JP4046054B2 - Photonic crystal fiber and manufacturing method thereof - Google Patents

Photonic crystal fiber and manufacturing method thereof Download PDF

Info

Publication number
JP4046054B2
JP4046054B2 JP2003313981A JP2003313981A JP4046054B2 JP 4046054 B2 JP4046054 B2 JP 4046054B2 JP 2003313981 A JP2003313981 A JP 2003313981A JP 2003313981 A JP2003313981 A JP 2003313981A JP 4046054 B2 JP4046054 B2 JP 4046054B2
Authority
JP
Japan
Prior art keywords
preform
photonic crystal
pcf
crystal fiber
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003313981A
Other languages
Japanese (ja)
Other versions
JP2005084201A (en
Inventor
兵 姚
和正 大薗
芳宣 黒沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003313981A priority Critical patent/JP4046054B2/en
Publication of JP2005084201A publication Critical patent/JP2005084201A/en
Application granted granted Critical
Publication of JP4046054B2 publication Critical patent/JP4046054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • C03B37/01231Removal of preform material to form a longitudinal hole, e.g. by drilling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01211Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube
    • C03B37/0122Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments by inserting one or more rods or tubes into a tube for making preforms of photonic crystal, microstructured or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • C03B37/02781Hollow fibres, e.g. holey fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/14Non-solid, i.e. hollow products, e.g. hollow clad or with core-clad interface
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • C03B2203/18Axial perturbations, e.g. in refractive index or composition
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/42Photonic crystal fibres, e.g. fibres using the photonic bandgap PBG effect, microstructured or holey optical fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/10Fibre drawing or extruding details pressurised

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Description

本発明は、空孔を有するフォトニッククリスタルファイバとその製造方法に関するものである。   The present invention relates to a photonic crystal fiber having holes and a method for manufacturing the same.

フォトニッククリスタルファイバ(PCF:Photonic Crystal Fiber)とは、光ファイバの長手方向に一様な2次元周期構造をもつフォトニック結晶がクラッドに設けられる光ファイバである。PCFはその導波原理の違いから2種類に大別される。一方は、クラッドに相当する領域にフォトニックバンドギャップを形成し、ブラック反射によって光波をコア内に閉じ込める構造をしており、もう一方は、従来の光ファイバと同様に、コアとクラッドの屈折率差を利用し、全反射によって光波をコア内に閉じ込める構造をしている。このPCFは、従来の光ファイバがコアに添加物をドープすることにより、クラッドと屈折率差をつけているのに対し、クラッド部空孔を利用して実効屈折率を下げる方法で光閉じ込めを実現している。   A photonic crystal fiber (PCF) is an optical fiber in which a photonic crystal having a uniform two-dimensional periodic structure in the longitudinal direction of an optical fiber is provided in a clad. PCFs are roughly classified into two types based on the difference in wave guiding principle. One has a structure in which a photonic band gap is formed in the region corresponding to the clad and the light wave is confined in the core by black reflection, and the other has a refractive index of the core and the clad as in the conventional optical fiber. Using the difference, it is structured to confine the light wave in the core by total reflection. In contrast to the conventional optical fiber, which has a refractive index difference from that of the clad by doping the core with an additive in the core, the optical confinement is performed by lowering the effective refractive index using the clad holes. Realized.

PCFは、PCF内の空孔のデザインにより、超広帯域単一モード伝送領域、大きな実効コア断面積、高い比屈折率差、大きな構造分散など、通常の光ファイバでは実現できない特性を備えている。   The PCF has characteristics that cannot be realized by a normal optical fiber, such as an ultra-wideband single mode transmission region, a large effective core area, a high relative refractive index difference, and a large structural dispersion due to the design of the holes in the PCF.

空孔が形成されたPCF用プリフォームの製造方法は、特許文献1に示すような研削法と、特許文献2に示すような細径石英管配列法とが主な製造方法である。   The manufacturing method of the PCF preform in which the holes are formed is mainly a grinding method as shown in Patent Document 1 and a thin quartz tube array method as shown in Patent Document 2.

研削法は、VAD法やMCVD法といった公知の方法で通常のプリフォームを作製し、そのプリフォームをドリル等で穿孔した後、通常の光ファイバと同様な線引加工をすることでPCFを得る方法である。   The grinding method is to produce a normal preform by a known method such as VAD method or MCVD method, drill the preform with a drill or the like, and then draw the same as a normal optical fiber to obtain a PCF Is the method.

細径石英管配列法は、複数の細径石英管の一端をそれぞれ封止し、これらを高密装填配置に束ね、中心の細径石英管を細石英棒に置換してから、石英ジャケット管に挿入し、通常の光ファイバと同様な線引工程により細径石英管の一端を非封止端から加熱して石英ジャケット管と石英ジャケット管内の石英管を融着一体化させながら線引してPCFを得る方法である。   In the small-diameter quartz tube array method, one end of each of a plurality of small-diameter quartz tubes is sealed, bundled in a high-density loading arrangement, the central thin-diameter quartz tube is replaced with a thin quartz rod, and then the quartz jacket tube is formed. Insert and draw one end of the small-diameter quartz tube from the non-sealed end by the same drawing process as a normal optical fiber while fusing and integrating the quartz jacket tube and the quartz tube in the quartz jacket tube. This is a method for obtaining PCF.

光波長分割多重伝送において、零分散近傍における2つ以上の異なる波長の光の混合によって、新たな別の波長の光が発生する四光波混合(FWM:Four-Wave Mixing)が起きる。FWMは、信号光間の非線形相互作用で新たな干渉光が発生する現象で、信号光へのクロストークとなり伝送特性を劣化させる。よって、四光波混合による伝送品質劣化を抑制するために、局所的な波長分散の絶対値を所定の値より大きくし、残留分散による伝送品質劣化を抑制するために、伝送路全体での波長分散の絶対値を小さくした伝送路が用いられるが、このような伝送路を構成するには波長分散を長手方向に変化させる必要がある。そこで、特許文献1に示された線引工程では、プリフォーム内の空孔の圧力調整により、孔径が長手方向に変化した光ファイバを製造できる。PCFの波長分散などの特性は、空孔のサイズや位置により決定され、孔径を長手方向に変化させると、波長分散等の光学特性を長手方向に変化させることができ、多重化された信号光の位相を同調させることなく、そのパルスの波長分散を抑制することができる。   In optical wavelength division multiplexing transmission, four-wave mixing (FWM: Four-Wave Mixing) in which light having a different wavelength is generated by mixing light having two or more different wavelengths near zero dispersion occurs. FWM is a phenomenon in which new interference light is generated due to nonlinear interaction between signal light, and it becomes crosstalk to the signal light and degrades transmission characteristics. Therefore, in order to suppress transmission quality degradation due to four-wave mixing, the absolute value of local chromatic dispersion is made larger than a predetermined value, and in order to suppress transmission quality degradation due to residual dispersion, chromatic dispersion over the entire transmission line Although a transmission line with a smaller absolute value is used, in order to construct such a transmission line, it is necessary to change the chromatic dispersion in the longitudinal direction. Therefore, in the drawing process disclosed in Patent Document 1, an optical fiber whose hole diameter is changed in the longitudinal direction can be manufactured by adjusting the pressure of the holes in the preform. The characteristics such as wavelength dispersion of the PCF are determined by the size and position of the holes, and when the hole diameter is changed in the longitudinal direction, the optical characteristics such as wavelength dispersion can be changed in the longitudinal direction. The wavelength dispersion of the pulse can be suppressed without tuning the phase of.

特開2002−145634号公報JP 2002-145634 A 米国特許第5802236号明細書US Pat. No. 5,802,236

しかしながら、孔径が長手方向に変化するPCFの製造には、PCF用プリフォームを線引する際、プリフォーム内の空孔の径を内圧制御によって長手方向を変化させると同時に、光ファイバの外径も変化させてしまうという問題点がある。   However, in the manufacture of PCF in which the hole diameter changes in the longitudinal direction, when drawing the PCF preform, the diameter of the pores in the preform is changed by controlling the internal pressure, and at the same time the outer diameter of the optical fiber. There is also a problem that it changes.

さらに、ファイバの外径制御を行うと、線引張力と線引速度等の線引条件が変化するので、空孔の径や位置が所望のPCFを製造することが困難である。   Further, when the outer diameter control of the fiber is performed, the drawing conditions such as the drawing tension and the drawing speed change, so that it is difficult to manufacture a PCF having a desired hole diameter and position.

そこで、本発明の目的は、上記課題を解決し、外径の変動がなく、かつ長手方向に波長分散特性が変化するPCFとその製造方法を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to solve the above-described problems, and provide a PCF in which the outer diameter does not vary and the chromatic dispersion characteristics change in the longitudinal direction, and a manufacturing method thereof.

上記目的を達成するために、請求項1の発明は、コアと、コアを中心とする円周上に等間隔に、長手方向に延びる複数の空孔を設けたフォトニッククリスタルファイバにおいて、ファイバ断面上におけるファイバ中心からの空孔の位置を長手方向に沿って変化させたものである。   To achieve the above object, a first aspect of the present invention is a photonic crystal fiber comprising a core and a plurality of holes extending in the longitudinal direction at equal intervals on a circumference centered on the core. The position of the hole from the center of the fiber is changed along the longitudinal direction.

請求項2の発明は、前記空孔の中心軸はフォトニッククリスタルファイバの中心軸と所定の角度で傾斜してもよい。   According to a second aspect of the present invention, the central axis of the hole may be inclined at a predetermined angle with respect to the central axis of the photonic crystal fiber.

請求項3の発明は、フォトニッククリスタルファイバ用プリフォームの中心軸に対して空孔の中心軸が所定の角度をもつようにクラッド部に孔開け加工を行い、そのフォトニッククリスタルファイバ用プリフォームの線引きを行う方法である。   According to a third aspect of the present invention, the photonic crystal fiber preform is formed by perforating the cladding so that the central axis of the air hole has a predetermined angle with respect to the central axis of the photonic crystal fiber preform. This is a method of drawing a line.

本発明によるフォトニッククリスタルファイバは、ファイバ外径の変化を防ぐと共に、長手方向に波長分散変化をもつといった優れた効果を発揮するものである。   The photonic crystal fiber according to the present invention exhibits excellent effects such as preventing a change in the outer diameter of the fiber and having a chromatic dispersion change in the longitudinal direction.

以下、本発明の好適な一実施形態を添付図面に基づいて詳述する。   Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に本実施の形態のフォトニッククリスタルファイバを作製するためのPCF用プリフォーム本体11の断面図を示す。   FIG. 1 shows a cross-sectional view of a PCF preform body 11 for producing the photonic crystal fiber of the present embodiment.

PCF用プリフォーム本体11はVAD法により円柱状に形成されており、ゲルマニウム(Ge)が添加された石英からなるコア12と、純石英からなりコア12よりわずかに屈折率の低いクラッド13とを有する。コア12の周囲にはコア12中心を中心軸15として円周方向に等間隔に空孔14が形成されている。この空孔14に沿って長手方向に延びる空孔14の中心軸(空孔軸)16の角度が中心軸15に対して0.3度傾斜している。PCF用プリフォーム本体11の長さは200mmで、外径は50mmである。PCF用プリフォーム本体11のコア12の径は3.0mm、比屈折率差Δは0.375%である。   The PCF preform body 11 is formed in a cylindrical shape by the VAD method, and includes a core 12 made of quartz to which germanium (Ge) is added and a cladding 13 made of pure quartz and having a slightly lower refractive index than the core 12. Have. Holes 14 are formed at equal intervals in the circumferential direction around the core 12 with the center of the core 12 as the central axis 15. The angle of the center axis (hole axis) 16 of the hole 14 extending in the longitudinal direction along the hole 14 is inclined 0.3 degrees with respect to the center axis 15. The PCF preform body 11 has a length of 200 mm and an outer diameter of 50 mm. The diameter of the core 12 of the PCF preform body 11 is 3.0 mm, and the relative refractive index difference Δ is 0.375%.

図2(a)に、プリフォーム本体11の2a−2a線断面図を示すように、空孔14の断面は円形をしており、その径は2mmである。PCF用プリフォーム11の一方の端面ではコア12を中心として外径4mmの正六角形の頂点に空孔14の中心が位置している。図2(b)に、プリフォーム本体11の2b−2b線断面図を示すように、他方の端面ではコア12を中心として外径6mmの正六角形の頂点に空孔14の中心が位置している。   As shown in FIG. 2A, a cross-sectional view of the preform main body 11 taken along line 2a-2a, the cross section of the air hole 14 is circular, and its diameter is 2 mm. On one end face of the PCF preform 11, the center of the hole 14 is located at the apex of a regular hexagon having an outer diameter of 4 mm with the core 12 as the center. As shown in FIG. 2 (b), which is a cross-sectional view taken along line 2b-2b of the preform body 11, the center of the hole 14 is located at the apex of a regular hexagon having an outer diameter of 6 mm with the core 12 as the center on the other end surface. Yes.

次に、PCF用プリフォーム本体11の製造工程について説明する。   Next, the manufacturing process of the PCF preform body 11 will be described.

孔開け装置(図示せず)の中心軸とプリフォーム本体11の中心軸15との角度を0.3°に設定し、穴開け加工する。本実施の形態ではPCF中心軸15と空孔の空孔軸16との角度を0.3°に設定し、孔開け加工により、プリフォーム本体11内に空孔14を形成した。   The angle between the central axis of the punching device (not shown) and the central axis 15 of the preform body 11 is set to 0.3 °, and drilling is performed. In the present embodiment, the angle between the PCF central axis 15 and the hole axis 16 of the hole is set to 0.3 °, and the hole 14 is formed in the preform body 11 by drilling.

また、本実施の形態において形成した空孔14の数は6個であるが、それに限らず、空孔14の数は3つ以上であればいずれの数でもよく、好ましくは4つ以上の偶数個が望ましい。空孔14はファイバ断面で見たとき、コア12を中心とし、そのコア12を中心とする同心円状に、そして円周方向に等間隔に配置されるよう形成される。   In addition, the number of holes 14 formed in the present embodiment is six. However, the number is not limited to this, and the number of holes 14 may be any number as long as it is three or more, preferably an even number of four or more. Individual is desirable. The holes 14 are formed so as to be arranged in a concentric circle centered on the core 12 and at equal intervals in the circumferential direction when viewed in the fiber cross section.

孔開け加工後、表面に付着している汚れやゴミを除去するために、流水でファイバ破片等の大きいゴミを洗い流した後、エチルアルコールとトリクロロエチレン等の有機溶媒で超音波洗浄し、次に、濃度5%の薄いフッ酸を用いて洗浄する。洗浄したPCF用プリフォーム本体11を乾燥用の容器に入れ蒸発乾燥する。上記洗浄工程に用いる溶液はそれらに限らず、他の溶液を用いても良く、また洗浄方法も超音波洗浄に限らず、他の方法で洗浄してもよい。   After drilling, in order to remove dirt and debris adhering to the surface, after washing large debris such as fiber fragments with running water, ultrasonically wash with an organic solvent such as ethyl alcohol and trichlorethylene, Wash with 5% dilute hydrofluoric acid. The washed PCF preform body 11 is placed in a drying container and evaporated to dryness. The solution used in the cleaning step is not limited to these, and other solutions may be used, and the cleaning method is not limited to ultrasonic cleaning, and may be cleaned by other methods.

乾燥後、図3に示すように、PCF用プリフォーム本体11の一端に枝石英管17を取り付け、これをPCF用プリフォーム10とする。この取り付けの際、酸水素バーナ18によってPCF用プリフォーム10内にゴミや水分が混入しないように、枝石英管17を取り付ける端とは反対側の端のプリフォーム本体11にフィルタ19を設け、そのフィルタ19を通した窒素ガスを空孔14に流して行った。PCF用プリフォーム内10に流入させるガスはN2に限らず、Ar,Cl2,He等のいずれでもよい。 After drying, as shown in FIG. 3, a branch quartz tube 17 is attached to one end of the PCF preform body 11, and this is used as a PCF preform 10. At the time of attachment, a filter 19 is provided on the preform main body 11 at the end opposite to the end where the branch quartz tube 17 is attached so that dust and moisture are not mixed into the PCF preform 10 by the oxyhydrogen burner 18; Nitrogen gas that passed through the filter 19 was caused to flow through the holes 14. The gas flowing into the PCF preform 10 is not limited to N 2 but may be Ar, Cl 2 , He, or the like.

図4に、上述の製造方法により得られたプリフォーム10を線引きする工程を説明する概略図を示す。   FIG. 4 is a schematic diagram for explaining a process of drawing the preform 10 obtained by the above manufacturing method.

PCF用プリフォーム10は、線引炉25内に固定され、その線引炉25は炉内圧を制御でき、加熱装置26によりプリフォーム10を加熱溶融する。プリフォーム10の枝石英管17側(図では上端側)は、プリフォーム10内を外気と遮断するためのキャップ21が設けられ、そのキャップ21には圧力装置20がガスライン22を介して接続されている。圧力装置20は、線引炉内圧とプリフォーム内圧との関係に、空孔の径が依存するので、その圧力差を制御するためにある。   The PCF preform 10 is fixed in a drawing furnace 25, and the drawing furnace 25 can control the furnace pressure, and the heating device 26 heats and melts the preform 10. A cap 21 for blocking the inside of the preform 10 from outside air is provided on the side of the branched quartz tube 17 (in the drawing) of the preform 10, and a pressure device 20 is connected to the cap 21 via a gas line 22. Has been. The pressure device 20 is for controlling the pressure difference because the hole diameter depends on the relationship between the drawing furnace internal pressure and the preform internal pressure.

線引炉に固定されたプリフォーム10を圧力調整しながら加熱溶融し、キャプスタン等でプリフォーム10を長手方向(図4では下方向)に引っ張って線引を行い、PCF30が得られる。   The preform 10 fixed to the drawing furnace is heated and melted while adjusting the pressure, and the preform 10 is drawn in the longitudinal direction (downward in FIG. 4) with a capstan or the like to draw the PCF 30.

PCF用プリフォーム10を線引工程により外径125μmに線引したPCF30を10km製作し、そのPCF30を2km毎に5つに分け、各々のPCFの伝送損失と分散特性を調べた。その結果を表1に示す。   A PCF 30 having a PCF preform 10 drawn to an outer diameter of 125 μm by a drawing process was manufactured to 10 km, and the PCF 30 was divided into 5 parts every 2 km, and the transmission loss and dispersion characteristics of each PCF were examined. The results are shown in Table 1.

Figure 0004046054
Figure 0004046054

表1に示すように、波長1.55μmにおける伝送損失はどの区間でも1.6dB/km以下であり非常に低損失である。   As shown in Table 1, the transmission loss at a wavelength of 1.55 μm is 1.6 dB / km or less in every section, which is very low loss.

波長分散は、その絶対値が長手方向に単調増加または単調減少している。   The absolute value of the chromatic dispersion is monotonously increased or decreased monotonously in the longitudinal direction.

長手方向に変化する波長分散は、伝送特性を劣化させる四光波混合を抑制し、かつ、長手方向に残る分散の累積値を打ち消すことができる。よって、PCF全体の波長分散の絶対値が小さくなる。   The chromatic dispersion changing in the longitudinal direction can suppress four-wave mixing that degrades the transmission characteristics, and can cancel the accumulated dispersion remaining in the longitudinal direction. Therefore, the absolute value of the chromatic dispersion of the entire PCF becomes small.

本実施形態のPCF30は、プリフォームを作製するに際して、プリフォーム10内の空孔14をコア中心軸15と所定の角度をもつように形成した。それで線引するだけで、空孔の中心軸がファイバ中心軸に対して長手方向に変化させたPCF30が得られる。その結果、PCF外径の変動がなく、かつ、PCF30の長手方向に波長分散が変化するPCF30が得られた。   In the PCF 30 of this embodiment, when producing a preform, the holes 14 in the preform 10 were formed so as to have a predetermined angle with the core central axis 15. Thus, simply by drawing, a PCF 30 in which the center axis of the hole is changed in the longitudinal direction with respect to the fiber center axis can be obtained. As a result, there was obtained PCF30 in which the PCF outer diameter did not vary and the chromatic dispersion changed in the longitudinal direction of PCF30.

ここで、前述した特許文献1記載のPCFを本実施の形態のPCF30の比較例として作製した。このPCFの製造方法は上述した本実施の形態と同様であるが、プリフォーム内の空孔に沿って延びる軸の角度が、ファイバ中心軸に対して0度であり、空孔の径を長手方向に変化させた点が異なる。   Here, the PCF described in Patent Document 1 described above was produced as a comparative example of the PCF 30 of the present embodiment. The PCF manufacturing method is the same as that of the above-described embodiment, but the angle of the axis extending along the hole in the preform is 0 degree with respect to the fiber center axis, and the diameter of the hole is elongated. The difference is that the direction is changed.

作製したプリフォームは、外径が125μmとなるよう線引を行った。プリフォーム内の空孔の内圧制御により、空孔の径をPCF長手方向に変化させると、PCFの外径も変動してしまう。このPCFの外径の変動を抑制するために、ファイバ外径の制御を行うと、線引張力と線引速度等の線引条件が変化してしまい、所望のPCFを得ることが困難であった。   The produced preform was drawn so that the outer diameter was 125 μm. When the hole diameter is changed in the longitudinal direction of the PCF by controlling the internal pressure of the holes in the preform, the outer diameter of the PCF also changes. If the fiber outer diameter is controlled in order to suppress fluctuations in the outer diameter of the PCF, drawing conditions such as the drawing tension and the drawing speed change, and it is difficult to obtain a desired PCF. It was.

本発明に係るフォトニッククリスタルファイバを作製するためのプリフォーム本体を示す断面図である。It is sectional drawing which shows the preform main body for producing the photonic crystal fiber based on this invention. フォトニッククリスタルファイバプリフォーム本体の断面図であり、(a)は2a−2a線に沿った断面図を示し、(b)は、2b−2b線に沿った断面図を示す。It is sectional drawing of a photonic crystal fiber preform main body, (a) shows sectional drawing along the 2a-2a line, (b) shows sectional drawing along the 2b-2b line. 図1のフォトニッククリスタルファイバ用プリフォームと枝石英管の融着接続を説明する概略図である。It is the schematic explaining the fusion splicing of the preform for photonic crystal fibers of FIG. 1, and a branch quartz tube. 図1のフォトニッククリスタルファイバの線引工程を示す概略図である。It is the schematic which shows the drawing process of the photonic crystal fiber of FIG.

符号の説明Explanation of symbols

10 フォトニッククリスタルファイバ用プリフォーム
12 コア
14 空孔
15 ファイバ中心軸
16 空孔の中心軸
30 フォトニッククリスタルファイバ
10 Photonic crystal fiber preform 12 Core 14 Hole 15 Fiber center axis 16 Hole center axis 30 Photonic crystal fiber

Claims (3)

コアと、コアを中心とする円周上に等間隔に、長手方向に延びる複数の空孔を設けたフォトニッククリスタルファイバにおいて、ファイバ断面上におけるファイバ中心からの空孔の位置を長手方向に沿って変化させたことを特徴とするフォトニッククリスタルファイバ。   In a photonic crystal fiber having a core and a plurality of holes extending in the longitudinal direction at equal intervals on the circumference centered on the core, the positions of the holes from the fiber center on the fiber cross section along the longitudinal direction Photonic crystal fiber characterized by changing 前記空孔の中心軸はフォトニッククリスタルファイバの中心軸と所定の角度で傾斜して形成する請求項1記載のフォトニッククリスタルファイバ。   2. The photonic crystal fiber according to claim 1, wherein the hole has a central axis inclined at a predetermined angle with respect to the central axis of the photonic crystal fiber. フォトニッククリスタルファイバ用プリフォームの中心軸に対して空孔の中心軸が所定の角度をもつようにクラッド部に孔開け加工を行い、そのフォトニッククリスタルファイバ用プリフォームの線引きを行うことを特徴とするフォトニッククリスタルファイバの製造方法。
The cladding is drilled so that the central axis of the hole has a predetermined angle with respect to the central axis of the preform for the photonic crystal fiber, and the preform for the photonic crystal fiber is drawn. A photonic crystal fiber manufacturing method.
JP2003313981A 2003-09-05 2003-09-05 Photonic crystal fiber and manufacturing method thereof Expired - Fee Related JP4046054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003313981A JP4046054B2 (en) 2003-09-05 2003-09-05 Photonic crystal fiber and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003313981A JP4046054B2 (en) 2003-09-05 2003-09-05 Photonic crystal fiber and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005084201A JP2005084201A (en) 2005-03-31
JP4046054B2 true JP4046054B2 (en) 2008-02-13

Family

ID=34414740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313981A Expired - Fee Related JP4046054B2 (en) 2003-09-05 2003-09-05 Photonic crystal fiber and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4046054B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5518890B2 (en) * 2009-10-26 2014-06-11 株式会社フジクラ Welding method, welding apparatus, and optical fiber manufacturing method
JP6036386B2 (en) * 2013-02-20 2016-11-30 住友電気工業株式会社 Multi-core optical fiber preform manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3415301A (en) * 2000-02-28 2001-09-03 Sumitomo Electric Industries Optical fiber
JP2002145634A (en) * 2000-08-30 2002-05-22 Sumitomo Electric Ind Ltd Method of manufacturing optical fiber and optical fiber
JP4759816B2 (en) * 2001-02-21 2011-08-31 住友電気工業株式会社 Optical fiber manufacturing method

Also Published As

Publication number Publication date
JP2005084201A (en) 2005-03-31

Similar Documents

Publication Publication Date Title
JP4759816B2 (en) Optical fiber manufacturing method
JP4465527B2 (en) Microstructured optical fiber, preform, and manufacturing method of microstructured optical fiber
US7082242B2 (en) Multiple core microstructured optical fibers and methods using said fibers
JP3786010B2 (en) Optical fiber
US20060133753A1 (en) Hole assisted fiber device and fiber preform
JPS5843336B2 (en) Manufacturing method of clad type optical glass fiber
CN1090057A (en) Achromatic coupler
US4229197A (en) Method for making multiple optical core fiber
WO2000064824A2 (en) Optical fiber having low polarization-mode dispersion and low attenuation and method of its manufacture
JP4046054B2 (en) Photonic crystal fiber and manufacturing method thereof
WO2003058309A1 (en) A method and apparatus relating to microstructured optical fibres
JP3534192B2 (en) Optical fiber manufacturing method
US20060130528A1 (en) Method of making a hole assisted fiber device and fiber preform
WO2018061725A1 (en) Optical fiber combiner with intermediate cladding having refractive index less than refractive index of internal cladding, optical fiber, and laser device
WO2018138736A2 (en) Optical fiber draw assembly and fabricated optical fiber thereof
JP2005247620A (en) Method of manufacturing photonic crystal fiber
WO2004053550A1 (en) Improvements relating to photonic crystal fibres
JP4015959B2 (en) High stress-resistant optical fiber
JP2011006315A (en) Method of producing preform for photonic band gap fiber and method of producing photonic band gap fiber
JP4005845B2 (en) Base material for photonic crystal optical fiber and manufacturing method thereof
JP3802875B2 (en) High stress-resistant optical fiber
US20030136154A1 (en) Method for manufacturing optical fiber using ultrasonic drill
JP2003342032A (en) Preform for photonic crystal optical fiber and its manufacturing method
JP4106038B2 (en) Photonic crystal optical fiber manufacturing method
JP2006044950A (en) Method for producing optical fiber preform

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees