JP4048567B2 - Long chain carboxylic acid lactic acid ester salt aqueous solution - Google Patents

Long chain carboxylic acid lactic acid ester salt aqueous solution Download PDF

Info

Publication number
JP4048567B2
JP4048567B2 JP31664994A JP31664994A JP4048567B2 JP 4048567 B2 JP4048567 B2 JP 4048567B2 JP 31664994 A JP31664994 A JP 31664994A JP 31664994 A JP31664994 A JP 31664994A JP 4048567 B2 JP4048567 B2 JP 4048567B2
Authority
JP
Japan
Prior art keywords
carboxylic acid
long
chain carboxylic
lactic acid
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31664994A
Other languages
Japanese (ja)
Other versions
JPH08176068A (en
Inventor
由子 渡邉
明文 結城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP31664994A priority Critical patent/JP4048567B2/en
Publication of JPH08176068A publication Critical patent/JPH08176068A/en
Application granted granted Critical
Publication of JP4048567B2 publication Critical patent/JP4048567B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、安定な長鎖カルボン酸乳酸エステル塩水溶液及びその製造方法に関するものである。
【0002】
【従来の技術】
長鎖カルボン酸乳酸エステル塩は陰イオン性界面活性剤であり、食品や化粧品の乳化剤、洗浄剤を構成する界面活性剤などの用途に有用であることが知られている(米国特許第2,733,252号、特開昭64−6237号公報、特開平4−23900号公報参照)。長鎖カルボン酸乳酸エステル塩は他の乳化剤と比べて水溶液にした際に中性領域のpHで優れた界面活性能を示すという特徴があり、皮膚への刺激が低いことが要求される洗顔料用や、パン生地等の穀類粉の焼成食品用の乳化剤として使用されてきている。
【0003】
従来、長鎖カルボン酸乳酸エステル塩は、長鎖カルボン酸又は長鎖カルボン酸クロライド等の反応性誘導体と乳酸又は乳酸塩とを反応させて長鎖カルボン酸乳酸エステルを生成し、これと塩基性物質とを反応させ、反応混合物をそのまま水溶液等にし、乳化剤等の用途に供していた。これは、長鎖カルボン酸乳酸エステル塩の精製法として工業的に適用しうる方法が知られておらず、また長鎖カルボン酸乳酸エステル塩に及ぼす共存物の影響が十分に解明されていなかったため、精製品を用いようとする動機に乏しかったことによる。
【0004】
しかしながら、このような反応混合物の水溶液は水溶液のクラフト点が上昇するという問題があった。クラフト点は界面活性剤の界面活性能を左右する要因であり、クラフト点未満の温度では起泡力、乳化力などの界面活性能が充分に発揮されないのでクラフト点の上昇はつまり界面活性能の低下につながっている。さらにこのような水溶液は室温以上の比較的高温条件において長期間保存された場合に、水溶液の透明性が低下するばかりでなく、沈澱が生成して水溶液が不均一状態を呈するという問題があった。
【0005】
【発明が解決しようとする課題】
本発明の目的は、クラフト点が比較的低く、かつ室温以上の温度における保存安定性に優れた長鎖カルボン酸乳酸エステル塩の水溶液及び該長鎖カルボン酸乳酸エステル塩の水溶液の製造方法を提供することにある。
【0006】
【発明を解決するための手段】
本発明は、上記目的を達成するためになされたものであり、その要旨は、純度80モル%以上の長鎖カルボン酸乳酸エステル塩を含有する長鎖カルボン酸乳酸エステル塩水溶液に存する。
以下、本発明につき詳細に説明する。
本発明における水溶液として供される長鎖カルボン酸乳酸エステル塩は長鎖カルボン酸乳酸エステルと塩基性物質とを反応させて得られるものであり、長鎖カルボン酸乳酸エステルとしては、下記に示す長鎖カルボン酸又は長鎖カルボン酸クロライド等の反応性誘導体と乳酸又は乳酸塩とを反応させることにより得られる。長鎖カルボン酸としては、炭素数8〜24、好ましくは10〜22のものが用いられる。長鎖カルボン酸は飽和でも不飽和でもよく、また直鎖状でも分岐鎖状でもよい。分岐鎖状の場合には、最長鎖の長さが炭素数8以上であるのが好ましい。また場合によっては水酸基を有するヒドロキシカルボン酸でもよい。これらの長鎖カルボン酸としては、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、アラキン酸、ベヘン酸、オレイン酸、エルカ酸、エライジン酸、リシノレイン酸、2−ブチルオクタン酸、2−ヘキシルデカン酸、2−ヘキシルウンデカン酸、2−オクチルデカン酸、2−デシルテトラデカン酸、10−ヒドロキシオクタデカン酸、2−ヒドロキシデカン酸等があげられる。なかでもラウリン酸、ステアリン酸、カプリン酸、ミリスチン酸、パルミチン酸、オレイン酸等が好ましい。これらの長鎖カルボン酸は任意の割合からなる2種以上の混合物として用いることもできる。しかし、純度80モル%以上の長鎖カルボン酸乳酸エステルを得るためには純度が70%以上、好ましくは80%以上、特に好ましくは95%以上の長鎖カルボン酸を用いる(本明細書において長鎖カルボン酸の純度とは、長鎖カルボン酸中において1種類の脂肪酸の占める重量%を意味する)。長鎖カルボン酸の純度が高いと、長鎖カルボン酸乳酸エステルの製造行程中の晶析行程が良好となる。
【0007】
乳酸としては、発酵法又は合成法のいずれで製造されたものでもよいが、純度のよい合成法によるもの(DL体)が好ましい。周知の如く、乳酸水溶液は濃縮すると乳酸が重合してポリ乳酸を生ずる。しかしポリ乳酸を含まない稀薄な乳酸水溶液を用いたのでは、無水状態にあるべき反応系に多量の水が持込まれることになり好ましくない。従って通常は若干のポリ乳酸を含む濃度85%程度の乳酸を用いるのが好ましい。
【0008】
乳酸と長鎖カルボン酸との仕込み比率は1:1(モル比)でもよいが、長鎖カルボン酸の反応率を高くするため、乳酸を過剰、たとえば1:1.2〜3.0(モル比)に仕込むのが好ましい。
反応は溶媒の存在下でも非存在下でも行なうことができる。溶媒を用いる場合には、反応原料及び生成物の双方に対して溶解性のあるピリジン等の塩基性溶媒を用いるのが好ましい。
【0009】
溶媒を用いない場合には、アルカリ金属の水酸化物や炭酸塩を触媒として、乳酸と長鎖カルボン酸とを長鎖カルボン酸の溶融状態で反応させる。
純度80モル%以上の長鎖カルボン酸乳酸エステルを得るには、反応混合物をpH5.0以下で水性溶媒と有機溶媒とで液液抽出して、長鎖カルボン酸乳酸エステルに富む有機溶媒相と乳酸に富む水性溶媒相とを生成させて両相を分離し、次いでこの有機溶媒相の長鎖カルボン酸乳酸エステルを共存する長鎖カルボン酸から晶析により分離することにより、あるいは、反応混合物にpHが3.0より低くなるまで酸水溶液を添加して長鎖カルボン酸乳酸エステルを油状物として析出させ、この油状物を分取して有機溶媒に溶解して溶液とし、この溶液から長鎖カルボン酸乳酸エステルを晶出させる方法によるのが好ましい。
【0010】
上述の反応混合物のpHを低くするために酸水溶液を添加する際、酸としては通常、塩酸又は硫酸を用いる。これにより反応混合物中のポリ乳酸が乳酸に分解する。なお反応に溶媒を用いた場合には、予じめ溶媒を留去しておいてもよい。酸水溶液の添加量は、酸水溶液を添加後の反応混合物に占める長鎖カルボン酸乳酸エステル、長鎖カルボン酸及び乳酸の合計量が3〜40(重量)%となるようにするのが好ましい。
【0011】
酸水溶液を添加した場合の反応混合物中の長鎖カルボン酸乳酸エステルの挙動は、反応混合物の組成にもよるが、一般にpHが3.0よりも低くなると、長鎖カルボン酸乳酸エステルが長鎖カルボン酸や乳酸の一部と共に油状物となって析出してくるので、長鎖カルボン酸乳酸エステルを油状物として析出させたい場合には、反応混合物のpHを1.5〜3.0に低下させる。pHを低下させ過ぎると長鎖カルボン酸乳酸エステルが分解するので、必要以上にpHを低下させるのは避けるべきである。
【0012】
長鎖カルボン酸乳酸エステルを有機溶媒で抽出する場合には、pHを5.0以下、好ましくは2.0〜4.0に低下させる。このとき油状物が析出しても、次の液−液抽出の障害とならない。pHの低下が不十分であると、反応混合物の液−液抽出における水相と有機相との分離が悪くなることがある。所定のpHとした反応混合物は、次いで有機溶媒で抽出して、乳酸を水相に、長鎖カルボン酸乳酸エステルを有機溶媒相に分配する。この際、反応混合物中の長鎖カルボン酸は概して有機溶媒相に分配される。
【0013】
抽出に用いる有機溶媒としては、水に難溶ないし不溶で、且つ長鎖カルボン酸乳酸エステルに大きな溶解力を示すものであれば、任意のものを用いることができる。例えばヘキサン、ヘプタン等の炭化水素、塩化メチル、クロロホルム等のハロゲン化炭化水素、イソブチルアルコール等のアルコール、メチルエチルケトン等のケトン類、酢酸エチル等のエステルなどが挙げられる。これらのなかでは沸点が50℃以上で取扱いが容易なヘキサン、ヘプタン、イソブチルアルコール、クロロホルム等が好ましい。特に好ましいのはヘキサン又はクロロホルムである。
【0014】
液−液抽出は反応混合物を含む水相に対して通常0.2〜5容量倍、好ましくは0.3〜2容量倍の有機溶媒を用いて行なう。抽出温度は通常、室温〜60℃、好ましくは40〜60℃である。抽出操作は回分式又は連続式の各種の液−液抽出装置を用いて、常法に従って行なうことができる。
液−液抽出により得られた有機溶媒相からは分別晶析により長鎖カルボン酸乳酸エステルを回収する。また油状物として析出させた場合には、これを有機溶媒に溶解して、この溶液から分別晶析により長鎖カルボン酸乳酸エステルを回収する。なお、油状物中には乳酸が含まれているので、有機溶媒に溶解する前に水洗して乳酸を除去しておくのが好ましい。
【0015】
分別晶析に用いる有機溶媒は、前述の抽出操作に用いる有機溶媒と同じものを用いることができる。従って抽出により得た有機溶媒相から直接に長鎖カルボン酸乳酸エステルを晶出させてもよく、又は有機溶媒相から有機溶媒を留去し、残留物を新たな有機溶媒に溶解させ晶出させてもよい。晶出操作に供する有機溶媒溶液中の長鎖カルボン酸乳酸エステルの濃度は通常、5〜40(重量)%である。長鎖カルボン酸乳酸エステルの濃度が高過ぎると、晶出操作が困難となり、かつ得られる結晶の純度が低下する。好ましい濃度は5〜35(重量)%、特に5〜15(重量)%である。晶出操作は通常−20〜40℃で行なう。一般に長鎖カルボン酸の融点が高い場合には比較的高い温度で、融点が低い場合には比較的低い温度で行なうのが好ましい。
【0016】
晶出操作により取得される長鎖カルボン酸乳酸エステルの純度は通常80〜95モル%程度であり、20〜5モル%程度の長鎖カルボン酸が不純物として含まれている。この長鎖カルボン酸乳酸エステルを再度晶出操作にかけると、純度99%ないしはそれ以上の高純度の長鎖カルボン酸乳酸エステルが取得できる。
本発明は、純度80モル%以上の長鎖カルボン酸乳酸エステル塩の水溶液を提供するものであるが、該塩水溶液は上述した純度80モル%以上の長鎖カルボン酸乳酸エステルに水溶液中あるいは、エタノール等のアルコール水溶液中で塩基性物質をモル比(長鎖カルボン酸乳酸エステル/塩基性物質)1/0.9〜1/1.3で加えて、必要に応じて水を加えることにより得られる。純度80モル%以上の長鎖カルボン酸乳酸エステルを用いることにより長鎖カルボン酸乳酸エステル塩の水溶液は中性のpH領域において著しく優れた界面活性能を示す。塩基性物質としては、アルカリ金属若しくは、アルカリ土類金属の水酸化物又は炭酸塩、アンモニア、エタノールアミン等のアルカノールアミン、トリブチルアミン等の低級アルキルアミン等が挙げられる。
【0017】
本発明の長鎖カルボン酸乳酸エステル塩水溶液を食品用に用いる場合は、カルシウムの水酸化物又は塩を用いるのが好ましく、洗浄剤、化粧品等に用いる場合は、皮膚刺激の少ないカリウム、ナトリウム、トリエタノールアミン塩等を用いるのが好ましい。
塩基性物質は予め水または水溶性アルコールの溶液として添加するが、その濃度が極端に濃厚であると、局部的に塩基性物質過剰の状態を形成するので、塩基性物質濃度が50重量%以下、好ましくは10重量%以下の水溶液として用いるのが好ましい。又、長鎖カルボン酸乳酸エステルも、予め水または水溶性アルコールに分散又は溶解させてから塩基性物質と反応させるのが好ましい。
【0018】
長鎖カルボン酸乳酸エステルと塩基性物質とのモル比は等モル〜若干過剰モル、具体的には1/0.9〜1/1.3、好ましくは1/1〜1/1.2であり、モル比をこの範囲に保つことで、経時的な加水分解の抑制及びクラフト点の上昇の抑制、即ち界面活性能の低下を抑制することができる。塩基性物質のモル比が大きいと、長鎖カルボン酸乳酸エステル塩水溶液のクラフト点が上昇し透明性が低下したり石鹸等が沈澱生成のために常温で不均一状態を呈す。この原因としては、塩基性物質の増加によって長鎖カルボン酸乳酸エステルの加水分解が促進されて長鎖カルボン酸乳酸エステル塩が減少するので、長鎖カルボン酸塩(石鹸)及び乳酸比率が増加するためと考えられる。また、塩基性物質のモル比が小さい場合においても、水溶液のクラフト点は上昇する。
【0019】
これは、長鎖カルボン酸乳酸エステルの加水分解は低いが塩基性イオンが少ないために界面活性能が低下しているので、加水分解で生じた長鎖カルボン酸や乳酸が僅かであってもクラフト点が上昇するばかりでなく、乳化力、起泡力、洗浄力といった界面活性能が低下すると考えられる。
長鎖カルボン酸乳酸エステル塩水溶液の調製直後の加水分解を抑制するためには、先ずモル比を1/0.7よりも塩基性物質の少ない、好ましくは1/0.6〜1/0.5の範囲で40℃以上に加熱し反応を行い、次に反応温度を室温まで冷却し、当初の目的のモル比、例えば1/0.9〜1/1.3となるように残部の塩基性物質を添加し反応させるのがより好ましい。
本発明の長鎖カルボン酸乳酸エステル塩水溶液における長鎖カルボン酸乳酸エステル塩の濃度は任意であるが、界面活性剤水溶液として取り扱う点から0.01〜50重量%、好ましくは10〜40重量%、特に好ましくは15〜30重量%である。
【0020】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
なお、長鎖カルボン酸乳酸エステルと、加水分解によって生じる遊離カルボン酸の定量は下記の如く高速液体クロマトグラフィーにて行った。
【0021】
調製:サンプルをテトラヒドロフラン/水=20/1(体積)溶液に溶解する。希硫酸でpH3.0に調整した後、9−Anthryldiazomethan(ADAM、フナコシ(株)製品)のメタノール溶液を加える。室温で1時間暗所に保存して反応させる。

Figure 0004048567
【0022】
上記分析を行うと、ADAMエステル化物は、長鎖カルボン酸乳酸エステル、長鎖カルボン酸の順に流出する。これらを絶体検量線法により定量した。
また、加水分解率R(モル%)は以下の式により算出した。
R(モル%)={(a−b)/(a−b+c)}×100
a:塩水溶液中の遊離カルボン酸量[モル]
b:用いた長鎖カルボン酸乳酸エステルに含有されていた遊離カルボン酸量(モル)
c:塩水溶液中の長鎖カルボン酸乳酸エステル(塩)量[モル]
クラフト点の測定は、K.Tsujii et al.,J.Phys.Chem.1980、84、pp2287に準拠し、1wt%水溶液を約0.3℃/分で昇温させていく際に、水溶液が完全に透明になる点をもって決定した。
【0023】
[実施例1]
ステアロイル乳酸エステル(純度99モル%以上、融点63℃)に、ステアロイル乳酸エステルとKOHのモル比が1/0.6になるように1N−KOH水溶液を添加し、60℃にて溶液が均一状態を呈するまで攪拌した。この水溶液を室温まで放冷し、室温にて更に1N−KOH水溶液を添加してモル比が1/1.0となるようにステアロイル乳酸エステルカリウム水溶液を調製した。これに水を加えてステアロイル乳酸エステルカリウム塩水溶液の濃度を20重量%とした。
これを40℃にて保存し、加水分解率測定、クラフト添測定および常温での水溶液外観評価を経日的に行った。その結果を表−1に示した。
【0024】
[実施例2]並びに[比較例1及び2]
ステアロイル乳酸エステルとKOHのモル比を1/1.2(実施例2)、1/0.8(比較例1)及び1/1.4(比較例2)とした以外は実施例1と同様に行い、結果を表−1に示した。
【0025】
[比較例3]
ステアロイル乳酸エステル(純度70モル%、不純物としてステアリン酸を30モル%を含む)に、該ステアロイル乳酸エステルとKOHのモル比が1/0.6になるように1N−KOH水溶液を添加し、70℃にて攪拌した。この水溶液を室温まで放冷し、室温にて更に1N−KOH水溶液を添加してモル比が1/1.0となるようにステアロイル乳酸エステルカリウム水溶液を調製した。これに水を加えてステアロイル乳酸エステルカリウム塩水溶液の濃度を20重量%とした。
これを40℃にて保存し、実施例1と同様の評価を行った。結果を表−1に示した。
【0026】
[実施例3]
ステアロイル乳酸エステル(純度99モル%以上、融点63℃)に、ステアロイル乳酸エステルとNaOHのモル比が1/0.6になるように1N−NaOH水溶液を添加し、60℃にて溶液が均一状態を呈するまで攪拌した。この水溶液を室温まで放冷し、室温にて更に1N−NaOH水溶液を添加してモル比が1/1.0となるようにステアロイル乳酸エステルナトリウム水溶液を調製した。これに水を加えてステアロイル乳酸エステルナトリウム塩水溶液の濃度を20重量%とした。
これを40℃にて保存し、加水分解率測定、クラフト添測定および常温での水溶液外観評価を経日的に行った。その結果を表−2に示した。
【0027】
[実施例4]並びに[比較例4及び5]
ステアロイル乳酸エステルとNaOHのモル比を1/1.2(実施例4)、1/0.8(比較例4)、1/1.4(比較例5)とした以外は実施例3と同様に行い、結果を表−2に示した。
【0028】
[比較例6]
ステアロイル乳酸エステル(純度70モル%、不純物としてステアリン酸を30モル%を含む)にステアロイル乳酸エステルと塩基性物質のモル比を1/0.6になるように1N−NaOH水溶液を添加し、70℃にて攪拌した。この水溶液を室温まで放冷し、室温にて更に1N−NaOH水溶液を添加してモル比が1/1.0となるようにステアロイル乳酸エステルナトリウム水溶液を調製した。これに水を加えてステアロイル乳酸エステルナトリウム塩水溶液の濃度を20重量%とした。
これを40℃にて保存し、実施例1と同様の評価を行った。結果を表−2に示した。
【0029】
[実施例5]
ラウロイル乳酸エステル(純度99モル%以上、融点36℃)に対して、ラウロイル乳酸エステルとKOHのモル比を1/0.6になるように1N−KOH水溶液を添加し、30℃にて溶液が均一状態を呈するまで攪拌した。この水溶液を室温まで放冷し、室温にて更に1N−KOH水溶液を添加してモル比が1/1.0となるようにラウロイル乳酸エステルカリウム水溶液を調製した。これに水を加えてラウロイル乳酸エステルカリウム塩水溶液の濃度を20重量%とした。
これを40℃にて保存し、加水分解率測定、クラフト添測定および常温での水溶液外観評価を経日的に行った。その結果を表−3に示した。
【0030】
[実施例6]並びに[比較例7及び8]
ステアロイル乳酸エステルとKOHのモル比を1/1.2(実施例6)、1/0.8(比較例7)、1/1.4(比較例8)とした以外は実施例5と同様に行い、結果を表−3に示した。
[比較例9]
ラウロイル乳酸エステル(純度70モル%、不純物としてステアリン酸を30モル%を含む)にラウロイル乳酸エステルとKOHのモル比を1/0.6になるように1N−KOH水溶液を添加し、40℃にて攪拌した。この水溶液を室温まで放冷し、室温にて更に1N−KOH水溶液を添加してモル比が1/1.0となるようにラウロイル乳酸エステルナトリウム水溶液を調製した。これに水を加えてラウロイル乳酸エステルナトリウム塩水溶液の濃度を20重量%とした。
これを40℃にて保存し、実施例1と同様の評価を行った。結果を表−3に示した。
【0031】
【表1】
Figure 0004048567
【0032】
【表2】
Figure 0004048567
【0033】
【表3】
Figure 0004048567
【0034】
【発明の効果】
本発明の長鎖カルボン酸乳酸エステル塩水溶液は、クラフト点が低く、界面活性能において優れており、また長期間の保存においても水溶液が均一で透明であり、界面活性能が低下しないという良好な結果を与え、乳化剤として極めて優れている。また、本発明の方法に従って製造することにより、クラフト点が低く保存安定性に優れた長鎖カルボン酸乳酸エステル塩水溶液を工業的に適用しうる比較的簡単な操作で得ることができる。[0001]
[Industrial application fields]
The present invention relates to a stable long-chain carboxylic acid lactic acid ester salt aqueous solution and a method for producing the same.
[0002]
[Prior art]
Long-chain carboxylic acid lactic acid ester salts are anionic surfactants, and are known to be useful for applications such as emulsifiers for foods and cosmetics, and surfactants constituting detergents (US Pat. No. 2, 733,252, JP-A 64-6237, JP-A 4-23900). Long-chain carboxylic acid lactic acid ester salt is characterized by exhibiting excellent surface activity at a neutral pH when made into an aqueous solution compared to other emulsifiers, and it is required to have low skin irritation. It has been used as an emulsifier for baked foods such as bread dough and cereal flour.
[0003]
Conventionally, a long-chain carboxylic acid lactate salt is obtained by reacting a reactive derivative such as a long-chain carboxylic acid or a long-chain carboxylic acid chloride with lactic acid or lactate to produce a long-chain carboxylic acid lactate, which is basic. The substance was reacted, and the reaction mixture was made into an aqueous solution as it was and used for an emulsifier and the like. This is because there is no known industrially applicable method for purifying long-chain carboxylic acid lactic acid ester salts, and the influence of coexisting substances on long-chain carboxylic acid lactic acid ester salts has not been fully elucidated. This was due to the lack of motivation to use refined products.
[0004]
However, the aqueous solution of such a reaction mixture has a problem that the Kraft point of the aqueous solution increases. The craft point is a factor that affects the surface active ability of the surfactant. Since the surface active ability such as foaming power and emulsifying power is not fully exhibited at temperatures below the craft point, an increase in the craft point means that the surface active ability This has led to a decline. Furthermore, when such an aqueous solution is stored for a long period of time at a relatively high temperature condition of room temperature or higher, not only does the transparency of the aqueous solution deteriorate, but also there is a problem that precipitation occurs and the aqueous solution becomes non-uniform. .
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide an aqueous solution of a long-chain carboxylic acid lactic acid ester salt having a relatively low Kraft point and excellent storage stability at a temperature above room temperature, and a method for producing an aqueous solution of the long-chain carboxylic acid lactic acid ester salt There is to do.
[0006]
[Means for Solving the Invention]
The present invention has been made to achieve the above object, and the gist of the present invention resides in a long-chain carboxylic acid lactic acid ester salt aqueous solution containing a long-chain carboxylic acid lactic acid ester salt having a purity of 80 mol% or more.
Hereinafter, the present invention will be described in detail.
The long chain carboxylic acid lactic acid ester salt provided as an aqueous solution in the present invention is obtained by reacting a long chain carboxylic acid lactic acid ester with a basic substance. It can be obtained by reacting a reactive derivative such as a chain carboxylic acid or a long chain carboxylic acid chloride with lactic acid or lactate. As the long-chain carboxylic acid, those having 8 to 24 carbon atoms, preferably 10 to 22 carbon atoms are used. The long chain carboxylic acid may be saturated or unsaturated, and may be linear or branched. In the case of a branched chain, the length of the longest chain is preferably 8 or more. In some cases, it may be a hydroxycarboxylic acid having a hydroxyl group. These long-chain carboxylic acids include caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arachidic acid, behenic acid, oleic acid, erucic acid, elaidic acid, ricinoleic acid, 2-butyloctanoic acid 2-hexyldecanoic acid, 2-hexylundecanoic acid, 2-octyldecanoic acid, 2-decyltetradecanoic acid, 10-hydroxyoctadecanoic acid, 2-hydroxydecanoic acid and the like. Of these, lauric acid, stearic acid, capric acid, myristic acid, palmitic acid, oleic acid and the like are preferable. These long chain carboxylic acids can also be used as a mixture of two or more of any ratio. However, in order to obtain a long-chain carboxylic acid lactic acid ester having a purity of 80 mol% or more, a long-chain carboxylic acid having a purity of 70% or more, preferably 80% or more, particularly preferably 95% or more is used (in this specification, a long chain carboxylic acid is used). The purity of the chain carboxylic acid means the weight% of one type of fatty acid in the long chain carboxylic acid). When the purity of the long chain carboxylic acid is high, the crystallization process during the production process of the long chain carboxylic acid lactic acid ester becomes good.
[0007]
The lactic acid may be produced by either a fermentation method or a synthetic method, but a lactic acid produced by a synthetic method with a high purity (DL form) is preferred. As is well known, when an aqueous lactic acid solution is concentrated, lactic acid polymerizes to produce polylactic acid. However, using a dilute lactic acid aqueous solution not containing polylactic acid is not preferable because a large amount of water is brought into the reaction system that should be in an anhydrous state. Therefore, it is usually preferable to use lactic acid having a concentration of about 85% containing some polylactic acid.
[0008]
The charge ratio of lactic acid to long-chain carboxylic acid may be 1: 1 (molar ratio), but in order to increase the reaction rate of long-chain carboxylic acid, excess lactic acid, for example, 1: 1.2 to 3.0 (mol) Ratio).
The reaction can be carried out in the presence or absence of a solvent. When a solvent is used, it is preferable to use a basic solvent such as pyridine that is soluble in both the reaction raw material and the product.
[0009]
When no solvent is used, lactic acid and a long-chain carboxylic acid are reacted in the molten state of the long-chain carboxylic acid using an alkali metal hydroxide or carbonate as a catalyst.
In order to obtain a long-chain carboxylic acid lactate having a purity of 80 mol% or more, the reaction mixture is subjected to liquid-liquid extraction with an aqueous solvent and an organic solvent at a pH of 5.0 or less, and an organic solvent phase rich in long-chain carboxylic acid lactate is obtained. An aqueous solvent phase rich in lactic acid to separate both phases and then separate by crystallization from the long chain carboxylic acid coexisting with the long chain carboxylic acid lactic acid ester of this organic solvent phase, or into the reaction mixture An aqueous acid solution is added until the pH is lower than 3.0 to precipitate the long-chain carboxylic acid lactic acid ester as an oily substance. The oily substance is separated and dissolved in an organic solvent to form a solution. It is preferable to use a method of crystallizing a carboxylic acid lactic acid ester.
[0010]
When an aqueous acid solution is added to lower the pH of the reaction mixture, hydrochloric acid or sulfuric acid is usually used as the acid. Thereby, polylactic acid in the reaction mixture is decomposed into lactic acid. When a solvent is used for the reaction, the solvent may be distilled off beforehand. The addition amount of the aqueous acid solution is preferably such that the total amount of the long-chain carboxylic acid lactic acid ester, long-chain carboxylic acid and lactic acid in the reaction mixture after the addition of the acid aqueous solution is 3 to 40 (weight)%.
[0011]
The behavior of the long-chain carboxylic acid lactic acid ester in the reaction mixture when an acid aqueous solution is added depends on the composition of the reaction mixture, but generally, when the pH is lower than 3.0, the long-chain carboxylic acid lactic acid ester becomes a long-chain carboxylic acid lactic acid ester. Since it precipitates as an oil together with a part of the carboxylic acid and lactic acid, the pH of the reaction mixture is lowered to 1.5 to 3.0 when the long-chain carboxylic acid lactic acid ester is to be precipitated as an oil. Let If the pH is lowered too much, the long-chain carboxylic acid lactic acid ester will be decomposed, so lowering the pH more than necessary should be avoided.
[0012]
When extracting a long-chain carboxylic acid lactic acid ester with an organic solvent, the pH is lowered to 5.0 or less, preferably 2.0 to 4.0. Even if an oily substance is precipitated at this time, it does not hinder the next liquid-liquid extraction. If the pH is not sufficiently lowered, separation of the aqueous phase and the organic phase in the liquid-liquid extraction of the reaction mixture may be worsened. The reaction mixture having a predetermined pH is then extracted with an organic solvent to partition lactic acid into the aqueous phase and long-chain carboxylic acid lactic acid ester into the organic solvent phase. At this time, the long-chain carboxylic acid in the reaction mixture is generally distributed in the organic solvent phase.
[0013]
As the organic solvent used for extraction, any solvent can be used as long as it is hardly soluble or insoluble in water and exhibits a large dissolving power in the long-chain carboxylic acid lactic acid ester. Examples thereof include hydrocarbons such as hexane and heptane, halogenated hydrocarbons such as methyl chloride and chloroform, alcohols such as isobutyl alcohol, ketones such as methyl ethyl ketone, and esters such as ethyl acetate. Of these, hexane, heptane, isobutyl alcohol, chloroform and the like, which have a boiling point of 50 ° C. or higher and are easy to handle, are preferable. Particularly preferred is hexane or chloroform.
[0014]
Liquid-liquid extraction is usually performed using 0.2 to 5 volume times, preferably 0.3 to 2 volume times, of an organic solvent with respect to the aqueous phase containing the reaction mixture. The extraction temperature is usually room temperature to 60 ° C, preferably 40 to 60 ° C. The extraction operation can be performed according to a conventional method using various batch-type or continuous-type liquid-liquid extraction apparatuses.
From the organic solvent phase obtained by liquid-liquid extraction, a long-chain carboxylic acid lactic acid ester is recovered by fractional crystallization. When it is precipitated as an oil, it is dissolved in an organic solvent, and the long-chain carboxylic acid lactic acid ester is recovered from this solution by fractional crystallization. In addition, since lactic acid is contained in the oily substance, it is preferable to remove lactic acid by washing with water before dissolving in the organic solvent.
[0015]
As the organic solvent used for the fractional crystallization, the same organic solvent used for the above-described extraction operation can be used. Therefore, the long-chain carboxylic acid lactic acid ester may be crystallized directly from the organic solvent phase obtained by extraction, or the organic solvent is distilled off from the organic solvent phase, and the residue is dissolved in a new organic solvent and crystallized. May be. The concentration of the long-chain carboxylic acid lactic acid ester in the organic solvent solution used for the crystallization operation is usually 5 to 40 (weight)%. If the concentration of the long-chain carboxylic acid lactic acid ester is too high, the crystallization operation becomes difficult, and the purity of the crystals obtained decreases. A preferred concentration is 5 to 35 (wt)%, particularly 5 to 15 (wt)%. The crystallization operation is usually performed at -20 to 40 ° C. In general, it is preferable to carry out the reaction at a relatively high temperature when the melting point of the long-chain carboxylic acid is high and at a relatively low temperature when the melting point is low.
[0016]
The purity of the long-chain carboxylic acid lactic acid ester obtained by the crystallization operation is usually about 80 to 95 mol%, and about 20 to 5 mol% of the long-chain carboxylic acid is contained as an impurity. When this long-chain carboxylic acid lactate is subjected to a crystallization operation again, a high-purity long-chain carboxylic acid lactate having a purity of 99% or higher can be obtained.
The present invention provides an aqueous solution of a long-chain carboxylic acid lactic acid ester salt having a purity of 80 mol% or more. Obtained by adding a basic substance in a molar ratio (long-chain carboxylic acid lactic acid ester / basic substance) 1 / 0.9 to 1 / 1.3 in an aqueous alcohol solution such as ethanol, and adding water as necessary. It is done. By using a long-chain carboxylic acid lactic acid ester having a purity of 80 mol% or more, an aqueous solution of a long-chain carboxylic acid lactic acid ester salt exhibits a remarkably excellent surface activity in a neutral pH region. Examples of basic substances include alkali metal or alkaline earth metal hydroxides or carbonates, alkanolamines such as ammonia and ethanolamine, and lower alkylamines such as tributylamine.
[0017]
When the long-chain carboxylic acid lactic acid ester salt aqueous solution of the present invention is used for foods, it is preferable to use a calcium hydroxide or salt, and when used for cleaning agents, cosmetics, etc., potassium, sodium, It is preferable to use a triethanolamine salt or the like.
The basic substance is added in advance as a solution of water or water-soluble alcohol, but if the concentration is extremely concentrated, a basic substance excessive state is locally formed, so the basic substance concentration is 50% by weight or less. It is preferably used as an aqueous solution of 10% by weight or less. Further, it is preferable that the long-chain carboxylic acid lactic acid ester is also preliminarily dispersed or dissolved in water or a water-soluble alcohol and then reacted with a basic substance.
[0018]
The molar ratio of the long-chain carboxylic acid lactic acid ester to the basic substance is equimolar to slightly excess molar, specifically 1 / 0.9 to 1 / 1.3, preferably 1/1 to 1 / 1.2. In addition, by maintaining the molar ratio within this range, it is possible to suppress hydrolysis over time and increase in Kraft point, that is, decrease in surface activity. When the molar ratio of the basic substance is large, the Kraft point of the aqueous solution of the long-chain carboxylic acid lactic acid ester salt is increased, the transparency is lowered, and the soap or the like exhibits a non-uniform state at room temperature due to precipitation. This is because the increase in the basic substance promotes the hydrolysis of the long-chain carboxylic acid lactic acid ester and decreases the long-chain carboxylic acid lactic acid ester salt, thereby increasing the long-chain carboxylate (soap) and the lactic acid ratio. This is probably because of this. Even when the molar ratio of the basic substance is small, the Kraft point of the aqueous solution rises.
[0019]
This is because the hydrolysis of long-chain carboxylic acid lactic acid ester is low but the basic activity is low due to the small amount of basic ions, so even if there is a little long-chain carboxylic acid or lactic acid produced by hydrolysis, kraft It is considered that not only the point increases, but also the surface activity such as emulsifying power, foaming power, and cleaning power decreases.
In order to suppress hydrolysis immediately after the preparation of the long-chain carboxylic acid lactic acid ester salt aqueous solution, the molar ratio is first less than 1 / 0.7, preferably 1 / 0.6 to 1 / 0.0. The reaction is carried out by heating to 40 ° C. or higher in the range of 5, then the reaction temperature is cooled to room temperature, and the remaining base is adjusted so that the original target molar ratio is, for example, 1 / 0.9 to 1 / 1.3. More preferably, a reactive substance is added and reacted.
The concentration of the long-chain carboxylic acid lactic acid ester salt in the long-chain carboxylic acid lactic acid ester salt aqueous solution of the present invention is arbitrary, but is 0.01 to 50% by weight, preferably 10 to 40% by weight from the viewpoint of handling as a surfactant aqueous solution. Particularly preferably, it is 15 to 30% by weight.
[0020]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention still in detail, this invention is not limited to a following example, unless the summary is exceeded.
The long-chain carboxylic acid lactic acid ester and the free carboxylic acid produced by hydrolysis were quantified by high performance liquid chromatography as described below.
[0021]
Preparation: Dissolve the sample in tetrahydrofuran / water = 20/1 (volume) solution. After adjusting to pH 3.0 with dilute sulfuric acid, a methanol solution of 9-Anthryldiazomethan (ADAM, Funakoshi Co., Ltd.) is added. The reaction is carried out in the dark at room temperature for 1 hour.
Figure 0004048567
[0022]
When the above analysis is performed, the ADAM esterified product flows out in the order of a long-chain carboxylic acid lactate and a long-chain carboxylic acid. These were quantified by the absolute calibration curve method.
The hydrolysis rate R (mol%) was calculated by the following formula.
R (mol%) = {(ab) / (ab + c)} × 100
a: Amount of free carboxylic acid in the aqueous salt solution [mol]
b: Amount of free carboxylic acid (mole) contained in the long-chain carboxylic acid lactate used
c: Amount of long-chain carboxylic acid lactic acid ester (salt) in the salt aqueous solution [mol]
The measurement of the craft point is described in K.A. Tsujii et al. , J .; Phys. Chem. In accordance with 1980, 84, pp2287, it was determined based on the point that the aqueous solution became completely transparent when the 1 wt% aqueous solution was heated at about 0.3 ° C./min.
[0023]
[Example 1]
1N-KOH aqueous solution is added to stearoyl lactic acid ester (purity 99 mol% or more, melting point 63 ° C.) so that the molar ratio of stearoyl lactic acid ester and KOH is 1 / 0.6, and the solution is homogeneous at 60 ° C. The mixture was stirred until This aqueous solution was allowed to cool to room temperature, and a 1N-KOH aqueous solution was further added at room temperature to prepare a stearoyl potassium lactate aqueous solution so that the molar ratio was 1 / 1.0. Water was added thereto to adjust the concentration of the stearoyl lactate potassium salt aqueous solution to 20% by weight.
This was preserve | saved at 40 degreeC and the hydrolysis rate measurement, the Kraft attachment measurement, and the aqueous solution external appearance evaluation at normal temperature were performed day by day. The results are shown in Table 1.
[0024]
[Example 2] and [Comparative Examples 1 and 2]
Similar to Example 1 except that the molar ratio of stearoyl lactate to KOH was 1 / 1.2 (Example 2), 1 / 0.8 (Comparative Example 1) and 1 / 1.4 (Comparative Example 2). The results are shown in Table 1.
[0025]
[Comparative Example 3]
1N-KOH aqueous solution was added to stearoyl lactic acid ester (purity 70 mol%, including 30 mol% of stearic acid as an impurity) so that the molar ratio of stearoyl lactic acid ester and KOH was 1 / 0.6, Stir at ℃. This aqueous solution was allowed to cool to room temperature, and a 1N-KOH aqueous solution was further added at room temperature to prepare a stearoyl potassium lactate aqueous solution so that the molar ratio was 1 / 1.0. Water was added thereto to adjust the concentration of the stearoyl lactate potassium salt aqueous solution to 20% by weight.
This was preserve | saved at 40 degreeC and the same evaluation as Example 1 was performed. The results are shown in Table-1.
[0026]
[Example 3]
1N-NaOH aqueous solution is added to stearoyl lactate ester (purity 99 mol% or more, melting point 63 ° C) so that the molar ratio of stearoyl lactate ester and NaOH becomes 1 / 0.6, and the solution is homogeneous at 60 ° C. The mixture was stirred until This aqueous solution was allowed to cool to room temperature, and a 1N NaOH aqueous solution was further added at room temperature to prepare a sodium stearoyl lactate aqueous solution so that the molar ratio was 1 / 1.0. Water was added thereto to adjust the concentration of the stearoyl lactic acid ester sodium salt aqueous solution to 20% by weight.
This was preserve | saved at 40 degreeC and the hydrolysis rate measurement, the Kraft attachment measurement, and the aqueous solution external appearance evaluation at normal temperature were performed day by day. The results are shown in Table-2.
[0027]
[Example 4] and [Comparative Examples 4 and 5]
Similar to Example 3 except that the molar ratio of stearoyl lactate to NaOH was 1 / 1.2 (Example 4), 1 / 0.8 (Comparative Example 4), 1 / 1.4 (Comparative Example 5). The results are shown in Table 2.
[0028]
[Comparative Example 6]
1N-NaOH aqueous solution was added to stearoyl lactic acid ester (purity 70 mol%, containing 30 mol% of stearic acid as an impurity) so that the molar ratio of stearoyl lactic acid ester and basic substance was 1 / 0.6. Stir at ℃. This aqueous solution was allowed to cool to room temperature, and a 1N NaOH aqueous solution was further added at room temperature to prepare a sodium stearoyl lactate aqueous solution so that the molar ratio was 1 / 1.0. Water was added thereto to adjust the concentration of the stearoyl lactic acid ester sodium salt aqueous solution to 20% by weight.
This was preserve | saved at 40 degreeC and the same evaluation as Example 1 was performed. The results are shown in Table-2.
[0029]
[Example 5]
A 1N-KOH aqueous solution was added to lauroyl lactic acid ester (purity 99 mol% or more, melting point 36 ° C.) so that the molar ratio of lauroyl lactic acid ester to KOH was 1 / 0.6. Stir until uniform. This aqueous solution was allowed to cool to room temperature, and a 1N-KOH aqueous solution was further added at room temperature to prepare a potassium lauroyl lactate ester aqueous solution so that the molar ratio was 1 / 1.0. Water was added thereto to adjust the concentration of the lauroyl lactate potassium salt aqueous solution to 20% by weight.
This was preserve | saved at 40 degreeC and the hydrolysis rate measurement, the Kraft attachment measurement, and the aqueous solution external appearance evaluation at normal temperature were performed day by day. The results are shown in Table-3.
[0030]
[Example 6] and [Comparative Examples 7 and 8]
Similar to Example 5 except that the molar ratio of stearoyl lactate to KOH was 1 / 1.2 (Example 6), 1 / 0.8 (Comparative Example 7) and 1 / 1.4 (Comparative Example 8). The results are shown in Table 3.
[Comparative Example 9]
1N-KOH aqueous solution was added to lauroyl lactic acid ester (purity 70 mol% and stearic acid 30 mol% as an impurity) so that the molar ratio of lauroyl lactic acid ester to KOH was 1 / 0.6 And stirred. This aqueous solution was allowed to cool to room temperature, and a 1N-KOH aqueous solution was further added at room temperature to prepare a sodium lauroyl lactate aqueous solution so that the molar ratio was 1 / 1.0. Water was added thereto to make the concentration of the lauroyl lactate sodium salt aqueous solution 20% by weight.
This was preserve | saved at 40 degreeC and the same evaluation as Example 1 was performed. The results are shown in Table-3.
[0031]
[Table 1]
Figure 0004048567
[0032]
[Table 2]
Figure 0004048567
[0033]
[Table 3]
Figure 0004048567
[0034]
【The invention's effect】
The long-chain carboxylic acid lactic acid ester salt aqueous solution of the present invention has a low Kraft point and excellent surface activity, and the aqueous solution is uniform and transparent even during long-term storage, and the surface activity does not deteriorate. Gives results and is very good as an emulsifier. Moreover, by producing according to the method of the present invention, a long-chain carboxylic acid lactic acid ester salt aqueous solution having a low Kraft point and excellent storage stability can be obtained by a relatively simple operation that can be industrially applied.

Claims (8)

炭素数8〜24の長鎖カルボン酸乳酸エステルと塩基性物質との塩の水溶液であって、長鎖カルボン酸乳酸エステルを形成している長鎖カルボン酸と長鎖カルボン酸乳酸エステルを形成していない長鎖カルボン酸との合計に占める該エステルを形成している長鎖カルボン酸のモル%が80%以上であり、且つ長鎖カルボン酸乳酸エステル(塩基性物質と塩を形成しているものを含む)と塩基性物質(長鎖カルボン酸乳酸エステルと塩を形成しているものを含む)とのモル比が1:0.9〜1:1.3であることを特徴とする長鎖カルボン酸乳酸エステル塩水溶液。 An aqueous solution of a salt of a long chain carboxylic acid lactic acid ester having 8 to 24 carbon atoms and a basic substance, wherein the long chain carboxylic acid forming the long chain carboxylic acid lactic acid ester and the long chain carboxylic acid lactic acid ester are formed. The long chain carboxylic acid mol% forming the ester in the total with the long chain carboxylic acid is not less than 80%, and the long chain carboxylic acid lactic acid ester (forms a salt with a basic substance). And a basic substance (including those that form salts with long-chain carboxylic acid lactic acid esters) in a molar ratio of 1: 0.9 to 1: 1.3 Chain carboxylic acid lactic acid ester salt aqueous solution. 長鎖カルボン酸乳酸エステル(塩基性物質と塩を形成しているものを含む)と塩基性物質(長鎖カルボン酸乳酸エステルと塩を形成しているものを含む)とのモル比が1:1〜1:1.2であることを特徴とする請求項1記載の長鎖カルボン酸乳酸エステル塩水溶液。 The molar ratio of long-chain carboxylic acid lactic acid ester (including those that form salts with basic substances) and basic substances (including those that form salts with long-chain carboxylic acid lactic acid esters) is 1: It is 1-1: 1.2, The long-chain carboxylic acid lactic acid ester salt aqueous solution of Claim 1 characterized by the above-mentioned. 長鎖カルボン酸が炭素数10〜22のものであることを特徴とする請求項1又は2に記載の長鎖カルボン酸乳酸エステル塩水溶液。 The long- chain carboxylic acid lactic acid ester salt aqueous solution according to claim 1 or 2, wherein the long-chain carboxylic acid has 10 to 22 carbon atoms . 塩基性物質が、アルカリ金属又はアルカリ土類金属の水酸化物又は炭酸塩、アンモニア、アルカノールアミン及び低級アルキルアミンより成る群から選ばれたものであることを特徴とする請求項1ないし3のいずれかに記載の長鎖カルボン酸乳酸エステル塩水溶液。 4. The basic substance according to claim 1, wherein the basic substance is selected from the group consisting of alkali metal or alkaline earth metal hydroxides or carbonates, ammonia, alkanolamines and lower alkylamines. long-chain carboxylic acid lactic ester salt aqueous solution according to either. 長鎖カルボン酸乳酸エステル塩の濃度が0.01〜50重量%であることを特徴とする請求項1ないし4のいずれかに記載の長鎖カルボン酸乳酸エステル塩水溶液。The long-chain carboxylic acid lactic acid ester salt aqueous solution according to any one of claims 1 to 4, wherein the concentration of the long-chain carboxylic acid lactic acid ester salt is 0.01 to 50% by weight. 長鎖カルボン酸乳酸エステル塩の濃度が15〜30重量%であることを特徴とする請求項1ないし4のいずれかに記載の長鎖カルボン酸乳酸エステル塩水溶液。The long-chain carboxylic acid lactic acid ester salt aqueous solution according to any one of claims 1 to 4, wherein the concentration of the long-chain carboxylic acid lactic acid ester salt is 15 to 30% by weight. 炭素数8〜24の長鎖カルボン酸であって純度が80%以上のもの(ここに純度とは長鎖カルボン酸中において1種類の長鎖カルボン酸の占める重量%を意味する)又はその反応性誘導体と、乳酸又はその塩とを、モル比で1:1.2〜1:3.0で反応させ、生成した反応混合物から乳酸とエステルを形成している長鎖カルボン酸と乳酸とエステルを形成していない長鎖カルボン酸との合計に占める該エステルを形成している長鎖カルボン酸のモル%が80%以上である長鎖カルボン酸乳酸エステルを取得し、これと塩基性物質とを1:0.9〜1:1.3のモル比で反応させることを特徴とする請求項1ないし6のいずれかに記載の長鎖カルボン酸乳酸エステル塩水溶液の製造方法。A long-chain carboxylic acid having 8 to 24 carbon atoms and having a purity of 80% or more (herein, purity means the weight% of one kind of long-chain carboxylic acid in the long-chain carboxylic acid) or a reaction thereof A long-chain carboxylic acid, lactic acid and ester forming a lactic acid and an ester from the resulting reaction mixture by reacting a functional derivative with lactic acid or a salt thereof in a molar ratio of 1: 1.2 to 1: 3.0 A long-chain carboxylic acid lactic acid ester in which the mole% of the long-chain carboxylic acid forming the ester in the total of the long-chain carboxylic acid that does not form a carboxylic acid is 80% or more, and a basic substance Is reacted in a molar ratio of 1: 0.9 to 1: 1.3, The method for producing a long-chain carboxylic acid lactic acid ester salt aqueous solution according to any one of claims 1 to 6. 炭素数8〜24の長鎖カルボン酸又はその反応性誘導体と乳酸又はその塩とを反応させて得られた長鎖カルボン酸乳酸エステルであって、乳酸とエステルを形成している長鎖カルボン酸と乳酸とエステルを形成していない長鎖カルボン酸との合計に占めるエステルを形成している長鎖カルボン酸のモル%が80%以上である長鎖カルボン酸乳酸エステルと塩基性物質とを、モル比で1:0.5〜1:0.7、且つ温度40℃以上で反応させ、反応液を冷却したのちこれに更に塩基性物質を長鎖カルボン酸乳酸エステル(塩基性物質と塩を形成しているものを含む)と塩基性物質(長鎖カルボン酸乳酸エステルと塩を形成しているものを含む)との最終的なモル比が1:0.9〜1:1.3となるように反応させることを特徴とする請求項1ないし6のいずれかに記載の長鎖カルボン酸乳酸エステル塩水溶液の製造方法。A long-chain carboxylic acid ester obtained by reacting a long-chain carboxylic acid having 8 to 24 carbon atoms or a reactive derivative thereof with lactic acid or a salt thereof, and forming an ester with lactic acid A long-chain carboxylic acid lactic acid ester and a basic substance in which the mol% of the long-chain carboxylic acid forming the ester in the total of the lactic acid and the long-chain carboxylic acid not forming an ester is 80% or more, After reacting at a molar ratio of 1: 0.5 to 1: 0.7 and at a temperature of 40 ° C. or higher, the reaction solution is cooled, and then a basic substance is added to a long-chain carboxylic acid lactate (basic substance and salt). And the final molar ratio of the basic substance (including those forming a salt with the long-chain carboxylic acid lactic acid ester) is 1: 0.9 to 1: 1.3. The reaction is performed as follows: Method for producing a long chain carboxylic acid lactic ester salt aqueous solution according to 6 either to.
JP31664994A 1994-12-20 1994-12-20 Long chain carboxylic acid lactic acid ester salt aqueous solution Expired - Fee Related JP4048567B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31664994A JP4048567B2 (en) 1994-12-20 1994-12-20 Long chain carboxylic acid lactic acid ester salt aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31664994A JP4048567B2 (en) 1994-12-20 1994-12-20 Long chain carboxylic acid lactic acid ester salt aqueous solution

Publications (2)

Publication Number Publication Date
JPH08176068A JPH08176068A (en) 1996-07-09
JP4048567B2 true JP4048567B2 (en) 2008-02-20

Family

ID=18079381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31664994A Expired - Fee Related JP4048567B2 (en) 1994-12-20 1994-12-20 Long chain carboxylic acid lactic acid ester salt aqueous solution

Country Status (1)

Country Link
JP (1) JP4048567B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9675537B2 (en) * 2014-06-30 2017-06-13 Johnson & Johnson Consumer Inc. Hair growth composition and method
US11185487B2 (en) 2015-12-28 2021-11-30 Johnson & Johnson Consumer Inc. Hair growth composition and method

Also Published As

Publication number Publication date
JPH08176068A (en) 1996-07-09

Similar Documents

Publication Publication Date Title
US4032702A (en) Production of surface active material
EP1392636A4 (en) Process for preparing carboxylic acids and derivatives thereof
KR930702363A (en) Improved process for producing highly esterified polyol fatty acid polyesters with reduced amounts of difatty ketones and β-ketoesters
US5739365A (en) Method for preparing ammonium hydroxyalkyl sulfonates and ammonium alkanoyl alkyl sulfonates produced therefrom
JPH05148286A (en) Preparation of surface active agent derived from dicarboxylic or tricarboxylic acid
JP4048567B2 (en) Long chain carboxylic acid lactic acid ester salt aqueous solution
JP4158192B2 (en) Method for producing acylphenylalanine
JPH08503483A (en) Method for producing storable amphoteric surfactant having low viscosity
JP3981987B2 (en) Method for producing fatty acid lactic acid ester salt
US8212061B1 (en) Preparation of organic acid salts of cationic surfactants
JPH07228590A (en) Production of sucrose fatty acid ester
JPH0739380B2 (en) Method for producing fatty acid alkanolamide
US3074980A (en) Process for making acyl amides of amino acid salts
CH643837A5 (en) 2-CARBALKOXY-3,4-DIHYDROXY-5-ALKYLFURANE AND 2-CARBALKOXY-4-HYDROXY-2,5-DIALKYL-3-OXO-2H-FURANE.
JPH09268195A (en) Production of sucrose fatty acid ester
EP0706511B1 (en) Preparation of ammonium hydroxyalkyl/alkanoylalkyl sulfonates
JP2777455B2 (en) Method for producing N-long-chain acyl acidic amino acids
JP3823524B2 (en) Method for producing high purity succinic monoglyceride and high purity lauric succinic monoglyceride
CN112592286A (en) Preparation method of complex of aspirin and basic amino acid
JPH0834758A (en) Production of long-chain carboxylic acid lactic acid ester
JP4109849B2 (en) Process for producing fatty acid hydroxycarboxylic acid ester salt
JP3355836B2 (en) Method for producing polyglycerin fatty acid ester paste
JPH09143134A (en) Production of amide-ether carboxylate
JPH07278071A (en) Production of betaine
KR0180607B1 (en) Process for production and purification of sucrose fatty acid esters

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees