JP4045697B2 - Oxidation resistant thermal insulation film and method for forming the same - Google Patents

Oxidation resistant thermal insulation film and method for forming the same Download PDF

Info

Publication number
JP4045697B2
JP4045697B2 JP23367699A JP23367699A JP4045697B2 JP 4045697 B2 JP4045697 B2 JP 4045697B2 JP 23367699 A JP23367699 A JP 23367699A JP 23367699 A JP23367699 A JP 23367699A JP 4045697 B2 JP4045697 B2 JP 4045697B2
Authority
JP
Japan
Prior art keywords
layer
nicraly
mosi
forming
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23367699A
Other languages
Japanese (ja)
Other versions
JP2001059188A (en
Inventor
啓嗣 園家
省吾 戸部
繁 北原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP23367699A priority Critical patent/JP4045697B2/en
Publication of JP2001059188A publication Critical patent/JP2001059188A/en
Application granted granted Critical
Publication of JP4045697B2 publication Critical patent/JP4045697B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/321Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
    • C23C28/3215Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/325Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with layers graded in composition or in physical properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/345Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
    • C23C28/3455Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/36Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including layers graded in composition or physical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、航空機用エンジン、ガスタービン用エンジン、ゴミ処理装置等のような、非常に高温且つ高い酸化性の雰囲気で使用される構造材を保護するための耐酸化性断熱皮膜及びその形成方法に関するものである。
【0002】
【従来の技術】
溶射によって構造材の表面に皮膜を形成する技術は、耐熱性、断熱性、耐摩耗性、耐腐食性等が要求される箇所に幅広く用いられている。溶射によって形成された皮膜は、断熱部材として作用し、これによって構造材である基材の温度を低下させることができ、よって基材の使用限界温度を上昇させることができる。
【0003】
中でも、プラズマ溶射によって形成されるジルコニアZrO2系セラミックスの皮膜は、航空機用ジェットエンジン、発電用等のガスタービンエンジンの燃焼室内壁等に利用されており、エンジンの高出力化に重要な役割を果たしている。
【0004】
近年、こうしたエンジン等は、その出力増加、変換効率の向上、ひいては環境汚染低減を目指して稼動温度の高温化が進められており、ジルコニアZrO2を用いた断熱皮膜は、こうした高温部の断熱を行って基材を保護する上で不可欠なものとなっている。
【0005】
通常のジルコニア断熱皮膜は、基材の表面に溶射によって形成したNiCrAlY層(ボンドコート)の上にジルコニアZrO2を溶射することにより、ZrO2−Y23の形、即ち部分安定化ジルコニア層(PSZ)として成膜される。
【0006】
従来のジルコニア断熱皮膜は、図5に示すように、まず、基材1の表面に、NiCrAlYを低真空中でプラズマ溶射することにより、約100μ前後の厚さでNiCrAlY層2(ボンドコート)を形成する。このとき、NiCrAlY層2は、酸化しないように真空吸引して減圧した状態で、不活性ガスを用いてプラズマ溶射される。このように低真空中でプラズマ溶射することを以下では減圧プラズマ溶射という。
【0007】
減圧プラズマ溶射は、プラズマの形状が大気中より長くなり、なお且つ乱れないことが判明している。このため、減圧プラズマ溶射では、ノズルの先端より遠方まで温度が低下せず、また溶射粉末がノズルジェットの中での停留時間が長くなり、その分よく溶融することになる。これらの理由から、減圧プラズマ溶射された溶射皮膜は気孔が少なく、基材との接着力も強い。また、未溶融粒子も少なく密着効率も高いという利点を有している。
【0008】
続いて、図5に示すように、上記によって形成されたNiCrAlY層2上に、ジルコニアZrO2を大気中プラズマ溶射することにより、約350μ前後の厚さの部分安定化ジルコニア層3(PSZ:トップコート)を形成する。この部分安定化ジルコニア層3の形成は、減圧プラズマ溶射によって行っても或いは大気中プラズマ溶射によって行ってもその性能には殆ど差異がない。このため、部分安定化ジルコニア層3の形成には、一般に安価で操作が容易な大気中プラズマ溶射が実施されている。
【0009】
一方、ジルコニアZrO2は、非常に硬い金属であり、このために溶射によって形成された部分安定化ジルコニア層3には微細な無数の亀裂4(傷)が生成している。尚、この微細な亀裂4は、その存在によって熱歪みの緩和が図れるという作用を有している。
【0010】
上記部分安定化ジルコニア層3は、機器作動中の熱応力や機械的応力、さらには燃焼ガスによる腐食損傷等を受けるため、その寿命は有限であることから長寿命化が求められており、種々の試みがなされている。
【0011】
【発明が解決しようとする課題】
しかし、図5に示したような従来のNiCrAlY層2と部分安定化ジルコニア層3との2層によって形成される溶射断熱皮膜は、耐酸化性が弱く、疲労寿命も短いという問題を有していた。
【0012】
即ち、部分安定化ジルコニア層3に形成されている微細な亀裂4を通して、外部の酸化性ガス(空気)が内部のNiCrAlY層2まで侵入し、これによってNiCrAlY層2が酸化し、この酸化によってNiCrAlY層2内を疲労亀裂が進展して遂には基材1まで達してしまい、基材1とNiCrAlY層2との間で剥離現象が生じるようになり、このような現象によって基材1が熱疲労を起こし、寿命が短縮されるという問題を有していた。
【0013】
本発明は、かかる従来の問題点を解決すべくなしたもので、部分安定化ジルコニア層からの酸化性ガスの侵入防止と疲労亀裂の進展防止とを達成して、高い断熱性能を保持できるようにした耐酸化性断熱皮膜及びその形成方法を提供することを目的としている。
【0014】
【課題を解決するための手段】
本発明は、基材に形成されたNiCrAlY層上に、MoSi2−NiCrAlY層を挟んで部分安定化ジルコニア層が形成されていることを特徴とする耐酸化性断熱皮膜、に係るものである。
【0015】
上記手段において、MoSi2−NiCrAlY層におけるMoSi2の含有割合が40〜90%、NiCrAlYの含有割合が10〜60%であってもよい。
【0016】
本発明は、基材表面に、NiCrAlYを減圧プラズマ溶射することによりNiCrAlY層を形成し、NiCrAlY層上に、MoSi2とNiCrAlYとの混合物を減圧プラズマ溶射することによりMoSi2−NiCrAlY層を形成し、該MoSi2−NiCrAlY層上に、ZrO2を大気中プラズマ溶射して部分安定化ジルコニア層を形成することを特徴とする耐酸化性断熱皮膜の形成方法、に係るものである。
【0017】
上記手段において、MoSi2−NiCrAlY層を形成するMoSi2の混合割合が40〜90%、NiCrAlYの混合割合が10〜60%であってもよい。
【0018】
本発明によれば、基材に形成されたNiCrAlY層上に、MoSi2−NiCrAlY層を中間層として挟むように部分安定化ジルコニア層を形成しているので、最外側の部分安定化ジルコニア層の微細な亀裂を通して外部から酸化性ガスが侵入してきても、この酸化性ガスの侵入をMoSi2−NiCrAlY層で食い止めて、内側のNiCrAlY層の酸化、及びNiCrAlY層から基材への疲労亀裂の進展を防止できるので、部分安定化ジルコニア層による断熱効果が安定に維持され、よって基材の熱疲労が防止されて寿命が延長される。
【0019】
【発明の実施の形態】
以下、本発明の好適な実施の形態を図面に基づいて説明する。
【0020】
耐酸化性の断熱皮膜を形成するには、部分安定化ジルコニア層(PSZ)における微細な亀裂から侵入する酸化性ガスが、NiCrAlY層に到達しないようにすることが有効である。
【0021】
このため、上記したような酸化性ガスの侵入を防止できる作用を持つ金属について種々検討した。高融点金属シリサイドには、MoSi2,WSi2,NbSi2,TaSi2等が知られており、これらの金属シリサイドの中で、モリブデンシリサイドMoSi2は、融点が2303Kと高く、しかも非常に優れた高温耐酸化性を示すことから、超高温用金属材料として有望視されている。
【0022】
従って、上記モリブデンシリサイドMoSi2を用いた層を、NiCrAlY層と部分安定化ジルコニア層との中間に、中間層として形成することを考えた。
【0023】
基材の表面に断熱皮膜を形成するために、先ず図2に示すように、真空吸引されている低真空容器5内において、プラズマ照射装置6を用いて、基材1上にNiCrAlYを減圧プラズマ溶射(VPS)することにより、約100μ前後の厚さでNiCrAlY層2を形成する。
【0024】
次に、図3に示すように、低真空容器5内において、上記によって形成されたNiCrAlY層2上に、モリブデンシリサイドMoSi2とNiCrAlYの混合物を減圧プラズマ溶射(VPS)することにより、約100μ前後の厚さのMoSi2−NiCrAlY層7を形成する。このとき、例えば図1の例では、モリブデンシリサイドMoSi2の混合割合が70%、NiCrAlYの混合割合が30%の場合を例示しているが、モリブデンシリサイドMoSi2の混合割合は約40〜90%、NiCrAlYの混合割合は約10〜60%の範囲で変化させて調整することができる。
【0025】
上記MoSi2−NiCrAlY層7は、全膜厚に亘ってモリブデンシリサイドMoSi2とNiCrAlYとの混合割合が均一となるように溶射してもよく、また、モリブデンシリサイドMoSi2の割合が膜厚の厚さ方向に変化するように傾斜割合をもたせて溶射するようにしてもよい。
【0026】
続いて、図4に示すように、上記によって形成されたMoSi2−NiCrAlY層7上に、ジルコニアZrO2を大気中プラズマ溶射(APS)することにより、約200μ前後の厚さで部分安定化ジルコニア層3(PSZ)を形成する。
【0027】
上記方法によれば、図1に示すように、基材1に形成されたNiCrAlY層2上に、MoSi2−NiCrAlY層7を挟んで部分安定化ジルコニア層3が形成された3層構造の断熱皮膜が形成できる。
【0028】
以下に、上記形態例の作用を説明する。
【0029】
本発明の耐酸化性断熱皮膜を形成するに当たっては、先ず図2に示すように、基材1上にNiCrAlYを減圧プラズマ溶射することによってNiCrAlY層2を形成する。
【0030】
次に、モリブデンシリサイドMoSi2の混合割合が約40〜90%、NiCrAlYの混合割合が約10〜60%になるように調整した混合物を、図3に示すように、NiCrAlY層2上に減圧プラズマ溶射することによってMoSi2−NiCrAlY層7を形成する。
【0031】
続いて、図4に示すように、MoSi2−NiCrAlY層7上に、ジルコニアZrO2を大気中プラズマ溶射することにより部分安定化ジルコニア層3を形成する。
【0032】
上記によれば、図1に示すように、基材1に形成されたNiCrAlY層2上に、MoSi2−NiCrAlY層7を中間層として挟んで部分安定化ジルコニア層3が一体に形成された3層構造の断熱皮膜が得られる。
【0033】
上記したようにMoSi2−NiCrAlY層7による中間層を備えると、MoSi2−NiCrAlY層7のモリブデンシリサイドMoSi2が、溶射皮膜中に発生した亀裂を高温下においてSiO2によって埋めて自然治癒させる挙動を現わし、このために、MoSi2−NiCrAlY層7により耐酸化の機能が大幅に向上されるようになる。
【0034】
即ち、最外側の部分安定化ジルコニア層3の微細な亀裂4を通して外部から酸化性ガスが侵入してきても、この酸化性ガスの侵入をMoSi2−NiCrAlY層7で食い止めて、内側のNiCrAlY層2が酸化されるのを防止し、更にNiCrAlY層2から基材1へ疲労亀裂が進展するのを防止する。
【0035】
従って、部分安定化ジルコニア層による断熱効果が安定して維持されるようになり、よって基材の熱疲労が防止されて寿命が延長されることになる。
【0036】
尚、本発明は上記形態例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
【0037】
【発明の効果】
本発明によれば、基材に形成されたNiCrAlY層上に、MoSi2−NiCrAlY層を中間層として挟むように部分安定化ジルコニア層を形成しているので、最外側の部分安定化ジルコニア層の微細な亀裂を通して外部から酸化性ガスが侵入してきても、この酸化性ガスの侵入をMoSi2−NiCrAlY層で食い止めて、内側のNiCrAlY層の酸化、及びNiCrAlY層から基材への疲労亀裂の進展を防止できるので、部分安定化ジルコニア層による断熱効果が安定に維持され、よって基材の熱疲労を防止して寿命を延長できるという優れた効果を奏し得る。
【図面の簡単な説明】
【図1】本発明の耐酸化性断熱皮膜の一例を示す概略側面図である。
【図2】本発明の耐酸化性断熱皮膜の形成方法において、基材上に減圧プラズマ溶射によりNiCrAlY層を形成している状態を示す概略側面図である。
【図3】本発明の耐酸化性断熱皮膜の形成方法において、NiCrAlY層上に、減圧プラズマ溶射によりMoSi2−NiCrAlY層を形成している状態を示す概略側面図である。
【図4】本発明の耐酸化性断熱皮膜の形成方法において、MoSi2−NiCrAlY層上に、大気中プラズマ溶射により部分安定化ジルコニア層を形成している状態を示す概略側面図である。
【図5】従来の耐酸化性断熱皮膜の一例を示す概略側面図である。
【符号の説明】
1 基材
2 NiCrAlY層
3 部分安定化ジルコニア層(PSZ)
7 MoSi2−NiCrAlY層(中間層)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oxidation-resistant heat-insulating coating for protecting structural materials used in an atmosphere of very high temperature and high oxidation, such as an aircraft engine, a gas turbine engine, and a garbage disposal device, and a method for forming the same. It is about.
[0002]
[Prior art]
A technique for forming a film on the surface of a structural material by thermal spraying is widely used in places where heat resistance, heat insulation, wear resistance, corrosion resistance, and the like are required. The film formed by thermal spraying acts as a heat insulating member, thereby reducing the temperature of the base material, which is a structural material, and thus increasing the use limit temperature of the base material.
[0003]
Above all, the coating of zirconia ZrO 2 ceramics formed by plasma spraying is used on the combustion chamber walls of gas turbine engines for aircraft jet engines and power generation, and plays an important role in increasing engine output. Plays.
[0004]
In recent years, these engines and the like have been increased in operating temperature with the aim of increasing their output, improving conversion efficiency, and thus reducing environmental pollution. Thermal insulation coatings using zirconia ZrO 2 can insulate these high-temperature parts. It is indispensable to go and protect the substrate.
[0005]
A normal zirconia heat-insulating film is formed by spraying zirconia ZrO 2 on a NiCrAlY layer (bond coat) formed on the surface of a substrate by spraying, thereby forming a ZrO 2 —Y 2 O 3 form, ie, a partially stabilized zirconia layer. The film is formed as (PSZ).
[0006]
As shown in FIG. 5, the conventional zirconia heat insulating film is formed by first performing NiCrAlY plasma spraying on the surface of the substrate 1 in a low vacuum to form a NiCrAlY layer 2 (bond coat) with a thickness of about 100 μm. Form. At this time, the NiCrAlY layer 2 is plasma sprayed using an inert gas in a state where the pressure is reduced by vacuum suction so as not to oxidize. Such plasma spraying in a low vacuum is hereinafter referred to as reduced pressure plasma spraying.
[0007]
Low pressure plasma spraying has been found to have a plasma shape that is longer than in the atmosphere and is not disturbed. For this reason, in low-pressure plasma spraying, the temperature does not decrease farther from the tip of the nozzle, and the sprayed powder has a longer retention time in the nozzle jet and melts accordingly. For these reasons, the low-pressure plasma sprayed thermal spray coating has few pores and strong adhesion to the substrate. In addition, there is an advantage that the number of unmelted particles is small and the adhesion efficiency is high.
[0008]
Subsequently, as shown in FIG. 5, zirconia ZrO 2 is plasma sprayed in the air on the NiCrAlY layer 2 formed as described above, thereby partially stabilizing the zirconia layer 3 (PSZ: top) having a thickness of about 350 μm. Coat). The formation of the partially stabilized zirconia layer 3 has almost no difference in performance regardless of whether it is performed by low pressure plasma spraying or atmospheric plasma spraying. For this reason, in order to form the partially stabilized zirconia layer 3, plasma spraying in the air that is generally inexpensive and easy to operate is performed.
[0009]
On the other hand, zirconia ZrO 2 is a very hard metal. Therefore, innumerable fine cracks 4 (scratches) are generated in the partially stabilized zirconia layer 3 formed by thermal spraying. The fine crack 4 has the effect of mitigating thermal strain due to its presence.
[0010]
The partially stabilized zirconia layer 3 is subjected to thermal stress and mechanical stress during operation of the equipment, further corrosive damage due to combustion gas, etc., and its life is finite, so a long life is required. Attempts have been made.
[0011]
[Problems to be solved by the invention]
However, the thermal spray coating formed by two layers of the conventional NiCrAlY layer 2 and the partially stabilized zirconia layer 3 as shown in FIG. 5 has a problem that the oxidation resistance is weak and the fatigue life is short. It was.
[0012]
That is, an external oxidizing gas (air) penetrates into the internal NiCrAlY layer 2 through the fine crack 4 formed in the partially stabilized zirconia layer 3, thereby oxidizing the NiCrAlY layer 2, and this oxidation causes the NiCrAlY layer to oxidize. The fatigue crack progresses in the layer 2 and finally reaches the base material 1, and a peeling phenomenon occurs between the base material 1 and the NiCrAlY layer 2, and this phenomenon causes the base material 1 to be thermally fatigued. This has the problem of shortening the service life.
[0013]
The present invention has been made to solve such a conventional problem, and can achieve prevention of invasion of oxidizing gas from the partially stabilized zirconia layer and prevention of progress of fatigue cracks so that high heat insulation performance can be maintained. It is an object of the present invention to provide an oxidation-resistant heat insulating film and a method for forming the same.
[0014]
[Means for Solving the Problems]
The present invention relates to an oxidation resistant heat insulating film characterized in that a partially stabilized zirconia layer is formed on a NiCrAlY layer formed on a base material with a MoSi 2 —NiCrAlY layer interposed therebetween.
[0015]
In the above means, the content ratio of MoSi 2 in the MoSi 2 —NiCrAlY layer may be 40 to 90%, and the content ratio of NiCrAlY may be 10 to 60%.
[0016]
In the present invention, a NiCrAlY layer is formed on a substrate surface by subjecting NiCrAlY to low pressure plasma spraying, and a MoSi 2 —NiCrAlY layer is formed on the NiCrAlY layer by subjecting a mixture of MoSi 2 and NiCrAlY to low pressure plasma spraying. The present invention relates to a method for forming an oxidation-resistant heat-insulating film, which comprises forming a partially stabilized zirconia layer on the MoSi 2 —NiCrAlY layer by plasma spraying ZrO 2 in the atmosphere.
[0017]
In the above means, the mixing ratio of MoSi 2 forming the MoSi 2 —NiCrAlY layer may be 40 to 90%, and the mixing ratio of NiCrAlY may be 10 to 60%.
[0018]
According to the present invention, since the partially stabilized zirconia layer is formed on the NiCrAlY layer formed on the substrate so as to sandwich the MoSi 2 —NiCrAlY layer as an intermediate layer, the outermost partially stabilized zirconia layer is formed. Even if an oxidizing gas enters from the outside through fine cracks, the invasion of this oxidizing gas is stopped by the MoSi 2 —NiCrAlY layer, oxidation of the inner NiCrAlY layer, and the progress of fatigue cracks from the NiCrAlY layer to the substrate Therefore, the heat insulation effect by the partially stabilized zirconia layer is stably maintained, and thus thermal fatigue of the substrate is prevented and the life is extended.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described with reference to the drawings.
[0020]
In order to form an oxidation-resistant heat-insulating film, it is effective to prevent the oxidizing gas entering from the fine cracks in the partially stabilized zirconia layer (PSZ) from reaching the NiCrAlY layer.
[0021]
Therefore, various studies have been made on metals having an action capable of preventing the intrusion of the oxidizing gas as described above. MoSi 2 , WSi 2 , NbSi 2 , TaSi 2, etc. are known as refractory metal silicides. Among these metal silicides, molybdenum silicide MoSi 2 has a high melting point of 2303 K and is very excellent. Since it exhibits high-temperature oxidation resistance, it is regarded as a promising metal material for ultra-high temperatures.
[0022]
Therefore, it was considered that the layer using the molybdenum silicide MoSi 2 was formed as an intermediate layer between the NiCrAlY layer and the partially stabilized zirconia layer.
[0023]
In order to form a heat insulating film on the surface of the base material, as shown in FIG. 2, first, NiCrAlY is reduced in pressure on the base material 1 by using a plasma irradiation device 6 in a vacuumed vacuum container 5. By spraying (VPS), the NiCrAlY layer 2 is formed with a thickness of about 100 μm.
[0024]
Next, as shown in FIG. 3, a mixture of molybdenum silicide MoSi 2 and NiCrAlY is subjected to low pressure plasma spraying (VPS) on the NiCrAlY layer 2 formed as described above in the low-vacuum vessel 5 to be about 100 μm. A MoSi 2NiCrAlY layer 7 having a thickness of 5 mm is formed. At this time, for example, in the example of FIG. 1, the case where the mixing ratio of molybdenum silicide MoSi 2 is 70% and the mixing ratio of NiCrAlY is 30% is illustrated, but the mixing ratio of molybdenum silicide MoSi 2 is about 40 to 90%. The mixing ratio of NiCrAlY can be adjusted by changing in the range of about 10 to 60%.
[0025]
The MoSi 2NiCrAlY layer 7 may be sprayed so that the mixing ratio of molybdenum silicide MoSi 2 and NiCrAlY is uniform over the entire thickness, and the ratio of molybdenum silicide MoSi 2 is the thickness of the film. Thermal spraying may be performed with an inclination ratio so as to change in the vertical direction.
[0026]
Subsequently, as shown in FIG. 4, zirconia ZrO 2 is plasma sprayed (APS) in the atmosphere on the MoSi 2NiCrAlY layer 7 formed as described above, thereby partially stabilizing zirconia with a thickness of about 200 μm. Layer 3 (PSZ) is formed.
[0027]
According to the above method, as shown in FIG. 1, the heat insulation of the three-layer structure in which the partially stabilized zirconia layer 3 is formed on the NiCrAlY layer 2 formed on the substrate 1 with the MoSi 2NiCrAlY layer 7 interposed therebetween. A film can be formed.
[0028]
The operation of the above embodiment will be described below.
[0029]
In forming the oxidation resistant heat insulating film of the present invention, first, as shown in FIG. 2, NiCrAlY layer 2 is formed on substrate 1 by subjecting NiCrAlY to low-pressure plasma spraying.
[0030]
Next, a mixture prepared so that the mixing ratio of molybdenum silicide MoSi 2 is about 40 to 90% and the mixing ratio of NiCrAlY is about 10 to 60% is formed on the NiCrAlY layer 2 as shown in FIG. The MoSi 2NiCrAlY layer 7 is formed by thermal spraying.
[0031]
Subsequently, as shown in FIG. 4, the partially stabilized zirconia layer 3 is formed on the MoSi 2NiCrAlY layer 7 by plasma spraying zirconia ZrO 2 in the atmosphere.
[0032]
According to the above, as shown in FIG. 1, the partially stabilized zirconia layer 3 is integrally formed on the NiCrAlY layer 2 formed on the base material 1 with the MoSi 2NiCrAlY layer 7 sandwiched as an intermediate layer. A heat insulating film having a layer structure is obtained.
[0033]
When an intermediate layer by MoSi 2 -NiCrAlY layer 7 as described above, MoSi 2 -NiCrAlY layer 7 of molybdenum silicide MoSi 2 of, to natural healing filled by SiO 2 in crack high temperatures that occur during the thermal spray coating behavior Therefore, the oxidation resistance function is greatly improved by the MoSi 2NiCrAlY layer 7.
[0034]
That is, even if an oxidizing gas enters from the outside through the fine cracks 4 of the outermost partially stabilized zirconia layer 3, the MoSi 2NiCrAlY layer 7 prevents the oxidizing gas from entering, and the inner NiCrAlY layer 2 Is prevented from being oxidized, and further, fatigue cracks are prevented from progressing from the NiCrAlY layer 2 to the substrate 1.
[0035]
Accordingly, the heat insulation effect by the partially stabilized zirconia layer is stably maintained, and thus thermal fatigue of the base material is prevented and the life is extended.
[0036]
It should be noted that the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.
[0037]
【The invention's effect】
According to the present invention, since the partially stabilized zirconia layer is formed on the NiCrAlY layer formed on the substrate so as to sandwich the MoSi 2 —NiCrAlY layer as an intermediate layer, the outermost partially stabilized zirconia layer is formed. Even if an oxidizing gas enters from the outside through fine cracks, the invasion of this oxidizing gas is stopped by the MoSi 2 —NiCrAlY layer, oxidation of the inner NiCrAlY layer, and the progress of fatigue cracks from the NiCrAlY layer to the substrate Therefore, the heat insulation effect by the partially stabilized zirconia layer can be stably maintained, so that the excellent effect of preventing the thermal fatigue of the base material and extending the life can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic side view showing an example of an oxidation-resistant heat insulating film of the present invention.
FIG. 2 is a schematic side view showing a state in which a NiCrAlY layer is formed on a substrate by low-pressure plasma spraying in the method for forming an oxidation-resistant heat insulating film of the present invention.
FIG. 3 is a schematic side view showing a state in which a MoSi 2 —NiCrAlY layer is formed on a NiCrAlY layer by low-pressure plasma spraying in the method for forming an oxidation resistant thermal insulation film of the present invention.
FIG. 4 is a schematic side view showing a state in which a partially stabilized zirconia layer is formed on the MoSi 2 —NiCrAlY layer by atmospheric plasma spraying in the method for forming an oxidation resistant thermal insulation film of the present invention.
FIG. 5 is a schematic side view showing an example of a conventional oxidation-resistant heat insulating film.
[Explanation of symbols]
1 Substrate 2 NiCrAlY layer 3 Partially stabilized zirconia layer (PSZ)
7 MoSi 2 —NiCrAlY layer (intermediate layer)

Claims (4)

基材に形成されたNiCrAlY層上に、MoSi2−NiCrAlY層を挟んで部分安定化ジルコニア層が形成されていることを特徴とする耐酸化性断熱皮膜。A partially stabilized zirconia layer is formed on a NiCrAlY layer formed on a base material with a MoSi 2 —NiCrAlY layer interposed therebetween. MoSi2−NiCrAlY層におけるMoSi2の含有割合が40〜90%、NiCrAlYの含有割合が10〜60%であることを特徴とする請求項1記載の耐酸化性断熱皮膜。 2. The oxidation-resistant heat-insulating coating according to claim 1, wherein the MoSi 2 —NiCrAlY layer has a MoSi 2 content of 40 to 90% and a NiCrAlY content of 10 to 60%. 基材表面に、NiCrAlYを減圧プラズマ溶射することによりNiCrAlY層を形成し、NiCrAlY層上に、MoSi2とNiCrAlYとの混合物を減圧プラズマ溶射することによりMoSi2−NiCrAlY層を形成し、該MoSi2−NiCrAlY層上に、ZrO2を大気中プラズマ溶射して部分安定化ジルコニア層を形成することを特徴とする耐酸化性断熱皮膜の形成方法。The substrate surface to form a NiCrAlY layer by vacuum plasma spraying the NiCrAlY, on the NiCrAlY layer, forming a MoSi 2 -NiCrAlY layer by low pressure plasma spraying a mixture of MoSi 2 and NiCrAlY, the MoSi 2 A method for forming an oxidation-resistant heat-insulating film, wherein a partially stabilized zirconia layer is formed on a NiCrAlY layer by plasma spraying ZrO 2 in the air. MoSi2−NiCrAlY層を形成するMoSi2の混合割合が40〜90%、NiCrAlYの混合割合が10〜60%であることを特徴とする請求項3記載の耐酸化性断熱皮膜の形成方法。MoSi 2 mixing ratio of MoSi 2 to form a -NiCrAlY layer 40 to 90%, the method of forming the oxidation-resistant thermal barrier coating according to claim 3, wherein the mixing ratio of NiCrAlY is 10 60%.
JP23367699A 1999-08-20 1999-08-20 Oxidation resistant thermal insulation film and method for forming the same Expired - Fee Related JP4045697B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23367699A JP4045697B2 (en) 1999-08-20 1999-08-20 Oxidation resistant thermal insulation film and method for forming the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23367699A JP4045697B2 (en) 1999-08-20 1999-08-20 Oxidation resistant thermal insulation film and method for forming the same

Publications (2)

Publication Number Publication Date
JP2001059188A JP2001059188A (en) 2001-03-06
JP4045697B2 true JP4045697B2 (en) 2008-02-13

Family

ID=16958799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23367699A Expired - Fee Related JP4045697B2 (en) 1999-08-20 1999-08-20 Oxidation resistant thermal insulation film and method for forming the same

Country Status (1)

Country Link
JP (1) JP4045697B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1518816B (en) * 2001-06-22 2010-04-28 欧姆龙株式会社 Safety network system and safety slave

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948218B (en) * 2006-10-19 2010-05-12 宁夏东方钽业股份有限公司 High temperature anti oxidation material and high temperature antioxidation coating layer prepared from same
CN114015992B (en) * 2021-11-01 2022-05-20 重庆嘉陵特种装备有限公司 High-temperature oxidation resistant heat-insulating coating suitable for titanium alloy surface and preparation method thereof
CN114686797A (en) 2022-04-08 2022-07-01 长沙理工大学 Multilayer self-healing ceramic coating and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1518816B (en) * 2001-06-22 2010-04-28 欧姆龙株式会社 Safety network system and safety slave

Also Published As

Publication number Publication date
JP2001059188A (en) 2001-03-06

Similar Documents

Publication Publication Date Title
JP6568048B2 (en) Thinning resistant ceramic matrix composites and environmental coatings
KR100390291B1 (en) Silicon based substrate with yttrium silicate environmental/thermal barrier layer
KR100390290B1 (en) Article comprising silicon based substrate with calcium aluminosilicate environmental/thermal barrier layer
JP6533211B2 (en) Dent resistant ceramic matrix composite and environmental coating
US6733908B1 (en) Multilayer article having stabilized zirconia outer layer and chemical barrier layer
US6562409B2 (en) Method for forming a rare earth silicate coating on a silicon based ceramic component by controlled oxidation for improved corrosion resistance
US6607852B2 (en) Environmental/thermal barrier coating system with silica diffusion barrier layer
JP5436761B2 (en) Environmentally resistant coating structure of silicon carbide fiber reinforced ceramic composites
EP2141138A1 (en) Method of repairing a thermal barrier coating and repaired coating formed thereby
CA1306146C (en) Refractory metal composite coated article
JP2016532617A (en) Thinning resistant ceramic matrix composite and environmental coating
KR20010014738A (en) Silicon based substrate with environmental/thermal barrier layer
JP2011502091A (en) CERAMIC LAYER COMPOSITE AND METHOD FOR PRODUCING THE CERAMIC LAYER COMPOSITE
RU2741491C2 (en) Part with applied thermal barrier for gas turbine engine and method of its production
US20140050930A1 (en) Creep-resistant environmental barrier coatings
KR20030011690A (en) Thermal barrier coating
US20210047722A1 (en) Method for coating thermal/environmental barrier coating
US20090155554A1 (en) Environmental barrier coating and related articles and methods
FR3067392A1 (en) ANTI-CMAS COATING WITH DOUBLE REACTIVITY
US20120219808A1 (en) Protective coatings and coated components comprising the protective coatings
JPH07243018A (en) Surface modification method for heat insulating film
JP4045697B2 (en) Oxidation resistant thermal insulation film and method for forming the same
RU2770128C2 (en) Part containing protective coating with gradually changing composition
JP3803104B2 (en) Heat shielding film-coated member excellent in corrosion resistance and heat resistance and method for producing the same
JP2001279473A (en) Ceramics thermal insulation coating

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees