phase, but the feeder circuit voltage V by the step-up transformer 4 having a transformation ratio 1: √3. Is supplied. The two sets of single-phase power supply voltages V are equally divided as secondary voltages VA1, VA2, VB1, and VB2 by the above-described instrument transformer 5 by the ground potential at the midpoint, and input to the ground fault detection relay device 1 Has been.

ここで、VA1、VA2は一方の組A座の第1電位、第2電位であり、VB1、VB2は他方の組B座の第1電位、第2電位である。これらは互いに値が同等でそれらの位相角は直交しており、位相差角φ1〜φ4は夫々90°である。また、定常時の異相間電圧V1〜V4はA座、B座二組の直交する単相電源Vを対角線とする正四辺形の外周斜辺電圧であり、その値はV/√2である。   Here, VA1 and VA2 are the first potential and the second potential of one set A seat, and VB1 and VB2 are the first potential and the second potential of the other set B seat. These are equal in value and their phase angles are orthogonal to each other, and the phase difference angles φ1 to φ4 are each 90 °. Further, the inter-phase voltages V1 to V4 in a steady state are regular quadrilateral outer peripheral oblique voltages with two sets of orthogonal single-phase power supplies V of A and B seats as diagonal lines, and the value thereof is V / √2.

従来、地絡検出継電装置1には、前述のように、A座,B座の各電位VA1,VA2,VB1,VB2が、計器用変圧器5,6から入力される。これら入力電圧は、系統周波数の任意の電気角速度時間毎にサンプルホールドされ、ディジタル値に変換された後、データ格納手段に記憶される。この記憶データは予め定められたサンプリング回数分の時系列記憶データとして任意の電気角速度時間毎に更新されている。   Conventionally, the ground fault detection relay device 1 receives the electric potentials VA1, VA2, VB1, and VB2 of the A seat and B seat from the transformers 5 and 6 as described above. These input voltages are sampled and held every arbitrary electrical angular velocity time of the system frequency, converted into digital values, and stored in the data storage means. This stored data is updated every arbitrary electrical angular velocity time as time-series stored data for a predetermined number of sampling times.

地絡事故検出に当っては、前述の各電位VA1、VA2、VB1、VB2の値から、二組の単相電源A座、B座夫々の両端電位と対地電位との差電圧Δva、Δvbを求め、この差電圧と予め定められた動作検出値kvとを夫々比較し、二組の単相電源A座、B座の何れか又は双方の差電圧Δva、Δvbが動作検出値kvを超えた場合に動作出力を実行する。   In detecting the ground fault, the difference voltages Δva and Δvb between the potentials at both ends of the two sets of single-phase power supply A and B and the ground potential are calculated from the values of the respective potentials VA1, VA2, VB1, and VB2. The difference voltage is compared with a predetermined motion detection value kv, and the difference voltages Δva and Δvb of the two sets of single-phase power supply A seat and B seat or both exceed the motion detection value kv. Execute operation output in case.

すなわち、定常時のき電電圧ベクトルは、図3で説明したように、二組の単相電源A座、B座電圧は夫々、正四辺形の対角線であり、正四辺形の中心が対地電位である。従って二組の単相電源A座、B座とも両端電位と対地電位との差電圧は均等である。したがって、Δva=VA1−VA2=0v、Δvb=VB1−VB2=0vとなり、地絡は発生していないと判断される。   That is, as described with reference to FIG. 3, the feeding voltage vector in the steady state is a pair of single-phase power supply A-seat and B-seat voltages, each of which is a regular quadrilateral diagonal, and the center of the regular quadrilateral is the ground potential. It is. Therefore, the difference voltage between the potentials at both ends and the ground potential is equal for the two sets of single-phase power sources A and B. Therefore, Δva = VA1-VA2 = 0v and Δvb = VB1-VB2 = 0v, and it is determined that no ground fault has occurred.

これに対し単相電源側に地絡事故が発生すると、き電電圧ベクトルは、図6で示すように、対地電位が四辺形の中心から地絡側に移動した形状に変形する。このため、VB1とVB2との間に差が生じ、これらの差であるΔvbが動作検出値を越えた場合は、地絡事故と判定し動作出力を実行する。   On the other hand, when a ground fault occurs on the single-phase power supply side, the feeding voltage vector is deformed into a shape in which the ground potential moves from the center of the quadrilateral to the ground fault side as shown in FIG. For this reason, when a difference occurs between VB1 and VB2 and Δvb which is the difference exceeds the operation detection value, it is determined as a ground fault and an operation output is executed.

このように従来の地絡検出方法では、単相電源側の地絡事故を検出することができるが、単相電源側における異相混触事故が発生した場合も動作してしまい、異相混触事故であるにもかかわらず地絡事故であると誤検出してしまう。   Thus, in the conventional ground fault detection method, it is possible to detect a ground fault accident on the single-phase power supply side. Nevertheless, it is erroneously detected as a ground fault.

すなわち、混触事故が発生すると、二組の単相電圧両端の相互間電位が互いに混触相相互の中点側に変位する。図7は異相間電圧V1の混触例を示している。混触事故により二組の単相電源A座、B座には故障電流が流れ、A座に流れる故障電流は三相側b−c相に還流する。一方、B座に流れる電流は三相側のa相と、b、c各相にa相電流の1/2が還流する。この電流と、き電変圧器3のインピーダンスにより、電圧値と位相変位に纏わる電圧降下が発生して単相二組のき電電圧ベクトルで形成される四辺形が縮小し、外周電圧V1〜V4の電圧も降下する。また、異相電源間の混触電流は単相二組のき電回路に夫々備えられた単巻変圧器の中点接地を介して還流している。   That is, when a contact accident occurs, the potential between both ends of the two sets of single-phase voltages is displaced toward the middle point between the contact phases. FIG. 7 shows an example of contact of the interphase voltage V1. A fault current flows through the two sets of single-phase power supplies A and B due to a mixed accident, and the fault current flowing through the A seat returns to the three-phase side bc phase. On the other hand, 1/2 of the a-phase current flows back to the a-phase on the three-phase side, and the b- and c-phases respectively. Due to this current and the impedance of the feeding transformer 3, a voltage drop that is related to the voltage value and the phase displacement occurs, and the quadrilateral formed by the feeding voltage vector of two sets of single phase is reduced, and the outer peripheral voltages V 1 to V 4 are reduced. The voltage also drops. In addition, the mixed current between the different-phase power sources circulates through the midpoint grounding of the auto-transformer provided in each of the single-phase two sets of feeder circuits.

これらの結果、図示のように、対地電位が混触相の両端電位側に変位するので、二組の単相電源A座、B座双方の対地分担電圧差Δva、Δvbが発生する。   As a result, as shown in the figure, the ground potential is displaced toward the both-end potential side of the mixed phase, so that the ground sharing voltage differences Δva and Δvb between the two sets of single-phase power supply A seat and B seat are generated.

すなわち、混触電流と系統インピーダンスや事故点インピーダンスとによる対地間電位に対する電圧降下により、二組の単相電源A座、B座とも夫々の両端電位と対地電位との均衡が崩れて差電圧Δva、Δvbが生じ、地絡事故と誤検出して不要動作に至る。この不要動作を防ぐためには下位系統との時限協調が必要になり、高速性が阻害される。
特開平3−132436号公報
That is, due to the voltage drop with respect to the ground potential due to the mixed current and the system impedance or the fault point impedance, the balance between the potentials at both ends and the ground potential of each of the two sets of single-phase power supply A and B seats is lost, and the difference voltage Δva, Δvb occurs, erroneously detecting a ground fault and leading to unnecessary operation. In order to prevent this unnecessary operation, time cooperation with the subordinate system is required, and the high speed is hindered.
Japanese Patent Laid-Open No. 3-132436

このように従来の二組の単相電源A座、B座夫々の両端電位と対地電位との差電圧により単相電源側の地絡事故を検出する方法では、単相電源側における異相混触事故が発生した場合も不要動作し、異相混触事故であるにもかかわらず地絡事故であると誤検出してしまう。   As described above, in the conventional method of detecting the ground fault on the single-phase power source side based on the differential voltage between the both-end potential of each of the two single-phase power sources A and B and the ground potential, the mixed-phase accident on the single-phase power source side is detected. Even if a fault occurs, the operation is unnecessary, and it is erroneously detected as a ground fault despite a heterogeneous accident.

本発明の目的は、単相電源側の地絡事故を確実に検出でき、しかも単相電源側の異相混触事故に対しては不要動作することのない地絡継電装置を提供することにある。   It is an object of the present invention to provide a ground fault relay device that can reliably detect a ground fault on the single-phase power supply side and that does not needlessly operate against a mixed-phase accident on the single-phase power supply side. .

本発明の地絡検出継電装置は、三相交流電源から変圧器により変換された直交位相の二組の単相電源で構成される系統の地絡検出継電装置であって、前記二組の単相電源の各両端電位を対地電位で均等に分圧した各組の第1の電位VA1,VB1、第2の電位VA2,VB2をそれぞれ入力する入力手段と、これら各組毎に、後述する(1)及び(2)式により、自己の組の第1の電位VA1(VB1)、他方の組の第1の電位VB1(VA1)及び第2の電位VB2(VA2)、前記自己の組の第1の電位VA1(VB1)と他方の組の第1電位VB1(VA1)との位相差角φ1から第1有効成分を求め、自己の組の第2の電位VA2(VB2)、他方の組の第1の電位VB1(VA1)及び第2の電位VB2(VA2)、前記自己の組の第2電位VA2(VB2)と他方の組の第2電位VB2(VA2)との位相差角φ3から第2有効成分を求め、これら第1有効成分と第2有効成分との差を各組毎の有効成分差Δwa,Δwbとしてそれぞれ求める位相演算手段と、これら求められた有効成分差Δwa,Δwbを予め設定した動作検出値と比較し、それらのいずれかがこの動作検出値を越えた場合、地絡事故と判定する比較判定手段とを備えたことを特徴とする。 The ground fault detection relay device of the present invention is a ground fault detection relay device of a system constituted by two sets of quadrature phase single phase power sources converted from a three-phase AC power source by a transformer. a single-phase power supply each set of the first potential equally divided on each potential across the ground potential of VA1, VB1, input means for inputting second potential VA2, VB2 respectively, in each of these respective sets, later According to the equations (1) and (2), the first potential VA1 (VB1) of the self set, the first potential VB1 (VA1) and the second potential VB2 (VA2) of the other set, the self set The first effective component is obtained from the phase difference angle φ1 between the first potential VA1 (VB1) of the second and the first potential VB1 (VA1) of the other set, and the second potential VA2 (VB2) of the own set is obtained. The first potential VB1 (VA1) and the second potential VB2 (VA2) of the set, the phase difference angle φ3 between the second potential VA2 (VB2) of the self set and the second potential VB2 (VA2) of the other set To obtain the second active ingredient from Phase calculation means for obtaining the difference between the first effective component and the second effective component as effective component differences Δwa and Δwb for each set, and the motion detection value in which the obtained effective component differences Δwa and Δwb are set in advance. And a comparison determination means for determining that a ground fault has occurred when any of them exceeds the motion detection value.

本発明によれば、二組の単相電源の各両端電位を対地電位で均等に分圧した各組の第1、第2の電位をそれぞれ入力し、これら各組の第1、第2の電位の値及びそれらの位相差角から、前記単相電源側の地絡事故時に生じる各組毎の有効成分差を求め、それらのいずれかがこの動作検出値を越えた場合、地絡事故と判定するので、異相混触事故に対して不要動作することのなく、地絡事故を確実に検出できる。   According to the present invention, the first and second potentials of each set obtained by equally dividing the potentials at both ends of the two sets of single-phase power sources with the ground potential are input, respectively. From the value of the potential and the phase difference angle thereof, the difference in the effective component for each set that occurs at the time of the ground fault on the single-phase power supply side is obtained, and if any of them exceeds this motion detection value, Since it determines, it can detect a ground fault accident reliably, without performing unnecessary operation | movement with respect to a heterogeneous accident.

以下、本発明による地絡検出継電装置の一実施の形態について、図面を用いて詳細に説明する。   Hereinafter, an embodiment of a ground fault detection relay device according to the present invention will be described in detail with reference to the drawings.

交流き電系統自体は、図2で示したように、電力会社の送電設備2から三相電源で受電した後、需要家のき電変圧器3により直交する位相の単相二組のA座電源、B座電源に変換し、負荷に供給する。このような交流き電系統の地絡保護を行うため、二組の単相電源A座、B座の電圧は、それぞれ2台の計器用変圧器5、6の中点が対地電位で分圧された二次電圧VA1、VA2、VB1、VB2が地絡検出継電装置1に入力される。   As shown in FIG. 2, the AC feeder system itself receives power from a power company's power transmission equipment 2 with a three-phase power supply, and then a single phase two sets of A-phases orthogonal to each other by a customer feeder transformer 3. Convert to power supply, B seat power supply and supply to load. In order to protect the earth fault of such AC feeding system, the voltage of the two sets of single-phase power supply A seat and B seat is divided by the midpoint of the two instrument transformers 5 and 6, respectively, with ground potential. The secondary voltages VA1, VA2, VB1, and VB2 are input to the ground fault detection relay device 1.

この地絡検出継電装置1の処理手段ブロック構成を図1により説明する。図1において、21は入力手段で、図2で示した計器用変圧器5及び6から、A座、B座二組の単相電源電圧VA1,VA2,VB1,VB2が入力される。すなわち、VA1は一方の単相電源A座の両端電圧Vを中点の対地電位で分圧した第1電位であり、VA2は同第2電位である。また、VB1は他方の単相電源B座の両端電圧Vを中点の対地電位で分圧した第1電位であり、VB2は同第2電位である。   The processing means block configuration of the ground fault detection relay device 1 will be described with reference to FIG. In FIG. 1, 21 is an input means, and two sets of single-phase power supply voltages VA1, VA2, VB1, and VB2 are input from the instrument transformers 5 and 6 shown in FIG. That is, VA1 is a first potential obtained by dividing the voltage V across one single-phase power source A by the ground potential at the midpoint, and VA2 is the second potential. VB1 is a first potential obtained by dividing the voltage V across the other single-phase power source B by a ground potential at the midpoint, and VB2 is the second potential.

これら入力電圧は、入力手段21において、予め定られた比で変換されアナログフィルタを通過した後、入力サンプリングホールド手段22で系統周波数の任意の電気角速度時間毎にサンプルホールドされる。このサンプルホールド値は、A/D変換手段23でディジタル値に変換される。このように、任意の電気角速度時間毎にディジタル値変換された夫々の入力電圧データは、データ格納手段24に記憶される。この記憶データは予め定められたサンプリング回数分の時系列記憶データとして任意の電気角速度時間毎に更新されている。   These input voltages are converted by the input means 21 at a predetermined ratio, passed through an analog filter, and then sampled and held by the input sampling and holding means 22 for every electrical angular velocity time of the system frequency. This sample hold value is converted into a digital value by the A / D conversion means 23. In this way, each input voltage data converted into a digital value every arbitrary electrical angular velocity time is stored in the data storage means 24. This stored data is updated every arbitrary electrical angular velocity time as time-series stored data for a predetermined number of sampling times.

25は位相演算手段で、A座、B座各組の第1、第2の電位VA1,VA2,VB1,VB2の値及びそれらの位相差から、単相電源側の地絡事故時に生じる各組毎の有効成分差を求める。すなわち、入力電圧VA1,VA2,VB1,VB2のサンプリングデータから二組の単相電圧相互間の有効成分差Δwa,Δwbを下式により演算する。   25 is a phase calculation means, and each set generated at the time of a ground fault on the single-phase power source side from the values of the first and second potentials VA1, VA2, VB1, and VB2 of each set of A seat and B seat and their phase difference. Find the active ingredient difference for each. That is, the effective component differences Δwa and Δwb between the two sets of single-phase voltages are calculated from the sampling data of the input voltages VA1, VA2, VB1, and VB2 by the following expression.

Δwa=VA1×(VB1+VB2) ×cosφ1−VA2×(VB1+VB2) ×cosφ3
= VA1×VB1×(1+1/kvb) ×(cosφ1−cosφ3/ kva)・・・(1)
Δwb=VB1×(VA1+VA2) ×cosφ1−VB2×(VA1+VA2) ×cosφ3
= VA1×VB1×(1+1/kva) ×(cosφ1−cosφ3/ kvb)・・・(2)
ここで、 kva :VA1とVA2の電圧比、kvb :VB1とVB2の電圧比である。
Δwa = VA1 × (VB1 + VB2) × cosφ1-VA2 × (VB1 + VB2) × cosφ3
= VA1 × VB1 × (1 + 1 / kvb) × (cosφ1-cosφ3 / kva) (1)
Δwb = VB1 × (VA1 + VA2) × cos φ1-VB2 × (VA1 + VA2) × cos φ3
= VA1 × VB1 × (1 + 1 / kva) × (cosφ1-cosφ3 / kvb) (2)
Here, kva is a voltage ratio between VA1 and VA2, and kvb is a voltage ratio between VB1 and VB2.

すなわち、位相演算手段25は、先ず、A座、B座各組毎に、自己の組A座(B座)の第1電位VA1(VB1)、他方の組B座(A座)の第1電位VB1(VA1)及び第2電位VB2(VA2)、自己の組A座(B座)の第1電位VA1(VB1)と他方の組B座(A座)の第1電位VB1(VA1)との位相差角φ1から第1有効成分を求める。次に、自己の組A座(B座)の第2電位VA2(VB2)、他方の組B座(A座)の第1電位VB1(VA1)及び第2の電位VB2(VA2)、自己の組A座(B座)の第2電位VA2(VB2)と他方の組B座(A座)の第2電位VB2(VA2)との位相角φ3から第2有効成分を求める。そして、これら第1有効成分と第2有効成分との差をA座、B座各組毎の有効成分差Δwa,Δwbとしてそれぞれ求める。   That is, the phase calculation means 25 first has the first potential VA1 (VB1) of its own set A seat (B seat) and the first of the other set B seat (A seat) for each set of A seat and B seat. The potential VB1 (VA1) and the second potential VB2 (VA2), the first potential VA1 (VB1) of its own set A seat (B seat) and the first potential VB1 (VA1) of the other set B seat (A seat) The first effective component is obtained from the phase difference angle φ1. Next, the second potential VA2 (VB2) of the own set A seat (B seat), the first potential VB1 (VA1) and the second potential VB2 (VA2) of the other set B seat (A seat), A second effective component is obtained from the phase angle φ3 between the second potential VA2 (VB2) of the set A seat (B seat) and the second potential VB2 (VA2) of the other set B seat (A seat). Then, the difference between the first effective component and the second effective component is obtained as effective component differences Δwa and Δwb for each of the A seat and B seat groups.

26は比較判定手段で、位相差演算手段25で求められた有効成分差Δwa,Δwbを予め設定した動作検出値Kwと比較し、それらのいずれかがこの動作検出値Kwを越えた場合、地絡事故と判定する。地絡事故と判定した動作検出結果は、出力処理手段27により外部に出力される。   Reference numeral 26 denotes a comparison / determination means, which compares the effective component differences Δwa and Δwb obtained by the phase difference calculation means 25 with a preset motion detection value Kw, and if any of these exceeds the motion detection value Kw, Judged as an accident. The motion detection result determined as a ground fault is output to the outside by the output processing means 27.

上記構成において、電鉄会社などの需要家は、図2で示したように、電力会社の送電設備2から供給される三相電源を受電する。受電された三相電源は、需要家のき電変圧器3により、直交する位相の単相二組のA座電源、B座電源に変換され負荷に供給される。   In the above configuration, a consumer such as an electric railway company receives the three-phase power supplied from the power transmission facility 2 of the power company as shown in FIG. The received three-phase power is converted into a single-phase two-set A-phase power source and a B-seat power source having orthogonal phases by the feeding transformer 3 of the customer and supplied to the load.

二組の単相電源A座、B座の電圧は、2台の計器用変圧器5、6の中点が対地電位で分圧された二次電圧VA1、VA2、VB1、VB2が、それぞれ地絡検出継電装置1に入力される。   The voltage of the two sets of single-phase power supplies A and B are the secondary voltages VA1, VA2, VB1, and VB2, which are divided by the ground potential at the midpoint of the two instrument transformers 5 and 6, respectively. Input to the fault detection relay device 1.

これら受電三相と二組の単相変換電圧の定常時における電圧ベクトルは、図3で示すように、一次の受電三相ベクトルa,b,cは夫々120°位相の平衡ベクトルで、夫々の相間電圧Vで示されている。変圧比を1:1とした場合、変圧器二次の一方の単相電源A座は、三相電源b−c相と同相で電圧値Vである。他方の単相電源B座は、三相電源a相と同相で電圧値V/√3であるが、変圧比1:√3の昇圧変圧器4により、き電回路電圧Vが供給される。二組の単相電源電圧Vは、計器用変圧器5で中点の対地電位により二次電圧VA1、VA2、VB1、VB2として均等に分圧され、地絡検出継電装置1に入力される。   As shown in FIG. 3, the voltage vectors in the steady state of these three phases of power reception and two single-phase conversion voltages are primary power reception three-phase vectors a, b, and c, which are 120 ° phase balanced vectors, respectively. This is indicated by the interphase voltage V. When the transformation ratio is 1: 1, one single-phase power source A seat of the transformer secondary is in phase with the three-phase power source b-c phase and has a voltage value V. The other single-phase power source B seat is in phase with the three-phase power source a phase and has a voltage value V / √3, but the feeder circuit voltage V is supplied by the step-up transformer 4 having a transformation ratio of 1: √3. Two sets of single-phase power supply voltages V are equally divided as secondary voltages VA1, VA2, VB1, and VB2 by a ground potential at the midpoint in the instrument transformer 5 and input to the ground fault detection relay device 1. .

これら入力値VA1、VA2、VB1、VB2は互いに値が同等でそれらの位相角は直交しており、位相差角φ1〜φ4は夫々90°である。また、定常時の異相間電圧V1〜V4はA座、B座二組の直交する単相電源Vを対角線とする正四辺形の外周斜辺電圧であり、その値はV/√2である。これらの値及び位相角はサンプルホールドされた後A/D変換され、ディジタルデータとしてデータ格納手段24に格納される。   These input values VA1, VA2, VB1, and VB2 have the same value and the phase angles thereof are orthogonal to each other, and the phase difference angles φ1 to φ4 are each 90 °. Further, the inter-phase voltages V1 to V4 in a steady state are regular quadrilateral outer peripheral oblique voltages with two sets of orthogonal single-phase power supplies V of A and B seats as diagonal lines, and the value thereof is V / √2. These values and phase angles are sampled and held, then A / D converted, and stored in the data storage means 24 as digital data.

位相演算手段25では、これらデータを用いて前記(1)式(2)式による演算を行い、A座、B座各組毎の有効成分差Δwa,Δwbをそれぞれ求める。   The phase calculation means 25 performs calculations according to the above equations (1) and (2) using these data, and obtains the effective component differences Δwa and Δwb for each of the A seat and B seat groups.

ここで、単相電源側に地絡事故が発生すると、き電電圧ベクトルは、図6で示したように、対地電位が四辺形の中心から地絡側に移動した形状に変形する。このため、図6の例では電位VB1とVB2とに差が生じ、かつ位相差角φ1,φ3にも差が生じる。このため、式(1)(2)で算出される有効成分差Δwa,Δwbが生じ、その大きさが動作検出値Kwを越えた場合、地絡事故と判定する。   Here, when a ground fault occurs on the single-phase power supply side, the feeding voltage vector is deformed into a shape in which the ground potential moves from the center of the quadrilateral to the ground fault side, as shown in FIG. Therefore, in the example of FIG. 6, a difference is generated between the potentials VB1 and VB2, and a difference is also generated in the phase difference angles φ1 and φ3. For this reason, when the active component differences Δwa and Δwb calculated by the equations (1) and (2) are generated and the magnitude exceeds the motion detection value Kw, it is determined that a ground fault has occurred.

一方、単相電源側異相間混触事故が発生すると、二組の単相電圧両端の相互間電位が互いに混触相相互の中点側に変位する。例えば、異相間電圧V1の混触が生じた場合、図7で示したように、単相二組のき電電圧ベクトルで形成される四辺形が縮小し、外周電圧V1〜V4の電圧も降下する。また、対地電位が混触相の両端電位側に変位するので、二組の単相電源A座、B座双方の対地分担電圧差Δva(=VA1−VA2)、Δvb(=VB1−VB2)が発生する。   On the other hand, when a single-phase power supply side different-phase contact accident occurs, the potential between both ends of the two sets of single-phase voltages is displaced toward the middle point between the contact phases. For example, when the cross-phase voltage V1 is mixed, as shown in FIG. 7, the quadrilateral formed by the single-phase two sets of feeding voltage vectors is reduced, and the voltages of the outer peripheral voltages V1 to V4 are also lowered. . In addition, since the ground potential is displaced to the both-end potential side of the mixed phase, the difference in ground voltage Δva (= VA1-VA2) and Δvb (= VB1-VB2) between the two sets of single-phase power supply A and B seats are generated. To do.

しかし、位相差角φ1,φ3は互いに等しいため、(1)(2)式で算出される有効成分差Δwa,Δwbは略ゼロである。すなわち、異相混触事故では動作せず、したがって、従来のように、異相混触事故時に地絡事故と誤検出し、不要動作することはない。   However, since the phase difference angles φ1 and φ3 are equal to each other, the effective component differences Δwa and Δwb calculated by the equations (1) and (2) are substantially zero. That is, it does not operate in a mixed-phase accident, and therefore, as in the conventional case, a ground fault is erroneously detected in a mixed-phase accident and no unnecessary operation is performed.

また、三相電源側に事故が発生すると、地絡検出継電装置1に入力されるVA1、VA2、VB1、VB2の電圧ベクトルは図4で示すように変形する。さらに、単相電源側に短絡事故が発生した場合は、VA1、VA2、VB1、VB2の電圧ベクトルは図5で示すように変形する。   When an accident occurs on the three-phase power supply side, the voltage vectors of VA1, VA2, VB1, and VB2 input to the ground fault detection relay device 1 are deformed as shown in FIG. Further, when a short circuit accident occurs on the single-phase power supply side, the voltage vectors of VA1, VA2, VB1, and VB2 are deformed as shown in FIG.

しかし、これらいずれの場合においても、位相差角φ1,φ3は互いに等しいため、(1)(2)式で算出される有効成分差Δwa,Δwbは略ゼロである。すなわち、三相電源側の事故や単相電源側の短絡事故では動作せず、したがって、これらの事故時に地絡事故と誤検出して、不要動作することはない。   However, in any of these cases, since the phase difference angles φ1 and φ3 are equal to each other, the effective component differences Δwa and Δwb calculated by the equations (1) and (2) are substantially zero. That is, it does not operate in the case of a three-phase power supply side accident or a single-phase power supply side short-circuit accident, and therefore, it is not erroneously detected as a ground fault at the time of these accidents and no unnecessary operation is performed.

このように、互いに交差する単相二組双方の対地電位が交差点で同一電位となり、二組の単相電源の一方側の電圧と他方側両端対地分担電圧との有効成分の夫々の差を求めているので、図4、図5に示した三相電源電系統の事故や単相同系統の短絡事故によるベクトルでは有効成分差は極めて微量となり検出動作が抑制される。一方、図6に示した地絡事故では二組の有効成分差の一方の値が大きく、他方の有効成分差は微量となるため地絡検出動作する。さらに、図7に示した単相同系統の異相混色ベクトルでは二組の単相電圧の双方とも対地電位差が発生するが、位相差角φ1,φ3が互いに等しいため、二組の有効成分差電力差は極めて微量となり検出動作が抑制される。   In this way, the ground potential of the two sets of single phase intersecting each other becomes the same potential at the intersection, and the difference between the effective components of the voltage on one side of the two sets of single-phase power supplies and the voltage shared on both ends on the other side is obtained. Therefore, in the vectors due to the three-phase power supply system fault and the single-homogeneous system short-circuit fault shown in FIGS. 4 and 5, the active component difference is extremely small, and the detection operation is suppressed. On the other hand, in the ground fault accident shown in FIG. 6, the value of one of the two effective component differences is large and the difference in the other effective component is very small. Further, in the heterogeneous color mixture vector of the single homologous system shown in FIG. 7, the ground potential difference occurs in both of the two sets of single-phase voltages, but the phase difference angles φ1 and φ3 are equal to each other. Becomes extremely small and the detection operation is suppressed.

これらの結果、検出区間外の三相電源側の事故や検出対象外の単相同系統の短絡・混触事故などに対し不要動作せずに、本来の検出対象事故である地絡事故のみに作用できる。このため、他設備や装置との検出協調や時限協調が不要となり、高速保護が可能となる他、現地調整試験や保守点検の簡素化と作業性の向上も実現できる。   As a result, it can operate only on the ground fault accident that is the original detection target accident, without unnecessary operation for the accident on the three-phase power supply side outside the detection section or the short circuit / contact accident of the single homologous system that is not the detection target. . This eliminates the need for detection coordination and time coordination with other equipment and devices, enables high-speed protection, and simplifies on-site adjustment tests and maintenance inspections and improves workability.

本発明による地絡検出継電装置の一実施の形態を説明する処理ブロック図である。It is a processing block diagram explaining one embodiment of a ground fault detection relay device according to the present invention. 同上一実施の形態が適用される電力系統を説明する図である。It is a figure explaining the electric power grid | system to which one embodiment same as the above is applied. 同上一実施の形態に入力される定常時の電圧ベクトル図である。It is a voltage vector figure at the time of steady state inputted into one embodiment same as the above. 同上一実施の形態に入力される三相電源側事故時の電圧ベクトル図である。It is a voltage vector figure at the time of the three-phase power supply side accident input into one Embodiment same as the above. 同上一実施の形態に入力される単相電源側短絡事故時の電圧ベクトル図である。It is a voltage vector figure at the time of the single phase power supply side short circuit accident input into one Embodiment same as the above. 同上一実施の形態に入力される単相電源側地絡事故時の電圧ベクトル図である。It is a voltage vector figure at the time of the single phase power supply side ground fault accident input into one Embodiment same as the above. 同上一実施の形態に入力される単相電源側異相混触事故時の電圧ベクトル図である。It is a voltage vector figure at the time of the single phase power supply side different phase infringement accident input into one embodiment same as the above.

符号の説明Explanation of symbols

1 地絡検出継電装置
3 変圧器
5,6 計器用変圧器
21 入力手段
25 位相演算手段
26 比較判定手段
DESCRIPTION OF SYMBOLS 1 Ground fault detection relay device 3 Transformer 5,6 Instrument transformer 21 Input means 25 Phase calculation means 26 Comparison determination means

Claims (1)

三相交流電源から変圧器により変換された直交位相の二組の単相電源で構成される系統の地絡検出継電装置であって、
前記二組の単相電源の各両端電位を対地電位で均等に分圧した各組の第1の電位VA1,VB1、第2の電位VA2,VB2をそれぞれ入力する入力手段と、
これら各組毎に、以下の(1)及び(2)式により、自己の組の第1の電位VA1(VB1)、他方の組の第1の電位VB1(VA1)及び第2の電位VB2(VA2)、前記自己の組の第1の電位VA1(VB1)と他方の組の第1電位VB1(VA1)との位相差角φ1から第1有効成分を求め、自己の組の第2の電位VA2(VB2)、他方の組の第1の電位VB1(VA1)及び第2の電位VB2(VA2)、前記自己の組の第2電位VA2(VB2)と他方の組の第2電位VB2(VA2)との位相差角φ3から第2有効成分を求め、これら第1有効成分と第2有効成分との差を各組毎の有効成分差Δwa,Δwbとしてそれぞれ求める位相演算手段と、
これら求められた有効成分差Δwa,Δwbを予め設定した動作検出値と比較し、それらのいずれかがこの動作検出値を越えた場合、地絡事故と判定する比較判定手段と、
を備えたことを特徴とする地絡検出継電装置。
Δwa=VA1×(VB1+VB2) ×cosφ1−VA2×(VB1+VB2) ×cosφ3
= VA1×VB1×(1+1/kvb) ×(cosφ1−cosφ3/ kva)・・・(1)
Δwb=VB1×(VA1+VA2) ×cosφ1−VB2×(VA1+VA2) ×cosφ3
= VA1×VB1×(1+1/kva) ×(cosφ1−cosφ3/ kvb)・・・(2)
ここで、 kva :VA1とVA2の電圧比、kvb :VB1とVB2の電圧比である。
A ground fault detection relay device of a system composed of two sets of quadrature phase single phase power source converted from a three phase AC power source by a transformer,
Input means for inputting the first potentials VA1 and VB1 and the second potentials VA2 and VB2 of the respective sets obtained by equally dividing the potentials at both ends of the two sets of single-phase power sources with the ground potential;
For each of these sets, according to the following equations (1) and (2), the first potential VA1 (VB1) of the self set, the first potential VB1 (VA1) and the second potential VB2 ( VA2), the first effective component is obtained from the phase difference angle φ1 between the first potential VA1 (VB1) of the self set and the first potential VB1 (VA1) of the other set, and the second potential of the self set is obtained. VA2 (VB2), the first potential VB1 (VA1) and the second potential VB2 (VA2) of the other set, the second potential VA2 (VB2) of the self set and the second potential VB2 (VA2) of the other set Phase calculating means for obtaining the second effective component from the phase difference angle φ3 and the difference between the first effective component and the second effective component as effective component differences Δwa and Δwb for each group ,
Comparison determination means for comparing these determined effective component differences Δwa, Δwb with a preset motion detection value and determining a ground fault when any of them exceeds the motion detection value;
A ground fault detection relay device comprising:
Δwa = VA1 × (VB1 + VB2) × cosφ1-VA2 × (VB1 + VB2) × cosφ3
= VA1 × VB1 × (1 + 1 / kvb) × (cosφ1-cosφ3 / kva) (1)
Δwb = VB1 × (VA1 + VA2) × cos φ1-VB2 × (VA1 + VA2) × cos φ3
= VA1 × VB1 × (1 + 1 / kva) × (cosφ1-cosφ3 / kvb) (2)
Here, kva is a voltage ratio between VA1 and VA2, and kvb is a voltage ratio between VB1 and VB2.
JP2004074479A 2004-03-16 2004-03-16 Ground fault detection relay device Expired - Fee Related JP4050714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004074479A JP4050714B2 (en) 2004-03-16 2004-03-16 Ground fault detection relay device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004074479A JP4050714B2 (en) 2004-03-16 2004-03-16 Ground fault detection relay device

Publications (2)

Publication Number Publication Date
JP2005269698A JP2005269698A (en) 2005-09-29
JP4050714B2 true JP4050714B2 (en) 2008-02-20

Family

ID=35093658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004074479A Expired - Fee Related JP4050714B2 (en) 2004-03-16 2004-03-16 Ground fault detection relay device

Country Status (1)

Country Link
JP (1) JP4050714B2 (en)

Also Published As

Publication number Publication date
JP2005269698A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
KR101748554B1 (en) Leakage current calculation device and leakage current calculation method
Ghijselen et al. Exact voltage unbalance assessment without phase measurements
US7995315B2 (en) Ground fault protection circuit for multi-source electrical distribution system
KR102057201B1 (en) Out of order discrimination apparatus and protective relay apparatus
JP4050714B2 (en) Ground fault detection relay device
US5933793A (en) Outgoing harmonic level evaluator
JP4154369B2 (en) Relay device for detecting mixed phases of AC feeding circuits
Kasztenny et al. Operate and restraint signals of a transformer differential relay
Buryanina et al. Digital Differential Protection of the «Generator-Transformer» Block
JP4146851B2 (en) Electrical equipment testing aids
Guimarães et al. Differential protection performance in presence of charging current for hv transmission
Washer et al. Precise impedance based fault location algorithm with fault resistance separation
JP2008141896A (en) Protection relay
JP6362569B2 (en) Distance relay device and power line protection method
Fischer et al. Analysis of an autotransformer restricted earth fault application
JP2005081957A (en) Hetero-phase mixed-touch detection relay device of alternating current feeder circuit
US2546021A (en) Control system
US2378800A (en) Protective system
Sudan Back to the basics—Event analysis using symmetrical components
JP6729483B2 (en) Ratio differential relay
JP3663624B2 (en) V-connection spot network power receiving equipment
JP6021743B2 (en) Protective relay device for electric railway
Majd et al. Calculating the arc flash incident energy in singlephase systems using a three-phase model
Kirilov et al. Residual Overvoltage Protection 59N Study of Settings Across Leading Protection Relay Manufactures
RU2535297C1 (en) Electric motors short-circuit protection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060202

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071129

R151 Written notification of patent or utility model registration

Ref document number: 4050714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees