JP4048319B2 - 処理装置の異常検知方法 - Google Patents

処理装置の異常検知方法 Download PDF

Info

Publication number
JP4048319B2
JP4048319B2 JP2002169465A JP2002169465A JP4048319B2 JP 4048319 B2 JP4048319 B2 JP 4048319B2 JP 2002169465 A JP2002169465 A JP 2002169465A JP 2002169465 A JP2002169465 A JP 2002169465A JP 4048319 B2 JP4048319 B2 JP 4048319B2
Authority
JP
Japan
Prior art keywords
operation data
processing apparatus
residual
abnormality
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002169465A
Other languages
English (en)
Other versions
JP2004047501A (ja
Inventor
真治 坂野
智 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2002169465A priority Critical patent/JP4048319B2/ja
Publication of JP2004047501A publication Critical patent/JP2004047501A/ja
Application granted granted Critical
Publication of JP4048319B2 publication Critical patent/JP4048319B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、処理装置の異常検知方法に関し、更に詳しくは、例えば半導体製造装置や検査装置等の処理装置に付設された複数の検出器を介して検出される複数の検出値を処理装置の運転データとして利用して処理装置の異常を検知する方法に関する。
【0002】
【従来の技術】
半導体製造工程は多種類の半導体製造装置や検査装置等の処理装置が用いられている。例えばプラズマ処理装置はエッチング処理や成膜処理等のプラズマ処理に用いられる。この種のプラズマ処理装置は、例えば、処理室内に互いに平行に配設された上部電極と下部電極を備え、下部電極に高周波電力を印加すると共に処理室内にプロセスガスを導入し、上部電極と下部電極間の放電によりプロセスガスのプラズマを発生させ、被処理体(例えばウエハ)に所定のプラズマ処理を施している。そして、これらのプラズマ処理装置のプロセスに異常があるか否かの評価を行う場合にはプラズマの発光強度、処理室内の圧力、下部電極の印加電力及びプロセスガスの供給流量等の30数種類のデータをそれぞれの検出器を用いて検出し、それぞれの検出値を運転データとして収集し、これらの運転データを用いて主成分分析等の多変量解析を行ってプラズマ処理装置のプロセスを評価する。
【0003】
例えば複数のウエハを処理すると、各ウエハに対して複数の運転データが得られる。例えば各ウエハに対して3種類の運転データを収集し、これらの運転データをプロットすると例えば図8のグラフのように表すことができる。図8に示すグラフでは各運転データはある一定の傾向を示し、殆どの運転データがラグビーボール状の空間内に納まっていることが判る。そこで、これらの運転データを主成分分析して第1、第2主成分を求めると、第1主成分は最も分散の大きいラグビーボールの長径と略一致する直線座標▲1▼になり、第2主成分は次に分散の大きい短径と略一致する直線座標▲2▼になる。直線座標▲1▼と直線座標▲2▼は互いに直交する関係にある。そして、例えば第1主成分を用いてプラズマ処理装置のプロセス等の評価を行なう。
【0004】
しかしながら、例えば図8からも明らかなように運転データの中にはプロットA、Bのようにラグビーボール状の空間から外れるものもある。これらの運転データは正常な運転データから外れていることからプラズマ処理装置に何等かの異常があったことを示している。そこで、本出願人は、このような異常の原因を究明する方法として、特開2002-25981号公報において主成分分析の残差行列を利用してプラズマ処理装置の異常を究明する方法を提案した。この方法では、複数のサンプルウエハを処理して得られた複数の検出器の検出値を運転データとして利用し、これらの運転データの主成分分析を行い、モデル式を作成する。更に、次数の高い主成分を一つに纏めた残差行列を求め、この残差行列を構成する成分(残差)を利用してプラズマ処理装置の異常を検知する。また、残差行列の各成分の二乗和(残差得点)を求め、基準となる処理装置を用いた時の各ウエハの残差得点のなすベースラインと他のプラズマ処理装置を用いた時の残差得点のなすベースラインの差の大きさによってプラズマ処理装置の異常を検知する。
【0005】
【発明が解決しようとする課題】
しかしながら、特開2002-25981号公報で提案した異常検知方法の場合には、同一の処理装置であっても洗浄等の保守点検を行なった後、この処理装置を用いて複数のトレーニングウエハを処理して運転データを得た後、これらの運転データを洗浄前の処理装置を用いて求めた主成分分析のモデル式に当て填めて残差得点を求めると、洗浄後の処理装置が正常な状態であっても、図9に示すように保守点検後の各ウエハの残差得点によって形成されるベースライン▲2▼が保守点検前の各ウエハの残差得点によって形成されるベースライン▲1▼から移行して異常判定ラインLを超え、処理装置のプロセスを異常と判定し、全てのウエハについて本来の異常を検知できないことが判った。また、洗浄等の保守点検を繰り返すと、1回目の保守点検ほどでないにしてもベースライン▲3▼、▲4▼は徐々に大きい方へ移行して益々異常の判定ができなくなることが判った。図9に示したグラフは終点検出器によって検出されたプラズマの所定の波長範囲内の複数の成分波長の発光強度を運転データとして使用し、ウエハ毎に全成分波長の残差得点の平均値を求め、各ウエハの残差得点の平均値をプロットしたものである。
【0006】
本発明は、上記課題を解決するためになされたもので、洗浄等の保守点検後であっても保守点検前と同様に処理装置の異常を確実に検知することができる処理装置の異常検知方法を提案することを目的としている。
【0007】
【課題を解決するための手段】
本発明者等は洗浄後の処理装置では異常を検知することができない原因について種々検討した結果、洗浄等の保守点検を行うと、その度毎に処理室内の部品や検出器を取り外してそれぞれについて保守点検した後、これらの処理室内の部品や検出器を再度取り付けるため、処理室内の部品の表面汚染、これらの取付状態や検出器の検出値が装着の度毎に変化することに起因していることが判った。そこで、保守点検後の処理装置に付設された各検出器から得られた運転データに基づいて残差得点に求める際に、複数の運転データに対して特定の統計的工夫を施すことにより異常判定ラインの変動を抑制できることを知見した。
【0010】
本発明は、上記知見に基づいてなされたもので、本発明の請求項1に記載の処理装置の異常検知方法は、処理装置を保守点検した後、上記処理装置に付設された各検出器を用いて複数の被処理体毎に検出されるそれぞれの複数の検出値を運転データとして利用して処理装置の異常を検知する方法であって、保守点検前の上記各検出器を用いて複数の被処理体それぞれについて検出される上記運転データを第1の運転データとして得る工程と、これらの第1の運転データの主成分分析を行って残差行列を求める工程と、保守点検後の上記検出器を用いて上記各被処理体それぞれについて検出される上記運転データを第2の運転データとして得る工程と、これらの第2の運転データを用いて上記主成分分析に基づく上記残差行列を求める工程と、第2の運転データのうち、第1の運転データと比較して上記残差の変化量の小さい運転データを選択して上記残差行列の残差成分の二乗和を求める工程とを有することを特徴とするものである。
【0011】
また、本発明の請求項2に記載の処理装置の異常検知方法は、請求項1に記載の発明において、上記第1の運転データを寄与率の高い主成分と寄与率の低い主成分に分ける工程と、上記寄与率の低い主成分を残差行列として纏める工程とを有することを特徴とするものである。
【0012】
また、本発明の請求項3に記載の処理装置の異常検知方法は、請求項1または請求項2に記載の発明において、上記運転データを選択する工程では、上記第1の運転データの残差の最大値及び/または最小値を基準にして残差の小さい運転データを選択することを特徴とするものである。
【0013】
また、本発明の請求項4に記載の処理装置の異常検知方法は、請求項1〜請求項3のいずれか1項に記載の発明において、上記処理装置がプラズマ処理装置であることを特徴とするものである。
【0014】
また、本発明の請求項5に記載の処理装置の異常検知方法は、請求項4に記載の発明において、上記運転データとして上記プラズマの発光強度を用いることを特徴とする処理装置のものである。
【0015】
また、本発明の請求項6に記載の処理装置の異常検知方法は、請求項1〜請求項5のいずれか1項に記載の発明において、上記保守点検として上記処理装置の洗浄を行なうことを特徴とするものである。
【0016】
【発明の実施の形態】
以下、図1〜図7に示す実施例に基づいて本発明を説明する。
まず、本発明の処理装置の異常検知方法に用いられるプラズマ処理装置の一例について図1を参照しながら説明する。プラズマ処理装置の異常とは、プロセスガスの流量、処理室内圧力、高周波電力、高周波電流等の処理条件が中心処理条件から変化して被処理体(例えば、ウエハ)に対して本来の処理を施すことができず、処理後のウエハに欠陥を生じる状態を云う。欠陥の程度は特に制限されない。
【0017】
本実施形態に用いられるプラズマ処理装置10は、例えば図1に示すように、アルミニウム等の導電性材料からなる処理室11と、この処理室11内の底面に配設され且つ被処理体としてのウエハWを載置する載置台を兼ねた下部電極12と、この下部電極12の上方に所定の間隔を隔てて配設され且つプロセスガスの供給部を兼ねた中空状の接地された上部電極13と、回転磁場を付与する磁場形成手段14とを備え、制御装置15の制御下で処理室11の上下両電極間で発生する電界に磁場形成手段14による回転磁界Bが作用し、高密度プラズマでウエハWに対して均一なプラズマ処理を行う。処理室11の上面には上部電極13に連通させたガス供給管16が接続され、ガス供給管16及び上部電極13を介してガス供給源(図示せず)から処理室11内へプロセスガスを供給する。処理室11の側面には図示しない真空排気装置に連結されたガス排出管17が接続され、真空排気装置及びガス排出管17を介して処理室11内を減圧して所定の真空度に保持する。下部電極12には高周波電源18が接続され、高周波電源18から下部電極12へ高周波電力を印加し両電極12、13間でプロセスガスのプラズマを発生させ、下部電極12上の半導体ウエハW表面に例えば所定のエッチング処理を施す。
【0018】
プラズマ処理装置10には例えば終点検出器19等の36種の検出器が取り付けられ、これらの検出器を用いて例えばプラズマ発光強度S、高周波電圧Vpp、高周波電力P、プロセスガス流量F等をプラズマ処理(例えばエッチング)時の運転データとして逐次検出し、それぞれの検出値を制御装置15内に逐次取り込むようにしている。この制御装置15には多変量解析プログラムとして例えば主成分分析用のプログラムが格納され、このプログラムを介して主成分分析を行ってプラズマ処理装置10の異常を検知する。主成分分析では残差得点を求め、この残差得点に基づいて異常を検知する。
【0019】
しかしながら、プラズマ処理装置10の異常を判定するにしても、前述のように洗浄等の保守点検に伴って各種の処理室内の部品や検出器を取り外して付け直すと、これらの検出器の検出値は変化することが多く、保守点検前と同一の運転データを得ることができない。
【0020】
そこで、本実施形態では、保守点検後の残差得点を求める際に、運転データを特定の手法により選択し、選択された運転データを用いて残差得点を求める。この操作によって洗浄等の保守点検後であっても各検出器による検出値の変化による影響を緩和してプラズマ処理装置10の異常を確実に検知することができる。
【0021】
本実施形態の異常検知方法を説明する前に、終点検出器19によって検出されるプラズマ発光強度Sを用いる主成分分析について概説する。主成分分析を行う場合には、洗浄前のプラズマ処理装置10を用いて予め基準となる例えば30枚のサンプルウエハ(トレーニングセット)に対してプラズマ処理を行い、この時に終点検出器19から検出されるn個の成分波長の発光強度をウエハ毎に運転データとして逐次検出し、これらの運転データの主成分分析を行ってプラズマ処理装置10の異常を判定するようにしている。例えば、m枚のウエハそれぞれについてn個の検出値xが存在すると、運転データが入った行列は数1で表される。そして、制御装置15においてそれぞれの検出値に基づいて平均値、最大値、最小値、分散値を求めた後、これらの計算値に基づいた分散共分散行列を用いて複数の運転データの主成分分析を行って固有値及びその固有ベクトルを求める。固有値は運転データの分散の大きさを表し、固有値の大きさ順に、第1主成分、第2主成分、・・・第n主成分として定義されている。また、各固有値にはそれぞれに属する固有ベクトルがある。通常、主成分の次数が高いほどデータの評価に対する寄与率が低くなり、その利用価値が薄れる。
【数1】
Figure 0004048319
【0019】
上述のようにm枚のウエハについてそれぞれn個の検出値を採り、i番目のウエハのj番目の固有値に対応する第j主成分は数2で表される。そして、この第j主成分tijに具体的なi番目の検出値(xi1、xi2、・・・、xin)を代入して得られた値がi番目のウエハの第j主成分の得点になる。従って、第j主成分の得点tは数3で定義され、第j主成分の固有ベクトルPは数4で定義される。そして、第j主成分の得点tを行列Xと固有ベクトルPを用いると数5で表される。また、行列Xを主成分の得点とそれぞれの固有ベクトルを用いると数6で表される。
【数2】
Figure 0004048319
【数3】
Figure 0004048319
【数4】
Figure 0004048319
【数5】
Figure 0004048319
【数6】
Figure 0004048319
但し、P はPの転置行列である。
【0022】
ところで、前述したようにプラズマ処理装置10のプロセスの異常を判定する場合には主成分分析を行った後、次数の高い主成分を纏めた残差行列を用いる。即ち、例えば寄与率が高いと思われる第k主成分まで主成分分析を行い、第k主成分より寄与率の低い第(k+1)以上の高次の主成分を一つに纏めた数7で定義する残差行列E(各列は発光スペクトルの各成分波長に対応し、各行はウエハの枚数に対応する)を作り、この残差行列Eを数6に当て填めると数6は数8で表される。この残差行列Eの残差得点Qは数9で定義される行ベクトルeを用いた数10で定義される。残差得点Qはi番目のウエハの各検出値との残差(誤差)を表し、数10で定義される。残差得点Qは行ベクトルeとその転置行列ベクトルe の積として表され、各残差の2乗の和となり、プラス成分及びマイナス成分を相殺することなく確実に残差として求められる。本実施形態ではこの残差得点Qをウエハ毎に求めることによってプロセスに異常を判定する。この残差行列Eを求めることにより運転データの統計的データとしての重みを多面的に評価することができ、第1〜第k成分では掴みきれないプロセスの異常を判定することができる。
【数7】
Figure 0004048319
【数8】
Figure 0004048319
【数9】
Figure 0004048319
【数10】
Figure 0004048319
ここで数10は下記数11として表すことができる。ここでWは重みを示し、Wは0≦W≦1の範囲にある。しかし、本実施形態では、使用する成分波長の重みはW=1とし、使用しない成分波長の重みはW=0に設定する。このように重みWを1または0に設定することで、終点検出器19で検出する波長の特性に応じて使用する成分波長を適宜選択して残差得点Qをより多様に設定することができる。
【数11】
Figure 0004048319
【0023】
本実施形態では下記の処理条件(下記ウエハをエッチングする場合の標準的な処理条件、つまりセンタ条件)で600枚のウエハを処理し、各ウエハのプラズマの成分波長の発光強度(例えば、200nm〜950nmの範囲を5nm刻みで128箇所)を第1の運転データとしてそれぞれ検出し、これらの第1の運転データの主成分分析を行って第5主成分(k=5)まで求めた後、数10を用いて各ウエハについての残差得点Qを求める。尚、この時、30枚のウエハの各成分波長の残差の平均値は図10に示すように略ゼロ(最大+1.81、最小−0.58)となる。
【0024】
Figure 0004048319
【0025】
ところが、第1の運転データを用いて主成分分析を行なってモデル式を作成したプラズマ処理装置10を洗浄した後、洗浄後のプラズマ処理装置10を用いて上記処理条件で600枚のウエハを処理し、この時に検出されたプラズマの各成分波長の発光強度を第2の運転データとして洗浄前に求めたモデル式に当て填めて30枚のウエハの各成分波長の残差の平均値をプロットすると、図2に示すように残差は正負の両方に大きく振れる。これらの残差に基づいて全成分波長の残差得点Q´を求めると、図9の▲2▼〜▲4▼に示すように洗浄サイクル毎に大きくなって異常判定ラインLを超えて異常判定ができない。
【0026】
そこで、本実施形態では、各成分波長の残差の最大値及び最小値を勘案して比較的小さい残差変化を示す成分波長を選択し、選択された成分波長を用いて各ウエハの残差得点Q´を求める。例えば、図2に示す例では128箇所の成分波長の中から残差が洗浄前の各成分波長の残差の絶対値の最大値1.8の約10%以下である、±0.2の範囲内で変化する40の成分波長を選択し、これらの残差得点Q´を求めて各ウエハについてプロットすると、図3に示すように異常判定ライン(残差得点の平均値+12σ)L内に納まって異常判定を行なうことができる。同図に示すように2回目〜4回目の洗浄でも1回目の洗浄と同様に残差得点Q´が異常判定ラインL内に納まり、異常判定が可能になる。
【0027】
次に、128箇所のうち、残差変化が小さい40箇所の成分波長を使用するだけでもプラズマ処理装置10のプロセス変動、例えばプロセスガスの流量が異常に変動した場合にもこの流量異常によるプロセス異常を有効に検知することができるか否かを検証した。例えば、図4は上記センタ条件を中心としてプロセスガスの一つであるCの流量のみを種々変化させた時に得られた残差得点Q´と流量の関係を示したグラフである。尚、図4において、1回目は洗浄前を示し、4回目は3回の洗浄後を示している。同図によれば、洗浄後のプラズマ処理装置10の場合には残差得点Q´が洗浄前のものよりも全体的に大きな値を示しているが、センタ条件(放物線のボトム)の流量及びその近傍の流量では洗浄後の残差得点Q´が異常判定ラインL内に納まっており、流量を更に増減すれば異常判定ラインLを超え、Cガスの流量異常、つまりプロセス異常を検知することができることが検証された。ところが、128箇所の全領域の成分波長についても同様に洗浄前後の残差得点Qを観ると、図5に示すように洗浄前の場合にはプロセスの異常を判定することができるが、洗浄後の場合にはセンタ条件の場合であっても異常判定ラインLを超え、本来のプロセス異常(Cガスの流量異常)を判定することができない。つまり、残差変化の小さい成分波長を選択して使用し、これらの残差得点Q´の変化によってプロセス異常を確実に判定することができることが検証された。
【0028】
更に、全ての成分波長についてCガスの流量に対する各成分波長の発光強度の変化量(%/sccm)を求めたところ、図6に示す結果が得られた。同図によれば、各成分波長の発光強度はガス流量の変化に伴ってそれぞれの変化量を有し、本実施形態のように残差の小さい成分波長(図6では○で囲んで示してある)のみを使用しても発光強度の変化として確実に現れ、プロセス異常を検知できることが判った。
【0029】
以上説明したように本実施形態によれば、プラズマの128の成分波長の中から残差の小さい40の成分波長を選択し、これらの残差得点を求め、この残差得点を基準にプロセス異常を判定するようにしたため、洗浄後のプラズマ処理装置であっても各ウエハの残差得点の変動量を格段に抑制してプロセスガスの異常流量を確実に検知することができる。
【0030】
上記実施形態ではプロセスガスの一部の流量が処理中に変化した場合にプロセス異常を検知できることを明らかにしたが、プロセスガス及び他の条理条件が重畳的に変化した場合でも本発明の異常検知方法が有効であるか否かは明らかでない。この点を検証する実験を後述のようにして行った。
【0031】
例えば,洗浄前の下記プラズマ処理装置(上下の電極にそれぞれ異なった高周波電力を印加する二周波印加方式のプラズマ処理装置)を用いて下記の処理条件(センタ条件)で25枚のウエハを処理するセンタ実験を行った後、上記実施形態と同様にプラズマの128箇所の成分波長の発光強度をそれぞれ運転データとして検出し、これらの運転データの主成分分析を第5主成分まで行ってセンタ実験での各ウエハの残差得点を求めた。そして、全ウエハの残差得点の平均値(以下、「平均残差得点」と称す。)を求めた。
【0032】
Figure 0004048319
【0033】
更に、洗浄前の二周波印加方式のプラズマ処理装置を用いて例えばプロセスガス(例えば、Cガス)の流量、処理室11内の圧力及び下部電極12の電力それぞれを、上記処理条件を中心にして正常値から異常値となる範囲まで下記の条件で同時に変化させて25枚のウエハを処理する感度実験を行なって各ウエハの残差得点を求めた後、全ウエハの平均残差得点を求めた。下記の条件以外はセンタ条件に設定した。ここで、感度実験とはプロセス条件の中心からの変化に対する残差得点の変化を観る実験である。
Figure 0004048319
【0034】
次いで、洗浄後のプラズマ処理装置10を用いて洗浄前の場合と同様のセンタ実験及び感度実験を行なってそれぞれの平均残差得点を求めた。そして、洗浄前後のセンタ実験及び感度実験における128箇所の成分波長の平均残差得点をモデル1として下記表1に示した。
【0035】
また、比較的小さい残差変化を示す成分波長を選択する手法として、本実施形態では128箇所の成分波長を用いた洗浄前のセンタ実験の各成分波長の残差の最大値と最小値を基準にし、これらの百分率を取って成分波長を絞り込む手法を採用した。例えば、各成分波長の残差の最大値(本実施形態では0.43)及び最小値(本実施形態では−0.67)の100%、80%、60%、40%、20%と段階的に成分波長を絞り込んだ。そして、最小値<残差<最大値の範囲に入る32箇所の成分波長の平均残差得点をモデル2、0.8×最小値<残差<0.8×最大値の範囲に入る25箇所の成分波長の平均残差得点をモデル3、0.6×最小値<残差<0.6×最大値の範囲に入る15箇所の成分波長の平均残差得点をモデル4、0.4×最小値<残差<0.4×最大値の範囲に入る9箇所の成分波長の平均残差得点をモデル5、0.2×最小値<残差<0.2×最大値の範囲に入る3箇所の成分波長の平均残差得点をモデル6として下記表1に示した。
【0036】
【表1】
Figure 0004048319
【0037】
上記表1によれば、洗浄後のセンタ実験の平均残差得点は洗浄前の平均残差得点より格段に大きくなっている。そこで、センタ実験で洗浄前後に変動した平均残差得点の変動値を基準にして洗浄前後の感度実験の平均残差得点を観ると下記表2に示す結果が得られる。下記表2の数値は洗浄前後の感度実験の平均残差得点を変動値で割った値を示しており、この値が大きいほど洗浄前後の平均残差得点の変動による影響が小さいことを示している。下記表2に示す結果によれば、残差の小さい成分波長を選択したモデル2からモデル6は、洗浄後の平均残差得点の洗浄前の平均残差得点からの変動による影響を抑制することができ、延いては洗浄後の終点検出器19の検出値が洗浄前と違っていても、プロセス異常を確実に検知することができる。そして、残差が小さい成分波長を選択するほど感度実験の平均残差得点の変化率が大きくなって変動の影響が弱くなっていることが判る。変動の影響が最も弱く最も変化率の大きかったのは残差が二番目に小さい成分波長からなるモデル5の場合である。残差が更に小さい成分波長を選択すると、ノイズの影響を受けて良くないことが判った。尚、下記表2に示す結果をグラフ化したものが図7である。
【0038】
【表2】
Figure 0004048319
【0039】
以上説明したように本実施形態によれば、洗浄前後のプラズマ処理装置を用いてウエハを処理する際に、残差の小さい成分波長を用いて残差得点を求めるようにしたため、洗浄前後の終点検出器19の検出値が違っていても、この違いによる影響を受けずにプロセス異常を検知することができる。
【0040】
また、本実施形態によれば、残差小さい成分波長を選択する際に、残差の最大値及び最小値を基準に絞り込んで残差の小さい成分波長を選択するようにしたため、簡単に成分波長の絞込みを行なうことができる。
【0041】
また、本実施形態によれば、ウエハ毎の残差得点を用いるようにしたため、残差得点が突発的に変化するウエハが認められれば、そのウエハの各検出値を確認すするだけでいずれかの検出値に異常のあったことを簡単に知ることができる。
【0042】
尚、上記各実施形態では、検出器として終点検出器を例に挙げて説明したが、プラズマ処理装置に付設された検出器であれば、上記実施形態と同様の作用効果を期することができる。また、上記各実施形態ではプラズマ処理装置を例に挙げて説明したが、本発明はプラズマ処理装置以外の半導体製造装置やその他の一般的な生産装置にも適用することができる。
【0043】
【発明の効果】
本発明によれば、洗浄等の保守点検後であっても保守点検前と同様に処理装置の異常を確実に検知することができる処理装置の異常検知方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の処理装置の異常検知方法を適用するプラズマ処理装置の一例を示す構成図である。
【図2】洗浄後のプラズマ処理装置に付設された終点検出器によって検出されたプラズマの200〜950nmの波長領域にある各成分波長の残差の変化を示すグラフである。
【図3】ウエハの処理枚数と各ウエハの残差変化の小さい複数の成分波長の残差得点の関係を示し、洗浄前、洗浄後の残差得点の変化を示すグラフである。
【図4】洗浄前後のプラズマ処理装置におけるCガス流量と残差の小さい複数の成分波長の残差得点の関係を示すグラフである。
【図5】洗浄前後のプラズマ処理装置におけるCガス流量と全ての成分波長の残差得点の関係を示すグラフである。
【図6】プラズマの成分波長とプロセスガスの流量変化に対する各成分波長の発光強度の変化量との関係を示すグラフである。
【図7】洗浄前後のプラズマ処理装置における感度実験の残差得点の変化率を示すグラフである。
【図8】主成分分析を概念的に示すグラフである。
【図9】ウエハの処理枚数と各ウエハの全ての成分波長の残差得点の関係を示し、洗浄前、洗浄後の残差得点の変化を示すグラフである。
【図10】洗浄前のプラズマ処理装置を用いた時の成分波長とそれぞれの残差との関係を示すグラフである。
【符号の説明】
10 プラズマ処理装置
11 処理室
12 上部電極
13 下部電極
16 高周波電源
19 終点検出器
W ウエハ(被処理体)
S 発光強度

Claims (6)

  1. 処理装置を保守点検した後、上記処理装置に付設された各検出器を用いて複数の被処理体毎に検出されるそれぞれの複数の検出値を運転データとして利用して処理装置の異常を検知する方法であって、保守点検前の上記各検出器を用いて複数の被処理体それぞれについて検出される上記運転データを第1の運転データとして得る工程と、これらの第1の運転データの主成分分析を行って残差行列を求める工程と、保守点検後の上記検出器を用いて上記各被処理体それぞれについて検出される上記運転データを第2の運転データとして得る工程と、これらの第2の運転データを用いて上記主成分分析に基づく上記残差行列を求める工程と、第2の運転データのうち、第1の運転データと比較して上記残差の変化量の小さい運転データを選択して上記残差行列の残差成分の二乗和を求める工程とを有することを特徴とする処理装置の異常検知方法。
  2. 上記第1の運転データを寄与率の高い主成分と寄与率の低い主成分に分ける工程と、上記寄与率の低い主成分を残差行列として纏める工程とを有することを特徴とする請求項1に記載の処理装置の異常検知方法。
  3. 上記運転データを選択する工程では、上記第1の運転データの残差の最大値及び/または最小値を基準にして残差の小さい運転データを選択することを特徴とする請求項1または請求項2に記載の処理装置の異常検知方法。
  4. 上記処理装置がプラズマ処理装置であることを特徴とする請求項1〜請求項3のいずれか1項に記載の処理装置の異常検知方法。
  5. 上記運転データとして上記プラズマの発光強度を用いることを特徴とする請求項4に記載の処理装置の異常検知方法。
  6. 上記保守点検として上記処理装置の洗浄を行なうことを特徴とする請求項1〜請求項5のいずれか1項に記載の処理装置の異常検知方法。
JP2002169465A 2002-05-16 2002-06-11 処理装置の異常検知方法 Expired - Fee Related JP4048319B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002169465A JP4048319B2 (ja) 2002-05-16 2002-06-11 処理装置の異常検知方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002142169 2002-05-16
JP2002169465A JP4048319B2 (ja) 2002-05-16 2002-06-11 処理装置の異常検知方法

Publications (2)

Publication Number Publication Date
JP2004047501A JP2004047501A (ja) 2004-02-12
JP4048319B2 true JP4048319B2 (ja) 2008-02-20

Family

ID=31719444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002169465A Expired - Fee Related JP4048319B2 (ja) 2002-05-16 2002-06-11 処理装置の異常検知方法

Country Status (1)

Country Link
JP (1) JP4048319B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4643392B2 (ja) * 2005-08-24 2011-03-02 東京エレクトロン株式会社 プラズマ処理装置の運転状態判定方法、運転状態判定装置、プログラム及び記憶媒体
JP4771855B2 (ja) * 2006-05-08 2011-09-14 東京エレクトロン株式会社 サーバ装置、およびプログラム
JP5271525B2 (ja) 2007-10-04 2013-08-21 東京エレクトロン株式会社 基板処理装置の検査方法及び記憶媒体

Also Published As

Publication number Publication date
JP2004047501A (ja) 2004-02-12

Similar Documents

Publication Publication Date Title
US7689028B2 (en) Method and apparatus for evaluating processing apparatus status and predicting processing result
JP4464276B2 (ja) プラズマ処理方法及びプラズマ処理装置
TWI384573B (zh) Etching apparatus, analyzing apparatus, etching processing method, and etching processing program
US6952657B2 (en) Industrial process fault detection using principal component analysis
JP4317701B2 (ja) 処理結果の予測方法及び予測装置
KR102033438B1 (ko) 플라즈마 처리 장치 및 플라즈마 처리 장치 상태 예측 방법
US20060260746A1 (en) Plasma processing apparatus
US9349660B2 (en) Integrated circuit manufacturing tool condition monitoring system and method
EP1794659A2 (en) Method and apparatus for multivariate control of semiconductor manufacturing processes
JP2004349419A (ja) プラズマ処理装置の異常原因判定方法及び異常原因判定装置
WO2007064933A1 (en) Method and apparatus for classifying manufacturing outputs
US7006205B2 (en) Method and system for event detection in plasma processes
JP4570736B2 (ja) 運転状態の監視方法
WO2002003441A1 (fr) Procede de surveillance de fonctionnement pour appareil de traitement
JP4048319B2 (ja) 処理装置の異常検知方法
JP4220378B2 (ja) 処理結果の予測方法および処理装置
JP2004039805A (ja) プロセスの予測方法及び処理装置
JP4173311B2 (ja) シーズニング終了検知方法及びプラズマ処理方法並びにプラズマ処理装置
JP2002018274A (ja) 処理装置の運転方法及び処理装置の異常検出方法
JP2007250902A (ja) 基板処理装置の予測方法及び予測装置
KR101895707B1 (ko) 플라즈마 공정의 식각 종료점 진단방법
US20050126709A1 (en) Plasma processing method, detecting method of completion of seasoning, plasma processing apparatus and storage medium
US11669079B2 (en) Tool health monitoring and classifications with virtual metrology and incoming wafer monitoring enhancements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4048319

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101207

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131207

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees