JP4049435B2 - Floating breakwater - Google Patents

Floating breakwater Download PDF

Info

Publication number
JP4049435B2
JP4049435B2 JP03092598A JP3092598A JP4049435B2 JP 4049435 B2 JP4049435 B2 JP 4049435B2 JP 03092598 A JP03092598 A JP 03092598A JP 3092598 A JP3092598 A JP 3092598A JP 4049435 B2 JP4049435 B2 JP 4049435B2
Authority
JP
Japan
Prior art keywords
breakwater
main body
wave
partition wall
horizontal plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03092598A
Other languages
Japanese (ja)
Other versions
JPH11229350A (en
Inventor
恒浩 関本
亮行 鵜飼
琢三 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP03092598A priority Critical patent/JP4049435B2/en
Publication of JPH11229350A publication Critical patent/JPH11229350A/en
Application granted granted Critical
Publication of JP4049435B2 publication Critical patent/JP4049435B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Revetment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、漁港やマリーナの中で波除堤として設置する消波機能を高めた浮防波堤、あるいは、海岸の浸食を防ぐ海岸線の護岸や漁港のマリーナにおける岸壁前等に設置される消波性能を高めた浮防波堤に関する。
【0002】
【従来の技術】
従来、浮防波堤は海水交換性の高い消波構造物として用いられ、例えば、図7に示すように、防波堤本体にチェーンを取り付け、該チェーンの一端部を海底のアンカーに係留し、前記浮防波堤本体を海面に浮かせたものが知られている。
【0003】
【発明が解決しようとする課題】
しかしながら、チェーンに係留された浮防波堤では、防波堤本体が鉛直方向と水平方向とに自由に動くことが出来るので、波浪により動揺して十分な消波効果が得られないという問題点がある。
【0004】
このように、従来の浮防波堤では、波浪に対して動揺するため消波作用が十分い発揮されないことにおいて、解決すべき課題を有している。
【0005】
【課題を解決するための手段】
本発明に係る浮防波堤の上記課題を解決するための要旨は、浮防波堤用の支柱と、該支柱に支持される直方体でその長手方向が波の進行方向に対して直交するように配設される防波堤本体と、該防波堤本体の下に当該防波堤本体の短辺方向に平行に所要間隔をおいて垂設され波の進行方向に対して平行に配設されて吊持される仕切壁と、該仕切壁の各下端部に亘って敷設され前記防波堤本体の底面と平行にされる水平版とで形成され、前記防波堤本体は前記支柱により上下方向にのみ移動自在に支持されているとともに、波が通過する際に渦が発生することで運動エネルギーが消費されるように前記防波堤本体と前記水平版との間で前記仕切壁で仕切られた空間が形成されていることである。
【0007】
本発明に係る浮防波堤によれば、防波堤本体が支柱によって水平方向の移動が抑制されているので、波が防波堤本体に衝突して効率的にエネルギーが消費され、波浪が減衰し消波される。また、防波堤本体が略鉛直方向(上下方向ともいう)に移動自在なので、潮位の変化にスムーズに追随し、平均水位の変化においても消波効果に差異が生じないものである。
【0008】
【発明の実施の形態】
次に、本発明に係る浮防波堤について図面を参照して説明する。浮防波堤1の一例として、図1に示すように、直方体に形成してある防波堤本体2と、該防波堤本体2の下に、前記防波堤本体2の短辺方向に平行に所要間隔を置いて垂設された平板状の仕切壁3,3,…と、該仕切壁3の各下端部に亘って敷設され防波堤本体2の底面と平行にされる水平版4とが一体的に形成される。
【0009】
そして、前記防波堤本体2の長手方向の側壁または短辺方向の側壁に、上下方向に当該防波堤本体2を移動自在にさせるための、摺動部材5が一例として4箇所に設けられている。
【0010】
前記摺動部材5のそれぞれに係合する支柱としての鋼管杭6が、海底から略鉛直に立設されている。この鋼管杭6の高さは、波浪による防波堤本体2の上下移動を考慮して、高潮や暴風雨若しくは潮位の変化に対する十分な高さにしておくものである。
【0011】
前記摺動部材5と鋼管杭6との取り合いは、例えば、図2に示すように、鋼管杭6の側壁の周方向に配置されて該側壁に当接する複数個(例えば、4個)のローラ5aが鋼製板5b,5bに軸着され、その各鋼製板5bを一対で対抗配置にして、防波堤本体2の側壁から突設されたブラケット5cに溶接等の固着手段で固着して設けられるものである。
そして、前記4個のローラ5aの間に鋼管杭6が、各摺動部材5のそれぞれにおいて、貫通されている構造である。
【0012】
また、前記防波堤本体2は、波の進行方向に対して直方体の長手方向が直交するようにして、配設される。これにより、防波堤本体2において直方体の短辺方向に平行な仕切壁3が、波の進行方向に対して平行に配設される。
【0013】
なお、前記防波堤本体2、仕切壁3及び摺動部材5の材質は、例えば、鋼製部材で形成されるものであり、この他、他の金属製部材や軽量コンクリート部材等、適宜に浮防波堤の設置環境に合わせて選択され、特に限定するものではない。また、支柱についても鋼管杭に限らずコンクリート杭等でも良い。
【0014】
以上のようにして構成される本発明に係る浮防波堤1を、例えば、護岸無しで単独で設置した場合と護岸の前に設置した場合(図3参照)等の、消波効果の実験結果を説明する。
【0015】
図4に示すように、防波堤本体2に衝突して反射する波の反射率KRは、KR=(反射波高/入射波高)と定義しこれを縦軸にして、波の入射波長Lと水平版4の短辺方向の長さを幅Bとしその比(L/B)を横軸にして、相関関係を表す。
【0016】
その結果を見ると反射率は、約0.5〜0.7程度となっている。防波堤本体2が支柱で水平方向の移動が拘束されているので、消波効果が高まっている。
【0017】
次に、図5に示すように、波の透過率KT(=透過波高/入射波高と定義する)においても、該透過率KTを縦軸にし、波の入射波長Lと水平版4の幅Bとの比(L/B)を横軸にし相関関係を表すと、約0.4〜0.6弱程度となっている。
【0018】
防波堤本体2が上下移動のみに支柱で拘束されて、水平方向に自由に移動することが無く、かつ、防波堤本体2の下に水平版4を設けたので、波が防波堤本体2と水平版4との間で仕切壁3で仕切られた空間を通過する間に、発生する渦によって運動エネルギーが消費されて、消波効果が発揮されるものである。
【0019】
上記反射率KRと透過率KLから算出される損失エネルギー率KL(=1−KR 2−KT 2)を縦軸とし、波の入射波長Lと水平版4の幅Bとの比(L/B)を横軸にして、相関関係を表にすると、図6に示すようになる。これによると、損失エネルギー率は約0.5〜0.7程度となって、本発明に係る浮防波堤1の消波効果が大きく現れている。
【0020】
なお、水平版4を防波堤本体2の下に設けるときの、上下方向の高さは、例えば、略1.5m程度であり、高さを調節することによって、エネルギーの消費量を多少変化させることが可能である。
【0021】
このように、浮防波堤1の消波効果が高くなり、潮位の変化にも追随し、平均水位の変化によっても防波堤本体2が自由に上下移動できるので消波効果の差異が生じることなく維持されるものである。
【0022】
【発明の効果】
以上説明したように、本発明に係る浮防波堤は、浮防波堤用の支柱と、該支柱に支持される直方体でその長手方向が波の進行方向に対して直交するように配設される防波堤本体と、該防波堤本体の下に当該防波堤本体の短辺方向に平行に所要間隔をおいて垂設され波の進行方向に対して平行に配設されて吊持される仕切壁と、該仕切壁の各下端部に亘って敷設され前記防波堤本体の底面と平行にされる水平版とで形成され、前記防波堤本体は前記支柱により上下方向にのみ移動自在に支持されているとともに、波が通過する際に渦が発生することで運動エネルギーが消費されるように前記防波堤本体と前記水平版との間で前記仕切壁で仕切られた空間が形成されているので、水平版を有した防波堤本体が水平方向の移動を拘束されることで消波効果が高くなり、支柱により上下方向の移動が可能なので、潮位の変化にも追随し平均水位の変化によっても当該防波堤本体が自由に上下移動できて消波効果の差異が生じることなく維持されるという優れた効果を奏するものである。また、波の静穏時には防波堤本体の動揺が少ないので上部を歩行することも可能となって釣りや観光等の有効利用が図れるという優れた効果を奏するものである。
【0024】
前記水平版が、波の進行方向に対して平行に設けた仕切壁によって吊持されていることにより、強度向上により水平版の耐久性が向上するばかりでなく、仕切壁で形成される空間が渦を発生させて波のエネルギーを消費させて消波効果が更に高まるという優れた効果を奏するものである。
【図面の簡単な説明】
【図1】本発明に係る浮防波堤の概略構成斜視図である。
【図2】同本発明に係る浮防波堤における摺動部材の構造を示す一部の平面図である。
【図3】同本発明に係る浮防波堤を護岸に約1.5m離して設置して実験する状態を示す説明図である。
【図4】同本発明に係る浮防波堤による波の反射率の効果を示す説明図である。
【図5】同本発明に係る浮防波堤による波の透過率の効果を示す説明図である。
【図6】同本発明に係る浮防波堤による波の損失エネルギー率を示す説明図である。
【図7】従来例に係る浮防波堤の概略斜視図である。
【符号の説明】
1 浮防波堤、2 防波堤本体、3 仕切壁、4 水平版、5 摺動部材、
5a ローラ、6 鋼管杭。
[0001]
BACKGROUND OF THE INVENTION
The present invention is, for example, a breakwater with enhanced wave-breaking function installed as a wave breaker in a fishing port or marina, or a wave breaker installed on a coastal revetment to prevent coastal erosion or in front of a quay in a fishing port marina It relates to a breakwater with improved performance.
[0002]
[Prior art]
Conventionally, a floating breakwater has been used as a wave-dissipating structure with high seawater exchange. For example, as shown in FIG. 7, a chain is attached to a breakwater main body, and one end of the chain is moored to an anchor on the seabed. The one that the main body floats on the sea surface is known.
[0003]
[Problems to be solved by the invention]
However, the floating breakwater moored to the chain has a problem that the breakwater body can move freely in the vertical direction and the horizontal direction, so that the wave breaks up and cannot obtain a sufficient wave-dissipating effect.
[0004]
As described above, the conventional breakwater has a problem to be solved in that the wave-dissipating action is not sufficiently exhibited because it is shaken by the waves.
[0005]
[Means for Solving the Problems]
The gist for solving the above-described problem of the breakwater breakwater according to the present invention is that a breakwater breakwater column and a rectangular parallelepiped supported by the column are arranged so that the longitudinal direction thereof is orthogonal to the wave traveling direction. A breakwater main body, a partition wall suspended below the breakwater main body in parallel to the short side direction of the breakwater main body at a required interval and arranged parallel to the wave traveling direction, The partition wall is formed with a horizontal plate laid over the lower ends of the partition wall and parallel to the bottom surface of the breakwater body. The breakwater body is supported by the support column only in the vertical direction, A space partitioned by the partition wall is formed between the breakwater main body and the horizontal plate so that kinetic energy is consumed when a vortex is generated when the vortex passes.
[0007]
According to the floating breakwater according to the present invention, since the horizontal movement of the breakwater main body is suppressed by the support column, the waves collide with the breakwater main body and energy is efficiently consumed, and the waves are attenuated and extinguished. . In addition, since the breakwater main body is movable in a substantially vertical direction (also referred to as an up-and-down direction), it smoothly follows changes in the tide level, and there is no difference in the wave-dissipating effect even in changes in the average water level.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, the floating breakwater according to the present invention will be described with reference to the drawings. As an example of the floating breakwater 1, as shown in FIG. 1, a breakwater main body 2 formed in a rectangular parallelepiped, and a bottom of the breakwater main body 2 are suspended at a necessary interval in parallel to the short side direction of the breakwater main body 2. The flat partition walls 3, 3,... Provided and a horizontal plate 4 that is laid across the lower ends of the partition walls 3 and parallel to the bottom surface of the breakwater body 2 are integrally formed.
[0009]
And the sliding member 5 for making the said breakwater main body 2 movable to the up-down direction at the side wall of the longitudinal direction or the short side direction of the said breakwater main body 2 is provided in four places as an example.
[0010]
Steel pipe piles 6 as pillars that engage with each of the sliding members 5 are erected substantially vertically from the seabed. The height of the steel pipe pile 6 is set to a sufficient height against storm surges, storms, or changes in tide level in consideration of the vertical movement of the breakwater main body 2 due to waves.
[0011]
For example, as shown in FIG. 2, the sliding member 5 and the steel pipe pile 6 are arranged in the circumferential direction of the side wall of the steel pipe pile 6 and a plurality of (for example, four) rollers abutting on the side wall. 5a is pivotally attached to the steel plates 5b, 5b, and each steel plate 5b is arranged in a pair so as to be opposed to each other and fixed to a bracket 5c protruding from the side wall of the breakwater main body 2 by fixing means such as welding. It is what
And the steel pipe pile 6 is penetrated in each of the sliding members 5 between the four rollers 5a.
[0012]
The breakwater main body 2 is disposed such that the longitudinal direction of the rectangular parallelepiped is orthogonal to the wave traveling direction. Thereby, the partition wall 3 parallel to the short side direction of a rectangular parallelepiped in the breakwater main body 2 is arrange | positioned in parallel with the advancing direction of a wave.
[0013]
In addition, the material of the said breakwater main body 2, the partition wall 3, and the sliding member 5 is formed with a steel member, for example, In addition to this, other metal members, a lightweight concrete member, etc. are floated appropriately. It is selected according to the installation environment, and is not particularly limited. Further, the struts are not limited to steel pipe piles and may be concrete piles or the like.
[0014]
The experimental results of the wave-dissipating effect, such as when the floating breakwater 1 according to the present invention configured as described above, for example, when installed alone without a revetment or when installed before a revetment (see FIG. 3), explain.
[0015]
As shown in FIG. 4, the reflectivity K R of the wave that collides with the breakwater main body 2 and reflects is defined as K R = (reflected wave height / incident wave height). The horizontal plate 4 has a short side length as a width B and a ratio (L / B) as a horizontal axis to indicate a correlation.
[0016]
Looking at the result, the reflectivity is about 0.5 to 0.7. Since the breakwater body 2 is restrained from moving in the horizontal direction by the support, the wave-dissipating effect is enhanced.
[0017]
Next, as shown in FIG. 5, also in the wave transmittance K T (= defined as transmitted wave height / incident wave height), the transmittance K T is taken as the vertical axis, the wave incident wavelength L and the horizontal plate 4 When the correlation with the width B (L / B) is shown on the horizontal axis, it is about 0.4 to 0.6.
[0018]
Since the breakwater main body 2 is restrained by the support only in the vertical movement and does not move freely in the horizontal direction, and the horizontal plate 4 is provided under the breakwater main body 2, the waves are generated by the breakwater main body 2 and the horizontal plate 4. While passing through the space partitioned by the partition wall 3 between them, the kinetic energy is consumed by the vortex generated, and the wave-dissipating effect is exhibited.
[0019]
The loss energy rate K L (= 1−K R 2 −K T 2 ) calculated from the reflectance K R and the transmittance K L is the vertical axis, and the wave incident wavelength L and the width B of the horizontal plate 4 are When the ratio (L / B) is plotted on the horizontal axis, the correlation is tabulated as shown in FIG. According to this, the loss energy rate is about 0.5 to 0.7, and the wave-dissipating effect of the breakwater breakwater 1 according to the present invention appears greatly.
[0020]
In addition, when the horizontal plate 4 is provided under the breakwater main body 2, the height in the vertical direction is, for example, about 1.5 m, and the amount of energy consumption can be changed somewhat by adjusting the height. Is possible.
[0021]
In this way, the breakwater effect of the breakwater breakwater 1 is increased, the change in the tide level is followed, and the breakwater body 2 can be freely moved up and down by the change in the average water level, so that the difference in the wavebreak effect is maintained. Is.
[0022]
【The invention's effect】
As described above, the floating breakwater according to the present invention is a breakwater main body that is arranged with a support for the breakwater and a rectangular parallelepiped supported by the support so that its longitudinal direction is perpendicular to the wave traveling direction. A partition wall suspended below the breakwater body in parallel to the short side direction of the breakwater body at a required interval and disposed in parallel to the wave traveling direction, and the partition wall And a horizontal plate laid across the lower end of each of the breakwaters and parallel to the bottom surface of the breakwater body. The breakwater body is supported by the support column only in the vertical direction and allows waves to pass therethrough. Since a space partitioned by the partition wall is formed between the breakwater main body and the horizontal plate so that kinetic energy is consumed by generating vortices, the breakwater main body having the horizontal plate is It is erased by restraining the horizontal movement. Since the effect is high and the vertical support can be moved by the support, the breakwater body can be moved up and down freely even with changes in the average water level following the changes in the tide level, and it is maintained without causing a difference in the quenching effect. This is an excellent effect. In addition, since the breakwater main body is less oscillated when the waves are calm, it is possible to walk on the upper part, and it is possible to effectively use such as fishing and sightseeing.
[0024]
Since the horizontal plate is suspended by a partition wall provided in parallel to the wave traveling direction, not only the durability of the horizontal plate is improved by the strength improvement, but also the space formed by the partition wall is It produces an excellent effect of generating a vortex and consuming wave energy to further enhance the wave breaking effect.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of a floating breakwater according to the present invention.
FIG. 2 is a partial plan view showing the structure of the sliding member in the floating breakwater according to the present invention.
FIG. 3 is an explanatory view showing a state in which a floating breakwater according to the present invention is installed on a revetment about 1.5 m away from an experiment.
FIG. 4 is an explanatory diagram showing the effect of wave reflectivity by the floating breakwater according to the present invention.
FIG. 5 is an explanatory diagram showing the effect of wave transmittance by the floating breakwater according to the present invention.
FIG. 6 is an explanatory view showing a loss energy rate of waves caused by the breakwater according to the present invention.
FIG. 7 is a schematic perspective view of a floating breakwater according to a conventional example.
[Explanation of symbols]
1 breakwater, 2 breakwater body, 3 partition wall, 4 horizontal plate, 5 sliding member,
5a Roller, 6 Steel pipe pile.

Claims (1)

浮防波堤用の支柱と、
該支柱に支持される直方体でその長手方向が波の進行方向に対して直交するように配設される防波堤本体と、
該防波堤本体の下に当該防波堤本体の短辺方向に平行に所要間隔をおいて垂設され波の進行方向に対して平行に配設されて吊持される仕切壁と、
該仕切壁の各下端部に亘って敷設され前記防波堤本体の底面と平行にされる水平版とで形成され、
前記防波堤本体は前記支柱により上下方向にのみ移動自在に支持されているとともに、波が通過する際に渦が発生することで運動エネルギーが消費されるように前記防波堤本体と前記水平版との間で前記仕切壁で仕切られた空間が形成されていること、
を特徴とする浮防波堤。
A support for a breakwater,
A breakwater main body arranged in a rectangular parallelepiped supported by the support so that its longitudinal direction is perpendicular to the wave traveling direction;
A partition wall suspended below the breakwater body in parallel to the short side direction of the breakwater body at a required interval and arranged parallel to the wave traveling direction;
A horizontal plate laid over each lower end of the partition wall and parallel to the bottom surface of the breakwater body,
The breakwater main body is supported by the support column so as to be movable only in the vertical direction, and a vortex is generated when the wave passes, so that kinetic energy is consumed so that the breakwater main body and the horizontal plate are interposed. A space partitioned by the partition wall is formed,
A floating breakwater.
JP03092598A 1998-02-13 1998-02-13 Floating breakwater Expired - Lifetime JP4049435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03092598A JP4049435B2 (en) 1998-02-13 1998-02-13 Floating breakwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03092598A JP4049435B2 (en) 1998-02-13 1998-02-13 Floating breakwater

Publications (2)

Publication Number Publication Date
JPH11229350A JPH11229350A (en) 1999-08-24
JP4049435B2 true JP4049435B2 (en) 2008-02-20

Family

ID=12317271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03092598A Expired - Lifetime JP4049435B2 (en) 1998-02-13 1998-02-13 Floating breakwater

Country Status (1)

Country Link
JP (1) JP4049435B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702986B2 (en) * 2000-08-01 2011-06-15 東急建設株式会社 Floating structure stabilization method and equipment
CN102352613B (en) * 2011-08-17 2014-02-12 国家海洋局第二海洋研究所 Gate type seawall
CN107237296A (en) * 2017-07-28 2017-10-10 杭州江腾建设工程有限公司 Bulwark increases technique
CN109183713A (en) * 2018-10-23 2019-01-11 天津大学 One kind is from energy dissipating breakwater
CN110184993A (en) * 2019-04-29 2019-08-30 江苏科技大学 A kind of square-box-shaped floating breakwater with oscillaton water column type wave energy generating set

Also Published As

Publication number Publication date
JPH11229350A (en) 1999-08-24

Similar Documents

Publication Publication Date Title
US6408780B1 (en) Wave-resistant mega-float
US3952521A (en) Portable floating wave tripper
JP4049435B2 (en) Floating breakwater
US4098086A (en) Breakwater
US4693631A (en) Floating breakwater
JP4953125B2 (en) Long-period wave reduction structure
JP2005220706A (en) Wave absorber and wave absorbing device using it
JP3405605B2 (en) Sea area control method using submerged piles
JP5544649B2 (en) Long-period wave reduction structure
JP4370375B2 (en) High wave breakwater breakwater
JP2001206284A (en) Seaworthy large floating body
JPS645123B2 (en)
JP3457755B2 (en) Transmission type wave-breaking structure
JP2000204531A (en) Curtain type breakwater
JPH0610326A (en) Wave dissipation structure
KR100764915B1 (en) Floating breakwater of low centroid comprising extending pannel
JPH0823129B2 (en) Double slope breakwater
JPH02136413A (en) Excessive water depth floating wave dissipation levee
JPH11350447A (en) Breakwater
JPH0860634A (en) Submarine fixed type penetrating wave dissipating revetment
JP2000154518A (en) Reflected wave reducing structure having different draft type double curtain wall
JPH0112881B2 (en)
KR800001416Y1 (en) Floating apparatus for a breakwater
JPS6327610A (en) Sea-area control structure
JPH09125336A (en) Structure controlling drift sand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term