JP4045875B2 - Transparent flame-retardant resin composition and resin molded body using the same - Google Patents

Transparent flame-retardant resin composition and resin molded body using the same Download PDF

Info

Publication number
JP4045875B2
JP4045875B2 JP2002191935A JP2002191935A JP4045875B2 JP 4045875 B2 JP4045875 B2 JP 4045875B2 JP 2002191935 A JP2002191935 A JP 2002191935A JP 2002191935 A JP2002191935 A JP 2002191935A JP 4045875 B2 JP4045875 B2 JP 4045875B2
Authority
JP
Japan
Prior art keywords
styrene
resin
weight
resin composition
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002191935A
Other languages
Japanese (ja)
Other versions
JP2004035640A (en
Inventor
清晃 森内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2002191935A priority Critical patent/JP4045875B2/en
Publication of JP2004035640A publication Critical patent/JP2004035640A/en
Application granted granted Critical
Publication of JP4045875B2 publication Critical patent/JP4045875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、透明性と難燃性及び柔軟性を兼ね備えた、環境や人体に配慮したハロゲンフリーの樹脂組成物及びそれを用いた樹脂成形体に関する。
【0002】
【従来の技術】
透明性と難燃性を兼ね備える樹脂成形体は、樹脂自体が難燃性であるポリ塩化ビニルやフッ素を含む樹脂がある。また、樹脂自体に難燃性はないが、ハロゲン系難燃剤やリン系難燃剤を樹脂に混合することによって難燃化させる手段を用いることにより、ポリオレフィン、ナイロン、ポリカーボネート、ポリスチレンなども用いられている。しかし、これらの難燃性には、燃焼時に発生するガスが問題とされ、その要因であるハロゲンやリンを含まない材料が要求されている。
【0003】
それらの要求は、電子機器や自動車等の部品に使用される構成物にある。これらの構成物が保護層により被覆されると内容物の確認ができない。そこで内容物が確認できる保護層として、透明性が必要になる。また、これらの構成物は、多くの場合、電気的回路の一部となっており、難燃性が要求される。
【0004】
さらには、その使用用途から、柔軟性を要求されるものが多い。特に電線の被覆物、通信回路に用いるケーブルや、被覆チューブ、シート、フィルムといった厚みの薄いものが対象にあげられる。
特開平11−209543号公報には、前記ハロゲンやリンを含まない透明な難燃性樹脂の開示がある。該公報の開示には、ポリスチレン系樹脂100重量部に屈折率1.50〜1.65の結晶水含有無機充填剤200〜800重量部、α、β−不飽和カルボン酸系モノマー5〜40重量部及び重合開始剤を含有するとある。この配合比率であると、前記柔軟性をとても要求されるものではない。
【0005】
【発明が解決しようとする課題】
透明であり、難燃性であり、かつ柔軟性を全て成立させる樹脂組成物を探索し、該組成物を用いた成形体を作製する。
【0006】
【課題を解決するための手段】
鋭意検討の結果、発明者らは以下の発明に至った。すなわち、スチレン含有率が40重量%以上、90重量%以下であるスチレン系樹脂100重量部に対し、金属水酸化物を50重量部以上、180重量部以下含むことを特徴とする柔軟性を有する透明な難燃性樹脂組成物である。スチレン含有率が全樹脂を合計して前記範囲になれば、2種以上のスチレン系樹脂を混合して使用する事も好ましい。ここで用いる金属水酸化物は、水酸化マグネシウム及び水酸化アルミニウムの両方もしくは一方を用いるのが好ましい。また、透明さを要求される成形体であるから、その厚みが1mm以内であるのが好ましい。
【0007】
本発明で使用されるスチレン系樹脂は、スチレン含有率が40重量%以上、90重量%以下のものに限定される。スチレン含有率は、透明性に影響する。スチレン含有率が大きいほど透明性に優れる。スチレン含有率が40重量%未満でも透明性は十分あるが、難燃剤を含むと透明性は低下するため好ましくない。スチレン含有率が90重量%を越えると、成形体としたときの柔軟性が不足する。
従って、対象となるスチレン系樹脂としては、スチレンと他のモノマーを重合させたコポリマー、グラフトポリマー、ポリスチレンとの混合によるブレンドポリマー及びこれらの混合物が対象となる。しかし、スチレンを含まない樹脂を加えると相溶性に影響し、極端に透明性が低下するため、スチレンを含む樹脂同士の混合体であるのが好ましい。
たとえば、ポリスチレン(GPPS)は100重量%がスチレンからなるため、単独使用せず、別のスチレン系樹脂とブレンドして用いる。このほか、アクリロニトリル・スチレン共重合体(AS)、スチレン・エチレン・ブチレン・スチレン共重合体(SEBS)、スチレン・イソプレン・スチレン共重合体(SEPS)、スチレン・エチレン・イソプレン・スチレン共重合体(SEEPS)、スチレン・エチレン・ブチレン・オレフィン共重合体(SEBC)、スチレン・ブタジエン共重合体(SBR)などが好ましく使用できる。また、これらの水素添加型、部分水素添加型、化学変性体も使用可能であり、スチレン含有率が40重量%以上、90重量%以下であれば、問題なく使用できる。さらには、スチレンを含有するポリマーであれば、互いにブレンドして使用することも可能である。
【0008】
難燃性を付与する金属水酸化物の量は、前記樹脂100重量部に対し、90重量部〜180重量部の範囲であるのが良い。90重量部未満では難燃性において不充分であり、180重量部を越えると、透明性が低下すると共に、成形体としたときの柔軟性を低下させる。
金属水酸化物は、その難燃性が水酸化によるものであるから、金属部分の重量比が大きい物は好ましくなく、軽金属の水酸化物が好ましい。特に水酸化マグネシウム、水酸化アルミニウムを選択するのがよい。これらの両方を用いても良いし、一方だけ使用しても良い。また、その平均粒径は0.5〜5μmの範囲にあるものを用いると良い。粒径が細かすぎると成形加工性が低下し、荒すぎると難燃性の効果の持続性が低下する。金属水酸化物はそのまま配合しても良いが、脂肪酸、脂肪酸塩、界面活性剤、ワックス等の表面処理したものを用いても良い。またシラン系、チタネート系、アルミニウム系、ジルコアルミニウム系、カルボン酸系、リン酸系等のカップリング剤で処理したものを用いても良い。
【0009】
以上の組成物を用いて形成される成形体は、電線やケーブル、光ファイバの被覆、チューブ、熱収縮チューブなどの断面形状が円形のものの被覆に適する。また、シートやフィルムとしても好ましい。要求特性が透明であることから、厚みは薄くして使用するのがよく、厚くても1mm以下で使用するのが好ましい。
【0010】
以上の配合組成には、難燃性や透明性を損なわない範囲で、酸化防止剤、滑剤、加工安定剤、着色剤、発泡剤、補強剤、充填剤、可塑剤、架橋助剤等の添加剤を配合しても良い。
【0011】
以上の組成物を作製する手段には、オープンロールミキサー、バンバリーミキサー、加圧型ニーダー、二軸混合機などの既知の混合機を用いて混合できる。できあがった樹脂組成物を、樹脂成形体にするには、樹脂組成物をペレタイザにてペレット化した後、押出成形や射出成形、ブロー成形など、所望の樹脂成形体に合った成形機を用いて樹脂成形体とする。
樹脂成形体は、樹脂組成物の段階もしくは樹脂成形体の段階において樹脂の改質や架橋を施しても構わない。改質や架橋は、加速電子線、γ線、X線、α線、紫外線等による電離放射線を照射する手段や、樹脂の混合時においてあらかじめ架橋剤を加えておき、熱架橋をほどこす等の手段がある。
さらには、スチレン系樹脂を溶媒に溶かし、これに金属水酸化物を加え混合したものをスピンコーターなどでフィルムとすることもできる。本発明は、以上のように製造手段は問わない。
【0012】
【実施例】
以下に実施例をあげるが、本発明は実施例に限定されるものではない。
実施例及び比較例、参考例の配合を表1〜表5に示す。各配合には、表に記載していないが、押出し時の作業性、及び加工時の酸化防止のため、それぞれ配合ごとに樹脂100重量部に対し、ステアリン酸を0.5重量部、ペンタエリスリトール・テトラキス(3・(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート)1重量部を加えた。配合後、170℃に設定したオープンロールミキサーで混練し、得られた混練物を熱プレスで厚み1mmのシートに成形した。
【0013】
できあがった樹脂成形体を以下の試験法で性能調査した。
(最低可視光線透過率)紫外可視吸収スペクトル測定により、波長領域400〜800nmの範囲で透過率を測定した。透過率が大きいほど透明性が良い。サンプルを文字やグラフィックス上に置き、認識できる条件は、前記透過率が30%以上であったため、透過率30%以上を良好範囲とした。
(難燃性試験)UL規格の垂直燃焼試験(UL94)で評価した。サンプルを横12.7mm×長さ127mmの短冊状に打ち抜き、試料とした。結果は、難燃性の良好な順にV−0,V−1,V−2,HBとなる。HB以外は難燃性と評価した。
(引張破断伸び)柔軟性を示す指標として評価した。サンプルをJIS K6301に記載されるダンベル片(JIS−3号)に打ち抜き、室温中、引張速度200mm/分で引張試験を行った。材料が破断するまでの伸びを各3点採取し、平均値を使用した。この平均値が50%以上を示すサンプルは、曲げてもクラックが発生せず、柔軟性があると判断した。
【0014】
以上の判断基準の基に、準備したサンプルを試験し、結果を表1〜5の組成表の下に示す。表1はスチレン系樹脂のスチレン含有率が40重量%以上、90重量%以下であり、金属水酸化物が樹脂100重量部に対し、50〜180重量部としたものである。評価結果は、最低可視光線透過率が30%以上であり、透明な樹脂成形体を示す。また、UL94による難燃性の試験では全てV−2以上の難燃性を示す。引張破断伸びも50%以上あり、樹脂成形体が柔軟性を有すると判断される。特に、実施例1,2及び9はスチレン含有率100%のスチレンを使用しているが、単独ではなしに、他のスチレン含有スチレン樹脂との組み合わせにより、柔軟性を改善した。
【0015】
【表1】

Figure 0004045875
【0016】
表2は本発明に近い事例である。比較例1〜4はスチレン系樹脂中のスチレン含有率が40重量%未満の樹脂を用いたものである。金属水酸化物の量が50重量部以上であるので、難燃性を示すが、スチレン含有率の不足により、最低可視光線透過率が0となり、不透明な樹脂成形体になっている。
比較例5,6はポリスチレンを主体とした樹脂組成物である。スチレン含有率が90重量%を越えるため、最低可視光線透過率は非常に大きい値となるが、柔軟性に乏しく、引張破断伸びが50%に到達していない。
比較例7〜9はスチレン系樹脂に非スチレン系樹脂を少量加えた樹脂組成物である。樹脂全体におけるスチレン含有率は40重量%以上、90重量%以下の範囲にあるが、非スチレン系樹脂を加えたために、最低可視光線透過率が30%未満であり、透明性を有するとは言えない。
参考例1,2は非スチレン系樹脂の場合、本試験評価を示す尺度として示す。樹脂単独では、十分に透明であるが、難燃剤を付加すると、透明さは失われる。
【0017】
【表2】
Figure 0004045875
【0018】
表3は同様に本発明に近い樹脂組成物を示す。比較例10〜13は金属水酸化物を樹脂100重量部に対し、180重量部を越えて配合した樹脂組成物である。これらの難燃性は十分であるが、最低可視光線透過率は30%に達しない。また、比較例14〜17は、金属水酸化物の添加量が樹脂100重量部に対し50重量部未満の樹脂組成物である。これらの最低可視光線透過率は十分に30%以上となるが、難燃性を示さない。
【0019】
【表3】
Figure 0004045875
【0020】
表4は非スチレン系樹脂を用いた状態を示す。比較例18,19は超低密度ポリエチレン(VLDPE)を使用し、これに水酸化マグネシウムを加えてなる樹脂組成物であるが、引張破断伸びによる柔軟性は十分であっても、最低可視光線透過率はほとんど0であり、非透明な樹脂成形体となる。比較例20,21はポリメタクリル酸メチル(PMMA)を樹脂として用い、これに水酸化アルミニウムを加えてなる樹脂組成物であるが、VLDPEと同様にPMMAを用いた場合も、不透明な樹脂成形体になる。
【0021】
【表4】
Figure 0004045875
【0022】
表5は金属水酸化物以外の難燃剤を使用した例である。比較例22〜27は難燃剤として、炭酸カルシウム、三酸化アンチモン、メラミンシアヌレート、ポリリン酸アンモニウムを用いた樹脂組成物を試験した。スチレン系樹脂中のスチレン含有率が40重量%以上、90重量%以下であるにもかかわらず、最低可視光線透過率が全て30%未満であり、不透明な樹脂組成物となった。
以上に示す結果から、本発明はスチレン系樹脂であり、そのスチレン含有率が40重量%以上、90重量%以下であり、金属水酸化物が該樹脂100重量部に対し、50〜180重量部の範囲にある場合に、透明性、難燃性、柔軟性を維持できることがわかる。
【0023】
【表5】
Figure 0004045875
【0024】
【発明の効果】
本発明になる透明で且つ難燃性を有する樹脂組成物及びそれを用いた樹脂成形体は、環境や人体に優しいハロゲンフリーであり、部品や電線等の保護に使用すると内部の識別に大いに利用できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a halogen-free resin composition having transparency, flame retardancy, and flexibility, and taking into consideration the environment and human body, and a resin molded body using the same.
[0002]
[Prior art]
Resin moldings that have both transparency and flame retardancy include polyvinyl chloride and fluorine-containing resins whose resin itself is flame retardant. In addition, although the resin itself is not flame retardant, polyolefin, nylon, polycarbonate, polystyrene, etc. are also used by using a means for making flame retardant by mixing a halogen flame retardant or a phosphorus flame retardant into the resin. Yes. However, these flame retardants have a problem of gas generated at the time of combustion, and materials that do not contain halogen and phosphorus, which are the causes, are required.
[0003]
Those requirements lie in components used for parts such as electronic devices and automobiles. If these components are covered with a protective layer, the contents cannot be confirmed. Therefore, transparency is required as a protective layer for confirming the contents. In addition, these components are often part of an electrical circuit and are required to be flame retardant.
[0004]
Furthermore, there are many cases where flexibility is required due to the intended use. In particular, thin objects such as a wire covering, a cable used for a communication circuit, a covering tube, a sheet, and a film are listed.
JP-A-11-209543 discloses a transparent flame-retardant resin that does not contain the halogen or phosphorus. The disclosure of this publication includes 200 to 800 parts by weight of a crystal water-containing inorganic filler having a refractive index of 1.50 to 1.65, 100 to parts by weight of a polystyrene resin, and 5 to 40 parts by weight of an α, β-unsaturated carboxylic acid monomer. Part and a polymerization initiator. With this blending ratio, the flexibility is not very required.
[0005]
[Problems to be solved by the invention]
A resin composition that is transparent, flame retardant, and fully flexible is searched for, and a molded body using the composition is produced.
[0006]
[Means for Solving the Problems]
As a result of intensive studies, the inventors have reached the following invention. That is, it has a flexibility characterized by containing 50 to 180 parts by weight of metal hydroxide with respect to 100 parts by weight of styrene resin having a styrene content of 40 to 90% by weight. It is a transparent flame retardant resin composition. If the styrene content is within the above range by adding all the resins, it is also preferable to use a mixture of two or more styrene resins. The metal hydroxide used here is preferably magnesium hydroxide and / or aluminum hydroxide. Moreover, since it is a molded object which requires transparency, the thickness is preferably within 1 mm.
[0007]
The styrene resin used in the present invention is limited to those having a styrene content of 40% by weight to 90% by weight. The styrene content affects the transparency. The greater the styrene content, the better the transparency. Even if the styrene content is less than 40% by weight, the transparency is sufficient, but if a flame retardant is included, the transparency is lowered, which is not preferable. When the styrene content exceeds 90% by weight, flexibility when formed into a molded product is insufficient.
Accordingly, the target styrenic resin is a copolymer obtained by polymerizing styrene and another monomer, a graft polymer, a blend polymer obtained by mixing with polystyrene, and a mixture thereof. However, when a resin not containing styrene is added, the compatibility is affected and the transparency is extremely lowered. Therefore, a mixture of resins containing styrene is preferable.
For example, since polystyrene (GPPS) is 100% by weight of styrene, it is not used alone but is blended with another styrene resin. In addition, acrylonitrile / styrene copolymer (AS), styrene / ethylene / butylene / styrene copolymer (SEBS), styrene / isoprene / styrene copolymer (SEPS), styrene / ethylene / isoprene / styrene copolymer (SEPS) SEEPS), styrene / ethylene / butylene / olefin copolymer (SEBC), styrene / butadiene copolymer (SBR) and the like can be preferably used. Moreover, these hydrogenation type | molds, a partial hydrogenation type | mold, and a chemically modified body can also be used, and if a styrene content rate is 40 to 90 weight%, it can be used without a problem. Furthermore, any polymer containing styrene can be blended with each other.
[0008]
The amount of metal hydroxide imparting flame retardancy is preferably in the range of 90 to 180 parts by weight with respect to 100 parts by weight of the resin. If it is less than 90 parts by weight, the flame retardancy is insufficient, and if it exceeds 180 parts by weight, the transparency is lowered and the flexibility when formed into a molded product is lowered.
Since the metal hydroxide has a flame retardancy due to hydroxylation, a metal component having a large weight ratio is not preferable, and a light metal hydroxide is preferable. It is particularly preferable to select magnesium hydroxide or aluminum hydroxide. Both of these may be used, or only one of them may be used. Moreover, it is good to use that whose average particle diameter exists in the range of 0.5-5 micrometers. If the particle size is too fine, the moldability is lowered, and if it is too rough, the sustainability of the flame retardant effect is lowered. The metal hydroxide may be blended as it is, but a surface-treated product such as a fatty acid, a fatty acid salt, a surfactant, or a wax may be used. Further, those treated with a coupling agent such as silane, titanate, aluminum, zircoaluminum, carboxylic acid, and phosphoric acid may be used.
[0009]
A molded body formed using the above composition is suitable for coating a wire, cable, optical fiber coating, tube, heat shrinkable tube or the like having a circular cross-sectional shape. Moreover, it is preferable also as a sheet | seat and a film. Since the required characteristics are transparent, it is preferable to use a thin thickness, and it is preferable to use a thickness of 1 mm or less.
[0010]
Addition of antioxidants, lubricants, processing stabilizers, colorants, foaming agents, reinforcing agents, fillers, plasticizers, crosslinking aids, etc. to the above composition as long as flame retardancy and transparency are not impaired An agent may be blended.
[0011]
The means for producing the above composition can be mixed using a known mixer such as an open roll mixer, a Banbury mixer, a pressure kneader, or a twin screw mixer. In order to turn the finished resin composition into a resin molded article, the resin composition is pelletized with a pelletizer, and then, using a molding machine suitable for the desired resin molded article, such as extrusion molding, injection molding, or blow molding. A resin molded body is used.
The resin molding may be subjected to resin modification or crosslinking at the resin composition stage or the resin molding stage. Modification and cross-linking include means for irradiating ionizing radiation such as accelerated electron beam, γ-ray, X-ray, α-ray, ultraviolet ray, etc. There is a means.
Further, a film obtained by dissolving a styrene resin in a solvent and adding a metal hydroxide thereto and mixing it may be formed into a film using a spin coater or the like. In the present invention, the manufacturing means is not limited as described above.
[0012]
【Example】
Examples are given below, but the present invention is not limited to the examples.
Tables 1 to 5 show the compositions of Examples, Comparative Examples, and Reference Examples. Although not shown in the table for each formulation, for ease of extrusion and oxidation prevention during processing, 0.5 parts by weight of stearic acid and pentaerythritol are added to 100 parts by weight of resin for each formulation. -1 part by weight of tetrakis (3, (3,5-di-t-butyl-4-hydroxyphenyl) propionate) was added. After blending, the mixture was kneaded with an open roll mixer set at 170 ° C., and the resulting kneaded product was molded into a 1 mm thick sheet by hot pressing.
[0013]
The performance of the finished resin molding was examined by the following test method.
(Minimum visible light transmittance) The transmittance was measured in the wavelength region of 400 to 800 nm by ultraviolet-visible absorption spectrum measurement. The greater the transmittance, the better the transparency. The conditions under which the sample can be recognized by placing the sample on characters or graphics were such that the transmittance was 30% or more, and therefore, the transmittance was 30% or more.
(Flame Retardancy Test) Evaluation was made by UL standard vertical combustion test (UL94). The sample was punched into a strip of 12.7 mm wide and 127 mm long to prepare a sample. The result is V-0, V-1, V-2, HB in order of good flame retardancy. Except HB, it was evaluated as flame retardant.
(Elongation at break) Evaluated as an index indicating flexibility. The sample was punched into a dumbbell piece (JIS-3) described in JIS K6301, and a tensile test was performed at room temperature at a tensile speed of 200 mm / min. The elongation until the material broke was sampled at three points, and the average value was used. Samples having an average value of 50% or more were judged to be flexible without cracking even when bent.
[0014]
Based on the above criteria, the prepared samples are tested, and the results are shown below the composition tables in Tables 1-5. In Table 1, the styrene content of the styrene-based resin is 40% by weight or more and 90% by weight or less, and the metal hydroxide is 50 to 180 parts by weight with respect to 100 parts by weight of the resin. The evaluation result shows a transparent resin molded product having a minimum visible light transmittance of 30% or more. Moreover, in the flame retardance test by UL94, all show the flame retardance of V-2 or more. The tensile elongation at break is also 50% or more, and it is judged that the resin molding has flexibility. In particular, Examples 1, 2 and 9 use styrene having a styrene content of 100%, but the flexibility was improved by combining with other styrene-containing styrene resins, not alone.
[0015]
[Table 1]
Figure 0004045875
[0016]
Table 2 is an example close to the present invention. In Comparative Examples 1 to 4, a resin having a styrene content of less than 40% by weight in the styrene resin is used. Since the amount of the metal hydroxide is 50 parts by weight or more, it exhibits flame retardancy, but due to the lack of styrene content, the minimum visible light transmittance is 0, and an opaque resin molded product is obtained.
Comparative Examples 5 and 6 are resin compositions mainly composed of polystyrene. Since the styrene content exceeds 90% by weight, the minimum visible light transmittance is a very large value, but the flexibility is poor and the tensile elongation at break does not reach 50%.
Comparative Examples 7 to 9 are resin compositions obtained by adding a small amount of a non-styrene resin to a styrene resin. Although the styrene content in the whole resin is in the range of 40% by weight or more and 90% by weight or less, it can be said that since the non-styrene resin is added, the minimum visible light transmittance is less than 30% and it has transparency. Absent.
Reference examples 1 and 2 are shown as a scale indicating this test evaluation in the case of a non-styrene resin. The resin alone is sufficiently transparent, but the transparency is lost when a flame retardant is added.
[0017]
[Table 2]
Figure 0004045875
[0018]
Table 3 shows resin compositions similar to the present invention. Comparative Examples 10 to 13 are resin compositions in which the metal hydroxide was blended in excess of 180 parts by weight with respect to 100 parts by weight of the resin. Although these flame retardant properties are sufficient, the minimum visible light transmittance does not reach 30%. Comparative Examples 14 to 17 are resin compositions in which the amount of metal hydroxide added is less than 50 parts by weight with respect to 100 parts by weight of the resin. These minimum visible light transmittances are sufficiently 30% or more, but do not exhibit flame retardancy.
[0019]
[Table 3]
Figure 0004045875
[0020]
Table 4 shows a state using a non-styrene resin. Comparative Examples 18 and 19 are resin compositions in which very low density polyethylene (VLDPE) is used and magnesium hydroxide is added thereto, but the minimum visible light transmission is sufficient even if the flexibility due to tensile elongation at break is sufficient. The rate is almost 0, resulting in a non-transparent resin molded product. Comparative Examples 20 and 21 are resin compositions in which polymethyl methacrylate (PMMA) is used as a resin and aluminum hydroxide is added to the resin. However, when PMMA is used in the same manner as VLDPE, an opaque resin molded product is used. become.
[0021]
[Table 4]
Figure 0004045875
[0022]
Table 5 shows examples using flame retardants other than metal hydroxides. Comparative Examples 22 to 27 tested resin compositions using calcium carbonate, antimony trioxide, melamine cyanurate, and ammonium polyphosphate as flame retardants. Although the styrene content in the styrene-based resin was 40% by weight or more and 90% by weight or less, the minimum visible light transmittance was all less than 30%, and an opaque resin composition was obtained.
From the results shown above, the present invention is a styrene resin, the styrene content is 40% by weight or more and 90% by weight or less, and the metal hydroxide is 50 to 180 parts by weight with respect to 100 parts by weight of the resin. It can be seen that the transparency, flame retardancy, and flexibility can be maintained in the range of.
[0023]
[Table 5]
Figure 0004045875
[0024]
【The invention's effect】
The transparent and flame-retardant resin composition according to the present invention and a resin molded body using the resin composition are halogen-free friendly to the environment and the human body, and are used for internal identification when used for protecting parts and electric wires. it can.

Claims (4)

スチレン含有量が40重量%以上、90重量%以下であるスチレン系樹脂100重量部に対し、金属水酸化物を90重量部以上180重量部以下含むことを特徴とする、難燃性樹脂組成物であって、
前記スチレン系樹脂は、スチレンを含有する樹脂の混合物であり、
該難燃性樹脂組成物を用いた厚さ1mmのシート状樹脂成形体において、
最低可視光線透過率が30%以上であり、
引張破断伸びが50%以上であり、
UL94難燃性試験でV−2以上の難燃性を有する、
難燃性樹脂組成物。
A flame-retardant resin composition comprising 90 to 180 parts by weight of a metal hydroxide with respect to 100 parts by weight of a styrene resin having a styrene content of 40 to 90% by weight Because
The styrenic resin is a mixture of resins containing styrene,
In the sheet-shaped resin molded body having a thickness of 1 mm using the flame retardant resin composition,
The minimum visible light transmittance is 30% or more,
The tensile elongation at break is 50% or more,
Has flame retardancy of V-2 or higher in UL94 flame retardancy test,
Flame retardant resin composition.
前記スチレン系樹脂は、ポリスチレン(GPPS)、アクリロニトリル・スチレン共重合体(AS)、スチレン・エチレン・ブチレン・エチレン共重合体(SEBS)、スチレン・イソプレン・スチレン共重合体(SEPS)、スチレン・エチレン・イソプレン・スチレン共重合体(SEEPS)、スチレン・エチレン・ブチレン・オレフィン共重合体(SEBC)、スチレン・ブタジエン共重合体(SBR)からなる群より選ばれる種以上の樹脂である、請求項に記載の難燃性樹脂組成物。The styrenic resin is polystyrene (GPPS), acrylonitrile / styrene copolymer (AS), styrene / ethylene / butylene / ethylene copolymer (SEBS), styrene / isoprene / styrene copolymer (SEPS), styrene / ethylene. The resin is two or more resins selected from the group consisting of isoprene / styrene copolymer (SEEPS), styrene / ethylene / butylene / olefin copolymer (SEBC), and styrene / butadiene copolymer (SBR). the flame retardant resin composition according to 1. 前記金属水酸化物が、水酸化マグネシウム及び水酸化アルミニウムのいずれか、もしくはその両方である、請求項1又は2に記載の難燃性樹脂組成物。The flame retardant resin composition according to claim 1 or 2 , wherein the metal hydroxide is one of or both of magnesium hydroxide and aluminum hydroxide. 厚さが1mm以下である、請求項1乃至のいずれか1項に記載の難燃性樹脂組成物を用いてなる樹脂成形体。The resin molding which uses the flame-retardant resin composition of any one of Claims 1 thru | or 3 whose thickness is 1 mm or less.
JP2002191935A 2002-07-01 2002-07-01 Transparent flame-retardant resin composition and resin molded body using the same Expired - Fee Related JP4045875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002191935A JP4045875B2 (en) 2002-07-01 2002-07-01 Transparent flame-retardant resin composition and resin molded body using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002191935A JP4045875B2 (en) 2002-07-01 2002-07-01 Transparent flame-retardant resin composition and resin molded body using the same

Publications (2)

Publication Number Publication Date
JP2004035640A JP2004035640A (en) 2004-02-05
JP4045875B2 true JP4045875B2 (en) 2008-02-13

Family

ID=31701367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002191935A Expired - Fee Related JP4045875B2 (en) 2002-07-01 2002-07-01 Transparent flame-retardant resin composition and resin molded body using the same

Country Status (1)

Country Link
JP (1) JP4045875B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017167358A (en) * 2016-03-16 2017-09-21 住友電気工業株式会社 Optical fiber cable, insulated wire, and heat shrinkage tube

Also Published As

Publication number Publication date
JP2004035640A (en) 2004-02-05

Similar Documents

Publication Publication Date Title
EP1798256B1 (en) Non-halogen flame-retardant resin composition
US20100086268A1 (en) Fire Resistant Thermoplastic or Thermoset Compositions Containing an Intumescent Specialty Chemical
KR20040068560A (en) Fire Retarded Polymer Composition
CN109563410B (en) Flame retardant composition and flame-retardant synthetic resin composition
JPWO2019093204A1 (en) Composition and flame-retardant resin composition
JP4879635B2 (en) Non-halogen flame retardant resin composition for electron beam irradiation
JP3921448B2 (en) Flame retardant polypropylene resin composition
JP4045875B2 (en) Transparent flame-retardant resin composition and resin molded body using the same
JP2018030939A (en) Flame-retardant resin composition and molding
WO2014069489A1 (en) Polybutylene terephthalate resin composition
JP3648032B2 (en) Flame retardant resin composition
KR20040065078A (en) Flame retardant polypropylene resin composition with excellent weatherability
JP3916044B2 (en) Non-halogen flame retardant resin composition
JP2901721B2 (en) Flame retardant styrenic resin composition
KR20090049549A (en) Flame retardant resin composition
KR102468643B1 (en) Thermoplastic flame retardant resin composition and thermoplastic flame retardant resin molded articles produced by the same
JP3637652B2 (en) Flame retardant olefin resin composition
JP2004099780A (en) Flame-retardant polyolefinic resin composition
KR102465885B1 (en) Thermoplastic flame retardant resin composition and flame retardant resin molded articles produced by the same
JP3030726B2 (en) Method for producing flame-retardant resin composition
US10800903B2 (en) Flame-retarded transparent polycarbonate compositions
JP2003292696A (en) Flame-retardant nonhalogen resin composition and flameretardant cross-linked electric wire/cable
JPS61223055A (en) Thermoplastic resin composition
JP2000053809A (en) Flame-retardant elastomer composition
JP2005126633A (en) Flame-retardant resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20060421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees