JP4049024B2 - Overlaying method and apparatus - Google Patents

Overlaying method and apparatus Download PDF

Info

Publication number
JP4049024B2
JP4049024B2 JP2003163090A JP2003163090A JP4049024B2 JP 4049024 B2 JP4049024 B2 JP 4049024B2 JP 2003163090 A JP2003163090 A JP 2003163090A JP 2003163090 A JP2003163090 A JP 2003163090A JP 4049024 B2 JP4049024 B2 JP 4049024B2
Authority
JP
Japan
Prior art keywords
workpiece
temperature
build
pulse discharge
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003163090A
Other languages
Japanese (ja)
Other versions
JP2004358547A (en
Inventor
映二 西岡
敦志 渡辺
英哉 安齋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003163090A priority Critical patent/JP4049024B2/en
Publication of JP2004358547A publication Critical patent/JP2004358547A/en
Application granted granted Critical
Publication of JP4049024B2 publication Critical patent/JP4049024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、パルス放電を利用した被工作物表面の肉盛方法における肉盛部の空隙低減技術に関する。
【0002】
【従来の技術】
経年劣化や摩耗により生じる被工作物表面のき裂及び減肉等の損傷箇所を肉盛することで、元来の特性を維持させる要求がある。肉盛方法の中で代表的なものとして、プラズマ肉盛法が挙げられる。同法は、プラズマアークなどの熱源の中にワイヤ状の肉盛材料を投入し、熱源の中でその先端部を溶融させ、被工作物表面に付着させて肉盛するものである。同法によれば、厚い肉盛部を得ることが出来るが、肉盛部の温度が上昇するため被工作物の熱変形が生じる問題がある。
【0003】
このことから、低入熱で施工できる肉盛技術が求められている。低入熱で施工できる肉盛技術として、パルス放電肉盛法がある(例えば、非特許文献1参照)。パルス放電肉盛法とは、電極と被工作物の間にパルスで電圧を印加することにより放電させ、放電時に発生するジュール熱及びアーク熱により電極先端を溶融させ、電極の溶融により発生した液滴を被工作物の損傷箇所に堆積させることにより肉盛する方法である。
【0004】
【非特許文献1】
Principles and Applications of Electro-Spark Deposition, Roger N.Johnson, Surface Modification Technologies T.S Sudarshan and D.G Bhat The Metallurgical Society,1988
【0005】
【発明が解決しようとする課題】
パルス放電肉盛法では、被工作物の損傷箇所に液滴を多数堆積することにより肉盛する。そのため、プラズマ肉盛法とは異なり、被工作物表面上に溶融池は形成されない。そのため肉盛部内に液滴間の堆積不良及びガスの混入に起因する空隙の残存が懸念される。肉盛部表面に空隙が存在すると、その箇所から腐食やき裂が進展し、耐食性及び機械的強度の低下を引き起こす可能性がある。
【0006】
本発明は、パルス放電肉盛法を用いて被工作物表面の損傷箇所を肉盛する際に、肉盛部の空隙を低減する方法及び装置を提供することを目的としている。
【0007】
【課題を解決するための手段】
パルス放電により電極材を溶融させ被工作物に肉盛部を形成するパルス放電肉盛方法において、被工作物を加熱した後に、被工作物にパルス放電肉盛を施工する。
【0008】
【発明の実施の形態】
発明者がパルス放電肉盛法について検討した結果、パルス放電肉盛施工前に被工作物を雰囲気温度以上に加熱することにより肉盛部の空隙率が減少することを、新たな知見として得た。以下、その実験方法と結果について説明する。
【0009】
予め被工作物を加熱した後にパルス放電肉盛を施工した場合における肉盛部空隙率と被工作物温度との関係を図1に示す。図1(a)は本実験の施工条件を示しており、図1(b)は肉盛部空隙率の被工作物温度依存性を示している。本実験での空隙率は、肉盛部断面組織を倍率1000倍にて観察し、視野全体に占める空隙の面積比として評価した。また、被工作物はSUS304ステンレス鋼であり、電極材はSUS316Lステンレス鋼及びインコネル600材、シールドガスは純アルゴン及び純窒素を用いた。図1(b)から、何れの電極材とシールドガスの組合せ条件においても、パルス放電肉盛施工前に予め被工作物を雰囲気温度(27℃)以上に加熱しておくことにより、加熱しない場合に比べ、空隙率を減少できることが分かった。
【0010】
ここで、空隙率と浸透探傷試験の関係について説明する。図2(a)は浸透探傷試験の概略、図2(b)は浸透探傷試験による肉盛部表面の開口欠陥の検出感度と肉盛部の空隙率との関係を測定した結果である。図2(a)に示すように、浸透探傷試験は、(1)被工作物表面に浸透液を塗布し、(2)過剰な浸透液を洗浄し、(3)被工作物表面に現像液を塗布することにより行われる。(3)において、探傷箇所の浸透液が浸出することにより、開口欠陥が検出される。図2(b)の測定結果から、肉盛部の空隙率が0.5% 以下であれば浸透探傷試験による開口欠陥が検出限界以下となることがわかった。ここで、浸透探傷試験による開口欠陥が検出限界以下となっていれば、肉盛部の品質基準を満たすこととなる。また、空隙率が0.5% より大きい場合は、開口欠陥が検出されることとなるが、この場合でも、開口欠陥同士の距離間隔が基準値以上であること等を満たせば、肉盛部の品質基準を満たすこととなる。従って、肉盛施工の際には、まず、浸透探傷試験において、当該肉盛部が開口欠陥検出限界以下、つまり空隙率が0.5% 以下となっていることが望ましい。ここで、図1(b)から、空隙率が0.5% 以下となるための被工作物加熱温度(以下、「最適被工作物加熱温度」という。)は、(1)電極材としてインコネル600、シールドガスとしてアルゴンを用いた場合は100〜130℃、(2)電極材としてSUS316L、シールドガスとしてアルゴンを用いた場合は40〜80℃、(3)電極材としてSUS316L、シールドガスとして窒素を用いた場合は50〜80℃となる。最適被工作物加熱温度は電極材とシールドガスに依存する。被工作物を加熱する際は、電極材及びシールドガスの選定に対して、適切な加熱温度を選定する必要がある。ここで、最適被工作物加熱温度は、空隙率が0.5% 以下を満たす加熱温度であり、ある程度の幅を有する。
【0011】
以上、図1及び図2から、パルス放電肉盛施工前に予め被工作物を加熱しておくことにより、空隙率を減少することができる。また、被工作物の加熱温度を、最適被工作物加熱温度とすることにより、空隙率を0.5% 以下、つまり開口部欠陥の検出感度以下とすることができる。
【0012】
また、発明者は、投入熱量W及び被工作物加熱温度Tの上限値について検討した。図3は、投入熱量Wと被工作物温度Tとの関係を示す概念図であり、Wmax 及びTmax はそれぞれHe割れを起こさない投入熱量Wと被工作物温度Tの上限値を示している。電極から被工作物への投入熱量Wは、パルス電圧値V,電流値A,パルス周波数f,パルス幅t及び電極走査速度Sを乗じることにより概算できる。肉盛部の品質は、施工時の冷却速度(液滴と被工作物の温度差にほぼ比例)に依存するため、肉盛部の品質を保つためには一定の冷却速度(温度差)を保持する必要がある。従って、投入熱量W(液滴の温度)を増大させる場合、被工作物温度Tも増大させる必要がある。しかし、シュラウド等の中性子照射量が高い部材に熱が加わると、He割れを起こす場合がある。従って、投入熱量W及び被工作物温度Tを、He割れを起こさない上限値(Wmax ,Tmax )以下とすることにより、被工作物が中性子照射量の高い部材であっても、He割れを防ぐことができる。
【0013】
さらに、発明者は、被工作物温度に対するガス流量の依存性について検討した。図4(a)は測定方法の概略、図4(b)は被工作物温度のガス流量依存性の実験結果を示している。図4(a)に示すように、母材としてSUS304L、電極材としてSUS316Lを用いてパルス放電肉盛法で肉盛を行うとともに、被工作物裏面(肉盛面とは逆の面)に取り付けた熱電対により被工作物の温度を測定した。施工条件は図1(a)と同様とし、施行前の被工作物温度として60℃を設定した。被工作物の温度が60℃に達した後、ガス流量のみを変化させ、60秒間肉盛を行った。その結果、ガス流量を40L/min 噴射しながら肉盛した場合、被工作物の温度は最大で100℃程度となった。一方、ガス流量が0L/min 、すなわちガスを噴射せずに肉盛した場合は、被工作物の温度は最大で350℃に達し、施工点はさらに高温まで上昇していると推定される。この実験では60秒間の肉盛を行ったが、より長時間施工した場合、被工作物温度はHe割れを引き起こす温度域まで達する可能性がある。従って、中性子照射量が高い被工作物を肉盛する場合、施工に伴い温度が上昇してもHe割れを起こす温度を超えないように、被工作物温度及び施工条件を調整することが必要となる。
【0014】
(実施例1)
以下、本発明の第1の実施例を説明する。第1の実施例は、原子炉容器内の被工作物に対して、本発明のパルス放電肉盛法を施工する場合の実施例である。
【0015】
図5は、本発明のパルス放電肉盛法をBWR(沸騰水型原子力発電プラント)炉内へ適用する装置の概略を示している。電極1が走査アーム5に取り付けられ、圧力容器内の被工作物2表面上を移動しながら放電し、被工作物2表面の損傷箇所をパルス放電により肉盛する。電極1には、圧力容器外に設置されたパルス電源3から電源ケーブル8を通りパルスが印加される。放電に際しては、シールドガスが圧力容器外に設置されたガスボンベ6より供給され、ガス配管12を通り電極先端周囲から噴射される。このシールドガスにより、水の排除及び酸化を抑制する。
【0016】
図6は、本実施例の作業手順を示すフローチャートである。まず、定期検査開始の命令を下し、原子炉運転停止,燃料取り出し及び圧力容器開放を行う(S1〜S4)。そして、検査用機材を搬入し、炉内の検査を行い、検査により確認された損傷箇所と損傷状態のデータをデータベース(検査データベース)に格納する(S5〜S7)。検査終了後、検査用の機材を撤去する(S8)。検査により損傷が確認された場合は、補修用機材を搬入し、損傷部をS7で得られた検査データに基づいて決定された施工条件により、本発明のパルス放電肉盛法により補修を行う(S9〜S12)。補修終了後、補修用機材を撤去する(S13)。その後、圧力容器を閉止し、燃料を復旧することにより定期検査を終了し、原子炉の運転を再開する(S14〜S17)。検査により損傷が確認されなかった場合或いは補修するには至らない損傷の場合は、補修(S10〜S13)を実施せずに、圧力容器を閉止し、燃料を復旧することにより定期検査を終了し、原子炉の運転を再開する(S14〜S17)。
【0017】
図7は、図1における補修(S12)の詳細手順を記したフローチャートである。補修開始命令が下されると、S7で得られた検査データを基に損傷箇所の損傷状態を把握する(S12−1,S12−2)。次に、把握した損傷状態及び被工作物の材質を基に、予め作成しておいた施工データベースにより、被補修材である電極材,被工作物への入熱量やシールドガスなどを制御する施工条件、及び被工作物の加熱温度を選定し、それぞれを取り付けあるいは設定する(S12−3〜S12−5)。必要に応じて、He割れを防止するため、加熱温度はTmax 以下と設定する。ここで、施工データベースの作成手順を、図8を用いて説明する。施行データベースは、被工作物材質及び肉盛部品質に対する最適な電極材,施工条件及び被工作物加熱温度を予め調査し、データベース化したものである。まず、試験用被工作物の損傷箇所及び損傷状態並びに肉盛部品質等の施工仕様を入力する(a)。次に、施工仕様を満足するための電極材を選定する(b)。被工作物への入熱量は、施工条件と被工作物加熱温度により決定されるが、主として前者に支配される。従って、被工作物加熱温度の選定に先立ち、まず施工条件の最適化を行う。施工条件最適化の手順を以下に示す。電圧値,パルス形状,パルス周波数,電極径,スタンドオフ(スタンドオフは電極と被工作物の間隔であり、肉盛するためには絶縁破壊を起こす距離以内を保たなければいけない。スタンドオフが0、すなわち電極と被工作物が接触すると短絡し、被工作物を研削してしまう可能性がある。)、シールドガス等で構成される因子の組合せである施工条件を調整後(c)、当該施行条件にて肉盛を施行する。肉盛施行後、当該肉盛部品質を調査し(d)、施工条件と肉盛部品質との相関関係をデータベース化(データベース1)する。所定の施工条件で肉盛施行,当該肉盛部品質調査及びデータベース化を繰り返した後、データベース1に基づいて肉盛部品質に対して最適な施工条件を選定する(e)。次に、被工作物加熱温度の選定手順を示す。被工作物加熱温度を選定するため、被工作物の温度を調整し(f)、当該温度で肉盛を施行する。肉盛施行後、肉盛部品質を調査し(g)、被工作物加熱温度と肉盛部品質との相関関係をデータベース化(データベース2)する。所定の施工条件で肉盛施行,当該肉盛部品質調査及びデータベース化を繰り返した後、データベース2に基づいて肉盛部品質に対して最適な被工作物加熱温度を選定する(h)。以上の手順で被工作物材質,肉盛部品質,選定した電極材,最適施工条件,被工作物加熱温度等のデータをデータベース化(施工データベース)する。
【0018】
その後補修の実作業(肉盛)を開始する(S12−6)。施行データを基に肉盛範囲を設定する(S12−7)。次に、被工作物2に温度調整装置4を取り付け、所定の温度に到達するまで被工作物2表面を加熱し、一定保持する(S12−8,S12−9)。その後施工を開始する(S12−10)。選定した施工条件にて被工作物2表面の損傷箇所へ肉盛を開始し、所定の条件を満たすまで(損傷箇所を十分に覆う面積、及び応力や腐食に耐えうる厚さとなるまで)、肉盛を行う(S12−11,S12−12)。所定の面積及び厚さを肉盛した後、肉盛を終了する(S12−13)。肉盛業終了後、UT(超音波探傷試験)やVT(目視試験)等により肉盛部表面の開口欠陥(堆積ムラにより発生する孔)の有無を検査し、肉盛部の健全性を確認する(S12−14)。健全性を確認できた場合、肉盛を終了し、補修を終了する(S12−15〜S12−17)。健全性を確認できなかった場合、再度肉盛を行う。
【0019】
本実施によれば、パルス放電肉盛施工前に予め被工作物を加熱しておくことにより、空隙率を減少することができる。さらに、被工作物温度をTmax 以下になるように設定すれば、He割れを防止することもできる。
【0020】
(実施例2)
以下、本発明の第2の実施例を説明する。第2の実施例は、小型部品など現場施工する必要のない被工作物2に対して、本発明のパルス放電肉盛を施工する場合の実施例である。
【0021】
本実施例で適用する肉盛装置を図9に示す。電極1が走査アーム5先端に取り付けられ、電極位置制御装置10から通信ケーブル11を通り送信される走査パターンに従い走査される。走査パターン及び電極1のXYZ座標等の電極位置情報は、電極位置制御装置10内の画面上に表示される。電極1には、パルス電源3より電源ケーブル8を通りパルスが印加される。ガスボンベ6から供給されるシールドガスは、ガス配管12を通り電極1先端付近より噴射される。電圧値,パルス形状,パルス周期,電極径,スタンドオフ等のパルス情報が、パルス情報表示装置7画面上に表示される。被工作物2表面には温度測定装置9が取り付けられ、実測した温度データは温度調整装置4に送信される。被工作物2の温度が所定の被工作物加熱温度で一定保持するように、温度調整装置4により制御する。
【0022】
施行条件及び被工作物加熱温度の選定並びに肉盛施行方法等の詳細は、実施例1と同様なので省略する。
【0023】
本実施によれば、パルス放電肉盛施工前に予め被工作物を加熱しておくことにより、空隙率を減少することができる。さらに、被工作物温度をTmax 以下になるように設定すれば、He割れを防止することもできる。
【0024】
また、本実施例によれば、小型部品など現場施工する必要のない被工作物2に対して本発明のパルス放電肉盛を施行するため、温度調整装置4の取り付け及び温度制御が容易となる。
【0025】
上記各実施例において、被工作物の加熱温度として最適被工作物加熱温度を選定することができる。被工作物の加熱温度として最適被工作物加熱温度を選定することにより、肉盛部の空隙率を0.5% 以下、つまり開口部欠陥の検出感度以下とすることができる。
【0026】
上記各実施例において、パルス放電肉盛施工で用いる電極を、回転運動を加えた電極とすることができる。図10は、回転運動を加えた電極を備える肉盛装置を示している。電極1は施工中に軸方向あるいは半径方向に回転運動が加えられる。これにより、電極1が被工作物2と接触した際の溶着を防止することができる。
【0027】
上記各実施例において、温度調整装置4を被工作物2の形状に応じて成形することができる。図11は、被工作物2の形状に応じて成形した温度調整装置を示している。複雑な形状の被工作物2に対し、温度調整部が平面の温度調整装置を用いた場合、温度調整装置4と被工作物2間との間隔を一定とすることができない。そのため、熱伝達性が不均一となり、被工作物2温度も不均一となりやすい。これに対し、被工作物2の形状に応じて形成された温度調整装置4を用いることにより、温度調整装置4と被工作物2間の間隔を一定とすることができ、複雑な形状を有する被工作物2であっても、温度を均一に調整することができる。
【0028】
上記各実施例において、温度調整手段としてガスを適用することができる。図12は、被工作物2の温度加熱手段としてガスを適用した場合を示している。ガスをガス温度調整装置14により温度調整した後、電極1先端周囲から噴射し、ガスを媒体として被工作物2表面を所定の温度に加熱する。熱伝達性を考慮に入れ、ガス温度は所望の被工作物加熱温度よりも高く設定し、被工作物2表面が所定温度に到達するよう調整する。ガスと接する表面全体を温度調整することができるため、複雑形状の被工作物2の加熱が容易になる。また、直接被工作物2を温度調整しないため、ガスの温度調整装置4を遠隔に設置でき、狭い環境への適用が容易になる。
【0029】
上記各実施例において、温度調整手段として水13を適用することができる。図13は、被工作物2の温度加熱手段として水13を適用した場合を示している。被工作物2を水13中に設置し、水13を温度調整装置15により所定の温度に加熱し、水を媒体として被工作物2を加熱する。この場合、熱伝達性を考慮に入れ、水温は所望の被工作物加熱温度よりも高く設定する必要がある。これにより、複雑形状の被工作物の加熱が容易になり、さらに被工作物2温度を均一に保つことができる。本実施例で加熱に用いる媒体は水に限定されず、被工作物の加熱に適した液体であればよい。
【0030】
【発明の効果】
パルス放電により電極材を溶融させ被工作物に肉盛部を形成するパルス放電肉盛方法において、前記被工作物を加熱した後に被工作物にパルス放電肉盛を施工することにより、肉盛部の空隙を低減することができる。
【図面の簡単な説明】
【図1】肉盛部の空隙率と被工作物温度との関係を示す図。
【図2】開口欠陥検出限界と空隙率との関係を示す図。
【図3】被工作物温度と投入熱量との関係を示す概念図。
【図4】被工作物温度のガス流量依存性を示す図。
【図5】本発明のパルス放電肉盛装置を示す図。
【図6】第1の実施例の手順を示すフローチャート。
【図7】補修の手順を示すフローチャート。
【図8】施行データベースの作成手順を示すフローチャート。
【図9】本発明のパルス放電肉盛装置を示す図。
【図10】回転運動を加えた電極を備える肉盛装置を示す図。
【図11】被工作物に類似した形状に成型された温度調整装置を示す図。
【図12】加熱手段としてガスを適用した場合の温度調整手段を示す図。
【図13】加熱手段として水を適用した場合の温度調整手段を示す図。
【符号の説明】
1…電極、2…被工作物、3…パルス電源、4,15…温度調整装置、5…走査アーム、9…温度測定装置、10…電極位置制御装置、13…水、14…ガス温度調整装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for reducing voids in a built-up portion in a method for building up a workpiece surface using pulse discharge.
[0002]
[Prior art]
There is a need to maintain the original characteristics by building up damaged parts such as cracks and thinning of the workpiece surface caused by aging and wear. A typical example of the overlaying method is a plasma overlaying method. In this method, a wire-shaped cladding material is put into a heat source such as a plasma arc, and the tip of the material is melted in the heat source and adhered to the surface of the workpiece. According to this method, a thick build-up portion can be obtained, but there is a problem that the workpiece is thermally deformed because the temperature of the build-up portion rises.
[0003]
For this reason, overlaying techniques that can be constructed with low heat input are required. As a build-up technique that can be applied with low heat input, there is a pulse discharge build-up method (for example, see Non-Patent Document 1). The pulse discharge build-up method is a liquid generated by melting an electrode by discharging a voltage by applying a voltage between the electrode and a workpiece, melting the tip of the electrode by Joule heat and arc heat generated at the time of discharge. This is a method of depositing droplets by depositing them on damaged parts of the workpiece.
[0004]
[Non-Patent Document 1]
Principles and Applications of Electro-Spark Deposition, Roger N. Johnson, Surface Modification Technologies TS Sudarshan and DG Bhat The Metallurgical Society, 1988
[0005]
[Problems to be solved by the invention]
In the pulse discharge build-up method, build-up is performed by depositing a large number of droplets at a damaged portion of a workpiece. Therefore, unlike the plasma overlay method, a molten pool is not formed on the workpiece surface. For this reason, there is a concern about the poor deposition between the droplets and the remaining voids due to gas mixture in the built-up portion. If voids are present on the surface of the built-up portion, corrosion or cracks may develop from the location, which may cause a decrease in corrosion resistance and mechanical strength.
[0006]
An object of the present invention is to provide a method and an apparatus for reducing a gap in a built-up portion when building up a damaged portion on a workpiece surface using a pulse discharge build-up method.
[0007]
[Means for Solving the Problems]
In a pulse discharge overlaying method in which an electrode material is melted by pulse discharge to form a build-up portion on a workpiece, the workpiece is heated and then pulse discharge overlay is applied to the workpiece.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
As a result of the inventor's examination of the pulse discharge overlaying method, it has been obtained as a new finding that the porosity of the overlaying portion is reduced by heating the workpiece to an ambient temperature or higher before the pulse discharge overlaying operation. . Hereinafter, the experimental method and results will be described.
[0009]
FIG. 1 shows the relationship between the build-up portion porosity and the work piece temperature when pulse discharge build-up is performed after the work piece has been heated in advance. Fig.1 (a) has shown the construction conditions of this experiment, and FIG.1 (b) has shown the workpiece temperature dependence of the built-up part porosity. The porosity in this experiment was evaluated as an area ratio of voids in the entire visual field by observing the cross-sectional structure of the built-up portion at a magnification of 1000 times. The workpiece was SUS304 stainless steel, the electrode material was SUS316L stainless steel and Inconel 600, and the shielding gas was pure argon and pure nitrogen. From Fig. 1 (b), in any combination condition of electrode material and shield gas, when the workpiece is heated in advance to the ambient temperature (27 ° C) or higher before the pulse discharge cladding is applied, it is not heated. It was found that the porosity can be reduced compared to.
[0010]
Here, the relationship between the porosity and the penetrant testing will be described. FIG. 2A shows an outline of the penetration test, and FIG. 2B shows the result of measuring the relationship between the detection sensitivity of the opening defect on the surface of the built-up part and the porosity of the build-up part by the penetration test. As shown in FIG. 2 (a), the penetrant flaw detection test consists of (1) applying a penetrating liquid to the surface of the workpiece, (2) washing the excess penetrating liquid, and (3) a developer on the surface of the workpiece. Is performed by coating. In (3), when the penetrant at the flaw detection site is leached, an opening defect is detected. From the measurement result of FIG. 2 (b), it was found that if the porosity of the built-up portion was 0.5% or less, the opening defect by the penetration flaw detection test was below the detection limit. Here, if the opening defect by the penetration flaw detection test is below the detection limit, the quality standard of the built-up portion is satisfied. Further, when the porosity is larger than 0.5%, an opening defect is detected. Even in this case, if the distance between the opening defects is equal to or larger than a reference value, the overlay portion Will meet the quality standards. Therefore, at the time of build-up construction, first, in the penetration flaw detection test, it is desirable that the build-up part is below the opening defect detection limit, that is, the porosity is 0.5% or less. Here, from FIG. 1B, the workpiece heating temperature (hereinafter referred to as “optimum workpiece heating temperature”) for the porosity to be 0.5% or less is (1) Inconel as the electrode material. 600, 100 to 130 ° C. when argon is used as the shielding gas, (2) SUS316L as the electrode material, 40 to 80 ° C. when argon is used as the shielding gas, (3) SUS316L as the electrode material, nitrogen as the shielding gas When it is used, it becomes 50-80 degreeC. The optimum workpiece heating temperature depends on the electrode material and the shielding gas. When heating the workpiece, it is necessary to select an appropriate heating temperature for the selection of the electrode material and the shielding gas. Here, the optimum workpiece heating temperature is a heating temperature at which the porosity is 0.5% or less, and has a certain range.
[0011]
As described above, from FIG. 1 and FIG. 2, the porosity can be reduced by heating the workpiece in advance before the pulse discharge overlay construction. Further, by setting the heating temperature of the workpiece to the optimum workpiece heating temperature, the porosity can be reduced to 0.5% or less, that is, the detection sensitivity of the opening defect or less.
[0012]
The inventor also examined the upper limit values of the input heat amount W and the workpiece heating temperature T. FIG. 3 is a conceptual diagram showing the relationship between the input heat amount W and the workpiece temperature T. W max and T max indicate the upper limit values of the input heat amount W and the workpiece temperature T, respectively, which do not cause He cracking. Yes. The amount of heat input W from the electrode to the workpiece can be estimated by multiplying the pulse voltage value V, the current value A, the pulse frequency f, the pulse width t, and the electrode scanning speed S. Since the quality of the built-up part depends on the cooling rate during construction (approximately proportional to the temperature difference between the droplet and the workpiece), a constant cooling rate (temperature difference) is required to maintain the quality of the built-up part. Need to hold. Therefore, when the input heat amount W (droplet temperature) is increased, the workpiece temperature T must also be increased. However, when heat is applied to a member having a high neutron irradiation amount such as a shroud, a He crack may occur. Therefore, even if the workpiece is a member having a high neutron irradiation amount by setting the input heat amount W and the workpiece temperature T to the upper limit values (W max , T max ) that do not cause He cracking, He cracking is possible. Can be prevented.
[0013]
Furthermore, the inventors examined the dependence of the gas flow rate on the workpiece temperature. FIG. 4A shows an outline of the measurement method, and FIG. 4B shows an experimental result of the dependence of the workpiece temperature on the gas flow rate. As shown in FIG. 4 (a), SUS304L is used as a base material and SUS316L is used as an electrode material, and overlaying is performed by a pulse discharge overlay method, and the workpiece is attached to the back surface (the surface opposite to the overlay surface). The temperature of the workpiece was measured with a thermocouple. The construction conditions were the same as in FIG. 1 (a), and 60 ° C. was set as the workpiece temperature before enforcement. After the temperature of the workpiece reached 60 ° C., only the gas flow rate was changed, and overlaying was performed for 60 seconds. As a result, when building up while injecting a gas flow rate of 40 L / min, the temperature of the workpiece was about 100 ° C. at the maximum. On the other hand, when the gas flow rate is 0 L / min, that is, when building up without injecting the gas, the temperature of the workpiece reaches 350 ° C. at the maximum, and the construction point is estimated to rise to a higher temperature. In this experiment, the build-up was performed for 60 seconds. However, when the construction is continued for a longer time, the workpiece temperature may reach a temperature range causing He cracking. Therefore, when building up a workpiece with a high neutron irradiation amount, it is necessary to adjust the workpiece temperature and the construction conditions so as not to exceed the temperature causing He cracking even if the temperature rises with construction. Become.
[0014]
Example 1
The first embodiment of the present invention will be described below. A 1st Example is an Example in the case of constructing the pulse discharge cladding method of this invention with respect to the workpiece in a nuclear reactor vessel.
[0015]
FIG. 5 shows an outline of an apparatus for applying the pulse discharge cladding method of the present invention to a BWR (boiling water nuclear power plant) reactor. The electrode 1 is attached to the scanning arm 5 and discharged while moving on the surface of the workpiece 2 in the pressure vessel, and the damaged portion of the surface of the workpiece 2 is built up by pulse discharge. A pulse is applied to the electrode 1 from the pulse power source 3 installed outside the pressure vessel through the power cable 8. During discharge, shield gas is supplied from a gas cylinder 6 installed outside the pressure vessel, and is injected from the periphery of the electrode tip through the gas pipe 12. This shielding gas suppresses water exclusion and oxidation.
[0016]
FIG. 6 is a flowchart showing the work procedure of the present embodiment. First, a periodic inspection start command is given, and the reactor operation is stopped, fuel is taken out, and the pressure vessel is opened (S1 to S4). Then, the inspection equipment is carried in, the inside of the furnace is inspected, and the damage location and the damage state data confirmed by the inspection are stored in a database (inspection database) (S5 to S7). After the inspection is completed, the inspection equipment is removed (S8). When damage is confirmed by inspection, repair equipment is carried in, and the damaged portion is repaired by the pulse discharge overlay method of the present invention according to the construction conditions determined based on the inspection data obtained in S7 ( S9 to S12). After the repair is completed, the repair equipment is removed (S13). Thereafter, the pressure vessel is closed, the fuel is restored, the periodic inspection is finished, and the operation of the reactor is resumed (S14 to S17). If damage is not confirmed by inspection or damage that cannot be repaired, the periodic inspection is completed by closing the pressure vessel and restoring the fuel without performing repairs (S10 to S13). Then, the operation of the reactor is resumed (S14 to S17).
[0017]
FIG. 7 is a flowchart showing the detailed procedure of the repair (S12) in FIG. When a repair start command is issued, the damaged state of the damaged portion is grasped based on the inspection data obtained in S7 (S12-1, S12-2). Next, based on the grasped damage status and workpiece material, the construction database prepared in advance controls the amount of heat input to the workpiece, heat input to the workpiece, shield gas, etc. The conditions and the heating temperature of the workpiece are selected, and each is attached or set (S12-3 to S12-5). If necessary, the heating temperature is set to T max or less in order to prevent He cracking. Here, the construction database creation procedure will be described with reference to FIG. The enforcement database is a database in which the optimum electrode material, construction conditions, and workpiece heating temperature for the workpiece material and the built-up part quality are investigated in advance. First, construction specifications such as a damaged part and a damaged state of the test workpiece and a built-up part quality are input (a). Next, an electrode material for satisfying the construction specifications is selected (b). The amount of heat input to the workpiece is determined by the construction conditions and the workpiece heating temperature, but is mainly governed by the former. Therefore, prior to selecting the workpiece heating temperature, first the construction conditions are optimized. The procedure for optimizing the construction conditions is shown below. Voltage value, pulse shape, pulse frequency, electrode diameter, standoff (standoff is the distance between the electrode and the workpiece, and it must be kept within the distance that causes dielectric breakdown in order to build up. 0, that is, when the electrode and the workpiece come into contact with each other, there is a possibility that the workpiece will be short-circuited and the workpiece may be ground.) After adjusting the construction conditions, which is a combination of factors composed of shielding gas (c), Implement surfacing under the enforcement conditions. After the build-up is performed, the build-up part quality is investigated (d), and the correlation between the construction conditions and the build-up part quality is made into a database (database 1). After repeating the overlaying under the predetermined construction conditions, the buildup part quality survey and the creation of a database, the optimum construction condition for the overlay part quality is selected based on the database 1 (e). Next, the procedure for selecting the workpiece heating temperature is shown. In order to select the workpiece heating temperature, the temperature of the workpiece is adjusted (f), and overlaying is performed at the temperature. After the build-up is conducted, the build-up part quality is investigated (g), and the correlation between the workpiece heating temperature and the build-up part quality is made into a database (database 2). After repeating the build-up under predetermined construction conditions, the build-up portion quality survey and the creation of a database, the optimum workpiece heating temperature for the build-up portion quality is selected based on the database 2 (h). With the above procedure, data such as workpiece material, build-up part quality, selected electrode material, optimum construction conditions, workpiece heating temperature, etc. are made into a database (construction database).
[0018]
Thereafter, actual repair work (building up) is started (S12-6). A build-up range is set based on the enforcement data (S12-7). Next, the temperature adjusting device 4 is attached to the workpiece 2, and the surface of the workpiece 2 is heated and held constant until a predetermined temperature is reached (S12-8, S12-9). Thereafter, construction is started (S12-10). Start the build-up on the damaged part of the surface of the workpiece 2 under the selected construction conditions, until the predetermined condition is satisfied (until the area sufficiently covers the damaged part and the thickness that can withstand stress and corrosion) The filling is performed (S12-11, S12-12). After the predetermined area and thickness are built up, the build-up is finished (S12-13). After the build-up operation is completed, the presence or absence of opening defects (holes caused by uneven deposition) on the surface of the built-up part is checked by UT (ultrasonic flaw detection test), VT (visual test), etc., and the soundness of the built-up part is confirmed. (S12-14). When the soundness can be confirmed, the build-up is finished and the repair is finished (S12-15 to S12-17). If the soundness cannot be confirmed, overlay is performed again.
[0019]
According to this embodiment, the porosity can be reduced by heating the workpiece in advance before the pulse discharge overlaying. Furthermore, if the workpiece temperature is set to be equal to or lower than T max , He cracking can be prevented.
[0020]
(Example 2)
The second embodiment of the present invention will be described below. A 2nd Example is an Example in the case of constructing the pulse discharge overlay of this invention with respect to the workpiece 2 which does not need on-site construction, such as a small component.
[0021]
FIG. 9 shows an overlay apparatus applied in this embodiment. The electrode 1 is attached to the tip of the scanning arm 5 and scanned according to a scanning pattern transmitted from the electrode position control device 10 through the communication cable 11. The electrode position information such as the scanning pattern and the XYZ coordinates of the electrode 1 is displayed on the screen in the electrode position control device 10. A pulse is applied to the electrode 1 from the pulse power source 3 through the power cable 8. The shield gas supplied from the gas cylinder 6 is injected from the vicinity of the tip of the electrode 1 through the gas pipe 12. Pulse information such as voltage value, pulse shape, pulse period, electrode diameter, standoff, etc. is displayed on the screen of the pulse information display device 7. A temperature measuring device 9 is attached to the surface of the workpiece 2, and the actually measured temperature data is transmitted to the temperature adjusting device 4. Control is performed by the temperature adjusting device 4 so that the temperature of the workpiece 2 is kept constant at a predetermined workpiece heating temperature.
[0022]
The details of the selection of the execution conditions and the workpiece heating temperature, and the overlaying method are the same as in Example 1 and will be omitted.
[0023]
According to this embodiment, the porosity can be reduced by heating the workpiece in advance before the pulse discharge overlaying. Furthermore, if the workpiece temperature is set to be equal to or lower than T max , He cracking can be prevented.
[0024]
In addition, according to the present embodiment, the pulse discharge build-up of the present invention is performed on the work piece 2 that does not need to be constructed in the field, such as small parts, so that the temperature adjustment device 4 can be easily mounted and temperature-controlled. .
[0025]
In each of the above embodiments, the optimum workpiece heating temperature can be selected as the workpiece heating temperature. By selecting the optimum workpiece heating temperature as the heating temperature of the workpiece, the void ratio of the built-up portion can be made 0.5% or less, that is, the detection sensitivity of the opening defect or less.
[0026]
In each of the above embodiments, the electrode used in the pulse discharge overlay construction can be an electrode to which a rotational motion is applied. FIG. 10 shows a build-up device provided with electrodes subjected to rotational movement. The electrode 1 is subjected to rotational movement in the axial direction or radial direction during construction. Thereby, the welding at the time of the electrode 1 contacting with the workpiece 2 can be prevented.
[0027]
In each of the above embodiments, the temperature adjusting device 4 can be formed according to the shape of the workpiece 2. FIG. 11 shows a temperature adjusting device formed according to the shape of the workpiece 2. In the case of a workpiece 2 having a complicated shape, when a temperature adjusting device having a flat temperature adjusting unit is used, the distance between the temperature adjusting device 4 and the workpiece 2 cannot be made constant. Therefore, the heat transfer property becomes non-uniform and the temperature of the workpiece 2 tends to be non-uniform. On the other hand, by using the temperature adjusting device 4 formed according to the shape of the workpiece 2, the interval between the temperature adjusting device 4 and the workpiece 2 can be made constant, and has a complicated shape. Even for the workpiece 2, the temperature can be adjusted uniformly.
[0028]
In each of the above embodiments, gas can be applied as the temperature adjusting means. FIG. 12 shows a case where gas is applied as the temperature heating means of the workpiece 2. After adjusting the temperature of the gas by the gas temperature adjusting device 14, the gas is injected from the periphery of the tip of the electrode 1, and the surface of the workpiece 2 is heated to a predetermined temperature using the gas as a medium. Taking the heat transfer into consideration, the gas temperature is set to be higher than a desired workpiece heating temperature and adjusted so that the surface of the workpiece 2 reaches a predetermined temperature. Since the temperature of the entire surface in contact with the gas can be adjusted, the workpiece 2 having a complicated shape can be easily heated. Further, since the temperature of the workpiece 2 is not directly adjusted, the gas temperature adjusting device 4 can be remotely installed, and the application to a narrow environment becomes easy.
[0029]
In each of the above embodiments, water 13 can be applied as the temperature adjusting means. FIG. 13 shows a case where water 13 is applied as the temperature heating means of the workpiece 2. The workpiece 2 is placed in the water 13, the water 13 is heated to a predetermined temperature by the temperature adjusting device 15, and the workpiece 2 is heated using water as a medium. In this case, the water temperature needs to be set higher than the desired workpiece heating temperature in consideration of heat transfer. As a result, the workpiece having a complicated shape can be easily heated, and the temperature of the workpiece 2 can be kept uniform. The medium used for heating in this embodiment is not limited to water, but may be any liquid that is suitable for heating the workpiece.
[0030]
【The invention's effect】
In the pulse discharge overlay method in which the electrode material is melted by pulse discharge to form a build-up portion on the workpiece, the build-up portion is formed by applying the pulse discharge build-up to the workpiece after heating the workpiece. Voids can be reduced.
[Brief description of the drawings]
FIG. 1 is a diagram showing a relationship between a void ratio of a built-up portion and a workpiece temperature.
FIG. 2 is a diagram showing a relationship between an opening defect detection limit and a porosity.
FIG. 3 is a conceptual diagram showing the relationship between the workpiece temperature and the input heat quantity.
FIG. 4 is a diagram showing the gas flow rate dependency of the workpiece temperature.
FIG. 5 is a view showing a pulse discharge cladding apparatus according to the present invention.
FIG. 6 is a flowchart showing the procedure of the first embodiment.
FIG. 7 is a flowchart showing a repair procedure.
FIG. 8 is a flowchart showing a procedure for creating an enforcement database.
FIG. 9 is a view showing a pulse discharge cladding apparatus according to the present invention.
FIG. 10 is a view showing a build-up device including an electrode to which a rotational motion is applied.
FIG. 11 is a view showing a temperature adjustment device molded into a shape similar to a workpiece.
FIG. 12 is a diagram showing temperature adjusting means when gas is applied as heating means.
FIG. 13 is a diagram showing a temperature adjusting means when water is applied as a heating means.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Electrode, 2 ... Workpiece, 3 ... Pulse power supply, 4,15 ... Temperature adjusting device, 5 ... Scanning arm, 9 ... Temperature measuring device, 10 ... Electrode position control device, 13 ... Water, 14 ... Gas temperature adjustment apparatus.

Claims (6)

パルス放電により電極材を溶融させ被工作物に肉盛部を形成するパルス放電肉盛方法において、
前記肉盛部の空隙率が0.5%以下となる温度に前記被工作物を加熱した後、前記被工作物にパルス放電肉盛を施工することを特徴とするパルス放電肉盛方法。
In the pulse discharge build-up method in which the electrode material is melted by pulse discharge to form a build-up part on the workpiece,
A pulse discharge build-up method, comprising: applying a pulse discharge build-up to the workpiece after heating the workpiece to a temperature at which the porosity of the build-up portion is 0.5% or less.
前記被工作物の材質並びにパルス放電肉盛で用いる電極材及びシールドガスに基づいて、前記被工作物の加熱温度を選定し、
前記選定した温度に前記被工作物を加熱した後
前記電極材及び前記シールドガスを用いて、前記被工作物にパルス放電肉盛を施工することを特徴とする請求項1に記載のパルス放電肉盛方法。
Based on the material of the workpiece and the electrode material and shield gas used in the pulse discharge overlay, the heating temperature of the workpiece is selected,
After heating the workpiece to the selected temperature,
The pulse discharge build-up method according to claim 1 , wherein pulse discharge build-up is applied to the workpiece using the electrode material and the shield gas.
前記被工作物はSUS304ステンレス鋼であり、電極材はインコネル(登録商標)600であり、シールドガスはアルゴンであり、前記被工作物の加熱温度は100℃以上130℃未満であることを特徴とする請求項1又は請求項2に記載のパルス放電肉盛方法。The workpiece is SUS304 stainless steel, the electrode material is Inconel (registered trademark) 600, the shielding gas is argon, and the heating temperature of the workpiece is 100 ° C. or more and less than 130 ° C. The pulse discharge build-up method according to claim 1 or 2 . 前記被工作物はSUS304ステンレス鋼であり、電極材はSUS316Lステンレス鋼であり、シールドガスはアルゴンであり、前記被工作物の加熱温度は40℃以上80℃未満であることを特徴とする請求項1又は請求項2に記載のパルス放電肉盛方法。The workpiece is SUS304 stainless steel, the electrode material is SUS316L stainless steel, claim shielding gas is argon, the heating temperature of the workpiece is characterized in that less than 80 ° C. 40 ° C. or higher The pulse discharge overlaying method according to claim 1 or 2 . 前記被工作物はSUS304ステンレス鋼であり、電極材はSUS316Lステンレス鋼であり、シールドガスは窒素であり、前記被工作物の加熱温度は50℃以上80℃未満であることを特徴とする請求項1又は請求項2に記載のパルス放電肉盛方法。The workpiece is SUS304 stainless steel, the electrode material is SUS316L stainless steel, claim shield gas is nitrogen, the heating temperature of the workpiece is characterized in that less than 80 ° C. or higher 50 ° C. The pulse discharge overlaying method according to claim 1 or 2 . パルス電源と、
パルスが印加される電極と、
前記電極と被工作物表面との間にシールドガスを供給するガス供給装置と、
前記電極を前記被工作物表面上で走査させる走査装置と、
パルス放電肉盛により形成される肉盛部の空隙率が0 . 5%以下となるように前記被工作物の温度を調整する温度調整装置とを備え
前記温度調整装置は、パルス放電肉盛施行前に、前記被工作物の温度を調整することを特徴とするパルス放電肉盛装置。
Pulse power supply,
An electrode to which a pulse is applied;
A gas supply device for supplying a shielding gas between the electrode and the workpiece surface;
A scanning device for scanning the electrode on the surface of the workpiece;
And a temperature regulating device pulse discharge cladding overlaid portion porosity of which is formed by the adjusting the temperature of 0.5% the workpiece so as to become less,
The said temperature adjustment apparatus adjusts the temperature of the said workpiece before pulse discharge build-up enforcement, The pulse discharge build-up apparatus characterized by the above-mentioned .
JP2003163090A 2003-06-09 2003-06-09 Overlaying method and apparatus Expired - Fee Related JP4049024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003163090A JP4049024B2 (en) 2003-06-09 2003-06-09 Overlaying method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003163090A JP4049024B2 (en) 2003-06-09 2003-06-09 Overlaying method and apparatus

Publications (2)

Publication Number Publication Date
JP2004358547A JP2004358547A (en) 2004-12-24
JP4049024B2 true JP4049024B2 (en) 2008-02-20

Family

ID=34055000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003163090A Expired - Fee Related JP4049024B2 (en) 2003-06-09 2003-06-09 Overlaying method and apparatus

Country Status (1)

Country Link
JP (1) JP4049024B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492503B2 (en) * 2005-09-16 2010-06-30 株式会社日立製作所 Surface treatment method

Also Published As

Publication number Publication date
JP2004358547A (en) 2004-12-24

Similar Documents

Publication Publication Date Title
Lewis et al. Assessment of laser cladding as an option for repairing/enhancing rails
Billone et al. Ductile-to-brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions
Javadi et al. Continuous monitoring of an intentionally-manufactured crack using an automated welding and in-process inspection system
US20210262960A1 (en) System for thermally influencing a crack tip of crack within a specimen and related methods
CN109719366A (en) A kind of analysis of stainless steel clad plate weld defect and repair method
Javadi et al. High-temperature in-process inspection followed by 96-h robotic inspection of intentionally manufactured hydrogen crack in multi-pass robotic welding
JP4049024B2 (en) Overlaying method and apparatus
Bouchard Code characterisation of weld residual stress levels and the problem of innate scatter
JP5069869B2 (en) Surface coating method
US20180223410A1 (en) Plasma spray coating for sealing a defect area in a workpiece
Dey et al. Strategies to improve ISIS TS2 target life
JP6385763B2 (en) Laser welding apparatus and laser welding method
JPH04240552A (en) Method for evaluating residual life of metal welding member under high temperature stress
JPH11352051A (en) Device and method for inspecting corrosion surface
JP2002527244A (en) Apparatus and method for corrosion resistant coating
Fujimagari et al. Laser cladding technology to small diameter pipes
Bruemmer et al. Characterization of defects in alloy 152, 52 and 52M welds
Sohn et al. NDE in metal additive manufacturing: Survey
Panella et al. CDW aluminium joints welding and optimisation with NDT/mechanical testing
JP4492503B2 (en) Surface treatment method
US5013370A (en) Method for localization of tensile residual stress and product produced thereby
Li et al. Microstructure and properties of underwater in-situ wire-based laser additive manufactured duplex stainless steel
Sazonov Problems of engineering diagnostics of electron-beam welding
JP2004154807A (en) Welding method for structure and welding support system
Holz Sr Half-bead weld repairs for in-service applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050801

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070821

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees