JP4046681B2 - Heating device and organic waste water treatment system equipped with the same - Google Patents

Heating device and organic waste water treatment system equipped with the same Download PDF

Info

Publication number
JP4046681B2
JP4046681B2 JP2003390342A JP2003390342A JP4046681B2 JP 4046681 B2 JP4046681 B2 JP 4046681B2 JP 2003390342 A JP2003390342 A JP 2003390342A JP 2003390342 A JP2003390342 A JP 2003390342A JP 4046681 B2 JP4046681 B2 JP 4046681B2
Authority
JP
Japan
Prior art keywords
gas
liquid contact
contact chamber
exhaust gas
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003390342A
Other languages
Japanese (ja)
Other versions
JP2005147640A (en
Inventor
隆司 大濱
裕士 中西
辰雄 久米
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2003390342A priority Critical patent/JP4046681B2/en
Publication of JP2005147640A publication Critical patent/JP2005147640A/en
Application granted granted Critical
Publication of JP4046681B2 publication Critical patent/JP4046681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Description

本発明は、有機排水を加温するための加温装置及びこの加温装置を備えた有機排水処理システムに関する。 The present invention relates to an organic waste water processing system equipped with a heating device and a heating device of this for heating the organic waste water.

工場などにおいては多くの有機排水が発生し、この有機排水を所要の通りに処理するために種々の処理システムが提案され、この処理システムの一つとしてメタン発酵処理システムが知られている(例えば、特許文献1参照)。このメタン発酵処理システムは、有機排水をメタン発酵させるためのメタン発酵槽を備え、このメタン発酵槽において嫌気性発酵させてバイオガスとして回収するものである。メタン発酵槽における嫌気性発酵は、30〜38℃の中温度域(又は50〜60℃の高温度域)においてメタン発酵させると、その発酵が促進されてバイオガスを効率良く回収することができる。   A lot of organic wastewater is generated in factories and the like, and various treatment systems have been proposed to treat the organic wastewater as required, and a methane fermentation treatment system is known as one of the treatment systems (for example, , See Patent Document 1). This methane fermentation treatment system includes a methane fermentation tank for methane fermentation of organic wastewater, and is anaerobically fermented in the methane fermentation tank and recovered as biogas. In anaerobic fermentation in a methane fermenter, when methane fermentation is performed in a medium temperature range of 30 to 38 ° C. (or a high temperature range of 50 to 60 ° C.), the fermentation is promoted and biogas can be efficiently recovered. .

このようなことから、有機排水は加温装置において加温された後にメタン発酵槽に送給され、このような加温装置として熱交換器が用いられている。熱交換器は熱交換を行うための伝熱管を備え、伝熱管を通して水蒸気又は温水が送給される。この熱交換器では、伝熱管内を流れる水蒸気(又は温水)と伝熱管の周囲を流れる有機排水との間で熱交換が行われ、かかる熱交換によって有機排水が所望温度に加温される。   For this reason, the organic waste water is heated in the heating device and then fed to the methane fermentation tank, and a heat exchanger is used as such a heating device. The heat exchanger includes a heat transfer tube for performing heat exchange, and steam or hot water is supplied through the heat transfer tube. In this heat exchanger, heat exchange is performed between water vapor (or hot water) flowing in the heat transfer tube and organic waste water flowing around the heat transfer tube, and the organic waste water is heated to a desired temperature by such heat exchange.

特開2003−245631号公報JP 2003-245631 A

従来のこのような加温装置では、熱交換器において熱交換に用いる熱媒体としての水蒸気(又は温水)をボイラなどで生成しなければならず、水蒸気(又は温水)を生成するための燃料を消費し、稼働コストが高くなる問題がある。   In such a conventional heating apparatus, steam (or hot water) as a heat medium used for heat exchange in a heat exchanger must be generated by a boiler or the like, and fuel for generating steam (or hot water) is used. There is a problem that consumption and operating costs increase.

このような稼働コストの問題を解消するために、例えば、コージェネレーションシステムなどに用いるエンジン(例えば、ガスエンジン)からの燃焼排気ガスを利用することも提案されているが、このような加温装置では、燃焼排気ガスの温度が高いときには熱媒体の加温に利用することができるが、例えば、エンジンからの燃焼排気ガスを排熱ボイラなどで利用した後は、燃焼排気ガスの温度が低くなっており(例えば、70〜170℃程度に下がっている)、このような温度の低い燃焼排気ガスを熱交換器で熱交換を行っても熱媒体を加温することが難しく、このような熱は回収することなく大気中に放出しているのが現状である。   In order to solve such a problem of operating costs, for example, it has been proposed to use combustion exhaust gas from an engine (for example, a gas engine) used in a cogeneration system or the like. However, when the temperature of the combustion exhaust gas is high, it can be used for heating the heat medium. For example, after the combustion exhaust gas from the engine is used in an exhaust heat boiler or the like, the temperature of the combustion exhaust gas becomes low. However, it is difficult to heat the heat medium even if the low-temperature combustion exhaust gas is subjected to heat exchange using a heat exchanger. Is currently released into the atmosphere without being recovered.

本発明の目的は、比較的低い温度の燃焼排気ガスであってもその熱を利用して被加熱液体を加温することができる加温装置を提供することである。
本発明の他の目的は、比較的低い温度の燃焼排気ガスであってもその熱を利用して有機排水の処理に適した温度に加温し、これによって有機排水の処理効率を高めることができる有機排水処理システムを提供することである。
An object of the present invention is to provide a heating device that can heat a liquid to be heated by using the heat of combustion exhaust gas having a relatively low temperature.
Another object of the present invention is to heat the exhaust gas at a relatively low temperature to a temperature suitable for the treatment of organic waste water by using the heat, thereby increasing the treatment efficiency of the organic waste water. It is to provide an organic wastewater treatment system that can be used.

本発明の請求項1に記載の加温装置は、被加熱液体を加温するための加温槽と、前記加温槽に被加熱液体を送給するための液体送給手段と、前記加温槽に燃焼排気ガスを送給するための排気ガス送給手段と、を具備する加温装置であって、
前記加温槽は、前記排気ガス送給手段からの燃焼排気ガスが流入する排気ガス室と、前記液体送給手段からの被加液体が送給される気液接触室とを備え、前記気液接触室は、前記排気ガス室の上側に配設された下気液接触室と、前記下気液接触室の上側に配設された上気液接触室とから構成され、前記排気ガス室と前記下気液接触室との間に下通気仕切壁が設けられ、前記下気液接触室と前記上気液接触室との間に上通気仕切壁が設けられ、前記下通気仕切壁及び前記上通気仕切壁には、斜め方向に延びる複数個の通気スリットが設けられており、
被加熱液体は前記上気液接触室から前記下気液接触室を通して流れ、また前記排気ガス室からの燃焼排気ガスは、前記下通気仕切壁の前記複数個の通気スリットを通して前記下気液接触室に気泡状に送給され、その後前記上通気仕切壁の前記複数個の通気スリットを通して前記上気液接触室に気泡状に送給されることを特徴とする。
The heating apparatus according to claim 1 of the present invention includes a heating tank for heating the heated liquid, a liquid feeding means for feeding the heated liquid to the heating tank, and the heating apparatus. an exhaust gas delivery means for delivering the combustion exhaust gas to the heating tank, a heating device you equipped with,
Said heating tank, comprising an exhaust gas chamber the combustion exhaust gas from the exhaust gas delivery means flows, and a gas-liquid contact chamber to be pressurized heat the liquid from said liquid feed means is fed, the The gas-liquid contact chamber is composed of a lower gas-liquid contact chamber disposed above the exhaust gas chamber and an upper gas-liquid contact chamber disposed above the lower gas-liquid contact chamber, and the exhaust gas A lower ventilation partition wall is provided between the lower gas liquid contact chamber and the lower gas liquid contact chamber, and an upper ventilation partition wall is provided between the lower gas liquid contact chamber and the upper gas liquid contact chamber. And the upper ventilation partition wall is provided with a plurality of ventilation slits extending in an oblique direction,
The heated liquid flows from the upper gas-liquid contact chamber through the lower gas-liquid contact chamber, and the combustion exhaust gas from the exhaust gas chamber is in contact with the lower gas-liquid through the plurality of ventilation slits of the lower ventilation partition wall. It is supplied to the chamber in the form of bubbles, and then is supplied to the upper gas-liquid contact chamber in the form of bubbles through the plurality of ventilation slits of the upper ventilation partition wall.

また、本発明の請求項に記載の加温装置では、前記下気液接触室と前記上気液接触室とは連通管構造により連通され、前記連通管構造は被加熱液体を貯めるU字状管部を有し、前記U字状管部の一端部が前記上気液接触室に連通され、その他端部が下方に延びる接続管部を介して前記下気液接触室に連通され、また前記U字状管部の他端部は上方に延びるガス抜き管部を介して前記上気液接触室に連通されていることを特徴とする。 In the warming device according to claim 2 of the present invention, the lower gas-liquid contact chamber and the upper gas-liquid contact chamber are communicated with each other by a communication pipe structure, and the communication pipe structure stores a heated liquid. An end portion of the U-shaped tube portion is communicated with the upper gas-liquid contact chamber, and the other end portion is communicated with the lower gas-liquid contact chamber via a connecting tube portion extending downward, The other end portion of the U-shaped tube portion communicates with the upper gas-liquid contact chamber via a gas vent tube portion extending upward.

また、本発明の請求項に記載の有機排水処理システムは、有機排水を溜める有機排水槽と、請求項1又は2に記載の加温装置と、前記有機排水を嫌気性メタン発酵させるための嫌気性発酵槽と、燃焼排気ガスの排熱を回収するための熱交換器と、を備えた有機排水処理システムであって、
前記加温装置の液体送給手段は、前記有機排水槽内の有機排水を前記加温装置の加温槽の気液接触室に送給し、前記液体送給手段からの有機排水は上気液接触室から下気液接触室を通して流れ、また前記加温装置の排気ガス送給手段は、前記熱交換器において熱交換された燃焼排気ガスを前記加温槽の排気ガス室に送給し、前記排気ガス室からの燃焼排気ガスが、前記排気ガス室と前記気液接触室との間に配設された通気仕切壁の複数個の通気スリットを通して前記気液接触室に気泡状に送給され、その後前記下気液接触室と前記上気液接触室との間に配設された上通気仕切壁の複数個の通気スリットを通して前記上気液接触室に気泡状に送給され、これによって、前記有機排水が嫌気性メタン発酵に適した温度に加温され、その後、加温された有機排水が前記嫌気性発酵槽に送給されることを特徴とする。
Moreover, the organic waste water treatment system of Claim 3 of this invention is an organic waste water tank which accumulates organic waste water, the heating apparatus of Claim 1 or 2 , and anaerobic methane fermentation for the said organic waste water anaerobic fermentation tank, an organic waste water treatment system and a heat exchanger for recovering waste heat of the combustion exhaust gas,
The liquid feeding means of the warming device feeds the organic wastewater in the organic drainage tank to the gas-liquid contact chamber of the warming tank of the warming device, and the organic wastewater from the liquid feeding means The exhaust gas supply means of the heating device flows from the liquid contact chamber through the lower gas-liquid contact chamber and supplies the combustion exhaust gas heat-exchanged in the heat exchanger to the exhaust gas chamber of the heating tank. the combustion exhaust gas from the exhaust gas chamber, the lower gas-liquid contact by passing a plurality of ventilation slits disposed the lower ventilation partition wall between the lower gas-liquid contact chamber and the exhaust gas chamber Bubbles are fed into the chamber and then bubbled into the upper gas-liquid contact chamber through a plurality of ventilation slits in the upper ventilation partition wall disposed between the lower gas-liquid contact chamber and the upper gas-liquid contact chamber Jo to be delivered, thereby, the organic waste water is warmed to a temperature suitable for anaerobic methane fermentation, then, Temperature organic wastewater characterized in that it is fed to the anaerobic fermenter.

また、本発明の請求項に記載の有機排水処理システムは、有機排水を溜める有機排水槽と、請求項1又は2に記載の加温装置と、前記有機排水を好気性処理を行うための好気性処理槽と、燃焼排気ガスの排熱を回収するための熱交換器と、を備えた有機排水処理システムであって、
前記加温装置の液体送給手段は、前記有機排水槽内の有機排水を前記加温装置の加温槽の気液接触室に送給し、前記液体送給手段からの有機排水は上気液接触室から下気液接触室を通して流れ、また前記加温装置の排気ガス送給手段は、前記熱交換器において熱交換された燃焼排気ガスを前記加温槽の排気ガス室に送給し、前記排気ガス室からの燃焼排気ガスが、前記排気ガス室と前記気液接触室との間に配設された通気仕切壁の複数個の通気スリットを通して前記気液接触室に気泡状に送給され、その後前記下気液接触室と前記上気液接触室との間に配設された上通気仕切壁の複数個の通気スリットを通して前記上気液接触室に気泡状に送給され、これによって、前記有機排水が好気性処理に適した温度に加温され、その後、加温された有機排水が前記好気性処理槽に送給されることを特徴とする。
Moreover, the organic waste water treatment system according to claim 4 of the present invention is an organic drainage tank for storing organic waste water, the heating device according to claim 1 or 2 , and an aerobic treatment for the organic waste water. an organic waste water treatment system comprising aerobic treatment tank, and a heat exchanger for recovering waste heat of the combustion exhaust gas,
The liquid feeding means of the warming device feeds the organic wastewater in the organic drainage tank to the gas-liquid contact chamber of the warming tank of the warming device, and the organic wastewater from the liquid feeding means The exhaust gas supply means of the heating device flows from the liquid contact chamber through the lower gas-liquid contact chamber and supplies the combustion exhaust gas heat-exchanged in the heat exchanger to the exhaust gas chamber of the heating tank. the combustion exhaust gas from the exhaust gas chamber, the lower gas-liquid contact through a plurality of vent slits bets disposed the lower ventilation partition wall between the lower gas-liquid contact chamber and the exhaust gas chamber The bubbles are fed into the chamber in the form of bubbles , and then bubbles are formed in the upper gas-liquid contact chamber through a plurality of ventilation slits in the upper ventilation partition wall disposed between the lower gas-liquid contact chamber and the upper gas-liquid contact chamber. Jo to be delivered, thereby, the organic waste water is warmed to a temperature suitable for aerobic treatment, then warmed Organic wastewater characterized in that it is fed to the aerobic treatment tank.

また、本発明の請求項に記載の有機排水処理システムでは、前記排気ガス送給手段によって前記加温槽の前記排気ガス室に送給される燃焼排気ガスの温度は70〜170℃であり、前記加温装置の前記気液接触室における燃焼排気ガスと前記有機排水との気液接触により、有機排水は30〜60℃に加温されることを特徴とする。 In the organic waste water treatment system according to claim 5 of the present invention, the temperature of the combustion exhaust gas fed to the exhaust gas chamber of the heating tank by the exhaust gas feeding means is 70 to 170 ° C. The organic waste water is heated to 30 to 60 ° C. by gas-liquid contact between the combustion exhaust gas and the organic waste water in the gas-liquid contact chamber of the warming device.

本発明の請求項1に記載の加温装置によれば、被加熱液体を加温する加温槽は排気ガス室及び気液接触室を備え、燃焼排気ガスは排気ガス室に送給され、被加熱液体は気液接触室に送給される。気液接触室は下気液接触室及び上気液接触室から構成され、排気ガス室及び下気液接触室は複数個の通気スリットが設けられた下通気仕切壁を介して仕切られ、下通気仕切壁及び上気液接触室は複数個の通気スリットが設けられた上通気仕切壁を介して仕切られているので、排気ガス室に送給された燃焼排気ガスは下通気仕切壁の複数個の通気スリットを通して下気液接触室に気泡状となって送給され、その後上通気仕切壁の複数個の通気スリットを通して上気液接触室に気泡状となって送給され、燃焼排気ガスと被加熱液体との気液接触でもって被加熱液体を加温することができる。また、この加温は、小さな気泡状となって気液接触室に送給される燃焼排気ガスとの気液接触により行われるので、熱の伝達効率が高く、燃焼排気ガスの温度が比較的低くても(換言すると、被加熱液体と燃焼排気ガスとの温度差が10〜30℃程度と小さくても)被加熱液体を加温することができる。また、このように上下2段に設けられた気液接触室により被加熱液体を気液接触で加温するので、所望の加温能力を保ちながら加温槽をコンパクトにすることができる。また、下通気仕切壁及び上通気仕切壁に設けられた複数個の通気スリットは斜め方向に延びているので、燃焼排気ガスは小さな気泡状となって下気液接触室及び上気液接触室に送給され、気液接触効率を高めて被加熱液体を効率良く加温することができる。更に、被加熱液体は上気液接触室から下気液接触室に流れるのに対し、排気ガス室に送給された燃焼排気ガスは下気液接触室から上気液接触室に流れるので、下気液接触室においては、上気液接触室にて加温された被加熱液体に排気ガス室からの燃焼排気ガスが接触するようになり、かくして、被加熱液体と燃焼排気ガスとの温度差が比較的小さくても被加熱液体を充分に加温して燃焼排気ガスの温度に近い温度まで加温することができる。 According to the heating device of the first aspect of the present invention, the heating tank for heating the liquid to be heated includes the exhaust gas chamber and the gas-liquid contact chamber, and the combustion exhaust gas is supplied to the exhaust gas chamber, The liquid to be heated is fed to the gas-liquid contact chamber. The gas-liquid contact chamber is composed of a lower gas-liquid contact chamber and an upper gas-liquid contact chamber, and the exhaust gas chamber and the lower gas-liquid contact chamber are partitioned through a lower ventilation partition wall provided with a plurality of ventilation slits. Since the ventilation partition wall and the upper gas-liquid contact chamber are partitioned through an upper ventilation partition wall provided with a plurality of ventilation slits, the combustion exhaust gas fed to the exhaust gas chamber is separated from the lower ventilation partition wall. The air is supplied in the form of bubbles to the lower gas-liquid contact chamber through the ventilation slits, and is then supplied in the form of bubbles to the upper gas-liquid contact chamber through the plurality of ventilation slits in the upper ventilation partition wall. The heated liquid can be heated by gas-liquid contact between the liquid and the heated liquid. In addition, since this heating is performed by gas-liquid contact with the combustion exhaust gas that is delivered in the gas-liquid contact chamber in the form of small bubbles, heat transfer efficiency is high, and the temperature of the combustion exhaust gas is relatively high. Even if it is low (in other words, even if the temperature difference between the heated liquid and the combustion exhaust gas is as small as about 10 to 30 ° C.), the heated liquid can be heated. In addition, since the liquid to be heated is heated by gas-liquid contact by the gas-liquid contact chambers provided in the upper and lower stages in this way, the heating tank can be made compact while maintaining a desired heating capability. Further, since the plurality of ventilation slits provided in the lower ventilation partition wall and the upper ventilation partition wall extend in an oblique direction, the combustion exhaust gas is in the form of small bubbles, and the lower gas-liquid contact chamber and the upper gas-liquid contact chamber The heated liquid can be efficiently heated by improving the gas-liquid contact efficiency. Furthermore, the heated liquid flows from the upper gas-liquid contact chamber to the lower gas-liquid contact chamber, whereas the combustion exhaust gas fed to the exhaust gas chamber flows from the lower gas-liquid contact chamber to the upper gas-liquid contact chamber. In the lower gas-liquid contact chamber, the combustion exhaust gas from the exhaust gas chamber comes into contact with the heated liquid heated in the upper gas-liquid contact chamber, and thus the temperature of the heated liquid and the combustion exhaust gas. Even if the difference is relatively small, the liquid to be heated can be heated sufficiently to a temperature close to the temperature of the combustion exhaust gas.

また、本発明の請求項に記載の加温装置によれば、下気液接触室と上気液接触室とが連通管構造により接続され、この連通管構造のU字状管部の一端部が上気液接触室に接続され、その他端部が下方に延びる接続管部を介して下気液接触室に連通されているので、上気液接触室にて加温された被加熱液体はU字状管部及び接続管部を通して下気液接触室に送給される。また、U字状管部の他端部がガス抜き管部を介して上気液接触室に連通されているので、U字状管部の他端部に溜まった気体(被加熱液体から分離した燃焼排気ガス)はガス抜き管部を通して上気液接触室に流れる。また、上気液接触室と下気液接触室とは接続管部及びガス抜き管部を介して連通した状態に保たれ、下気液接触室と上気液接触室とを同じ圧力に保つことができる。 According to the heating device of the second aspect of the present invention, the lower gas-liquid contact chamber and the upper gas-liquid contact chamber are connected by the communication pipe structure, and one end of the U-shaped pipe portion of the communication pipe structure Since the part is connected to the upper gas-liquid contact chamber and the other end communicates with the lower gas-liquid contact chamber via the connecting pipe portion extending downward, the heated liquid heated in the upper gas-liquid contact chamber Is fed to the lower gas-liquid contact chamber through the U-shaped tube portion and the connecting tube portion. In addition, since the other end of the U-shaped tube is communicated with the upper gas-liquid contact chamber via the gas vent tube, the gas accumulated in the other end of the U-shaped tube (separated from the liquid to be heated) The combustion exhaust gas) flows into the upper gas-liquid contact chamber through the gas vent pipe. In addition, the upper gas-liquid contact chamber and the lower gas-liquid contact chamber are kept in communication with each other via the connecting pipe portion and the gas vent pipe portion, and the lower gas-liquid contact chamber and the upper gas-liquid contact chamber are maintained at the same pressure. be able to.

また、本発明の請求項に記載の有機排水処理システムによれば、有機排水槽からの有機排水が液体送給手段により加温槽の気液接触室に送給され、燃焼排気ガスは排熱回収用の熱交換器において排熱の回収が行われ、排熱回収された後の燃焼排気ガスが排気ガス送給手段により加温の排気ガス室に送給され、この加温にて燃焼排気ガスと有機排水との気液接触により有機排水が加温されるので、有機排水を効率良く加温することができる。また、気液接触室は下気液接触室及び上気液接触室から構成され、排気ガス室と下気液接触室との間には下通気仕切壁が設けられ、下気液接触室と上気液接触室との間には上通気仕切壁が設けられ、このように上下2段に設けられた気液接触室により被加熱液体を気液接触で加温するので、所望の加温能力を保ちながら加温槽をコンパクトにすることができる。また、下通気仕切壁及び上通気仕切壁に設けられた複数個の通気スリットは斜め方向に延びているので、燃焼排気ガスは小さな気泡状となって下気液接触室及び上気液接触室に送給され、気液接触効率を高めて被加熱液体を効率良く加温することができる。更に、被加熱液体は上気液接触室から下気液接触室に流れるのに対し、排気ガス室に送給された燃焼排気ガスは下気液接触室から上気液接触室に流れるので、下気液接触室においては、上気液接触室にて加温された被加熱液体に排気ガス室からの燃焼排気ガスが接触するようになり、かくして、被加熱液体と燃焼排気ガスとの温度差が比較的小さくても被加熱液体を充分に加温して燃焼排気ガスの温度に近い温度まで加温することができる。また、加温槽において嫌気性発酵に適した温度に加温された有機排水が嫌気性発酵槽に送給されるので、嫌気性発酵槽における発酵が促進され、有機排水を効率良く発酵させることができる。また、加温槽においては、排熱回収用熱交換器において熱交換された後の燃焼排気ガスを利用するので、燃焼排気ガスの顕熱、潜熱を有効利用して排熱回収効率を一層高めることができる。尚、嫌気性発酵とは、例えばメタン発酵であり、このメタン発酵においては、有機排水は例えば中温度域(30〜38℃)又は高温度域(50〜60℃)の適切な温度に加温される。 According to the organic waste water treatment system of the third aspect of the present invention, the organic waste water from the organic waste water tank is fed to the gas-liquid contact chamber of the heating tank by the liquid feeding means, and the combustion exhaust gas is discharged. recovery of exhaust heat in a heat exchanger for heat recovery is performed, the combustion exhaust gas after being heat recovery is fed to the exhaust gas chamber of the heating tank by the exhaust gas feeding means, in the heating tank Since the organic waste water is heated by the gas-liquid contact between the combustion exhaust gas and the organic waste water, the organic waste water can be efficiently heated. The gas-liquid contact chamber includes a lower gas-liquid contact chamber and an upper gas-liquid contact chamber, and a lower ventilation partition wall is provided between the exhaust gas chamber and the lower gas-liquid contact chamber. An upper ventilation partition wall is provided between the upper air-liquid contact chamber and the liquid to be heated is heated in the gas-liquid contact by the gas-liquid contact chamber provided in two stages in this way, so that the desired heating The heating tank can be made compact while maintaining the capacity. Further, since the plurality of ventilation slits provided in the lower ventilation partition wall and the upper ventilation partition wall extend in an oblique direction, the combustion exhaust gas is in the form of small bubbles, and the lower gas-liquid contact chamber and the upper gas-liquid contact chamber The heated liquid can be efficiently heated by increasing the gas-liquid contact efficiency. Furthermore, the heated liquid flows from the upper gas-liquid contact chamber to the lower gas-liquid contact chamber, whereas the combustion exhaust gas fed to the exhaust gas chamber flows from the lower gas-liquid contact chamber to the upper gas-liquid contact chamber. In the lower gas-liquid contact chamber, the combustion exhaust gas from the exhaust gas chamber comes into contact with the heated liquid heated in the upper gas-liquid contact chamber, and thus the temperature of the heated liquid and the combustion exhaust gas. Even if the difference is relatively small, the liquid to be heated can be heated sufficiently to a temperature close to the temperature of the combustion exhaust gas. In addition, since organic wastewater heated to a temperature suitable for anaerobic fermentation in the heating tank is fed to the anaerobic fermentation tank, fermentation in the anaerobic fermentation tank is promoted and organic wastewater is efficiently fermented. Can do. In addition, since the combustion exhaust gas after heat exchange in the heat exchanger for exhaust heat recovery is used in the heating tank, the exhaust heat recovery efficiency is further enhanced by effectively using the sensible heat and latent heat of the combustion exhaust gas. be able to. The anaerobic fermentation is, for example, methane fermentation, and in this methane fermentation, the organic waste water is heated to an appropriate temperature in, for example, a medium temperature range (30 to 38 ° C.) or a high temperature range (50 to 60 ° C.). Is done.

また、本発明の請求項に記載の有機排水処理システムによれば、有機排水槽からの有機排水が液体送給手段により加温槽の気液接触室に送給され、排熱回収用熱交換器にて排熱回収された後の燃焼排気ガスが排気ガス送給手段により加温の排気ガス室に送給され、この加温にて燃焼排気ガスと有機排水との気液接触により有機排水が加温されるので、有機排水を効率良く加温することができる。また、気液接触室は下気液接触室及び上気液接触室から構成され、排気ガス室と下気液接触室との間には下通気仕切壁が設けられ、下気液接触室と上気液接触室との間には上通気仕切壁が設けられ、このように上下2段に設けられた気液接触室により被加熱液体を気液接触で加温するので、所望の加温能力を保ちながら加温槽をコンパクトにすることができる。また、下通気仕切壁及び上通気仕切壁に設けられた複数個の通気スリットは斜め方向に延びているので、燃焼排気ガスは小さな気泡状となって下気液接触室及び上気液接触室に送給され、気液接触効率を高めて被加熱液体を効率良く加温することができる。更に、被加熱液体は上気液接触室から下気液接触室に流れるのに対し、排気ガス室に送給された燃焼排気ガスは下気液接触室から上気液接触室に流れるので、下気液接触室においては、上気液接触室にて加温された被加熱液体に排気ガス室からの燃焼排気ガスが接触するようになり、かくして、被加熱液体と燃焼排気ガスとの温度差が比較的小さくても被加熱液体を充分に加温して燃焼排気ガスの温度に近い温度まで加温することができる。また、加温槽において好気性処理に適した温度に加温された有機排水が好気性処理槽に送給されるので、好気性処理槽における有機排水の処理が促進され、有機排水を効率良く処理させることができる。また、加温槽においては、排熱回収用熱交換器において熱交換された後の燃焼排気ガスを利用するので、燃焼排気ガスの顕熱、潜熱を有効利用して排熱回収効率を一層高めることができる。 According to the organic waste water treatment system of claim 4 of the present invention, the organic waste water from the organic waste water tank is fed to the gas-liquid contact chamber of the heating tank by the liquid feeding means, and the heat for exhaust heat recovery Combustion exhaust gas after exhaust heat recovery by the exchanger is sent to the exhaust gas chamber of the heating tank by the exhaust gas feeding means, and the gas-liquid contact between the combustion exhaust gas and the organic waste water in this heating tank Since the organic waste water is heated by this, the organic waste water can be efficiently heated. The gas-liquid contact chamber includes a lower gas-liquid contact chamber and an upper gas-liquid contact chamber, and a lower ventilation partition wall is provided between the exhaust gas chamber and the lower gas-liquid contact chamber. An upper ventilation partition wall is provided between the upper air-liquid contact chamber and the liquid to be heated is heated in the gas-liquid contact by the gas-liquid contact chamber provided in two stages in this way, so that the desired heating The heating tank can be made compact while maintaining the capacity. Further, since the plurality of ventilation slits provided in the lower ventilation partition wall and the upper ventilation partition wall extend in an oblique direction, the combustion exhaust gas is in the form of small bubbles, and the lower gas-liquid contact chamber and the upper gas-liquid contact chamber The heated liquid can be efficiently heated by improving the gas-liquid contact efficiency. Furthermore, the heated liquid flows from the upper gas-liquid contact chamber to the lower gas-liquid contact chamber, whereas the combustion exhaust gas fed to the exhaust gas chamber flows from the lower gas-liquid contact chamber to the upper gas-liquid contact chamber. In the lower gas-liquid contact chamber, the combustion exhaust gas from the exhaust gas chamber comes into contact with the heated liquid heated in the upper gas-liquid contact chamber, and thus the temperature of the heated liquid and the combustion exhaust gas. Even if the difference is relatively small, the liquid to be heated can be heated sufficiently to a temperature close to the temperature of the combustion exhaust gas. Moreover, since organic waste water heated to a temperature suitable for aerobic treatment in the heating tank is fed to the aerobic treatment tank, the treatment of the organic waste water in the aerobic treatment tank is promoted, and the organic waste water is efficiently discharged. Can be processed. In addition, since the combustion exhaust gas after heat exchange in the heat exchanger for exhaust heat recovery is used in the heating tank, the exhaust heat recovery efficiency is further enhanced by effectively using the sensible heat and latent heat of the combustion exhaust gas. be able to.

また、本発明の請求項に記載の有機排水処理システムによれば、排熱回収用熱交換器において熱交換された後の70〜170℃である燃焼排気ガスを加温装置に送給して有機排水の加温に用いるので、燃焼排気ガスの熱を充分に回収して排熱回収効率を非常に高めることができる。また、このような温度の燃焼排気ガスとの気液接触により有機排水を30〜60℃に加温するので、有機排水の処理を効率良く行うことができる。 Moreover, according to the organic waste water treatment system according to claim 5 of the present invention, the combustion exhaust gas having a temperature of 70 to 170 ° C. after being heat-exchanged in the heat exchanger for exhaust heat recovery is supplied to the heating device. Since it is used for heating the organic waste water, the heat of the combustion exhaust gas can be sufficiently recovered and the exhaust heat recovery efficiency can be greatly enhanced. Moreover, since organic waste water is heated to 30-60 degreeC by the gas-liquid contact with combustion exhaust gas of such temperature, processing of organic waste water can be performed efficiently.

以下、添付図面を参照して、本発明に従う加温装置及びこれを備えた有機排水処理システムについて説明する。
加温装置の実施形態
まず、図1及び図2を参照して、被加熱液体を加温するための加温装置の一実施形態について説明する。図1は、一実施形態の加温装置を示す断面図であり、図2は、図1の加温装置の上気液接触室を示す平面断面図である。
Hereinafter, with reference to an accompanying drawing, a heating device according to the present invention and an organic waste water treatment system provided with the same will be described.
Embodiment of Warming Device First, an embodiment of a warming device for warming a liquid to be heated will be described with reference to FIGS. FIG. 1 is a cross-sectional view showing a heating device according to an embodiment, and FIG. 2 is a plan cross-sectional view showing an upper gas-liquid contact chamber of the heating device in FIG.

図1及び図2において、図示の加温装置2は、燃焼排気ガスと被加熱液体、例えば有機排水とを気液接触させて被加熱液体を加温する加温槽4を備えている。この実施形態では、加温槽4は下部ハウジング6及び上部ハウジング8を備え、下部ハウジング6内に排気ガス室10が規定され、上部ハウジング8内に下気液接触室12及び上気液接触室14が規定されている。   1 and 2, the illustrated heating device 2 includes a heating tank 4 that heats the heated liquid by bringing the combustion exhaust gas and the heated liquid, for example, organic waste water, into gas-liquid contact with each other. In this embodiment, the heating tank 4 includes a lower housing 6 and an upper housing 8, an exhaust gas chamber 10 is defined in the lower housing 6, and a lower gas-liquid contact chamber 12 and an upper gas-liquid contact chamber are provided in the upper housing 8. 14 is defined.

排気ガス室10には、例えば、コージェネレーションシステムのガスエンジン(図示せず)からの燃焼排気ガスが送給されるように構成される。下部ハウジング6には排気ガス送給管16が接続され、この排気ガス送給管16には送給ブロア(図示せず)が配設され、送給ブロアの吸引作用によって、ガスエンジンからの燃焼排気ガスが排気ガス送給管16を通して排気ガス室10に送給され、排気ガス送給管16及び送給ブロアが排気ガス送給手段を構成する。尚、燃焼排気ガスとしては、ガスエンジンからの燃焼排気ガスを利用するようにしてもよいが、これに限定されず、ガス焚きボイラ、重油焚きボイラなどの燃焼排気ガスを利用するようにしてもよい。 For example, the exhaust gas chamber 10 is configured to be supplied with combustion exhaust gas from a gas engine (not shown) of a cogeneration system. An exhaust gas feed pipe 16 is connected to the lower housing 6, and a feed blower (not shown) is disposed in the exhaust gas feed pipe 16, and combustion from the gas engine is performed by the suction action of the feed blower. The exhaust gas is supplied to the exhaust gas chamber 10 through the exhaust gas supply pipe 16, and the exhaust gas supply pipe 16 and the supply blower constitute exhaust gas supply means. The combustion exhaust gas may be a combustion exhaust gas from a gas engine, but is not limited thereto, and a combustion exhaust gas such as a gas fired boiler or a heavy oil fired boiler may be used. Good.

この加温槽4では、排気ガス室10の上側に下気液接触室12が配設され、この下気液接触室12の上側に上気液接触室14が配設され、排気ガス室10と下気液接触室12との間に下通気仕切壁18が設けられ、下気液接触室12と上気液接触室14との間に上通気仕切壁20が設けられている。この実施形態では、上気液接触室14の一端部(図1及び図2において右端部)に加温すべき被加熱液体、例えば有機排水を供給する供給口22が設けられ、下気液接触室12の一端部(図1及び図2において右端部)に加温された被加熱液体を排出するための排出口24が設けられ、上気液接触室14及び下気液接触室12の他端側(図1及び図2において左端側)に、上気液接触室14内の被加熱液体を下気液接触室12に送給するための連通管構造26が設けられている。   In the heating tank 4, a lower gas / liquid contact chamber 12 is disposed above the exhaust gas chamber 10, and an upper gas / liquid contact chamber 14 is disposed above the lower gas / liquid contact chamber 12. A lower ventilation partition wall 18 is provided between the lower gas-liquid contact chamber 12 and an upper air-liquid partition wall 20 is provided between the lower gas-liquid contact chamber 12 and the upper gas-liquid contact chamber 14. In this embodiment, a supply port 22 for supplying a heated liquid to be heated, for example, organic waste water, is provided at one end of the upper gas-liquid contact chamber 14 (the right end in FIGS. 1 and 2). A discharge port 24 for discharging the heated liquid is provided at one end of the chamber 12 (the right end in FIGS. 1 and 2), and other than the upper gas-liquid contact chamber 14 and the lower gas-liquid contact chamber 12. A communication pipe structure 26 for supplying the liquid to be heated in the upper gas-liquid contact chamber 14 to the lower gas-liquid contact chamber 12 is provided on the end side (left end side in FIGS. 1 and 2).

図示の連通管構造26は、略U字状に延びるU字状管部28を有し、このU字状管部28の一端部(図1において右端部)が上気液接触室14に連通され、この一端部が流出口30を規定する。U字状管部28の他端部は、上下方向の高さがその一端部よりも幾分低く、この他端部が下方に略L字状に延びる接続管部32を介して下気液接触室12に連通され、この接続管部32の下流端部が流入口34を規定する。また、U字状管部28の他端部は上方に略L字状に延びるガス抜き管部36を介して上気液接触室14に連通され、その上端部がガス抜き口38を規定する。上気液接触室14においては、供給口22の上下方向の位置は、連通管構造26の流出口30よりも高く、ガス抜き口38の上下方向の位置は供給口22の位置よりも高く設定されている。また、下気液接触室12においては、流入口34の上下方向の位置が流出口24よりも高く設定されている。   The illustrated communication tube structure 26 has a U-shaped tube portion 28 extending in a substantially U shape, and one end portion (the right end portion in FIG. 1) of the U-shaped tube portion 28 communicates with the upper gas-liquid contact chamber 14. This one end defines the outlet 30. The other end portion of the U-shaped tube portion 28 has a slightly lower vertical height than one end portion, and the other end portion is connected to the lower gas liquid via a connecting tube portion 32 that extends downward in a substantially L shape. The contact chamber 12 communicates with the downstream end of the connecting pipe portion 32 to define an inflow port 34. The other end portion of the U-shaped tube portion 28 communicates with the upper gas-liquid contact chamber 14 via a gas vent tube portion 36 extending upward in a substantially L shape, and an upper end portion thereof defines a gas vent port 38. . In the upper gas-liquid contact chamber 14, the vertical position of the supply port 22 is set higher than the outlet 30 of the communication pipe structure 26, and the vertical position of the gas vent 38 is set higher than the position of the supply port 22. Has been. In the lower gas-liquid contact chamber 12, the vertical position of the inlet 34 is set higher than the outlet 24.

このように構成されているので、供給口22から上気液接触室14に供給された被加熱液体は、流出口30から下流側に流出し、上気液接触室14内における被加熱液体のレベルは流出口30の位置となる。また、連通管構造26を通して下流側に送給される被加熱液体は流入口34から下気液接触室12に流入し、その排出口24から排出され、下気液接触室12内における被加熱液体のレベルは排出口24の位置となる。そして、連通管構造26においては、U字状管部28に上気液接触室14から下気液接触室12に流れる被加熱液体の一部が溜まり、このU字状管部28において被加熱液体から分離した気体(その大部分が燃焼排気ガスである)がガス抜き管部36を通して上気液接触室14に流れる。また、下気液接触室12と上気液接触室14とは、連通管構造26の接続管部32及びガス抜き管部36を介して連通されるので、これら両気液接触室12,14は同一の圧力に保たれる。尚、ガス抜き管部36のガス抜き口38は、供給口22よりも高い位置に配置されるので、このガス抜き口38が被加熱液体に浸かることがなく、ガス抜き機能及び両気液接触室12,14の均圧機能が損なわれることはない。   With this configuration, the heated liquid supplied from the supply port 22 to the upper gas-liquid contact chamber 14 flows out from the outlet 30 to the downstream side, and the heated liquid in the upper gas-liquid contact chamber 14 flows. The level is the position of the outlet 30. Further, the liquid to be heated fed downstream through the communication pipe structure 26 flows into the lower gas-liquid contact chamber 12 from the inlet 34 and is discharged from the discharge port 24 to be heated in the lower gas-liquid contact chamber 12. The liquid level is the position of the outlet 24. In the communication pipe structure 26, a part of the heated liquid flowing from the upper gas-liquid contact chamber 14 to the lower gas-liquid contact chamber 12 is accumulated in the U-shaped pipe portion 28, and the U-shaped pipe portion 28 is heated. The gas separated from the liquid (mostly combustion exhaust gas) flows into the upper gas-liquid contact chamber 14 through the gas vent pipe 36. Further, since the lower gas-liquid contact chamber 12 and the upper gas-liquid contact chamber 14 are communicated with each other via the connection pipe portion 32 and the gas vent pipe portion 36 of the communication pipe structure 26, both the gas-liquid contact chambers 12, 14 are connected. Are kept at the same pressure. In addition, since the gas vent port 38 of the gas vent pipe portion 36 is disposed at a position higher than the supply port 22, the gas vent port 38 is not immersed in the liquid to be heated, and the gas vent function and both gas-liquid contact are performed. The pressure equalizing function of the chambers 12 and 14 is not impaired.

下通気仕切壁18及び上通気仕切壁20には、それぞれ、多数の通気スリット40,42が設けられている。上気液接触室14及び上通気仕切壁20と下気液接触室12及び下通気仕切壁18とは実質上同一の構成であり、主として図2を参照して、上気液接触室14及び上通気仕切壁20について説明すると、上気液接触室14(下気液接触室12)は細長い矩形状であり、その長手方向(被加熱液体の流れ方向であって、図1及び図2において左右方向)に間隔をおいて複数個の通気スリット42(40)が配設されている。このように細長い矩形状に形成することによって、上気液接触室14(下気液接触室12)の被加熱液体の流れ方向における長さを確保することができ、被加熱液体の後述する加温効率を高めることができる。   The lower ventilation partition wall 18 and the upper ventilation partition wall 20 are provided with a number of ventilation slits 40 and 42, respectively. The upper gas-liquid contact chamber 14 and the upper ventilation partition wall 20 and the lower gas-liquid contact chamber 12 and the lower ventilation partition wall 18 have substantially the same configuration, and mainly referring to FIG. The upper ventilation partition wall 20 will be described. The upper gas-liquid contact chamber 14 (lower gas-liquid contact chamber 12) has an elongated rectangular shape, and its longitudinal direction (the flow direction of the liquid to be heated is shown in FIGS. 1 and 2). A plurality of ventilation slits 42 (40) are arranged at intervals in the left-right direction). By forming the rectangular shape in this way, the length of the upper gas-liquid contact chamber 14 (lower gas-liquid contact chamber 12) in the flow direction of the heated liquid can be secured, and the heated liquid will be described later. Thermal efficiency can be increased.

複数個の通気スリット42(40)は、上通気仕切壁20(下通気仕切壁18)の長手方向(被加熱液体の流れ方向)に間隔をおいて設けられ、この実施形態では、各通気スリット42(40)は上通気仕切壁20(下通気仕切壁18)の幅方向(図1において紙面に垂直な方向、図2において上下方向)一側端から他側端まで直線状に設けられている。各通気スリット42(40)は斜め方向に傾斜して延びるように設けられ、このように斜め方向に設けることによって、通気スリット42(40)を流れる燃焼排気ガスが小さい気泡状となって上気液接触室14(下気液接触室12)内の被加熱液体に送給され、燃焼排気ガスと被加熱液体との気液接触効率を高めることができる。   The plurality of ventilation slits 42 (40) are provided at intervals in the longitudinal direction of the upper ventilation partition wall 20 (lower ventilation partition wall 18) (the flow direction of the liquid to be heated). 42 (40) is provided in a straight line from one side end to the other side end in the width direction of the upper ventilation partition wall 20 (lower ventilation partition wall 18) (the direction perpendicular to the paper surface in FIG. 1, the vertical direction in FIG. 2). Yes. Each ventilation slit 42 (40) is provided so as to extend obliquely in the oblique direction, and by providing in this oblique direction, the combustion exhaust gas flowing through the ventilation slit 42 (40) becomes a small bubble and is It is sent to the heated liquid in the liquid contact chamber 14 (lower gas-liquid contact chamber 12), and the gas-liquid contact efficiency between the combustion exhaust gas and the heated liquid can be increased.

複数個の通気スリット42(40)については、図1に示すように、その長手方向中央部を境に、その片側(図1及び図2において右部)に設けられた通気スリット42(40)は上方に向けてその片側(図1及び図2において右方)に傾斜して延び、その他側(図1及び図2において左部)に設けられた通気スリット42(40)は上方に向けてその他側(図1及び図2において左側))に傾斜して延びており、このように通気スリット42(40)を設けることによって、燃焼排気ガスを上気液接触室14(下気液接触室12)内の被加熱液体に実質上均一に作用させることができる。   As shown in FIG. 1, the plurality of ventilation slits 42 (40) have ventilation slits 42 (40) provided on one side (right side in FIGS. 1 and 2) with the central portion in the longitudinal direction as a boundary. Is inclined upward and extended to one side (right side in FIGS. 1 and 2), and the ventilation slit 42 (40) provided on the other side (left side in FIGS. 1 and 2) is directed upward. The other side (left side in FIGS. 1 and 2) is inclined and extends, and thus the ventilation slit 42 (40) is provided to allow combustion exhaust gas to flow into the upper gas-liquid contact chamber 14 (lower gas-liquid contact chamber). 12) The liquid to be heated can be made to act substantially uniformly.

次に、上述した加温装置2による被加熱液体の加温について説明する。加温すべき被加液体、例えば25℃前後の被加熱液体は、矢印46で示すように供給口22を通して加温槽4の上気液接触室14に供給される。そして、このように供給された被加熱液体は、上気液接触室14の一端側(図1において右端側)から他端側(図1において左端側)に流れ、その後連通機構26のU字状管部28及び接続管部32を通して下気液接触室12に送給される。このように下気液接触室12に送給された被加熱液体は下気液接触室12の他端側(図1において左端側)から一端側(図1において右端側)に流れ、この一端側に設けられた排出口24から矢印48で示すように排出される。 Next, heating of the liquid to be heated by the heating device 2 described above will be described. The pressurized heat liquid to be heated, for example, 25 ° C. the heated liquid around is supplied to the upper respiratory-liquid contact chamber 14 of the heating tank 4 through the supply port 22 as shown by arrow 46. The heated liquid thus supplied flows from one end side (right end side in FIG. 1) to the other end side (left end side in FIG. 1) of the upper gas-liquid contact chamber 14, and then the U-shape of the communication mechanism 26. Then, the gas is supplied to the lower gas-liquid contact chamber 12 through the tubular tube 28 and the connecting tube 32. Thus, the heated liquid supplied to the lower gas-liquid contact chamber 12 flows from the other end side (left end side in FIG. 1) to one end side (right end side in FIG. 1) of the lower gas-liquid contact chamber 12, and this one end As shown by an arrow 48, the gas is discharged from a discharge port 24 provided on the side.

加温するときには、また、例えば80℃前後の燃焼排気ガスが排気ガス送給手段の排気ガス送給管16を通して加温槽4の排気ガス室10に送給される。そして、かく送給された燃焼排気ガスは、下通気仕切壁18に設けられた多数の通気スリット40を通して下気液接触室12に送給され、その後上通気仕切壁20に設けられた多数の通気スリット42を通して上気液接触室14に送給された後に、上壁50に設けられたガス排出口52を通して外部に排出される。   When warming, for example, combustion exhaust gas at around 80 ° C. is fed to the exhaust gas chamber 10 of the warming tank 4 through the exhaust gas feed pipe 16 of the exhaust gas feed means. The combustion exhaust gas thus supplied is supplied to the lower gas-liquid contact chamber 12 through a number of ventilation slits 40 provided in the lower ventilation partition wall 18, and thereafter, a number of the combustion exhaust gases provided in the upper ventilation partition wall 20. After being supplied to the upper gas-liquid contact chamber 14 through the ventilation slit 42, it is discharged to the outside through the gas discharge port 52 provided in the upper wall 50.

上気液接触室14においては、被加熱液体と上通気仕切壁20の通気スリット42を通して気泡状に送給される燃焼排気ガス(下気液接触室12にて加温に用いられたもの)とが気液接触し、燃焼排気ガスの熱によって被加熱液体が加温され、上気液接触室14にて加温された被加熱液体が連通管構造26を通して下気液接触室12に送給される。また、下気液接触室12においては、上気液接触室14から送給された被加熱液体と下通気仕切壁18の通気スリット40を通して気泡状に送給される燃焼排気ガス(排気ガス送給管16を通して送給される燃焼排気ガス)とが気液接触し、この下気液接触室12においても燃焼排気ガスの熱により被加熱液体が加温される。このとき、下気液接触室12には上気液接触室14にて加温された被加熱液体(ある程度加温されて温度が上昇している)が送給される一方、排気ガス室10からの燃焼排気ガス(気液接触による熱回収がされていない燃焼排気ガス)が通気スリット40を通して気泡状となって被加熱液体に送給されるので、この燃焼排気ガスによって充分に加温され、所望温度、例えば38℃前後に加温された被加熱液体が排水口24から排出される。この加温槽4では、気液接触により被加熱液体を加熱するので、加温を効率良く行うことができ、上気液接触室14から排出される燃焼排気ガスの温度と供給口22を通して上気液接触室14に供給される被加熱液体の温度とがほぼ等しくなる程度まで燃焼排気ガスの熱を回収して被加液体を加温することができる。 In the upper gas-liquid contact chamber 14, the combustion exhaust gas fed in the form of bubbles through the liquid to be heated and the ventilation slit 42 of the upper ventilation partition wall 20 (used for heating in the lower gas-liquid contact chamber 12). And the heated liquid is heated by the heat of the combustion exhaust gas, and the heated liquid heated in the upper gas-liquid contact chamber 14 is sent to the lower gas-liquid contact chamber 12 through the communication pipe structure 26. Be paid. In the lower gas-liquid contact chamber 12, the heated liquid supplied from the upper gas-liquid contact chamber 14 and the combustion exhaust gas (exhaust gas supply) supplied in the form of bubbles through the ventilation slit 40 of the lower ventilation partition wall 18. The combustion exhaust gas fed through the supply pipe 16 is in gas-liquid contact, and also in the lower gas-liquid contact chamber 12, the liquid to be heated is heated by the heat of the combustion exhaust gas. At this time, the heated liquid heated in the upper gas-liquid contact chamber 14 (heated to a certain extent and heated) is supplied to the lower gas-liquid contact chamber 12, while the exhaust gas chamber 10 The combustion exhaust gas (combustion exhaust gas that has not been heat-recovered by gas-liquid contact) is bubbled through the ventilation slit 40 and fed to the liquid to be heated. Therefore, the combustion exhaust gas is sufficiently heated by the combustion exhaust gas. The heated liquid heated to a desired temperature, for example, around 38 ° C. is discharged from the drain port 24. In this heating tank 4, the liquid to be heated is heated by gas-liquid contact, so that heating can be performed efficiently, and the temperature of the combustion exhaust gas discharged from the upper gas-liquid contact chamber 14 and the supply port 22 are increased. can be the temperature of the heated liquid supplied to the gas-liquid contact chamber 14 is heated to heat the collected and the pressurized heat liquid in the combustion exhaust gas to the extent that substantially equal.

図3は、加温装置における加温槽の変形形態を示している。尚、以下の実施形態において、図1及び図2に示すものと実質上同一のものには同一の参照番号を付し、その説明を省略する。   FIG. 3 shows a modification of the heating tank in the heating device. In the following embodiments, the same reference numerals are given to substantially the same components as those shown in FIGS. 1 and 2, and the description thereof is omitted.

図3において、この加温槽4Aにおいては、下部ハウジング(図示せず)及び上部ハウジング8Aは略同様の構成であり、外形が円形状に形成されている。上部ハウジング8Aにより規定される上気液接触室14A(下気液接触室12A)の略中央部には、上下方向に延びる柱状部62が設けられ、この柱状部62と上部ハウジング8Aとの間に仕切壁64が設けられている。そして、上部ハウジング8Aにおける、仕切壁64近傍の片側部位(図3において上側)に、供給口22A(排出口24A)が設けられ、仕切壁64近傍の他側部位に、流出口30A(流入口34A)が設けられ、このように構成することによって、上気液接触室14A(下気液接触室12A)が略円形状に長く延び、比較的小さいスペースでもって長い距離を確保することができる。   In FIG. 3, in this heating tank 4A, a lower housing (not shown) and an upper housing 8A have substantially the same configuration, and the outer shape is formed in a circular shape. A columnar portion 62 extending in the vertical direction is provided at a substantially central portion of the upper gas-liquid contact chamber 14A (lower gas-liquid contact chamber 12A) defined by the upper housing 8A, and between the columnar portion 62 and the upper housing 8A. A partition wall 64 is provided. In the upper housing 8A, a supply port 22A (discharge port 24A) is provided in one side portion (upper side in FIG. 3) in the vicinity of the partition wall 64, and an outlet 30A (inlet) is provided in the other side portion in the vicinity of the partition wall 64. 34A) is provided, and the upper gas-liquid contact chamber 14A (lower gas-liquid contact chamber 12A) extends in a substantially circular shape by such a configuration, and a long distance can be secured with a relatively small space. .

また、上気液接触室14A(下気液接触室12A)と下気液接触室12A(排気ガス室)との間には上通気仕切壁20A(下通気仕切壁18A)が設けられ、上通気仕切壁20A(下通気仕切壁10A)には複数個の通気孔42A(40A)が設けられてる。各通気孔42A(40A)は円形状に形成されているが、その他の適宜の形状に形成することができる。   Further, an upper ventilation partition wall 20A (lower ventilation partition wall 18A) is provided between the upper gas-liquid contact chamber 14A (lower gas-liquid contact chamber 12A) and the lower gas-liquid contact chamber 12A (exhaust gas chamber). The ventilation partition wall 20A (lower ventilation partition wall 10A) is provided with a plurality of ventilation holes 42A (40A). Each air hole 42A (40A) is formed in a circular shape, but can be formed in other appropriate shapes.

この加熱槽4Aにおいては、加温すべき被加熱液体は、供給口22Aから矢印で示すように供給され、この供給口22Aから矢印で示すように上気液接触室14Aの一端側から他端側に流れ、流出口30Aから上述した連通管構造(図示せず)を介して下気液接触室12Aに送給される。流入口34Aから下気液接触室12Aに送給された被加熱液体は、下気液接触室12Aの他端側から一端側に流れ、排出口24Aから外部に排出される。また、排気ガス室に送給された燃焼排気ガスは、下通気仕切壁18の通気孔40Aを通して下気液接触室12Aに気泡状に送給され、更に上通気仕切壁20の通気孔42Aを通して上気液接触室14Aに気泡状に送給され、その後外部に排出される。下気液接触室12A及び上気液接触室14Aにおいては、上述したと同様に、燃焼排気ガスと被加熱液体との気液接触が行われるので、被加熱液体を効率良く加温することができる。   In this heating tank 4A, the heated liquid to be heated is supplied from the supply port 22A as indicated by an arrow, and as indicated by the arrow from the supply port 22A, the upper gas-liquid contact chamber 14A is connected from one end to the other end. To the lower gas-liquid contact chamber 12A via the communication pipe structure (not shown) described above. The heated liquid fed from the inflow port 34A to the lower gas-liquid contact chamber 12A flows from the other end side to the one end side of the lower gas-liquid contact chamber 12A, and is discharged to the outside from the discharge port 24A. Further, the combustion exhaust gas supplied to the exhaust gas chamber is supplied in the form of bubbles to the lower gas-liquid contact chamber 12A through the vent hole 40A of the lower ventilation partition wall 18, and further passes through the vent hole 42A of the upper ventilation partition wall 20. The gas is supplied to the upper gas-liquid contact chamber 14A in the form of bubbles and then discharged to the outside. In the lower gas-liquid contact chamber 12A and the upper gas-liquid contact chamber 14A, the gas-liquid contact between the combustion exhaust gas and the heated liquid is performed in the same manner as described above, so that the heated liquid can be efficiently heated. it can.

上述した加温装置は、有機排水処理システム、例えば嫌気性発酵処理システム、好気性処理システムなどに適用することができ、このようなシステムにおいて有機排水を加温するのに好都合に用いることができる。   The above-described heating device can be applied to an organic wastewater treatment system, such as an anaerobic fermentation treatment system, an aerobic treatment system, and the like, and can be advantageously used to warm organic wastewater in such a system. .

有機排水処理システム
次に、図4を参照して、図1及び図2に示す加温装置2(図3に示す加温装置2A)を有機排水処理システムの一つとしての嫌気性発酵処理システムに適用した例について説明する。図4は、一実施形態の嫌気性発酵処理システムを簡略的に示すシステム図である。
Organic Wastewater Treatment System Next, referring to FIG. 4, an anaerobic fermentation treatment system in which the heating device 2 shown in FIGS. 1 and 2 (heating device 2A shown in FIG. 3) is one of the organic wastewater treatment systems. An example applied to is described. FIG. 4 is a system diagram schematically illustrating an anaerobic fermentation treatment system according to an embodiment.

図4において、図示の嫌気性発酵処理システムはコージェネレーションシステムと組み合わされており、コージェネレーションシステムのガスエンジン102からの燃焼排気ガスが利用されるように構成されている。更に説明すると、嫌気性発酵処理システムは、図1及び図2に示す加温装置2、工場などで発生する有機排水を溜める有機排水槽104、嫌気性メタン発酵を行う嫌気性発酵槽106、嫌気性発酵槽106において発生したバイオガス、即ちメタンガスを主成分とするガスを前処理する前処理設備108及び嫌気性発酵後に残る発酵残渣を処理する発酵残渣処理設備110を備えている。 In FIG. 4, the illustrated anaerobic fermentation treatment system is combined with a cogeneration system, and is configured such that combustion exhaust gas from the gas engine 102 of the cogeneration system is used. More specifically, the anaerobic fermentation treatment system includes the heating device 2 shown in FIGS. 1 and 2, an organic drainage tank 104 that stores organic wastewater generated in a factory, an anaerobic fermentation tank 106 that performs anaerobic methane fermentation, anaerobic A pretreatment facility 108 for pretreating biogas generated in the fermentative fermenter 106, that is, a gas mainly composed of methane gas, and a fermentation residue treatment facility 110 for treating fermentation residues remaining after anaerobic fermentation are provided.

コージェネレーションシステムのガスエンジン102には発電機112が駆動連結され、ガスエンジン102の運転によって作動して電力を発生し、この発電電力が電力負荷で消費される。ガスエンジン102からの燃焼排気ガスは排熱回収用熱交換器114、例えば排熱回収用ボイラの熱交換器を通して流れる。排熱回収用熱交換器114には水が送給され、燃焼排気ガスとの間で熱交換が行われて温水が生成され、排熱が温水として回収され、このように排熱回収を行うことにより、ガスエンジン102からの燃焼排気ガスは70〜150℃程度まで温度が下がる。   A generator 112 is drivingly connected to the gas engine 102 of the cogeneration system, and is operated by the operation of the gas engine 102 to generate electric power. This generated electric power is consumed by the electric power load. The combustion exhaust gas from the gas engine 102 flows through an exhaust heat recovery heat exchanger 114, for example, an exhaust heat recovery boiler heat exchanger. Water is supplied to the heat exchanger 114 for exhaust heat recovery, heat exchange is performed with the combustion exhaust gas to generate hot water, and exhaust heat is recovered as hot water, thus performing exhaust heat recovery. As a result, the temperature of the combustion exhaust gas from the gas engine 102 decreases to about 70 to 150 ° C.

排熱回収用熱交換器114にて熱交換された燃焼排気ガスは、排気ガス送給手段116により加温装置2の加温槽4の排気ガス室10に送給される。排気ガス送給手段116は、排熱回収用熱交換器114からの燃焼排気ガスを加温槽4の排気ガス室10に導く排気ガス送給管16を備え、の排気ガス送給管16に送給ブロア118が配設されている。このように構成されているので、送給ブロア118が作動すると、その吸引送給作用によって、排熱回収用熱交換器114において熱交換された燃焼排気ガスが排気ガス送給管16を通して加温槽4の排気ガス室10に送給される。 The combustion exhaust gas heat-exchanged by the heat exchanger 114 for exhaust heat recovery is supplied to the exhaust gas chamber 10 of the heating tank 4 of the heating device 2 by the exhaust gas supply means 116. Exhaust gas delivery means 116 is provided with an exhaust gas feed pipe 16 for guiding the combustion exhaust gas from the exhaust heat recovery heat exchanger 114 to the exhaust gas chamber 10 of the heating tank 4, this exhaust gas feed pipe 16 A feed blower 118 is disposed on the front side. With this configuration, when the feed blower 118 is activated, the combustion exhaust gas heat-exchanged in the exhaust heat recovery heat exchanger 114 is heated through the exhaust gas feed pipe 16 by the suction and feed action. It is fed to the exhaust gas chamber 10 of the tank 4.

工場などで発生する有機排水は有機排水槽104に溜められ、有機排水槽104に溜まった有機排水が嫌気性発酵処理、即ち嫌気性メタン発酵処理される。有機排水槽104からの有機排水は液体送給手段120により加温槽4に送給される。液体送給手段120は有機排水を加温槽4の上気液接触室14に導く液体送給管122を備え、液体送給管122に排水供給ポンプ124が配設され、この排水供給ポンプ124の作用により有機排水槽104内の有機排水が液体送給管122を通して加温槽4の上気液接触室14に供給される。上気液接触槽14に供給される有機排水の温度は、15〜25℃程度である。   Organic wastewater generated in a factory or the like is stored in an organic drainage tank 104, and the organic wastewater stored in the organic drainage tank 104 is subjected to anaerobic fermentation treatment, that is, anaerobic methane fermentation treatment. Organic wastewater from the organic drainage tank 104 is fed to the heating tank 4 by the liquid feeding means 120. The liquid feeding means 120 includes a liquid feeding pipe 122 that guides organic waste water to the upper gas-liquid contact chamber 14 of the heating tank 4, and a drainage supply pump 124 is disposed in the liquid feeding pipe 122. As a result, the organic drainage in the organic drainage tank 104 is supplied to the upper gas-liquid contact chamber 14 of the heating tank 4 through the liquid feed pipe 122. The temperature of the organic waste water supplied to the upper gas-liquid contact tank 14 is about 15 to 25 ° C.

加温槽4(下気液接触室12及び上気液接触室14)においては、ガスエンジン102からの燃焼排気ガスと有機排水槽104からの有機排水とが上述したようにして気液接触され、この気液接触により有機排水が嫌気性発酵処理に適した温度に加温される。この嫌気性発酵処理が嫌気性メタン発酵処理である場合、中温度域である30〜38℃に、又は高温度域である50〜60℃に加温される。   In the heating tank 4 (the lower gas-liquid contact chamber 12 and the upper gas-liquid contact chamber 14), the combustion exhaust gas from the gas engine 102 and the organic waste water from the organic drainage tank 104 are in gas-liquid contact as described above. By this gas-liquid contact, the organic waste water is heated to a temperature suitable for the anaerobic fermentation treatment. When this anaerobic fermentation process is an anaerobic methane fermentation process, it heats to 30-38 degreeC which is an intermediate temperature range, or 50-60 degreeC which is a high temperature range.

加温槽4にて加温された有機排水は嫌気性発酵槽106に送給され、この嫌気性発酵槽106にて嫌気性発酵処理、即ちメタン発酵処理が行われる。メタン発酵処理により発生したバイオガス、即ちメタンを主成分とするガスは前処理設備108に送給され、この前処理設備108にて精製された後にガスエンジン102に送給され、ガスエンジン102の燃料として用いられる。また、嫌気性発酵槽106にて発酵処理した後の発酵残渣は発酵残渣処理設備110に送られ、この発酵残渣処理設備110にて所要の通りに処理される。   The organic waste water heated in the heating tank 4 is supplied to the anaerobic fermentation tank 106, and anaerobic fermentation treatment, that is, methane fermentation treatment is performed in the anaerobic fermentation tank 106. The biogas generated by the methane fermentation process, that is, the gas mainly composed of methane, is supplied to the pretreatment facility 108, purified by the pretreatment facility 108, and then supplied to the gas engine 102. Used as fuel. Moreover, the fermentation residue after having been fermented in the anaerobic fermenter 106 is sent to the fermentation residue processing facility 110 and processed as required in the fermentation residue processing facility 110.

この有機排水処理システムでは、ガスエンジン102からの燃焼排気ガスを排熱回収用熱交換器114に送給して排熱回収を行い、更に加温装置2に送給して有機排水との気液接触により排熱回収を行っているので、燃焼排気ガスの顕熱及び潜熱の回収を行い、排熱回収率を高めることができる。また、嫌気性発酵槽106にて発生したバイオガスをガスエンジン102の燃料として利用しているので、処理システムの運転効率を高め、運転コストの低減を図ることができる。   In this organic wastewater treatment system, the combustion exhaust gas from the gas engine 102 is sent to the heat exchanger 114 for exhaust heat recovery to perform exhaust heat recovery, and is further supplied to the heating device 2 so as to remove the gas from the organic waste water. Since exhaust heat recovery is performed by liquid contact, the sensible heat and latent heat of the combustion exhaust gas can be recovered, and the exhaust heat recovery rate can be increased. Moreover, since the biogas generated in the anaerobic fermenter 106 is used as the fuel for the gas engine 102, the operating efficiency of the processing system can be increased and the operating cost can be reduced.

図5は、有機排水処理システムの他の実施形態を示しており、この他の例では、好気性処理システムに適用されている。図5は、好気性処理システムに適用した例を簡略的に示すシステム図であり、この処理システムにおいてもコージェネレーションシステムと組み合わされている。   FIG. 5 shows another embodiment of the organic wastewater treatment system. In this other example, the organic wastewater treatment system is applied to an aerobic treatment system. FIG. 5 is a system diagram schematically showing an example applied to an aerobic processing system, and this processing system is also combined with a cogeneration system.

図5において、この好気性システムにおいては、嫌気性発酵槽106に代えて、好気性処理を行う好気性処理槽132が用いられている。ガスエンジン102からの燃焼排気ガスは排熱回収用熱交換器114にて排熱回収された後加温槽4の排気ガス室10に送給され、また有機排水槽104からの有機排水が加温槽4の上気液接触室14に送給され、上気液接触室14及び下気液接触室12を流れる間に燃焼排気ガスとの気液接触によって好気性処理に適した温度に加温される。加温された有機排水は好気性処理槽132に送給され、この好気性処理槽132には処理用空気も供給され、供給された空気によって有機排水の好気性処理、例えば臭気除去処理が行われ、好気性処理された有機排水が下流側に送給される。この処理システムのその他の構成は、図4に示す処理システムと実質上同一であり、このような好気性処理システムに加温装置2を適用しても、有機排水を効率良く加温して好気性処理効率を高めることができる。   In FIG. 5, in the aerobic system, an aerobic treatment tank 132 that performs an aerobic treatment is used instead of the anaerobic fermentation tank 106. The combustion exhaust gas from the gas engine 102 is exhausted by the exhaust heat recovery heat exchanger 114 and then supplied to the exhaust gas chamber 10 of the heating tank 4, and the organic waste water from the organic drain tank 104 is added. It is fed to the upper gas-liquid contact chamber 14 of the warm bath 4 and is heated to a temperature suitable for aerobic treatment by gas-liquid contact with the combustion exhaust gas while flowing through the upper gas-liquid contact chamber 14 and the lower gas-liquid contact chamber 12. Be warmed. The heated organic waste water is supplied to the aerobic treatment tank 132, and processing air is also supplied to the aerobic treatment tank 132, and the aerobic treatment of the organic waste water, for example, odor removal treatment is performed by the supplied air. The aerobic treated organic waste water is sent downstream. The other configuration of this treatment system is substantially the same as the treatment system shown in FIG. 4, and even if the heating device 2 is applied to such an aerobic treatment system, the organic waste water is efficiently heated. Tempering efficiency can be increased.

上述した加温装置の効果を確認するために、次の通りの実験を行った。加温装置として図1及び図2に示す形態のものを用い、その加温装置の寸法は次の通りであった。下気液接触室及び上気液接触槽の長手方向の長さ120cm、それらの幅方向の長さ20cmであった。燃焼排気ガスとしてガスエンジンからの燃料排気ガスを用い、下通気仕切壁及び上通気仕切壁に設けた通気スリットの幅は2mmであり、通気仕切壁(下通気仕切壁、上通気仕切壁)のスリット面積比率(通過仕切壁の全面積に対する通過スリットの全面積の比率)が0.019であった。   In order to confirm the effect of the heating apparatus described above, the following experiment was performed. 1 and 2 was used as the heating device, and the dimensions of the heating device were as follows. The length of the lower gas-liquid contact chamber and the upper gas-liquid contact tank in the longitudinal direction was 120 cm, and the length in the width direction was 20 cm. The fuel exhaust gas from the gas engine is used as the combustion exhaust gas. The width of the ventilation slit provided in the lower ventilation partition wall and the upper ventilation partition wall is 2 mm, and the ventilation partition walls (lower ventilation partition wall, upper ventilation partition wall) The slit area ratio (ratio of the total area of the passage slit to the total area of the passage partition wall) was 0.019.

この実験において、加温槽の排気ガス室に80℃の燃焼排気ガスを180.6m/hの割合で送給するとともに、加温槽の上気液接触室に25.2℃の有機排水を600kg/hの割合で送給し、加温槽の上気液接触室及び下気液接触室にて気液接触により有機排水を加温した。加温槽で加温することにより、上気液接触室からの燃焼排気ガスの排出流量は158m/hであり、その温度は25.8℃に低下していた。一方、下気液接触室から排出される有機排水の流出流量は618.1kg/hであり、その温度は45.7℃に上昇していた。この気液接触により、燃焼排気ガスの顕熱が3,405kcal/h、その潜熱が10,554kcal/hで、合計13,959kcal/hの熱が回収され、加温された有機排水は13,127kcal/hの熱を吸収したことになった。また、この気液接触による加温により、上気液接触室から排出される燃焼排気ガスの温度は、気液接触による熱回収によって、上気液接触室に送給される有機排水の温度近くまで回収され、非常に高い効率で熱回収できることが確認できた。 In this experiment, 80 ° C. combustion exhaust gas was supplied to the exhaust gas chamber of the heating tank at a rate of 180.6 m 3 / h, and 25.2 ° C. organic waste water was supplied to the upper gas-liquid contact chamber of the heating tank. Was fed at a rate of 600 kg / h, and the organic waste water was heated by gas-liquid contact in the upper gas-liquid contact chamber and the lower gas-liquid contact chamber of the heating tank. By heating in the heating tank, the exhaust flow rate of the combustion exhaust gas from the upper gas-liquid contact chamber was 158 m 3 / h, and the temperature was lowered to 25.8 ° C. On the other hand, the outflow rate of the organic waste water discharged from the lower gas-liquid contact chamber was 618.1 kg / h, and the temperature was increased to 45.7 ° C. By this gas-liquid contact, the sensible heat of the combustion exhaust gas is 3,405 kcal / h, the latent heat is 10,554 kcal / h, and a total of 13,959 kcal / h of heat is recovered. The heat of 127 kcal / h was absorbed. In addition, the temperature of the combustion exhaust gas discharged from the upper gas-liquid contact chamber by the heating due to the gas-liquid contact is close to the temperature of the organic waste water supplied to the upper gas-liquid contact chamber by the heat recovery by the gas-liquid contact. It was confirmed that heat could be recovered with very high efficiency.

以上、本発明に従う加温装置及びこれを備えた有機排水処理システムの実施形態について説明したが、本発明はかかる実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形乃至修正が可能である。   As mentioned above, although embodiment of the heating apparatus according to this invention and the organic waste water treatment system provided with this was described, this invention is not limited to this embodiment, and various, without deviating from the scope of the present invention. Deformation or correction is possible.

例えば、上述した実施形態では、気液接触室が上下方向に2段に配設された加温槽に適用して説明したが、このような形態に限定されず、気液接触室が一つのもの、或いは気液接触槽が上下方向に3段以上に配設されたものにも適用することができる。   For example, in the above-described embodiment, the gas-liquid contact chamber has been described as applied to a heating tank that is arranged in two stages in the vertical direction. The present invention can also be applied to an apparatus having a gas-liquid contact tank arranged in three or more stages in the vertical direction.

この加温装置では、加熱すべき被加熱液体にガスエンジンなどからの燃焼排気ガスを気泡状に接触させて加温するので、熱交換器を用いるものなどに比して加温効率及び排熱回収効率が高く、燃焼排気ガスの温度が例えば70〜170℃程度と低くてもその熱を回収して被加熱液体を加温することができる。このような加温装置は、排熱回収用熱交換器にて熱回収した後の燃焼排気ガスの排熱(顕熱、潜熱)を回収するのに好都合に適用することができ、排熱回収効率を非常に高めることができる。   In this heating device, combustion exhaust gas from a gas engine or the like is heated in contact with the liquid to be heated in the form of bubbles, so that the heating efficiency and exhaust heat are higher than those using a heat exchanger. Even if the recovery efficiency is high and the temperature of the combustion exhaust gas is as low as about 70 to 170 ° C., for example, the heat can be recovered and the heated liquid can be heated. Such a heating device can be advantageously applied to recover exhaust heat (sensible heat, latent heat) of combustion exhaust gas after recovering heat with a heat exchanger for exhaust heat recovery. The efficiency can be greatly increased.

また、この加温装置を備えた有機排水処理システムでは、燃焼排気ガスの排熱を利用して有機排水を処理に適した温度に加温するので、有機排水の処理を促進させることができる。また、その加温は燃焼排気ガスの排熱を利用するので、処理システムの省エネルギー、省運転コストを達成することができ、環境に優しい処理システムを適用することができる。   Moreover, in the organic waste water treatment system provided with this warming device, the organic waste water is heated to a temperature suitable for treatment using the exhaust heat of the combustion exhaust gas, so that the treatment of the organic waste water can be promoted. Moreover, since the heating uses the exhaust heat of combustion exhaust gas, the energy saving and operation cost of the processing system can be achieved, and an environmentally friendly processing system can be applied.

本発明に従う加温装置の実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the heating apparatus according to this invention. 図1の加温装置の上気液接触室を示す平面断面図である。It is a plane sectional view showing the upper gas-liquid contact chamber of the heating device of FIG. 他の形態の加温槽を示す、図2に対応する断面図である。It is sectional drawing corresponding to FIG. 2 which shows the heating tank of another form. 有機排水処理システムの一例としての嫌気性発酵処理システムを簡略的に示すシステム図である。It is a system diagram which shows simply the anaerobic fermentation processing system as an example of an organic waste water treatment system. 有機排水処理システムの他の例としての好気性処理システムを簡略的に示すシステム図である。It is a system diagram which shows simply the aerobic treatment system as another example of an organic waste water treatment system.

符号の説明Explanation of symbols

2,2A 加温装置
4,4A 加温槽
10 排気ガス室
12,12A 下気液接触室
14,14A 上気液接触室
16 排気ガス送給管
18,18A 下通気仕切壁
20,20A 上通気仕切壁
26 連通管構造
40,42 通気スリット
102 ガスエンジン
104 有機排水槽
106 嫌気性発酵槽
114 排熱回収用熱交換器
116 排気ガス送給手段
120 液体送給手段
132 好気性処理槽
2,2A Heating device 4,4A Heating tank 10 Exhaust gas chamber 12, 12A Lower gas-liquid contact chamber 14, 14A Upper gas-liquid contact chamber 16 Exhaust gas supply pipe 18, 18A Lower ventilation partition wall 20, 20A Upper ventilation Partition wall 26 Communication pipe structure 40, 42 Ventilation slit 102 Gas engine 104 Organic drainage tank 106 Anaerobic fermentation tank 114 Heat exchanger for exhaust heat recovery 116 Exhaust gas supply means 120 Liquid supply means 132 Aerobic treatment tank

Claims (5)

被加熱液体を加温するための加温槽と、前記加温槽に被加熱液体を送給するための液体送給手段と、前記加温槽に燃焼排気ガスを送給するための排気ガス送給手段と、を具備する加温装置であって、
前記加温槽は、前記排気ガス送給手段からの燃焼排気ガスが流入する排気ガス室と、前記液体送給手段からの被加液体が送給される気液接触室とを備え、前記気液接触室は、前記排気ガス室の上側に配設された下気液接触室と、前記下気液接触室の上側に配設された上気液接触室とから構成され、前記排気ガス室と前記下気液接触室との間に下通気仕切壁が設けられ、前記下気液接触室と前記上気液接触室との間に上通気仕切壁が設けられ、前記下通気仕切壁及び前記上通気仕切壁には、斜め方向に延びる複数個の通気スリットが設けられており、
被加熱液体は前記上気液接触室から前記下気液接触室を通して流れ、また前記排気ガス室からの燃焼排気ガスは、前記下通気仕切壁の前記複数個の通気スリットを通して前記下気液接触室に気泡状に送給され、その後前記上通気仕切壁の前記複数個の通気スリットを通して前記上気液接触室に気泡状に送給されることを特徴とする加温装置。
A heating tank for heating the heated liquid, a liquid supply means for supplying the heated liquid to the heating tank, and an exhaust gas for supplying combustion exhaust gas to the heating tank a heating device comprising: a feeding means, and
Said heating tank, comprising an exhaust gas chamber the combustion exhaust gas from the exhaust gas delivery means flows, and a gas-liquid contact chamber to be pressurized heat the liquid from said liquid feed means is fed, the The gas-liquid contact chamber is composed of a lower gas-liquid contact chamber disposed above the exhaust gas chamber and an upper gas-liquid contact chamber disposed above the lower gas-liquid contact chamber, and the exhaust gas A lower ventilation partition wall is provided between the lower gas liquid contact chamber and the lower gas liquid contact chamber, and an upper ventilation partition wall is provided between the lower gas liquid contact chamber and the upper gas liquid contact chamber. And the upper ventilation partition wall is provided with a plurality of ventilation slits extending in an oblique direction,
The heated liquid flows from the upper gas-liquid contact chamber through the lower gas-liquid contact chamber, and the combustion exhaust gas from the exhaust gas chamber is in contact with the lower gas-liquid through the plurality of ventilation slits of the lower ventilation partition wall. A heating device, wherein the heating device is supplied to the chamber in the form of bubbles and then is supplied to the upper gas-liquid contact chamber in the form of bubbles through the plurality of ventilation slits of the upper ventilation partition wall.
前記下気液接触室と前記上気液接触室とは連通管構造により連通され、前記連通管構造は被加熱液体を貯めるU字状管部を有し、前記U字状管部の一端部が前記上気液接触室に連通され、その他端部が下方に延びる接続管部を介して前記下気液接触室に連通され、また前記U字状管部の他端部は上方に延びるガス抜き管部を介して前記上気液接触室に連通されていることを特徴とする請求項に記載の加温装置。 The lower gas-liquid contact chamber and the upper gas-liquid contact chamber are communicated with each other by a communication pipe structure, and the communication pipe structure has a U-shaped tube portion for storing a liquid to be heated, and one end portion of the U-shaped tube portion. Is communicated with the upper gas-liquid contact chamber, the other end communicates with the lower gas-liquid contact chamber via a connecting pipe portion extending downward, and the other end of the U-shaped tube portion extends upward. The heating apparatus according to claim 1 , wherein the heating apparatus is communicated with the upper gas-liquid contact chamber via a vent pipe. 有機排水を溜める有機排水槽と、請求項1又は2に記載の加温装置と、前記有機排水を嫌気性メタン発酵させるための嫌気性発酵槽と、燃焼排気ガスの排熱を回収するための熱交換器と、を備えた有機排水処理システムであって、
前記加温装置の液体送給手段は、前記有機排水槽内の有機排水を前記加温装置の加温槽の気液接触室に送給し、前記液体送給手段からの有機排水は上気液接触室から下気液接触室を通して流れ、また前記加温装置の排気ガス送給手段は、前記熱交換器において熱交換された燃焼排気ガスを前記加温槽の排気ガス室に送給し、前記排気ガス室からの燃焼排気ガスが、前記排気ガス室と前記気液接触室との間に配設された通気仕切壁の複数個の通気スリットを通して前記気液接触室に気泡状に送給され、その後前記下気液接触室と前記上気液接触室との間に配設された上通気仕切壁の複数個の通気スリットを通して前記上気液接触室に気泡状に送給され、これによって、前記有機排水が嫌気性メタン発酵に適した温度に加温され、その後、加温された有機排水が前記嫌気性発酵槽に送給されることを特徴とする有機排水処理システム。
An organic waste water tank for storing an organic waste water, a heating device according to claim 1 or 2, wherein the organic waste water and an anaerobic fermentation tank for anaerobically methane fermentation, for recovering waste heat of the combustion exhaust gases an organic waste water treatment system comprising a heat exchanger, a,
The liquid feeding means of the warming device feeds the organic wastewater in the organic drainage tank to the gas-liquid contact chamber of the warming tank of the warming device, and the organic wastewater from the liquid feeding means The exhaust gas supply means of the heating device flows from the liquid contact chamber through the lower gas-liquid contact chamber and supplies the combustion exhaust gas heat-exchanged in the heat exchanger to the exhaust gas chamber of the heating tank. the combustion exhaust gas from the exhaust gas chamber, the lower gas-liquid contact by passing a plurality of ventilation slits disposed the lower ventilation partition wall between the lower gas-liquid contact chamber and the exhaust gas chamber The bubbles are fed into the chamber in the form of bubbles , and then bubbles are formed in the upper gas-liquid contact chamber through a plurality of ventilation slits in the upper ventilation partition wall disposed between the lower gas-liquid contact chamber and the upper gas-liquid contact chamber. Jo to be delivered, thereby, the organic waste water is warmed to a temperature suitable for anaerobic methane fermentation, then, The organic waste water processing system, characterized in that temperature organic waste water is fed to the anaerobic fermenter.
有機排水を溜める有機排水槽と、請求項1又は2に記載の加温装置と、前記有機排水を好気性処理を行うための好気性処理槽と、燃焼排気ガスの排熱を回収するための熱交換器と、を備えた有機排水処理システムであって、
前記加温装置の液体送給手段は、前記有機排水槽内の有機排水を前記加温装置の加温槽の気液接触室に送給し、前記液体送給手段からの有機排水は上気液接触室から下気液接触室を通して流れ、また前記加温装置の排気ガス送給手段は、前記熱交換器において熱交換された燃焼排気ガスを前記加温槽の排気ガス室に送給し、前記排気ガス室からの燃焼排気ガスが、前記排気ガス室と前記気液接触室との間に配設された通気仕切壁の複数個の通気スリットを通して前記気液接触室に気泡状に送給され、その後前記下気液接触室と前記上気液接触室との間に配設された上通気仕切壁の複数個の通気スリットを通して前記上気液接触室に気泡状に送給され、これによって、前記有機排水が好気性処理に適した温度に加温され、その後、加温された有機排水が前記好気性処理槽に送給されることを特徴とする有機排水処理システム。
An organic waste water tank for storing an organic waste water, a heating device according to claim 1 or 2, wherein the aerobic treatment tank for performing aerobic treatment of organic wastewater, the combustion exhaust gas waste heat for recovering an organic waste water treatment system comprising a heat exchanger, a,
The liquid feeding means of the warming device feeds the organic wastewater in the organic drainage tank to the gas-liquid contact chamber of the warming tank of the warming device, and the organic wastewater from the liquid feeding means The exhaust gas supply means of the heating device flows from the liquid contact chamber through the lower gas-liquid contact chamber and supplies the combustion exhaust gas heat-exchanged in the heat exchanger to the exhaust gas chamber of the heating tank. the combustion exhaust gas from the exhaust gas chamber, the lower gas-liquid contact through a plurality of vent slits bets disposed the lower ventilation partition wall between the lower gas-liquid contact chamber and the exhaust gas chamber The bubbles are fed into the chamber in the form of bubbles , and then bubbles are formed in the upper gas-liquid contact chamber through a plurality of ventilation slits in the upper ventilation partition wall disposed between the lower gas-liquid contact chamber and the upper gas-liquid contact chamber. Jo to be delivered, thereby, the organic waste water is warmed to a temperature suitable for aerobic treatment, then warmed The organic waste water processing system which is characterized in that the organic waste water is fed to the aerobic treatment tank.
前記排気ガス送給手段によって前記加温槽の前記排気ガス室に送給される燃焼排気ガスの温度は70〜170℃であり、前記加温装置の前記気液接触室における燃焼排気ガスと前記有機排水との気液接触により、有機排水は30〜60℃に加温されることを特徴とする請求項又はに記載の有機排水処理システム。 The temperature of the combustion exhaust gas fed to the exhaust gas chamber of the heating tank by the exhaust gas feeding means is 70 to 170 ° C., and the combustion exhaust gas in the gas-liquid contact chamber of the heating device and the The organic wastewater treatment system according to claim 3 or 4 , wherein the organic wastewater is heated to 30 to 60 ° C by gas-liquid contact with the organic wastewater.
JP2003390342A 2003-11-20 2003-11-20 Heating device and organic waste water treatment system equipped with the same Expired - Fee Related JP4046681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003390342A JP4046681B2 (en) 2003-11-20 2003-11-20 Heating device and organic waste water treatment system equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003390342A JP4046681B2 (en) 2003-11-20 2003-11-20 Heating device and organic waste water treatment system equipped with the same

Publications (2)

Publication Number Publication Date
JP2005147640A JP2005147640A (en) 2005-06-09
JP4046681B2 true JP4046681B2 (en) 2008-02-13

Family

ID=34696760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003390342A Expired - Fee Related JP4046681B2 (en) 2003-11-20 2003-11-20 Heating device and organic waste water treatment system equipped with the same

Country Status (1)

Country Link
JP (1) JP4046681B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017067316A (en) * 2015-09-28 2017-04-06 良輔 福田 Heat recovery method and heat recovery device
CN109876478B (en) * 2019-03-21 2021-12-17 上海景峰制药有限公司 Bucket formula aquatic solvent evaporation plant

Also Published As

Publication number Publication date
JP2005147640A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
CN210772106U (en) Steam recovery system of boiler blow-down flash tank
CN102660447A (en) Comprehensive treatment and resource recycling method for wine brewing wastes
CN110976499A (en) High-pressure steam thermal desorption repair system
JP4046681B2 (en) Heating device and organic waste water treatment system equipped with the same
CN110642445B (en) Solar auxiliary heat stripping tower for repairing VOCs polluted underground water
CN112225275A (en) Contain high-efficient evaporation plant of salt organic waste water and system
JP5634552B2 (en) Seawater heating device
CN109489052A (en) Waste gas burning furnace and waste gas treatment equipment
CN201129716Y (en) Steam discharging and recovering device of deaerator
CN112484013B (en) Deaerator exhaust steam automatic regulation and waste heat utilization device
JP4792982B2 (en) Waste heat recovery system
CN217103129U (en) Emulsion MVR evaporation treatment system
EP1893537B1 (en) Anaerobic purification of heated waste water
CN210624555U (en) Waste heat recoverer for desulfurized gypsum
CN214192637U (en) Contain high-efficient evaporation plant of salt organic waste water and system
CN211367389U (en) Shock wave sludge drying equipment and sludge drying system
JP5166337B2 (en) Methane fermentation treatment method and methane fermentation treatment apparatus
CN220366400U (en) Electrode steam boiler waste heat recycling system and electrode steam boiler system
RU2388698C1 (en) Deaerator
CN205653193U (en) Concentrated system of waste water vacuum flashing
CN1073683C (en) High-efficiency liquid chlorine gasifier capable of direct utilization of natural energy
KR200340079Y1 (en) Transformation Desorber by Hot Air for Desorption & Catalistic Cleaning of VOC
CN215765033U (en) Exhaust steam recovery system
CN219797543U (en) Straight-flow type hot water boiler
CN221172292U (en) Flue gas deep utilization system of steam system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees