JP4050189B2 - Waste gasification incineration treatment method of waste - Google Patents

Waste gasification incineration treatment method of waste Download PDF

Info

Publication number
JP4050189B2
JP4050189B2 JP2003176780A JP2003176780A JP4050189B2 JP 4050189 B2 JP4050189 B2 JP 4050189B2 JP 2003176780 A JP2003176780 A JP 2003176780A JP 2003176780 A JP2003176780 A JP 2003176780A JP 4050189 B2 JP4050189 B2 JP 4050189B2
Authority
JP
Japan
Prior art keywords
waste
gasification furnace
oxygen
furnace
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003176780A
Other languages
Japanese (ja)
Other versions
JP2005009830A (en
Inventor
正元 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinsei Sangyo Co Ltd
Original Assignee
Kinsei Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinsei Sangyo Co Ltd filed Critical Kinsei Sangyo Co Ltd
Priority to JP2003176780A priority Critical patent/JP4050189B2/en
Publication of JP2005009830A publication Critical patent/JP2005009830A/en
Application granted granted Critical
Publication of JP4050189B2 publication Critical patent/JP4050189B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、廃タイヤ等の廃棄物を乾留して焼却処理する方法に関するものである。
【0002】
【従来の技術】
廃タイヤ等の廃棄物を焼却処理する方法として、例えば、ガス化炉内に収納した廃棄物の一部を燃焼させつつ、その燃焼熱により該廃棄物の残部を乾留(熱分解)し、該乾留により生成する可燃性ガスを該ガス化炉から燃焼炉に導入して燃焼させる方法が知られている。また、前記方法において、前記燃焼炉における前記可燃性ガスの燃焼温度を検知し、該可燃性ガスが予め設定された燃焼温度で燃焼されるように、前記ガス化炉に対する酸素供給量を調整して該ガス化炉内の乾留ガス化をフィードバック制御することが知られている(例えば特許文献1参照)。
【0003】
前記焼却処理方法では、前記燃焼炉で得られる燃焼熱を温水ボイラ等の熱装置の熱源として使用することができる。このとき、前記焼却処理方法はバッチ処理であるので、前記熱装置を連続運転するために、例えば2台のガス化炉を交互に運転する方法が知られている(例えば特許文献2参照)。
【0004】
前記2台のガス化炉を交互に運転する場合、第1のガス化炉内に収納された前記廃棄物の乾留の終了段階で、第2のガス化炉内に収納された前記廃棄物の乾留を開始する。一方、第1のガス化炉では、前記廃棄物の乾留の完了に続いて該廃棄物が完全に灰化せしめられ、炉外に排出されたのち、新たな廃棄物が収納されて、次の運転が準備される。
【0005】
ところで、第1、第2のガス化炉を交互に運転する方法では、装置構成を簡略化するために、各ガス化炉で生成する可燃性ガスは共通の燃焼炉に導入されるようになっている。また、各ガス化炉と前記燃焼炉とに酸素を供給する押込ファン等の酸素供給源も共通化されている。そして、各ガス化炉に対する酸素供給量の調整は、押込ファン等の酸素供給源と各ガス化炉とを接続する導管に設けた調整弁の開度を調節することにより行っている。
【0006】
そこで、従来、第1のガス化炉内に収納された前記廃棄物の乾留の終了段階では、第2のガス化炉に酸素を供給する調整弁の開度を絞った状態として、第2のガス化炉内に収納された前記廃棄物の乾留を開始する。そして、第2のガス化炉内に収納された前記廃棄物の乾留が開始されたならば、第2のガス化炉に酸素を供給する調整弁の開度を徐々に大きくして第2のガス化炉に対する酸素の供給量を漸増する。
【0007】
一方、第1のガス化炉では、炉内に収納された前記廃棄物の乾留の終了段階では、第1のガス化炉に酸素を供給する調整弁の開度は全開に近い状態となっている。しかし、第2のガス化炉内に収納された前記廃棄物の乾留が開始されたならば、第2のガス化炉における前記廃棄物の乾留に用いることができる酸素量の自由度を比較的大きくし、第2のガス化炉内の前記廃棄物の燃焼状態の変動等に容易に対応できるように、第1のガス化炉に酸素を供給する調整弁の開度を絞る必要がある。
【0008】
しかしながら、第1のガス化炉に酸素を供給する調整弁の開度を絞ると、前記燃焼炉の炉内圧が急変し、該燃焼炉内での前記可燃性ガスの燃焼が不安定になったり、第1のガス化炉内で乾留が完了した廃棄物の灰化に長時間を要し、次の運転に支障を来すことがあるという不都合がある。このため、第1のガス化炉内に収納された前記廃棄物の乾留の終了段階では、酸素の供給量の調整が難しかった。
【0009】
【特許文献1】
特開平2−135280号公報
【特許文献2】
特開平8−334218号公報
【0010】
【発明が解決しようとする課題】
本発明は、かかる不都合を解消して、2台のガス化炉を交互に運転するときに、2台のガス化炉の切換に際して燃焼炉の燃焼状態を不安定にすることなく、しかも乾留が完了した廃棄物の灰化に要する時間を短縮することができる廃棄物の乾留ガス化焼却処理方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
かかる目的を達成するために、本発明は、第1のガス化炉と、第2のガス化炉と、1つの燃焼炉と、1つの酸素供給源とを用いる廃棄物の乾留ガス化焼却処理方法であって、第1のガス化炉内に収容した廃棄物を、前記酸素供給源から第1のガス化炉に供給される酸素を用いて乾留して可燃性ガスを生成せしめる工程と、第1のガス化炉内に生成した可燃性ガスを前記燃焼炉に導入して、前記酸素供給源から該燃焼炉に供給される酸素を用いて燃焼せしめる工程と、第1のガス化炉内の廃棄物の乾留時に、前記燃焼炉における前記可燃性ガスの燃焼温度を予め設定された所定の燃焼温度に略一定に維持するために必要な該可燃性ガスを生成させる量の酸素を、前記酸素供給源から第1のガス化炉に供給する工程と、第1のガス化炉内の廃棄物の乾留の終了段階において、前記酸素供給源から第1のガス化炉に酸素を供給して該廃棄物を灰化しつつ、他方該酸素供給源から供給される酸素を用いて第2のガス化炉内に収容した廃棄物の乾留を開始する工程と、第2のガス化炉内に収容した廃棄物を、前記酸素供給源から第2のガス化炉に供給される酸素を用いて乾留して可燃性ガスを生成せしめる工程と、第2のガス化炉内に生成した可燃性ガスを前記燃焼炉に導入して、前記酸素供給源から該燃焼炉に供給される酸素を用いて燃焼せしめる工程と、第2のガス化炉内の廃棄物の乾留時に、前記燃焼炉における前記可燃性ガスの燃焼温度を予め設定された所定の燃焼温度に略一定に維持するために必要な該可燃性ガスを生成させる酸素を、前記酸素供給源から第2のガス化炉に供給する工程とを備え、第1のガス化炉内の廃棄物の乾留の終了段階で、第2のガス化炉内に収容した廃棄物の乾留を開始したときに、第2のガス化炉に対する酸素の供給量の増大に応じて、第1のガス化炉に対する酸素の供給量を漸減することを特徴とする。
【0012】
2台のガス化炉を用いて廃棄物の乾留ガス化焼却処理を行うときには、まず、第1のガス化炉内に収容した廃棄物を酸素供給源から第1のガス化炉に供給される酸素を用いて乾留して可燃性ガスを生成せしめる。前記廃棄物の乾留は、該廃棄物の一部を燃焼させつつ、その燃焼熱により該廃棄物の残部を乾留する。前記第1のガス化炉内に生成した可燃性ガスは、燃焼炉に導入され、前記酸素供給源から該燃焼炉に供給される酸素により燃焼せしめられる。
【0013】
このとき、第1のガス化炉内の前記廃棄物の乾留は、前記燃焼炉における可燃性ガスの燃焼温度が予め設定された所定の燃焼温度に略一定に維持するために必要な可燃性ガスを生成させる量の酸素を、前記酸素供給源から第1のガス化炉に供給することにより行われる。前記酸素供給源から第1のガス化炉への酸素の供給は、前記燃焼炉における可燃性ガスの燃焼温度が上昇傾向にあれば酸素の供給量を低減し、該燃焼温度が下降傾向にあれば酸素の供給量を増大させるようにして行われる。
【0014】
このようにして、第1のガス化炉内の前記廃棄物の乾留が進行すると、やがて乾留される廃棄物が低減し、前記酸素供給源から第1のガス化炉への酸素の供給量を増大させても、前記燃焼炉における可燃性ガスの燃焼温度を所定の燃焼温度に維持するだけの可燃性ガスを生成させることができなくなる。そして、ついには可燃性ガスが全く生成しなくなり、前記廃棄物の乾留の終了段階に至る。
【0015】
前記廃棄物の乾留が終了段階に至ったならば、第1のガス化炉内では、前記酸素供給源から供給される酸素により、該乾留が終了した廃棄物の灰化が行われ、灰化した廃棄物は炉外に排出される。次いで、第1のガス化炉には新しい廃棄物が収容されて、次の運転が準備される。
【0016】
一方、第1のガス化炉内の廃棄物の乾留の終了段階において、第2のガス化炉内では、第1のガス化炉と共通の前記酸素供給源から供給される酸素を用いて、炉内に収容した廃棄物の乾留が開始される。第2のガス化炉における前記廃棄物の乾留は、第1のガス化炉と全く同一にして行われる。そして、前記第2のガス化炉内に生成した可燃性ガスは、第1のガス化炉と共通の燃焼炉に導入して燃焼せしめられる。
【0017】
この結果、前記燃焼炉は、第1、第2の両ガス化炉から交互に可燃性ガスの供給を受けて、該可燃性ガスを燃焼させることができ、該燃焼により得られる熱を用いて温水ボイラ等の熱装置を連続して運転することができる。
【0018】
ところで、第1のガス化炉において前記廃棄物の乾留が終了した段階では、第1のガス化炉にはできるだけ多くの可燃性ガスを生成させるために、大量の酸素が供給されている。しかし、乾留が終了した廃棄物の灰化のためには、より少ない酸素量で十分である。
【0019】
また、第1のガス化炉において前記廃棄物の乾留の終了段階で、第2のガス化炉内に収容した廃棄物の乾留を開始したときには、第2のガス化炉内での前記廃棄物の燃焼状態は変動しやすく、前記酸素供給源から第2のガス化炉に供給できる酸素量に余裕があることが好ましい。
【0020】
本発明の方法では、第1、第2の両ガス化炉に対する酸素供給源は共通であるので、第1のガス化炉における前記廃棄物の乾留の終了段階で、第1のガス化炉に対する酸素の供給量を乾留が終了した廃棄物の灰化のために必要最低限の量まで低減すれば、第2のガス化炉に対する酸素の供給量に余裕ができる。しかし、第1のガス化炉に対する酸素の供給量を急減させると、前記燃焼炉の炉内圧が急変して燃焼状態が不安定になることが懸念される。また、第1のガス化炉に対する酸素の供給量を、前記廃棄物の灰化のために必要最低限の量とすると、該廃棄物の灰化のために長時間を要することが懸念される。
【0021】
そこで、本発明の方法では、第1のガス化炉内の廃棄物の乾留の終了段階で、第2のガス化炉内に収容した廃棄物の乾留を開始したときに、第2のガス化炉に対する酸素の供給量の増大に応じて、第1のガス化炉に対する酸素の供給量を漸減する。前記第1、第2のガス化炉に対する酸素の供給は、より具体的には、前記酸素供給源から第1、第2の両ガス化炉に供給される酸素量のうち、一部を第2のガス化炉に供給し、残部を第1のガス化炉に供給するようにする。
【0022】
このようにすると、前記燃焼炉では炉内圧の変化が穏やかであるので、第1、第2のガス化炉の切換に際して燃焼状態が不安定になることを避けることができる。また、第1のガス化炉では、第2のガス化炉に対する酸素の供給量の余剰分を前記乾留が終了した廃棄物の灰化に用いることができるので、該廃棄物の灰化に要する時間を短縮することができる。
【0023】
また、本発明の方法では、第2のガス化炉内の廃棄物の乾留時における第1のガス化炉内の廃棄物の灰化は、前記燃焼炉における前記可燃性ガスの燃焼温度を予め設定された所定の燃焼温度に略一定に維持するために必要な該可燃性ガスを生成させるために、前記酸素供給源から第2のガス化炉に供給される酸素量の最大量よりも所定量下回る量の酸素を、該酸素供給源から第1のガス化炉に供給して行うことを特徴とする。
【0024】
第2のガス化炉では、炉内に収容した廃棄物の乾留が安定化すると、前記燃焼炉における前記可燃性ガスの燃焼温度を予め設定された所定の燃焼温度に略一定に維持するために必要な該可燃性ガスを生成させる酸素が、前記酸素供給源から供給されるようになる。そこで、第2のガス化炉内の廃棄物の乾留時には、第1のガス化炉内の廃棄物の灰化を、前記酸素供給源から第2のガス化炉に供給される酸素量の最大量よりも所定量下回る量の酸素で行うことにより、第2のガス化炉に供給される酸素量の自由度を大きくすることができる。従って、第2のガス化炉内の前記廃棄物の燃焼状態に変動が生じた場合にも、容易に対応することができる。
【0025】
また、前記酸素供給源から第1のガス化炉に供給される酸素量を、第2のガス化炉に供給される酸素量の最大量よりも所定量下回る量で適切な量とすることにより、第1のガス化炉内の廃棄物の灰化に要する時間が長時間に及ぶことを避けることができる。
【0026】
【発明の実施の形態】
次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明する。図1は本実施形態に用いる乾留ガス化焼却処理装置のシステム構成図であり、図2は第1、第2のガス化炉において生成した可燃性ガスの燃焼炉における燃焼温度と、第1、第2のガス化炉に対する酸素供給量との経時変化を示すグラフである。
【0027】
図1に示す乾留ガス化焼却処理装置は、廃タイヤ等の廃棄物Aを収納し、その乾留・ガス化並びに燃焼・灰化を行わしめる2台のガス化炉1a,1b、ガス化炉1a,1bで廃棄物Aの乾留により生じる可燃性ガスを燃焼させる燃焼炉2、燃焼炉2における可燃性ガスの燃焼温度Tを検知する温度センサ3、各ガス化炉1a,1bに酸素(空気)を供給する酸素供給手段4、燃焼炉2に酸素(空気)を供給する酸素供給手段5を備えている。
【0028】
ガス化炉1a,1bの上面部には、開閉自在な投入扉6を有する投入口7が形成され、該投入口7から廃棄物Aがガス化炉1a,1b内に投入できるようになっている。そして、ガス化炉1a,1bは、投入扉6を閉じた状態では、その内部が実質的に外気と遮断されるようになっている。ガス化炉1a,1bの下部は空室となっており、該空室に酸素供給手段4が接続されている。そして、酸素供給手段4から前記空室に供給される酸素を複数の給気ノズル8を介してガス化炉1の内部に供給するようになっている。
【0029】
ガス化炉1a,1bの下部の側部には、点火バーナ等により構成される着火装置9が取付けられている。着火装置9は、図示しない燃料供給装置から供給される助燃油等の燃料を燃焼させることにより、ガス化炉1a,1bの内部に向かって燃焼炎を生ぜしめ、この燃焼炎によりガス化炉1a,1b内の廃棄物Aに着火するようになっている。また、ガス化炉1a,1bの外周部には、その冷却構造として該ガス化炉1a,1bの内部と隔離されたウォータジャケット10が形成され、ウォータジャケット10はガス化炉1a,1bの外部に設けられた図示しない給水装置から給水されるようになっている。
【0030】
前記燃焼炉2は、その基部(バーナ部)に各ガス化炉1a,1bの上部に設けられた接続部11から導出されたガス通路12a,12bが接続され、前記2台のガス化炉1a,1bのそれぞれから、廃棄物Aの乾留により生じる可燃性ガスが導入されるようになっている。燃焼炉2の後端部には着火装置13が取付けられ、前記ガス通路12a,12bから導入される可燃性ガスに着火するようになっている。着火装置13は、前記着火装置9と同様に点火バーナ等により構成され、図示しない燃料供給装置から供給される助燃油等の燃料を燃焼させることにより、燃焼炉2の内部に向かって燃焼炎を生ぜしめるようになっている。
【0031】
燃焼炉2の外周部は空室となっており、該空室に酸素供給手段5が接続されている。そして、酸素供給手段5から前記空室に供給される酸素を燃焼炉2の外周壁に設けられた複数のノズル孔14を介して燃焼炉2の内部に供給するようになっている。
【0032】
ガス化炉1a,1bに酸素を供給する前記酸素供給手段4は、ガス化炉1a,1bの外部に設けられた押込ファン等の酸素供給源15と、該酸素供給源15から導出された主酸素供給管16と、該主酸素供給管16から分岐されて前記ガス化炉1a,1bの下部に接続された副酸素供給管17a,17bとからなる。副酸素供給管17a,17bには温度センサ3から入力される検知信号に従って開度が調整される調整弁18a,18bが設けられている。
【0033】
また、燃焼炉2に酸素を供給する前記酸素供給手段5は、前記酸素供給源15と、該酸素供給源15から導出された主酸素供給管16と、該主酸素供給管16から分岐されて前記燃焼炉2の外周部に接続された副酸素供給管19とからなる。副酸素供給管19には温度センサ3から入力される検知信号に従って開度が調整される調整弁20が設けられている。
【0034】
そして、燃焼炉2の上部には被加熱物としての温水ボイラ21が接続され、温水ボイラ21の熱源部に燃焼炉2の燃焼熱が付与されるようになっている。
【0035】
次に、図1に示す装置による本実施形態の乾留ガス化焼却処理方法について、説明する。
【0036】
本実施形態の乾留ガス化焼却処理方法では、まず、ガス化炉1aの投入扉6が開かれて、廃棄物Aが投入口7から該ガス化炉1a内に投入される。次いで、投入扉6を閉じた後に、着火装置9が所定時間作動されることにより、ガス化炉1a内の廃棄物Aに着火され、該廃棄物Aの部分的燃焼が開始される。
【0037】
前記廃棄物Aの部分的燃焼の開始に際して、ガス化炉1aに接続された副酸素供給管17aの調整弁18aは、図2の下段に実線a1で示すように全開の20%の開度で開かれており、酸素供給源15からガス化炉1a内に比較的少量の酸素(空気)が供給される。このため、廃棄物Aの部分的燃焼は、ガス化炉1a内に存在していた酸素と、酸素供給源15から供給される比較的少量の酸素とを用いて開始される。
【0038】
このようにガス化炉1a内の廃棄物Aの下層部における部分的燃焼が開始されると、その燃焼熱により廃棄物Aの上層部の乾留が開始され、その乾留により可燃性ガスの生成が始まる。そして、ガス化炉1a内で生成した可燃性ガスは、ガス通路12aを介して燃焼炉2の基端部(バーナ部)に導入され、燃焼炉2の着火装置13により着火されて燃焼を開始する。前記可燃性ガスの燃焼熱は、燃焼炉2の上部に接続された温水ボイラ21の熱源部に付与される。
【0039】
このとき、ガス化炉1aでは、図2の下段に実線a2で示すように、副酸素供給管17aの調整弁18aの開度を、ガス化炉1aへの酸素供給量を廃棄物Aの下層部における継続的な部分的燃焼に必要な程度に制限しつつ、段階的に徐々に増大させる。このようにすると、ガス化炉1aにおける廃棄物Aの部分的燃焼は、初期には不安定になることもあるが、酸素供給源15から供給される少量の酸素を消費しつつ徐々に安定化する一方、その燃焼範囲が酸素供給源15から供給される酸素量に応じて、廃棄物Aの下層部において徐々に拡大していく。そして、廃棄物Aの下層部における燃焼の安定化に伴って、その燃焼熱による廃棄物Aの上層部の乾留も徐々に活発化して安定に進行するようになり、該乾留により生成する可燃性ガスの量も徐々に増大していく。
【0040】
この結果、図2の上段に実線a1,2で示すように、温度センサ3により検知される燃焼炉2における可燃性ガスの燃焼温度Tも上昇していく。尚、ガス化炉1aの着火装置9は、廃棄物Aの下層部における燃焼が安定化したことが確認された時点で停止される。
【0041】
次いで、温度センサ3により検知される可燃性ガスの燃焼温度Tがさらに上昇し、該可燃性ガスが自然燃焼し得る温度として予め設定された燃焼温度T1よりも僅かに低い温度T2に達すると、調整弁18aは燃焼温度Tが燃焼温度T1に略一定に維持されるように自動的にフィードバック制御される。
【0042】
具体的には、温度センサ3により検知される可燃性ガスの燃焼温度Tが燃焼温度T1より小さくなると、調整弁18aの開度を大きくしてガス化炉1aへの酸素供給量を増加させ、可燃性ガスの生成を助長する。逆に、温度センサ3により検知される可燃性ガスの燃焼温度Tが燃焼温度T1より大きくなると、調整弁18aの開度を小さくしてガス化炉1aへの酸素供給量を低減させ、可燃性ガスの生成を抑制する。このように、調整弁18aの開度をフィードバック制御することにより、図2の上段に実線a3,4で示すように、燃焼炉2における可燃性ガスの燃焼温度Tが略一定の燃焼温度T1に維持され、ガス化炉1a内の廃棄物Aの下層部の燃焼と、上層部の乾留とが安定に進行する。
【0043】
燃焼炉2における可燃性ガスの燃焼温度Tが略一定の燃焼温度T1に維持されるようになると、燃焼炉2の着火装置が停止され、該可燃性ガスは継続的に自然燃焼することとなる。尚、燃焼炉2における可燃性ガスの燃焼に際しては、温度センサ3により検知される可燃性ガスの燃焼温度Tに対応して、燃焼炉2に接続された副酸素供給管19の調整弁20の開度が自動的に調節され、該可燃性ガスの完全燃焼に必要とされる量の酸素が燃焼炉2内に供給される。
【0044】
一方、燃焼炉2における可燃性ガスの燃焼温度Tが略一定の燃焼温度T1に維持されるようになると、調整弁18aの開度は、図2の下段に実線a3で示すように、増減を繰り返しながら全体としては低減される傾向を示す。これは、ガス化炉1aで可燃性ガスが活発に生成されるため、該可燃性ガスの燃焼熱が燃焼炉2内に蓄積され、燃焼温度Tを燃焼温度T1に維持するために必要とされる該可燃性ガスの量が少なくて済むためと考えられる。
【0045】
ところが、ガス化炉1a内の乾留が進行すると、前記廃棄物のうち可燃性ガスを生成することができる部分が少なくなってくる。こうなると、調整弁18aの開度は、可燃性ガスの生成量を増大させるために、図2の下段に実線aで示すように増加する傾向を示すようになる。そして、調整弁18aの開度が全開の約90%に達すると、ガス化炉1a内での可燃性ガスの生成は殆どなくなり、可燃性ガスの燃焼温度Tは所定の燃焼温度T1を維持することができなくなって、図2の上段に実線a5,6,7で示すように下降に転じる。
【0046】
そこで、調整弁18aの開度が全開の約90%に達すると、ガス化炉1b内の廃棄物Aに着火され、該廃棄物Aの部分的燃焼が開始される。ガス化炉1b内の廃棄物Aの着火は、ガス化炉1aの場合と全く同一の手順で行われる。この結果、ガス化炉1b内の廃棄物Aの下層部における燃焼と、上層部における乾留が安定すると、調整弁18bの開度が自動的にフィードバック制御され、可燃性ガスの燃焼温度Tが燃焼温度T1に略一定に維持されるようにされる。
【0047】
ガス化炉1b内の廃棄物Aの部分的燃焼を開始したときの可燃性ガスの燃焼温度Tの経時変化を図2の上段に実線b1,2で示す。また、このときの調整弁18bの開度の変化を図2の下段に実線b1 ,b2で示す。尚、説明のために、図2の上段の実線a1,2 ,a3,4 ,a5,6,7 ,b1,2 ,b3,4 は、いずれもガス化炉1a,1bを単独で運転した場合の燃焼温度Tの変化を示している。
【0048】
一方、調整弁18aの開度が全開の約90%に達すると、ガス化炉1a内では前記廃棄物Aの乾留が終了し、灰化段階に入る。このとき、調整弁18aの開度を全開の約90%のままに維持すれば、前記廃棄物Aの灰化を短時間で終了し、速やかに次の運転の準備をすることができる。
【0049】
しかし、調整弁18aの開度が全開の約90%に達したときには、前述のようにガス化炉1b内の廃棄物Aの部分的燃焼が開始され、調整弁18bの開度が図2の下段に実線b1で示すように、全開の20%とされている。ここで、廃棄物Aの部分的燃焼はその初期には不安定であるので、ガス化炉1bに対する酸素の供給量に余裕を持たせるために調整弁18aの開度を絞ることが好ましいが、調整弁18aの開度を急激に小さくすると、燃焼炉2に供給されるガスの量も急減し、炉内圧の変動により燃焼状態が不安定になる。また、調整弁18aの開度を絞ると、ガス化炉1a内での乾留が終了した廃棄物Aの灰化に長時間を要する。
【0050】
そこで、本実施形態では、調整弁18aの開度が全開の約90%に達し、ガス化炉1b内の廃棄物Aの部分的燃焼が開始されたときに、調整弁18bの開度を全開の20%とする一方、調整弁18aの開度を図2の下段に実線a5で示すように、全開の80%とする。そして、図2の下段に実線b2で示すように、調整弁18bの開度が全開の30%、40%、・・・と増大したならば、図2の下段に実線a6で示すように、調整弁の18aの開度を全開の70%、60%、・・・となるように漸減させる。
【0051】
調整弁の18a,18bには、共通の酸素供給源15から酸素が供給されている。そこで、前記制御は、換言すれば、酸素供給源15からガス化炉1a,1bに供給される酸素量のうち、一部をガス化炉1bに供給し、残部をガス化炉1aに供給することになる。
【0052】
この結果、燃焼炉2では炉内圧の変動により燃焼状態が不安定になることを避けることができ、ガス化炉1a内の廃棄物Aの灰化に要する時間を短縮することができる。
【0053】
また、前記のように制御するときには、ガス化炉1b内における廃棄物Aの部分的燃焼が不安定になってより多くの酸素を必要とするときには、調整弁18bの開度の増大に伴って、調整弁18aの開度が遅滞なく低減される。従って、廃棄物Aの部分的燃焼を安定化するための酸素を容易に確保することができる。
【0054】
前述のようにして、ガス化炉1b内で廃棄物Aの下層部における燃焼と、上層部における乾留が安定化し、図2の上段に実線b3,4 で示すように、温度センサ3により検知される可燃性ガスの燃焼温度Tが燃焼温度T1に略一定に維持されるようになると、図2の下段に実線b3で示すように、調整弁18bが自動的にフィードバック制御されるようになる。
【0055】
このとき、調整弁18bの開度は、最大でも全開の50%程度であり、多くは50%以下の開度で前記のようにフィードバック制御される。そこで、調整弁18bが前記のようにフィードバック制御される段階では、ガス化炉1aの調整弁18aは、図2の下段に実線a7で示すように、その開度が調整弁18bの開度の最大値に対して約10%の余裕を見て全開の40%に維持され、この開度で乾留が終了した廃棄物Aの灰化が行われる。
【0056】
この結果、調整弁18bが前記のようにフィードバック制御される段階で、ガス化炉1b内の廃棄物Aの燃焼状態に変動が生じても、前記10%の余裕の範囲でガス化炉1bに対する酸素の供給量を増加させることができ、前記変動に容易に対応することができる。また、ガス化炉1a内の廃棄物Aの灰化に要する時間を短縮することができる。
【0057】
そして、ガス化炉1aの可燃性ガスによる燃焼温度Tが低下し、廃棄物Aの灰化が終了したならば、調整弁18aは閉じられる。
【0058】
この後、ガス化炉1aでは、廃棄物Aの灰化物が下部から排出され、新たな廃棄物Aが投入口7から内部に投入されることにより、次の運転が準備される。また、ガス化炉1bでは、調整弁18bの開度が全開の約90%に達し、廃棄物Aの乾留が終了して灰化段階に入ったならば、ガス化炉1aの場合と全く同じ手順で、廃棄物Aの灰化が行われる。
【0059】
この結果、本実施形態の方法によれば、2台のガス化炉1a,1bを交互に運転することにより、温水ボイラ21に対する加熱を連続して円滑に行うことができる。
【図面の簡単な説明】
【図1】本発明の方法に用いる乾留ガス化焼却処理装置の一構成例を示すシステム構成図。
【図2】第1、第2のガス化炉において生成した可燃性ガスの燃焼炉における燃焼温度と、第1、第2のガス化炉に対する酸素供給量との経時変化を示すグラフ。
【符号の説明】
1a…第1のガス化炉、 1b…第2のガス化炉、 2…燃焼炉、 15…酸素供給源、 A…廃棄物。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for incinerating a waste such as a waste tire by dry distillation.
[0002]
[Prior art]
As a method for incinerating waste such as waste tires, for example, while burning a part of the waste stored in the gasification furnace, the remainder of the waste is dry-distilled (pyrolysis) by the combustion heat, A method is known in which combustible gas generated by dry distillation is introduced from a gasification furnace into a combustion furnace and burned. In the method, the combustion temperature of the combustible gas in the combustion furnace is detected, and the oxygen supply amount to the gasifier is adjusted so that the combustible gas is combusted at a preset combustion temperature. It is known that feedback control of dry distillation gasification in the gasification furnace is performed (see, for example, Patent Document 1).
[0003]
In the incineration processing method, the combustion heat obtained in the combustion furnace can be used as a heat source of a heat device such as a hot water boiler. At this time, since the incineration processing method is batch processing, for example, a method of operating two gasifiers alternately is known in order to continuously operate the heat device (see, for example, Patent Document 2).
[0004]
When the two gasifiers are operated alternately, the waste stored in the second gasifier at the end of the dry distillation of the waste stored in the first gasifier. Start dry distillation. On the other hand, in the first gasification furnace, following the completion of the dry distillation of the waste, the waste is completely ashed and discharged to the outside of the furnace. Driving is prepared.
[0005]
By the way, in the method of operating the first and second gasification furnaces alternately, the combustible gas generated in each gasification furnace is introduced into a common combustion furnace in order to simplify the apparatus configuration. ing. Further, an oxygen supply source such as a push-in fan that supplies oxygen to each gasification furnace and the combustion furnace is also shared. The oxygen supply amount for each gasification furnace is adjusted by adjusting the opening of an adjustment valve provided in a conduit connecting the oxygen supply source such as a push-in fan and each gasification furnace.
[0006]
Therefore, conventionally, at the end stage of the dry distillation of the waste housed in the first gasification furnace, the opening of the regulating valve for supplying oxygen to the second gasification furnace is reduced, and the second The carbonization of the waste stored in the gasification furnace is started. Then, when the carbonization of the waste housed in the second gasification furnace is started, the opening degree of the regulating valve for supplying oxygen to the second gasification furnace is gradually increased to increase the second Gradually increase the oxygen supply to the gasifier.
[0007]
On the other hand, in the first gasification furnace, at the end stage of the dry distillation of the waste housed in the furnace, the opening degree of the regulating valve for supplying oxygen to the first gasification furnace is almost fully open. Yes. However, if the carbonization of the waste stored in the second gasification furnace is started, the degree of freedom of the amount of oxygen that can be used for the carbonization of the waste in the second gasification furnace is relatively high. It is necessary to reduce the degree of opening of the regulating valve that supplies oxygen to the first gasification furnace so that it can be increased and easily cope with fluctuations in the combustion state of the waste in the second gasification furnace.
[0008]
However, if the opening of the regulating valve that supplies oxygen to the first gasification furnace is reduced, the furnace pressure of the combustion furnace changes suddenly, and combustion of the combustible gas in the combustion furnace becomes unstable. There is a disadvantage that it takes a long time to incinerate the waste that has undergone dry distillation in the first gasification furnace, which may hinder the next operation. For this reason, it is difficult to adjust the oxygen supply amount at the end of the dry distillation of the waste housed in the first gasification furnace.
[0009]
[Patent Document 1]
JP-A-2-135280
[Patent Document 2]
JP-A-8-334218
[0010]
[Problems to be solved by the invention]
The present invention eliminates such inconveniences, and when the two gasifiers are operated alternately, the combustion state of the combustion furnace does not become unstable when switching between the two gasifiers. An object of the present invention is to provide a dry distillation gasification incineration processing method for waste that can shorten the time required for ashing the completed waste.
[0011]
[Means for Solving the Problems]
In order to achieve this object, the present invention provides: A waste gasification incineration method using a first gasification furnace, a second gasification furnace, one combustion furnace, and one oxygen supply source, The waste housed in the first gasifier is Said A step of producing a flammable gas by dry distillation using oxygen supplied from an oxygen supply source to the first gasifier, and a flammable gas generated in the first gasifier Said Introducing the combustible gas in the combustion furnace into the combustion furnace, and burning the oxygen in the combustion furnace using oxygen supplied from the oxygen supply source to the combustion furnace; Supplying an amount of oxygen required to generate the combustible gas necessary to maintain the combustion temperature of the gas at a predetermined combustion temperature substantially constant from the oxygen supply source to the first gasification furnace; In the final stage of the carbonization of the waste in the first gasification furnace, oxygen is supplied from the oxygen supply source to the first gasification furnace to ash the waste, and supplied from the oxygen supply source. A step of starting dry distillation of the waste housed in the second gasification furnace using the generated oxygen, and the waste gas housed in the second gasification furnace from the oxygen supply source to the second gasification A step of producing a combustible gas by dry distillation using oxygen supplied to the furnace; Introducing a combustible gas generated in the gasification furnace into the combustion furnace and burning it using oxygen supplied from the oxygen supply source to the combustion furnace; and waste in the second gasification furnace During the dry distillation, oxygen that generates the combustible gas necessary for maintaining the combustion temperature of the combustible gas in the combustion furnace at a predetermined predetermined combustion temperature substantially constant is obtained from the oxygen supply source. Supplying the gasification furnace of No. 2 and With When the carbonization of the waste housed in the second gasification furnace is started at the end stage of the carbonization of the waste in the first gasification furnace, the supply amount of oxygen to the second gasification furnace is increased. Accordingly, the supply amount of oxygen to the first gasification furnace is gradually reduced.
[0012]
When performing dry distillation gasification incineration processing of waste using two gasification furnaces, first, the waste housed in the first gasification furnace is supplied from the oxygen supply source to the first gasification furnace. Carbonized with oxygen to produce combustible gas. In the carbonization of the waste, a part of the waste is combusted, and the remainder of the waste is carbonized by the heat of combustion. The combustible gas produced | generated in the said 1st gasification furnace is introduce | transduced into a combustion furnace, and is burned with the oxygen supplied to this combustion furnace from the said oxygen supply source.
[0013]
At this time, the carbonization of the waste in the first gasification furnace is performed by the combustible gas necessary for maintaining the combustion temperature of the combustible gas in the combustion furnace at a predetermined combustion temperature that is set in advance. This is performed by supplying an amount of oxygen to generate the first gasifier from the oxygen supply source. The supply of oxygen from the oxygen supply source to the first gasification furnace is to reduce the supply amount of oxygen if the combustion temperature of the combustible gas in the combustion furnace tends to increase, and the combustion temperature tends to decrease. For example, the oxygen supply amount is increased.
[0014]
Thus, as the carbonization of the waste in the first gasification furnace proceeds, the waste that is carbonized in the course of time decreases, and the amount of oxygen supplied from the oxygen supply source to the first gasification furnace is reduced. Even if it is increased, it becomes impossible to generate a combustible gas sufficient to maintain the combustion temperature of the combustible gas in the combustion furnace at a predetermined combustion temperature. Eventually, no combustible gas is generated at all, and the final stage of the carbonization of the waste is reached.
[0015]
If the dry distillation of the waste has reached the end stage, the waste that has completed the dry distillation is ashed by the oxygen supplied from the oxygen supply source in the first gasification furnace, and ashing is performed. Waste generated is discharged outside the furnace. The first gasifier then contains new waste and is ready for the next operation.
[0016]
On the other hand, in the final stage of the dry distillation of the waste in the first gasification furnace, in the second gasification furnace, using oxygen supplied from the oxygen supply source common to the first gasification furnace, Carbonization of waste stored in the furnace is started. The carbonization of the waste in the second gasification furnace is performed in exactly the same manner as in the first gasification furnace. And the combustible gas produced | generated in the said 2nd gasification furnace is introduce | transduced into a combustion furnace common with a 1st gasification furnace, and is burned.
[0017]
As a result, the combustion furnace can alternately receive the supply of combustible gas from both the first and second gasification furnaces to burn the combustible gas, and use the heat obtained by the combustion. A heat device such as a hot water boiler can be operated continuously.
[0018]
By the way, at the stage where the carbonization of the waste is completed in the first gasification furnace, a large amount of oxygen is supplied to the first gasification furnace in order to generate as much combustible gas as possible. However, a smaller amount of oxygen is sufficient for the ashing of the waste after the dry distillation.
[0019]
Further, when the carbonization of the waste housed in the second gasification furnace is started at the end stage of the carbonization of the waste in the first gasification furnace, the waste in the second gasification furnace is started. It is preferable that the combustion state of this is easy to fluctuate and there is a margin in the amount of oxygen that can be supplied from the oxygen supply source to the second gasifier.
[0020]
In the method of the present invention, since the oxygen supply source for both the first and second gasifiers is the same, at the end of the dry distillation of the waste in the first gasifier, the first gasifier is supplied. If the supply amount of oxygen is reduced to the minimum amount necessary for ashing the waste after the dry distillation, the supply amount of oxygen to the second gasification furnace can be afforded. However, if the supply amount of oxygen to the first gasification furnace is suddenly reduced, there is a concern that the internal pressure of the combustion furnace changes suddenly and the combustion state becomes unstable. Further, if the amount of oxygen supplied to the first gasification furnace is the minimum amount necessary for the ashing of the waste, there is a concern that it takes a long time for the ashing of the waste. .
[0021]
Therefore, in the method of the present invention, the second gasification is started when the carbonization of the waste housed in the second gasification furnace is started at the end of the carbonization of the waste in the first gasification furnace. The supply amount of oxygen to the first gasification furnace is gradually decreased in accordance with the increase in the supply amount of oxygen to the furnace. More specifically, the supply of oxygen to the first and second gasification furnaces is performed by using a part of the amount of oxygen supplied from the oxygen supply source to the first and second gasification furnaces. 2 is supplied to the first gasifier and the remainder is supplied to the first gasifier.
[0022]
In this case, since the change in the furnace pressure is gentle in the combustion furnace, the combustion state can be avoided from becoming unstable when the first and second gasification furnaces are switched. Further, in the first gasification furnace, the surplus of the amount of oxygen supplied to the second gasification furnace can be used for the ashing of the waste after the dry distillation, and thus it is necessary for the ashing of the waste. Time can be shortened.
[0023]
In the method of the present invention, the ashing of the waste in the first gasification furnace during the dry distillation of the waste in the second gasification furnace is performed by setting the combustion temperature of the combustible gas in the combustion furnace in advance. In order to generate the combustible gas necessary for maintaining the predetermined combustion temperature that is set to be substantially constant, the oxygen amount supplied from the oxygen supply source to the second gasification furnace is greater than the maximum amount of oxygen. It is characterized in that it is carried out by supplying an amount less than a fixed amount of oxygen from the oxygen supply source to the first gasifier.
[0024]
In the second gasification furnace, when the dry distillation of the waste stored in the furnace is stabilized, the combustion temperature of the combustible gas in the combustion furnace is maintained substantially constant at a predetermined combustion temperature set in advance. Oxygen that generates the necessary combustible gas is supplied from the oxygen supply source. Therefore, during the dry distillation of the waste in the second gasification furnace, the ashing of the waste in the first gasification furnace is performed to reduce the amount of oxygen supplied from the oxygen supply source to the second gasification furnace. By performing with a quantity of oxygen that is lower than a large quantity by a predetermined quantity, the degree of freedom of the quantity of oxygen supplied to the second gasification furnace can be increased. Therefore, even when the combustion state of the waste in the second gasification furnace varies, it can be easily handled.
[0025]
Further, by setting the oxygen amount supplied from the oxygen supply source to the first gasification furnace to an appropriate amount that is a predetermined amount lower than the maximum amount of oxygen supplied to the second gasification furnace. The time required for ashing the waste in the first gasification furnace can be prevented from extending for a long time.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is a system configuration diagram of a dry distillation gasification incineration processing apparatus used in the present embodiment, and FIG. 2 shows combustion temperatures of combustible gases generated in the first and second gasification furnaces, It is a graph which shows a time-dependent change with the oxygen supply amount with respect to a 2nd gasification furnace.
[0027]
The dry distillation gasification incineration apparatus shown in FIG. 1 contains two gasification furnaces 1a and 1b and a gasification furnace 1a for storing waste A such as waste tires and performing the dry distillation / gasification and combustion / ashing thereof. , 1b, a combustion furnace 2 for burning a combustible gas generated by dry distillation of waste A, a temperature sensor 3 for detecting a combustion temperature T of the combustible gas in the combustion furnace 2, and oxygen (air) in each gasification furnace 1a, 1b Oxygen supply means 4 for supplying oxygen, and oxygen supply means 5 for supplying oxygen (air) to the combustion furnace 2.
[0028]
An inlet 7 having an openable / closable inlet door 6 is formed on the upper surface of the gasifier 1a, 1b, and waste A can be introduced into the gasifier 1a, 1b from the inlet 7. Yes. The gasification furnaces 1a and 1b are substantially shut off from the outside air when the charging door 6 is closed. The lower portions of the gasification furnaces 1a and 1b are vacant, and the oxygen supply means 4 is connected to the vacant chambers. The oxygen supplied from the oxygen supply means 4 to the vacant chamber is supplied into the gasification furnace 1 through a plurality of supply nozzles 8.
[0029]
An ignition device 9 composed of an ignition burner or the like is attached to the lower side portions of the gasification furnaces 1a and 1b. The ignition device 9 generates a combustion flame toward the inside of the gasification furnaces 1a and 1b by burning fuel such as auxiliary combustion oil supplied from a fuel supply device (not shown), and the gasification furnace 1a is generated by the combustion flame. , 1b to ignite the waste A. Further, a water jacket 10 isolated from the inside of the gasification furnaces 1a and 1b is formed on the outer periphery of the gasification furnaces 1a and 1b as a cooling structure, and the water jacket 10 is external to the gasification furnaces 1a and 1b. The water is supplied from a water supply device (not shown) provided in.
[0030]
In the combustion furnace 2, gas passages 12a and 12b led out from connecting portions 11 provided at the upper portions of the gasification furnaces 1a and 1b are connected to the base parts (burner parts), and the two gasification furnaces 1a are connected. , 1b, combustible gas generated by dry distillation of the waste A is introduced. An ignition device 13 is attached to the rear end portion of the combustion furnace 2 so as to ignite the combustible gas introduced from the gas passages 12a and 12b. The ignition device 13 is configured by an ignition burner or the like, similar to the ignition device 9, and burns fuel such as auxiliary combustion oil supplied from a fuel supply device (not shown) to burn a combustion flame toward the inside of the combustion furnace 2. It is supposed to give birth.
[0031]
An outer peripheral portion of the combustion furnace 2 is a vacant chamber, and an oxygen supply means 5 is connected to the vacant chamber. The oxygen supplied from the oxygen supply means 5 to the vacant chamber is supplied into the combustion furnace 2 through a plurality of nozzle holes 14 provided on the outer peripheral wall of the combustion furnace 2.
[0032]
The oxygen supply means 4 for supplying oxygen to the gasification furnaces 1a and 1b includes an oxygen supply source 15 such as a push-in fan provided outside the gasification furnaces 1a and 1b, and a main lead derived from the oxygen supply source 15. An oxygen supply pipe 16 and auxiliary oxygen supply pipes 17a and 17b branched from the main oxygen supply pipe 16 and connected to the lower portions of the gasification furnaces 1a and 1b. The auxiliary oxygen supply pipes 17a and 17b are provided with adjusting valves 18a and 18b whose opening degree is adjusted in accordance with a detection signal input from the temperature sensor 3.
[0033]
The oxygen supply means 5 for supplying oxygen to the combustion furnace 2 is branched from the oxygen supply source 15, a main oxygen supply pipe 16 led out from the oxygen supply source 15, and the main oxygen supply pipe 16. The auxiliary oxygen supply pipe 19 is connected to the outer periphery of the combustion furnace 2. The sub oxygen supply pipe 19 is provided with an adjustment valve 20 whose opening degree is adjusted according to a detection signal input from the temperature sensor 3.
[0034]
And the hot water boiler 21 as a to-be-heated material is connected to the upper part of the combustion furnace 2, and the combustion heat of the combustion furnace 2 is provided to the heat source part of the hot water boiler 21.
[0035]
Next, the dry distillation gasification incineration processing method of this embodiment by the apparatus shown in FIG. 1 will be described.
[0036]
In the dry distillation gasification incineration method of the present embodiment, first, the charging door 6 of the gasification furnace 1a is opened, and the waste A is charged into the gasification furnace 1a from the charging port 7. Next, after the closing door 6 is closed, the ignition device 9 is operated for a predetermined time, whereby the waste A in the gasification furnace 1a is ignited and partial combustion of the waste A is started.
[0037]
At the start of the partial combustion of the waste A, the regulating valve 18a of the auxiliary oxygen supply pipe 17a connected to the gasifier 1a is shown in the lower part of FIG. 1 As shown in FIG. 2, the opening is 20% of the fully open position, and a relatively small amount of oxygen (air) is supplied from the oxygen supply source 15 into the gasification furnace 1a. For this reason, the partial combustion of the waste A is started using oxygen that was present in the gasification furnace 1 a and a relatively small amount of oxygen supplied from the oxygen supply source 15.
[0038]
Thus, when partial combustion in the lower layer part of the waste A in the gasification furnace 1a is started, dry distillation of the upper layer part of the waste A is started by the combustion heat, and generation of combustible gas by the dry distillation. Begins. And the combustible gas produced | generated in the gasification furnace 1a is introduce | transduced into the base end part (burner part) of the combustion furnace 2 via the gas passage 12a, is ignited by the ignition device 13 of the combustion furnace 2, and starts combustion To do. The combustion heat of the combustible gas is applied to the heat source part of the hot water boiler 21 connected to the upper part of the combustion furnace 2.
[0039]
At this time, in the gasifier 1a, a solid line a 2 As shown, the opening of the regulating valve 18a of the sub-oxygen supply pipe 17a is limited to the extent necessary for continuous partial combustion in the lower layer part of the waste A with the oxygen supply amount to the gasification furnace 1a. , Gradually increase in steps. In this way, the partial combustion of the waste A in the gasification furnace 1a may become unstable in the initial stage, but gradually stabilizes while consuming a small amount of oxygen supplied from the oxygen supply source 15. On the other hand, the combustion range gradually expands in the lower layer portion of the waste A according to the amount of oxygen supplied from the oxygen supply source 15. And with the stabilization of combustion in the lower layer part of the waste A, the dry distillation of the upper layer part of the waste A by the combustion heat is gradually activated and proceeds stably, and the combustibility generated by the dry distillation. The amount of gas will also increase gradually.
[0040]
As a result, a solid line a in the upper part of FIG. 1,2 As shown, the combustion temperature T of the combustible gas in the combustion furnace 2 detected by the temperature sensor 3 also increases. The ignition device 9 of the gasification furnace 1a is stopped when it is confirmed that the combustion in the lower layer portion of the waste A is stabilized.
[0041]
Next, the combustion temperature T of the combustible gas detected by the temperature sensor 3 further increases, and the combustion temperature T set in advance as a temperature at which the combustible gas can spontaneously combust. 1 Slightly lower temperature T 2 , The regulating valve 18a causes the combustion temperature T to change to the combustion temperature T. 1 The feedback control is automatically performed so as to be maintained substantially constant.
[0042]
Specifically, the combustion temperature T of the combustible gas detected by the temperature sensor 3 is the combustion temperature T. 1 If it becomes smaller, the opening degree of the regulating valve 18a is increased to increase the amount of oxygen supplied to the gasifier 1a, thereby promoting the generation of combustible gas. Conversely, the combustion temperature T of the combustible gas detected by the temperature sensor 3 is the combustion temperature T. 1 When it becomes larger, the opening of the regulating valve 18a is reduced to reduce the amount of oxygen supplied to the gasifier 1a, thereby suppressing the generation of combustible gas. Thus, by performing feedback control of the opening degree of the regulating valve 18a, a solid line a 3,4 As shown, the combustion temperature T of the combustible gas in the combustion furnace 2 is substantially constant. 1 The combustion of the lower layer portion of the waste A in the gasification furnace 1a and the dry distillation of the upper layer portion proceed stably.
[0043]
Combustion temperature T of combustible gas in combustion furnace 2 is substantially constant 1 When the temperature is maintained, the ignition device of the combustion furnace 2 is stopped, and the combustible gas is continuously spontaneously combusted. When combusting the combustible gas in the combustion furnace 2, the adjustment valve 20 of the auxiliary oxygen supply pipe 19 connected to the combustion furnace 2 corresponds to the combustion temperature T of the combustible gas detected by the temperature sensor 3. The opening degree is automatically adjusted, and the amount of oxygen required for complete combustion of the combustible gas is supplied into the combustion furnace 2.
[0044]
On the other hand, the combustion temperature T of the combustible gas in the combustion furnace 2 is substantially constant. 1 2, the opening of the regulating valve 18a is indicated by a solid line a in the lower part of FIG. Three As shown by, it shows a tendency to be reduced as a whole while repeating increase and decrease. This is because combustible gas is actively generated in the gasification furnace 1a, so that the combustion heat of the combustible gas is accumulated in the combustion furnace 2, and the combustion temperature T is set to the combustion temperature T. 1 This is considered to be because the amount of the combustible gas required for maintaining the temperature is small.
[0045]
However, as dry distillation in the gasification furnace 1a proceeds, the portion of the waste that can generate combustible gas decreases. In this case, the opening of the regulating valve 18a is set to a solid line a in the lower part of FIG. 2 in order to increase the amount of combustible gas generated. 4 As shown in FIG. When the opening degree of the regulating valve 18a reaches about 90% of the fully opened state, almost no combustible gas is generated in the gasification furnace 1a, and the combustion temperature T of the combustible gas is a predetermined combustion temperature T. 1 Can not be maintained, the solid line a in the upper part of FIG. 5,6,7 Turn down as shown by.
[0046]
Therefore, when the opening degree of the regulating valve 18a reaches about 90% of full opening, the waste A in the gasification furnace 1b is ignited and partial combustion of the waste A is started. The ignition of the waste A in the gasification furnace 1b is performed in exactly the same procedure as in the gasification furnace 1a. As a result, when the combustion of the waste A in the gasification furnace 1b in the lower layer and the dry distillation in the upper layer are stabilized, the opening degree of the regulating valve 18b is automatically feedback controlled, and the combustion temperature T of the combustible gas is combusted. Temperature T 1 To be kept substantially constant.
[0047]
The change over time in the combustion temperature T of the combustible gas when the partial combustion of the waste A in the gasification furnace 1b is started is shown by the solid line b in the upper part of FIG. 1,2 It shows with. Further, the change in the opening degree of the regulating valve 18b at this time is shown by a solid line b in the lower part of FIG. 1 , B 2 It shows with. For the sake of explanation, the solid line a in the upper part of FIG. 1,2 , A 3,4 , A 5,6,7 , B 1,2 , B 3,4 These show changes in the combustion temperature T when the gasification furnaces 1a and 1b are operated independently.
[0048]
On the other hand, when the opening degree of the regulating valve 18a reaches about 90% of full opening, the dry distillation of the waste A is completed in the gasification furnace 1a and the ashing stage is started. At this time, if the opening degree of the regulating valve 18a is maintained at about 90% of the fully open state, the ashing of the waste A can be completed in a short time, and preparation for the next operation can be made promptly.
[0049]
However, when the opening degree of the regulating valve 18a reaches about 90% of full opening, the partial combustion of the waste A in the gasification furnace 1b is started as described above, and the opening degree of the regulating valve 18b is as shown in FIG. Solid line b at the bottom 1 As shown by 20%, it is 20% of full opening. Here, since the partial combustion of the waste A is unstable in the initial stage, it is preferable to reduce the opening of the regulating valve 18a in order to provide a margin for the amount of oxygen supplied to the gasifier 1b. If the opening degree of the regulating valve 18a is rapidly reduced, the amount of gas supplied to the combustion furnace 2 is also rapidly reduced, and the combustion state becomes unstable due to fluctuations in the furnace pressure. Moreover, if the opening degree of the regulating valve 18a is reduced, it takes a long time for the ashing of the waste A after the dry distillation in the gasification furnace 1a is completed.
[0050]
Therefore, in this embodiment, when the opening degree of the regulating valve 18a reaches about 90% of the fully opened state and the partial combustion of the waste A in the gasification furnace 1b is started, the opening degree of the regulating valve 18b is fully opened. On the other hand, the opening of the regulating valve 18a is shown in the lower line of FIG. Five As shown in FIG. And in the lower part of FIG. 2 As shown in FIG. 2, if the opening degree of the regulating valve 18b increases to 30%, 40%,. 6 As shown, the opening of the regulating valve 18a is gradually reduced to 70%, 60%,.
[0051]
Oxygen is supplied from the common oxygen supply source 15 to the regulating valves 18a and 18b. Therefore, in other words, the control supplies a part of the amount of oxygen supplied from the oxygen supply source 15 to the gasification furnaces 1a and 1b to the gasification furnace 1b, and supplies the remaining part to the gasification furnace 1a. It will be.
[0052]
As a result, in the combustion furnace 2, it is possible to avoid the combustion state from becoming unstable due to fluctuations in the furnace pressure, and it is possible to shorten the time required for ashing the waste A in the gasification furnace 1a.
[0053]
When the control is performed as described above, when partial combustion of the waste A in the gasification furnace 1b becomes unstable and more oxygen is required, the opening of the regulating valve 18b increases. The opening degree of the regulating valve 18a is reduced without delay. Therefore, oxygen for stabilizing the partial combustion of the waste A can be easily secured.
[0054]
As described above, the combustion in the lower layer portion of the waste A and the dry distillation in the upper layer portion are stabilized in the gasification furnace 1b. 3,4 The combustion temperature T of the combustible gas detected by the temperature sensor 3 is represented by the combustion temperature T 1 2 is maintained at a substantially constant level, a solid line b in the lower part of FIG. Three As shown, the control valve 18b is automatically feedback-controlled.
[0055]
At this time, the opening degree of the regulating valve 18b is about 50% of full opening at most, and many are feedback-controlled as described above with an opening degree of 50% or less. Therefore, at the stage where the regulating valve 18b is feedback-controlled as described above, the regulating valve 18a of the gasifier 1a is shown in the lower line of FIG. 7 As shown, the opening of the waste A is maintained at 40% of full opening with a margin of about 10% with respect to the maximum value of the opening of the regulating valve 18b. Is done.
[0056]
As a result, even if the combustion state of the waste A in the gasification furnace 1b varies at the stage where the regulating valve 18b is feedback-controlled as described above, the gasification furnace 1b has a margin of 10%. It is possible to increase the supply amount of oxygen and easily cope with the fluctuation. Further, the time required for ashing the waste A in the gasification furnace 1a can be shortened.
[0057]
And if the combustion temperature T by the combustible gas of the gasification furnace 1a falls and ashing of the waste A is complete | finished, the adjustment valve 18a will be closed.
[0058]
Thereafter, in the gasification furnace 1a, the ash of the waste A is discharged from the lower part, and the new operation of the waste A is introduced into the inside through the inlet 7, whereby the next operation is prepared. Further, in the gasification furnace 1b, when the opening degree of the regulating valve 18b reaches about 90% of the full opening, and the dry distillation of the waste A is completed and the ashing stage is started, the same as in the gasification furnace 1a. In the procedure, the waste A is incinerated.
[0059]
As a result, according to the method of the present embodiment, the hot water boiler 21 can be continuously and smoothly heated by alternately operating the two gasifiers 1a and 1b.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram showing a configuration example of a dry distillation gasification incineration processing apparatus used in a method of the present invention.
FIG. 2 is a graph showing a change over time in the combustion temperature of the combustible gas generated in the first and second gasification furnaces and the oxygen supply amount to the first and second gasification furnaces.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1a ... 1st gasification furnace, 1b ... 2nd gasification furnace, 2 ... Combustion furnace, 15 ... Oxygen supply source, A ... Waste.

Claims (3)

第1のガス化炉と、第2のガス化炉と、1つの燃焼炉と、1つの酸素供給源とを用いる廃棄物の乾留ガス化焼却処理方法であって、
第1のガス化炉内に収容した廃棄物を、前記酸素供給源から第1のガス化炉に供給される酸素を用いて乾留して可燃性ガスを生成せしめる工程と、
第1のガス化炉内に生成した可燃性ガスを前記燃焼炉に導入して、前記酸素供給源から該燃焼炉に供給される酸素を用いて燃焼せしめる工程と、
第1のガス化炉内の廃棄物の乾留時に、前記燃焼炉における前記可燃性ガスの燃焼温度を予め設定された所定の燃焼温度に略一定に維持するために必要な該可燃性ガスを生成させる量の酸素を、前記酸素供給源から第1のガス化炉に供給する工程と、
第1のガス化炉内の廃棄物の乾留の終了段階において、前記酸素供給源から第1のガス化炉に酸素を供給して該廃棄物を灰化しつつ、他方該酸素供給源から供給される酸素を用いて第2のガス化炉内に収容した廃棄物の乾留を開始する工程と、
第2のガス化炉内に収容した廃棄物を、前記酸素供給源から第2のガス化炉に供給される酸素を用いて乾留して可燃性ガスを生成せしめる工程と、
第2のガス化炉内に生成した可燃性ガスを前記燃焼炉に導入して、前記酸素供給源から該燃焼炉に供給される酸素を用いて燃焼せしめる工程と、
第2のガス化炉内の廃棄物の乾留時に、前記燃焼炉における前記可燃性ガスの燃焼温度を予め設定された所定の燃焼温度に略一定に維持するために必要な該可燃性ガスを生成させる酸素を、前記酸素供給源から第2のガス化炉に供給する工程とを備え、
第1のガス化炉内の廃棄物の乾留の終了段階で、第2のガス化炉内に収容した廃棄物の乾留を開始したときに、第2のガス化炉に対する酸素の供給量の増大に応じて、第1のガス化炉に対する酸素の供給量を漸減することを特徴とする廃棄物の乾留ガス化焼却処理方法。
A waste gasification incineration method using a first gasification furnace, a second gasification furnace, one combustion furnace, and one oxygen supply source,
A step allowed to produce a combustible gas waste accommodated in the first gasification furnace, and dry distillation with the oxygen supplied from the oxygen supply to the first gasifier,
A step of the combustible gas produced in the first gasification furnace is introduced into the combustion furnace, allowed to burn with oxygen supplied to the combustion furnace from the oxygen supply,
At the time of dry distillation of the waste in the first gasification furnace, the combustible gas necessary for maintaining the combustion temperature of the combustible gas in the combustion furnace at a predetermined combustion temperature set in advance is substantially constant. Supplying an amount of oxygen to the first gasifier from the oxygen source;
At the end stage of the carbonization of waste in the first gasification furnace, oxygen is supplied from the oxygen supply source to the first gasification furnace to ash the waste, while being supplied from the oxygen supply source. Starting carbonization of the waste contained in the second gasification furnace using oxygen,
A step of producing a flammable gas by dry distillation of the waste housed in the second gasification furnace using oxygen supplied from the oxygen supply source to the second gasification furnace;
Introducing a combustible gas generated in a second gasification furnace into the combustion furnace, and combusting using oxygen supplied from the oxygen supply source to the combustion furnace;
When the waste in the second gasification furnace is dry-distilled, the combustible gas necessary for maintaining the combustion temperature of the combustible gas in the combustion furnace at a predetermined combustion temperature set in advance is substantially constant. Supplying oxygen to be supplied from the oxygen supply source to the second gasification furnace ,
When the carbonization of the waste housed in the second gasification furnace is started at the end stage of the carbonization of the waste in the first gasification furnace, the supply amount of oxygen to the second gasification furnace is increased. In accordance with the method, a dry distillation gasification incineration method of waste, characterized in that the supply amount of oxygen to the first gasification furnace is gradually reduced.
第1のガス化炉内の廃棄物の乾留の終了段階で、第2のガス化炉内に収容した廃棄物の乾留を開始したときに、前記酸素供給源から第1、第2の両ガス化炉に供給される酸素量のうち、一部を第2のガス化炉に供給し、残部を第1のガス化炉に供給することを特徴とする請求項1記載の廃棄物の乾留ガス化焼却処理方法。When the carbonization of the waste contained in the second gasification furnace is started at the end stage of the carbonization of the waste in the first gasification furnace, both the first and second gases are supplied from the oxygen supply source. 2. The waste dry distillation gas according to claim 1, wherein a part of the amount of oxygen supplied to the gasification furnace is supplied to the second gasification furnace, and the remainder is supplied to the first gasification furnace. Incineration processing method. 第2のガス化炉内の廃棄物の乾留時における第1のガス化炉内の廃棄物の灰化は、前記燃焼炉における前記可燃性ガスの燃焼温度を予め設定された所定の燃焼温度に略一定に維持するために必要な該可燃性ガスを生成させるために前記酸素供給源から第2のガス化炉に供給される酸素量の最大量よりも所定量下回る量の酸素を、該酸素供給源から第1のガス化炉に供給して行うことを特徴とする請求項1または請求項2記載の廃棄物の乾留ガス化焼却処理方法。The ashing of the waste in the first gasification furnace during the dry distillation of the waste in the second gasification furnace is performed by setting the combustion temperature of the combustible gas in the combustion furnace to a predetermined combustion temperature set in advance. In order to generate the combustible gas necessary for maintaining substantially constant, an amount of oxygen lower than the maximum amount of oxygen supplied from the oxygen supply source to the second gasifier is reduced by the oxygen. 3. The dry distillation gasification incineration method for waste according to claim 1, wherein the waste gasification incineration is performed by supplying the first gasification furnace from a supply source.
JP2003176780A 2003-06-20 2003-06-20 Waste gasification incineration treatment method of waste Expired - Fee Related JP4050189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003176780A JP4050189B2 (en) 2003-06-20 2003-06-20 Waste gasification incineration treatment method of waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003176780A JP4050189B2 (en) 2003-06-20 2003-06-20 Waste gasification incineration treatment method of waste

Publications (2)

Publication Number Publication Date
JP2005009830A JP2005009830A (en) 2005-01-13
JP4050189B2 true JP4050189B2 (en) 2008-02-20

Family

ID=34099561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003176780A Expired - Fee Related JP4050189B2 (en) 2003-06-20 2003-06-20 Waste gasification incineration treatment method of waste

Country Status (1)

Country Link
JP (1) JP4050189B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050710A (en) * 2014-08-29 2016-04-11 株式会社キンセイ産業 Dry distillation gasification incineration processing method for waste
KR20180108692A (en) 2016-01-29 2018-10-04 긴세이 산교 씨오., 엘티디. Waste gasification incineration treatment method of waste

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2347910T3 (en) * 2005-09-27 2010-11-25 W.C. Heraeus Gmbh PROCEDURE AND DEVICE FOR THE TREATMENT OF MATERIALS CONTAINING NOBLE METALS.
WO2009069592A1 (en) * 2007-11-27 2009-06-04 Altis Co., Ltd. Thermal decomposition system and thermal decomposition method
JP2011220615A (en) * 2010-04-09 2011-11-04 Takuma Co Ltd Heat utilization method of liquid containing combustible organic substance of low concentration and heat utilization system thereof
JP5963306B2 (en) * 2012-08-07 2016-08-03 株式会社キンセイ産業 Dry distillation gasifier
JP7272630B2 (en) * 2019-02-18 2023-05-12 株式会社キンセイ産業 Ash removal method and ash removal system for dry distillation gasification incineration treatment equipment

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050710A (en) * 2014-08-29 2016-04-11 株式会社キンセイ産業 Dry distillation gasification incineration processing method for waste
KR20180108692A (en) 2016-01-29 2018-10-04 긴세이 산교 씨오., 엘티디. Waste gasification incineration treatment method of waste
US10612777B2 (en) 2016-01-29 2020-04-07 Kinsei Sangyo Co., Ltd. Dry distillation gasification waste incineration method

Also Published As

Publication number Publication date
JP2005009830A (en) 2005-01-13

Similar Documents

Publication Publication Date Title
US5619938A (en) Method of incinerating waste material by way of dry distillation and gasification
US5213051A (en) Apparatus for incinerating waste material
JP5762713B2 (en) Dry distillation gasification incineration processing equipment
JP4050189B2 (en) Waste gasification incineration treatment method of waste
CN108603662B (en) Dry distillation gasification incineration treatment method for waste
US5653180A (en) Apparatus for incinerating waste material by dry distillation & gasification
JP4224551B2 (en) Dry distillation incinerator and operating method thereof
JP2856693B2 (en) Waste incineration method
JP3152586B2 (en) Dry distillation gasification and incineration of waste
JP5890050B2 (en) Dry distillation gasification incineration processing equipment
JP4139360B2 (en) Waste gasification incineration treatment method of waste
JP3017661B2 (en) Dry distillation gasification and incineration of waste
JP2535273B2 (en) Dry distillation gasification and incineration of waste
JP4231820B2 (en) Dry distillation gasification incineration equipment
JP5256558B2 (en) Dry distillation gasifier
JP3583043B2 (en) Waste incineration method
JP7515868B2 (en) Dry distillation gasification incineration treatment equipment
JP2003302023A (en) Operation method for melting furnace, operation control device and gasification melting system
JP3728416B2 (en) Incineration equipment
KR0138508B1 (en) Apparatus for incinerating waste material
JP4419743B2 (en) Dry distillation incinerator
JP3152588B2 (en) Dry distillation gasification and incineration of waste
JP2006046867A (en) Ignition method for combustion system
JP2001241634A (en) Incineration treatment method for waste
JPH11190511A (en) Waste incineration stoker furnace and starting method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070808

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071128

R150 Certificate of patent or registration of utility model

Ref document number: 4050189

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111207

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121207

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees