JP4045338B2 - Steering control method for four-wheel independent steering vehicle - Google Patents

Steering control method for four-wheel independent steering vehicle Download PDF

Info

Publication number
JP4045338B2
JP4045338B2 JP2003136158A JP2003136158A JP4045338B2 JP 4045338 B2 JP4045338 B2 JP 4045338B2 JP 2003136158 A JP2003136158 A JP 2003136158A JP 2003136158 A JP2003136158 A JP 2003136158A JP 4045338 B2 JP4045338 B2 JP 4045338B2
Authority
JP
Japan
Prior art keywords
steering
wheel
command value
angle
steering angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003136158A
Other languages
Japanese (ja)
Other versions
JP2004338497A5 (en
JP2004338497A (en
Inventor
弘安 大島
勝也 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Original Assignee
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT) filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2003136158A priority Critical patent/JP4045338B2/en
Priority to US10/822,610 priority patent/US7184869B2/en
Priority to DE602004006920T priority patent/DE602004006920T2/en
Priority to EP04010176A priority patent/EP1477387B1/en
Publication of JP2004338497A publication Critical patent/JP2004338497A/en
Publication of JP2004338497A5 publication Critical patent/JP2004338497A5/ja
Application granted granted Critical
Publication of JP4045338B2 publication Critical patent/JP4045338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D9/00Steering deflectable wheels not otherwise provided for
    • B62D9/002Steering deflectable wheels not otherwise provided for combined with means for differentially distributing power on the deflectable wheels during cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • B62D7/1509Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels with different steering modes, e.g. crab-steering, or steering specially adapted for reversing of the vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Power Steering Mechanism (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、4輪独立操舵で走行する車両(殊に電気移動車両)の操舵制御方法に関するもので、車両を走行させる施設の通路形態や通路周縁の物体の配置状況に適応する操舵モードで車両を円滑・安全に走行させるための車両の操舵制御方法に関するものである。なお、この発明において「操舵モード」とは、操舵によって車両の各車輪が描く軌跡の基本パターンを意味する。また、この発明において「各車輪の位置に対する中心点」とは、四つの各車輪の位置を頂点とする長方形の中心点、すなわち四つの各車輪位置から等距離にある点を意味する。
【0002】
【従来の技術】
医療機関、福祉施設、物流基地、コンピュータ格納ビル、大型商業施設、図書館、スポーツ・娯楽施設、遊園地などの各種の屋内外施設において、その屋内外施設の通路形態や通路周縁の物体の配置状況に応じて、適当な操舵モードで4輪独立操舵の電気移動車両を走行制御する方法が、既に特願2001−351127号特許出願によって提案されている。
【0003】
すなわち特願2001−351127号特許出願明細書には、左右の前車輪と左右の後車輪がそれぞれ個別の操舵モータと駆動モータによって操舵・駆動制御される電気移動車両を、幾つかの種類の異なる操舵モードM1,M2,M3,M4,M5で操舵することが示され、操舵モードの事例として、右後車輪の走行軌跡と左後車輪の走行軌跡がそれぞれ右前車輪の走行軌跡と左前車輪の走行軌跡に追従する操舵モードM1、前車輪および後車輪の走行軌跡が互いに並行軌跡となる操舵モードM2、前車輪の旋回軌跡に対し後車輪の旋回軌跡がいわゆる内輪差軌跡となる操舵モードM3、右後車輪を中心として車両を右回りに旋回させあるいは左後車輪を中心として車両を左回りに旋回させる操舵モードM4、右前車輪を中心として車両を右回りに旋回させあるいは左前車輪を中心として車両を左回りに旋回させる操舵モードM5が示されている。そして操舵モードM1,M2,M3,M4,M5の中から通路の状況に適合する操舵モードを選定して、その選定された所定の操舵モードの形成に必要な操舵拘束条件式(略して「条件式」という)に従って各操舵モータと各駆動モータの回転を制御し、各車輪の操舵角度α,α,α,αと回転速度n,n,n,nを制御する操舵制御方法が提案されている。
【0004】
そして、上記の各操舵モードに沿う操舵拘束条件式(条件式)として、次の諸式が提案されている。
操舵モードM1に対して:

Figure 0004045338
・・・・・式(E11)
Figure 0004045338
・・・・・式(E12)
Figure 0004045338
・・・・式(E13)
操舵モードM2に対して:
Figure 0004045338
・・・・・式(E21)
Figure 0004045338
・・・・・式(E22)
操舵モードM3に対して:
Figure 0004045338
・・・・・式(E31)
Figure 0004045338
・・・・・式(E32)
Figure 0004045338
・・・・・式(E33)
Figure 0004045338
・・・・・式(E34)
操舵モードM4に対して:
右旋回時において、
Figure 0004045338
・・・・・式(E41)
Figure 0004045338
・・・・・式(E42)
Figure 0004045338
・・・・・式(E43)
Figure 0004045338
・・・・式(E44)
左旋回時において、
Figure 0004045338
・・・・・式(E45)
Figure 0004045338
・・・・・式(E46)
Figure 0004045338
・・・・・式(E47)
Figure 0004045338
・・・・・式(E48)
操舵モードM5に対して:
右旋回時において、
Figure 0004045338
・・・・・式(E51)
Figure 0004045338
・・・・・式(E52)
Figure 0004045338
・・・・・式(E53)
Figure 0004045338
・・・・式(E54)
左旋回時において、
Figure 0004045338
・・・・・式(E55)
Figure 0004045338
・・・・・式(E56)
Figure 0004045338
・・・・・式(E57)
Figure 0004045338
・・・・・式(E58)
但し、上記条件式において、
αは右前車輪に対する操舵角度.
αは左前車輪に対する操舵角度.
αは右後車輪に対する操舵角度.
αは左後車輪に対する操舵角度.
は右前車輪に対する回転速度.
は左前車輪に対する回転速度.
は右後車輪に対する回転速度.
は左後車輪に対する回転速度.
Lは前車輪と後車輪の間の中心線Xと各車輪の間の距離.
Wは右車輪と左車輪の間の中心線Yと各車輪の間の距離.
Rは各車輪の旋回軌跡が同心円弧となる場合の、同心円弧の中心と、各車輪の位置に対する中心点の間の距離.(車両の中心から車両の旋回中心までの距離、すなわち車両の回転半径)
【0005】
しかしながら、車両の進行方向を変えるために、距離(車両の回転半径)Rを操舵指令値として、操舵指令値Rの設定値を増加あるいは減少させることにより、上記の条件式に従って各車輪の操舵角度α,α,α,αを減少あるいは増加させて車両の進行方向を変える場合、操舵指令値Rを現在の操舵指令値Rから所望の操舵指令値Rへ設定を変えても、各車輪の操舵角度α,α,α,αが上記条件式で規定される新たな操舵角度に到達する迄に若干の時間差(操舵指令追随時間)が生ずることから、その操舵指令追随時間の間の操舵過程において、左右両車輪の相互の向きが車両の進行方向に対し先拡がり状態となる開脚現象や、左右両車輪の相互の向きが車両の進行方向に対し先すぼみ状態となる閉脚現象が生ずる惧れがある。なお、開脚現象と閉脚現象を総じて開閉脚現象という。そして操舵過程において開閉脚現象が生ずると、操舵機構に無理な力が加わって故障の原因になる上に、車両上の人や物の安定が損なわれて危険を伴う。
【0006】
また、実際に車両に乗車して操舵する運転者にとって車輪の操舵角度(車両の走行方向)と距離Rの間の物理的関係を直感的・体感的に捉えることが難しい上に、距離Rは、車両の直進方向を境にその左右で−∞から+∞へ、あるいは+∞から−∞へと不連続に反転することから、このような不連続に変化する距離Rを、操舵角度α,α,α,αの操舵指令値、すなわち操舵角度設定パラメータとして用いることは運転実務上好ましいとは言えない。
【0007】
【特許文献1】
特願2001−351127号特許出願明細書
【0008】
【発明が解決しようとする課題】
この発明は、上記のような操舵上の問題点に鑑み、4輪独立操舵車両の操舵過程において車輪の開閉脚現象が生じないようにすると共に、車両の回転(旋回)半径に相当する距離Rに代わる操舵指令値を用いることにより、すなわち操舵指令値と車両走行方向の物理的関係が、車両を運行する運転者の操舵感覚に照らして分かり易くなる操舵指令値を用いることにより、運転者の操舵操作の錯覚を防ぎ、所望の方向へ迅速的確に操舵できるようにしようとするものである。また、車両の停止時から走行始動する際、あるいは操舵モードの変更時に、車両に衝撃が及ぶことを防止し、また車両が意図しない方向に始動・走行することがないようにしようとするものである。
【0009】
【課題を解決するための手段】
この発明は、上記の課題を解決して目的を達するために、次のような各種の手段を用いる。
【0010】
この発明は、4輪独立操舵車両の操舵過程で車輪の開閉脚現象が生じないようにするために、操舵指令値を変えることにより所定の操舵モードを形成する操舵拘束条件式に従って車両の四つの車輪の各操舵角度α,α,α,αを個別に制御して車両の走行方向を変える操舵制御において、操舵拘束条件式の中の一つの変数を操舵指令値Sとし、その操舵指令値SをSからSへ変えて、各車輪の操舵角度α,α,α,αを、操舵指令値Sに対応する各操舵角度[α,α,α,αS1 から操舵指令値Sに対応する各操舵角度[α,α,α,αS2 へ移行する過程で、操舵指令値Sに微小操舵指令値ΔSを加えた操舵指令値(S+ΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αS1+ΔS を演算し、その微小移行操舵角度[α,α,α,αS1+ΔS に向けて各操舵角度α,α,α,αを変化させ、各操舵角度α,α,α,αが前記微小移行操舵角度[α,α,α,α4]S1+ΔS に到達して舵角整合したことを検知した後、前記操舵指令値(S+ΔS)に更に微小操舵指令値ΔSを加えた操舵指令値(S+2ΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,α]S+2ΔS を演算し、その微小移行操舵角度[α,α,α,αS1+2ΔS に向けて各操舵角度α,α,α,αを変化させ、以後同様に、各車輪の操舵角度α,α,α,αが舵角整合したことを検知した後、微小操舵指令値ΔSを順次加えた操舵指令値(S+nΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αS1+nΔSを演算し、その微小移行操舵角度[α,α,α,αS1+nΔS に向けて各操舵角度α,α,α,αを変化させ、各操舵角度α,α,α,αが微小移行操舵角度[α,α,α,αS1+nΔS に到達して舵角整合したことの検知を繰り返して、各車輪の操舵角度α,α,α,αをそれぞれ各操舵角度[α,α,α,αS1 から各操舵角度[α,α,α,αS2 へ変化させることにより4輪独立操舵車両の操舵制御を行う。
【0011】
また、車輪の駆動モータが同期モータあるいは誘導モータの場合、各車輪の操舵角度α,α,α,αと回転速度n,n,n,nを個別に変化させて操舵制御する。すなわち、操舵指令値を変えることにより所定の操舵モードを形成する操舵拘束条件式に従って車両の四つの車輪の各操舵角度α,α,α,αと各回転速度n,n,n,nを個別に制御して車両の走行方向を変える操舵制御において、操舵拘束条件式中の一つの変数を操舵指令値Sとし、その操舵指令値SをSからSへ変えて、各車輪の操舵角度α,α,α,αを、操舵指令値Sに対応する各操舵角度[α,α,α,αS1 から操舵指令値Sへ対応する各操舵角度[α,α,α,αS2 に移行する過程で、操舵指令値Sに微小操舵指令値ΔSを加えた操舵指令値(S+ΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αS1+ΔS と微小移行回転速度[n,n,n3,n4]S1+ΔSを演算し、その微小移行操舵角度[α,α,α,αS1+ΔS とその微小移行回転速度[n,n,n,nS1+ΔSに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、各操舵角度α,α,α,αが前記微小移行操舵角度[α,α,α,αS1+ΔS に到達して舵角整合したことを検知した後、前記操舵指令値(S+ΔS)に更に微小操舵指令値ΔSを加えた操舵指令値(S+2ΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αS1+2ΔS と微小移行回転速度[n,n,n,nS1+2ΔSを演算し、その微小移行操舵角度[α,α,α,αS1+2ΔS とその微小移行回転速度[n,n,n,nS1+2ΔSに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、以後同様に、各車輪の操舵角度α,α,α,αが舵角整合したことを検知した後、微小操舵指令値ΔSを順次加えた操舵指令値(S1+nΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αS1+nΔSと微小移行回転速度[n,n,n,nS1+nΔSを演算し、その微小移行操舵角度[α,α,α,αS1+nΔS とその微小移行回転速度[n,n,n,nS1+nΔSに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、各操舵角度α,α,α,αが微小移行操舵角度[α,α,α,αS1+nΔS に到達して舵角整合したことの検知を繰り返して、各車輪の操舵角度α,α,α,αをそれぞれ各操舵角度[α,α,α,αS1 から各操舵角度[α,α,α,αS2 へ変化させることにより4輪独立操舵車両の操舵制御を行う。
【0012】
そして実際に用いる操舵指令値の例として、各車輪の旋回軌跡が同心円弧となる場合の同心円弧の中心点と各車輪の位置に対する中心点の間の距離Rを操舵指令値として用いる。すなわち、操舵指令値を変えることにより所定の操舵モードを形成する操舵拘束条件式に従って車両の四つの車輪の各操舵角度α,α,α,αを個別に制御して車両の走行方向を変える操舵制御において、各車輪の旋回軌跡が同心円弧となる場合の同心円弧の中心点と各車輪の位置に対する中心点の間の距離Rを操舵指令値とし、その操舵指令値RをRからRへ変えて、各車輪の操舵角度α,α,α,αを、操舵指令値Rに対応する各操舵角度[α,α,α,αR1 から操舵指令値R2に対応する各操舵角度[α,α,α,αR2 へ移行する過程で、操舵指令値R1に微小操舵指令値ΔRを加えた操舵指令値(R+ΔR)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αR1+ΔR を演算し、その微小移行操舵角度[α,α,α,αR1+ΔR に向けて各操舵角度α,α,α,αを変化させ、各操舵角度α,α,α,αが前記微小移行操舵角度[α,α,α,αR1+ΔR に到達して舵角整合したことを検知した後、前記操舵指令値(R+ΔR)に更に微小操舵指令値ΔRを加えた操舵指令値(R+2ΔR)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αR1+2ΔR を演算し、その微小移行操舵角度[α,α,α,αR1+2ΔR に向けて各操舵角度α,α,α,αを変化させ、以後同様に、各車輪の操舵角度α,α,α,αが舵角整合したことを検知した後、微小操舵指令値ΔRを順次加えた操舵指令値(R+nΔR)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αR1+nΔR を演算し、その微小移行操舵角度[α,α,α,αR1+nΔR に向けて各操舵角度α,α,α,αを変化させ、各操舵角度α,α,α,αが微小移行操舵角度[α,α,α,αR1+nΔR に到達して舵角整合したことの検知を繰り返して、各車輪の操舵角度α,α,α,αをそれぞれ各操舵角度[α,α,α,αR1 から各操舵角度[α,α,α,αR2 へ変化させることにより4輪独立操舵車両の操舵制御を行う。
【0013】
また、車輪の駆動モータが同期モータあるいは誘導モータの場合、各車輪の旋回軌跡が同心円弧となる場合の同心円弧の中心点と各車輪の位置に対する中心点の間の距離Rを操舵指令値とし、その操舵指令値RをRからRへ変えて、各車輪の操舵角度α,α,α,αを、操舵指令値Rに対応する各操舵角度[α,α,α,αR1 から操舵指令値Rに対応する各操舵角度[α,α,α,αR2 へ移行する過程で、操舵指令値Rに微小操舵指令値ΔRを加えた操舵指令値(R+ΔR)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αR1+ΔR と微小移行回転速度[n,n,n,nR1+ΔRを演算し、その微小移行操舵角度[α,α,α,αR1+ΔR とその微小移行回転速度[n,n,n,nR1+ΔRに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、各操舵角度α,α,α,αが前記微小移行操舵角度[α,α,α,αR1+ΔR に到達して舵角整合したことを検知した後、前記操舵指令値(R+ΔR)に更に微小操舵指令値ΔRを加えた操舵指令値(R+2ΔR)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αR1+2ΔR と微小移行回転速度[n,n,n,nR1+2ΔRを演算し、その微小移行操舵角度[α,α,α,αR1+2ΔR とその微小移行回転速度[n,n,n,nR1+2ΔR に向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、以後同様に、各車輪の操舵角度α,α,α,αが操舵整合したことを検知した後、微小操舵指令値ΔRを順次加えた操舵指令値(R+nΔR)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αR1+nΔRと微小移行回転速度[n,n,n,nR1+nΔRを演算し、その微小移行操舵角度[α,α,α,αR1+nΔR とその微小移行回転速度[n,n,n,nR1+nΔRに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、各操舵角度α,α,α,αが微小移行操舵角度[α,α,α,αR1+nΔR に到達して舵角整合したことの検知を繰り返して、各車輪の操舵角度α,α,α,αをそれぞれ各操舵角度[α,α,α,αR1 から各操舵角度[α,α,α,αR2 へ変化させることにより輪独立操舵車両の操舵制御を行う。
【0014】
また、特に多用されると考えられる所定の操舵モードの例として、右後車輪の走行軌跡と左後車輪の走行軌跡がそれぞれ右前車輪の走行軌跡と左前車輪の走行軌跡に追従する操舵モード(略して「操舵モードM1」という)と、前車輪の旋回軌跡に対し後車輪の旋回軌跡がいわゆる内輪差軌跡となる操舵モード(略して「操舵モードM3という」について、操舵モードを形成する操舵拘束条件式を明示する。
【0015】
すなわち、各車輪の旋回軌跡が同心円弧となる場合の同心円弧の中心点と各車輪の位置に対する中心点の間の距離Rを操舵指令値とした場合、右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する操舵角度をα,α,α,αとし、右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する回転速度をn,n,n,nとし、前車輪と後車輪の間の中心線Xと各車輪の間の距離をLとし、右車輪と左車輪の間の中心線Yと各車輪の間の距離をWとして、
操舵モードM1を形成する操舵拘束条件式を、
Figure 0004045338
Figure 0004045338
Figure 0004045338
で表すことができる条件式とし、
操舵モードM3を形成する操舵拘束条件式を、
Figure 0004045338
Figure 0004045338
Figure 0004045338
Figure 0004045338
で表すことができる条件式とする。
なお、操舵制御にあたり右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する回転速度n,n,n,nを強制制御する必要がない場合は、上記のn:n:n:nに関する条件式は不要である。
【0016】
またこの発明は、操舵指令値を運転者の操舵方向感覚に適合したものとして運転者の操舵操作の錯覚を防ぎ所望の方向への操舵を確実に実行できるようにするために、上記の操舵指令値R(車両の回転半径に相当する距離R)に代わる操舵指令値として、車両上の任意の点Pnの移動方向が車両の右車輪・左車輪間の中心線Yとなす角度α、あるいは左右の前車輪を結ぶ直線の中点Poの移動方向が車両の右車輪・左車輪間の中心線Yとなす角度αを用いる。
【0017】
すなわち、この発明は、操舵指令値の取り方を変えることにより、所定の操舵モードを形成する操舵拘束条件式に従って車両の四つの車輪の各操舵角度α,α,α,αを個別に制御して車両の走行方向を変える操舵制御において、車両上の任意の点Pnの移動方向が車両の右車輪・左車輪間の中心線Yとなす角度αを操舵指令値とし、その操舵指令値αをαn1からαn2へ変えて、各車輪の操舵角度α,α,α,αを、操舵指令値αn1に対応する各操舵角度[α,α,α,ααn1 から操舵指令値αn2に対応する各操舵角度[α,α,α,ααn2 へ移行する過程で、操舵指令値αn1に微小操舵指令値Δαを加えた操舵指令値(αn1+Δα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,ααn1+Δαnを演算し、その微小移行操舵角度[α,α,α,ααn1+Δαnに向けて各操舵角度α,α,α,αを変化させ、各操舵角度α,α,α,αが前記微小移行操舵角度[α,α,α,ααn1+Δαnに到達して舵角整合したことを検知した後、前記操舵指令値(αn1+Δα)に更に微小操舵指令値Δαを加えた操舵指令値(αn1+2Δα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,ααn1+2Δαn を演算し、その微小移行操舵角度[α,α,α,ααn1+2Δαn に向けて各操舵角度α,α,α,αを変化させ、以後同様に、各車輪の操舵角度α,α,α,αが舵角整合したことを検知した後、微小操舵指令値Δαを順次加えた操舵指令値(αn1+nΔα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,ααn1+nΔαnを演算し、その微小移行操舵角度[α,α,α,ααn1+nΔαn に向けて各操舵角度α,α,α,αを変化させ、各操舵角度α,α,α,αが微小移行操舵角度[α,α,α,ααn1+nΔαnに到達して舵角整合したことの検知を繰り返して、各車輪の操舵角度α,α,α,αをそれぞれ各操舵角度[α,α,α,ααn1 から各操舵角度[α,α,α,ααn2 へ変化させることにより4輪独立操舵車両の操舵制御を行う。
【0018】
あるいはまた、操舵指令値の取り方を変えることにより、所定の操舵モードを形成する操舵拘束条件式に従って車両の四つの車輪の各操舵角度α,α,α,αと各回転速度n,n,n,nを個別に制御して車両の走行方向を変える操舵制御において、車両上の任意の点Pnの移動方向が車両の右車輪・左車輪間の中心線Yとなす角度αを操舵指令値とし、その操舵指令値αをαn1からαn2へ変えて、各車輪の操舵角度α,α,α,αを、操舵指令値αn1に対応する各操舵角度[α,α,α,ααn1 から操舵指令値αn2に対応する各操舵角度[α,α,α,ααn2 へ移行する過程で、操舵指令値αn1に微小操舵指令値Δαを加えた操舵指令値(αn1+Δα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,ααn1+Δαnと微小移行回転速度[n,n,n,nαn+Δαnを演算し、その微小移行操舵角度[α,α,α,ααn1+Δαnとその微小移行回転速度[n,n,n,nαn1+Δαnに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、各操舵角度α,α,α,αが前記微小移行操舵角度[α,α,α,ααn1+Δαnに到達して舵角整合したことを検知した後、前記操舵指令値(αn1+Δα)に更に微小操舵指令値Δαを加えた操舵指令値(αn1+2Δα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,ααn1+2Δαnと微小移行回転速度[n,n,n,nαn1+2Δαnを演算し、その微小移行操舵角度[α,α,α,ααn1+2Δαn とその微小移行回転速度[n,n,n,nαn1+2Δαnに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、以後同様に、各車輪の操舵角度α,α,α,αが舵角整合したことを検知した後、微小操舵司令値Δαを順次加えた操舵指令値(αn1+nΔα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,ααn1+nΔαnと微小移行回転速度[n,n,n,nαn1+nΔαnを演算し、その微小移行操舵角度[α,α,α,ααn1+nΔαnとその微小移行回転速度[n,n,n,nαn1+nΔαnに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、各操舵角度α,α,α,αが微小移行操舵角度[α,α,α,ααn1+nΔαnに到達して舵角整合したことの検知を繰り返して、各車輪の操舵角度α,α,α,αをそれぞれ各操舵角度[α,α,α,ααn1 から各操舵角度[α,α,α,ααn2 ヘ変化させることにより4輪独立操舵車両の操舵制御を行う。
【0019】
そして、右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する操舵角度をα,α,α,αとし、右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する回転速度をn,n,n,nとし、前車輪と後車輪の間の中心線Xと各車輪の間の距離をLとし、右車輪と左車輪の間の中心線Yと各車輪の間の距離をWとし、車両上の任意の点PnのX座標をx,Y座標をyとし、点Pnの移動方向が車両の右車輪・左車輪間の中心線Yとなす角度をαとし、角度αを操舵指令値として、所定の操舵モードM1を形成する操舵拘束条件式を、
Figure 0004045338
Figure 0004045338
Figure 0004045338
で表すことができる条件式とし、
所定の操舵モードM3を形成する操舵拘束条件式を、
Figure 0004045338
Figure 0004045338
Figure 0004045338
Figure 0004045338
で表すことができる条件式とする。
なお、操舵制御にあたり右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する回転速度n,n,n,nを強制制御する必要がない場合は、上記のn:n:n:nに関する条件式は不要である。
【0020】
またこの発明は、操舵指令値の取り方を変えることにより、所定の操舵モードを形成する操舵拘束条件式に従って車両の四つの車輪の各操舵角度α,α,α,αを個別に制御して車両の走行方向を変える操舵制御において、左右の前車輪を結ぶ直線の中点P0の移動方向が車両の右車輪・左車輪間の中心線Yとなす角度αを操舵指令値とし、その操舵指令値αをα01からα02へ変えて各操舵角度α,α,α,αを、操舵指令値α01に対応する各操舵角度[α,α,α,αα01 から操舵指令値α02に対応する各操舵角度[α,α,α,αα02へ移行する過程で、操舵指令値α01に微小操舵指令値Δαを加えた操舵指令値(α01+Δα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αα01+Δα0を演算し、その微小移行操舵角度[α,α,α,αα01+Δα0に向けて各操舵角度α,α,α,αを変化させ、各操舵角度α,α,α,αが前記微小移行操舵角度[α,α,α,αα01+Δα0 に到達して舵角整合したことを検知した後、前記操舵指令値(α01+Δα)に更に微小操舵指令値Δαを加えた操舵指令値(α01+2Δα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,ααn1+2Δα0を演算し、その微小移行操舵角度[α,α,α,αα01+2Δα0に向けて各操舵角度α,α,α,αを変化させ、以後同様に、各車輪の各操舵角度α,α,α,αが舵角整合したことを検知した後、微小操舵指令値Δαを順次加えた操舵指令値(α01+nΔα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αα01+nΔα0を演算し、その微小移行操舵角度[α,α,α,αα01+nΔα0に向けて各操舵角度α,α,α,αを変化させ、各操舵角度α,α,α,αが微小移行操舵角度[α,α,α,αα01+nΔα0に到達して舵角整合したことの検知を繰り返して,各車輪の操舵角度α,α,α,αをそれぞれ各操舵角度[α,α,α,αα01 から各操舵角度[α,α,α,αα02 へ変えることにより4輪独立操舵車両の操舵制御を行なう。
【0021】
あるいはまた、操舵指令値の取り方を変えることにより、所定の操舵モードを形成する操舵拘束条件式に従って車両の四つの車輪の各操舵角度α,α,α,αと各回転速度n,n,n,nを個別に制御して車両の走行方向を変える操舵制御において、左右の前車輪を結ぶ直線の中点Poの移動方向が車両の右車輪・左車輪間の中心線Yとなす角度αを操舵指令値とし、その操舵指令値αをα01からα02へ変えて、各車輪の操舵角度α,α,α,αを、操舵指令値α01に対応する各操舵角度[α,α,α,αα01 から各操舵指令値α02に対応する各操舵角度[α,α,α,αα02 へ移行する過程で、操舵指令値α01に微小操舵司令値Δαを加えた操舵司令値(α01+Δα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αα01+Δα0 と微小移行回転速度[n,n,n,nα01+Δα0を演算し,その微小移行操舵角度[α,α,α,αα01+Δα0 とその微小移行回転速度[n,n,n,nα01+Δα0に向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、各操舵角度α,α,α,αが前記微小移行操舵角度[α,α,α,αα01+Δα0 に到達して舵角整合したことを検知した後、前記操舵指令値(α01+Δα)に更に微小操舵指令値Δαを加えた操舵指令値(α01+2Δα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αα01+2Δα0 と微小移行回転速度[n,n,n,nα01+2Δα0を演算し、その微小移行操舵角度[α,α,α,αα01+2Δα0 とその微小移行回転速度[n,n,n,nα01+2Δα0に向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、以後同様に、各車輪の操舵角度α,α,α,αが舵角整合したことを検知した後、微小操舵指令値Δαを順次加えた操舵指令値(α01+nΔα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αα01+nΔα0と微小移行回転速度[n,n,n,nα01+nΔα0を演算し、その微小移行操舵角度[α,α,α,αα01+nΔα0 とその微小移行回転速度[n,n,n,nα01+nΔα0に向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、各操舵角度α,α,α,αが微小移行操舵角度[α,α,α,αα01+nΔα0に到達して舵角整合したことの検知を繰り返して、各車輪の操舵角度α,α,α,αをそれぞれ各操舵角度[α,α,α,αα01 から各操舵角度[α,α,α,αα02 へ変えることにより4輪独立操舵車両の操舵制御を行なう。
【0022】
そして、右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する操舵角度をα,α,α,αとし、右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する回転速度をn,n,n,nとし、前車輪と後車輪の間の中心線Xと各車輪の間の距離をLとし、右車輪と左車輪の間の中心線Yと各車輪の間の距離をWとし、左右の前車輪を結ぶ直線の中点Poの移動方向が車両の右車輪・左車輪間の中心線Yとなす角度をαとし、角度αを操舵指令値として、所定の操舵モードM1を形成する操舵拘束条件式を、
Figure 0004045338
Figure 0004045338
Figure 0004045338
で表すことができる条件式とし、
所定の操舵モードM3を形成する操舵拘束条件式を、
Figure 0004045338
Figure 0004045338
Figure 0004045338
Figure 0004045338
で表すことができる条件式とする。
なお、操舵制御にあたり右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する回転速度n,n,n,nを強制制御する必要がない場合は、上記のn:n:n:nに関する条件式は不要である。
【0023】
さらにこの発明は、車両が停止状態から走行始動する際、あるいは操舵モードの変更時に、車両の走行に衝撃が生ずることなく車両を所定の操舵モードで所望に方向へ正しく円滑に始動させ走行させるために、車両の前進・後進モードを含む複数種類の操舵モードにおける操舵モード変更時に、各車輪の操舵角度α,α,α,αを一旦α=α=α=α=0の直進方向にリセットした後に、所定の操舵モードを形成する操舵拘束条件式に従って各操舵角度α,α,α,αを個別に変化させる。
【0024】
そしてまた、車両の前進・後進モードを含む複数種類の操舵モードの中から任意に選択される所定の操舵モードを変更する際には、各車輪の操舵角度α,α,α,αが、操舵モード変更後の操舵拘束条件式を満たした後に、車両を走行駆動する。
【0025】
【発明の実施の形態】
この発明の基本的な実施形態の一つは、操舵指令値を変えることにより、所定の操舵モードを形成する操舵拘束条件式に従って車両の四つの車輪の各操舵角度α,α,α,αを個別に制御して車両の走行方向を変える操舵制御において、操舵拘束条件式中の一つの変数を操舵指令値Sとし、その操舵指令値SをSからSへ変えて、各車輪の操舵角度α,α,α,αを、操舵指令値Sに対応する各操舵角度[α,α,α,α]S から操舵指令値S2に対応する各操舵角度[α,α,α,αS2 へ移行する過程で、操舵指令値Sに微小操舵指令値ΔSを加えた操舵指令値(S+ΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αS1+ΔS を演算し、その微小移行操舵角度[α,α,α,αS1+ΔS に向けて各操舵角度α,α,α,αを変化させ、各操舵角度α,α,α,αが前記微小移行操舵角度[α,α,α,αS1+ΔS に到達して舵角整合したことを検知した後、前記操舵指令値(S+ΔS)に更に微小操舵指令値ΔSを加えた操舵指令値(S+2ΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αS1+2ΔS を演算し、その微小移行操舵角度[α,α,α,αS1+2ΔS に向けて各操舵角度α,α,α,αを変化させ、以後同様に、各車輪の操舵角度α,α,α,αが舵角整合したことを検知した後、微小操舵指令値ΔSを順次加えた操舵指令値(S+nΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αS1+nΔSを演算し、その微小移行操舵角度[α,α,α,αS1+nΔS に向けて各操舵角度α,α,α,αを変化させ、各操舵角度α,α,α,αが微小移行操舵角度[α,α,α,αS1+nΔS に到達して舵角整合したことの検知を繰り返して、各車輪の操舵角度α,α,α,αをそれぞれ各操舵角度[α,α,α,αS1 から各操舵角度[α,α,α,αS2 へ変化させる4輪独立操舵車両の操舵制御方法である。
【0026】
また、この発明の基本的な他の実施形態は操舵指令値の取り方を変えることにより、所定の操舵モードを形成する操舵拘束条件式に従って車両の四つの車輪の各操舵角度α,α,α,αと各回転速度n,n,n,nを個別に制御して車両の走行方向を変える操舵制御において、操舵拘束条件式中の一つの変数を操舵指令値Sとし、その操舵指令値SをSからSへ変えて、各車輪の操舵角度α,α,α,αを、操舵指令値Sに対応する各操舵角度[α,α,α,αS1 から操舵指令値Sへ対応する各操舵角度[α,α,α,α]S に移行する過程で、操舵指令値Sに微小操舵指令値ΔSを加えた操舵指令値(S+ΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αS1+ΔS と微小移行回転速度[n,n,n,nS1+ΔSを演算し、その微小移行操舵角度[α,α,α,αS1+ΔS とその微小移行回転速度[n,n,n,nS1+ΔSに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、各操舵角度α,α,α,αが前記微小移行操舵角度[α,α,α,αS1+ΔS に到達して舵角整合したことを検知した後、前記操舵指令値(S+ΔS)に更に微小操舵指令値ΔSを加えた操舵指令値(S+2ΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αS1+2ΔS と微小移行回転速度[n,n,n,nS2+2ΔSを演算し、その微小移行操舵角度[α,α,α,αS1+2ΔS とその微小移行回転速度[n,n,n,nS1+2ΔSに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、以後同様に、各車輪の操舵角度α,α,α,αが舵角整合したことを検知した後、微小操舵指令値ΔSを順次加えた操舵指令値(S+nΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αS1+nΔSと微小移行回転速度[n,n,n,nS1+nΔSを演算し、その微小移行操舵角度[α,α,α,αS1+nΔS とその微小移行回転速度[n,n,n,nS1+nΔSに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、各操舵角度α,α,α,αが微小移行操舵角度[α,α,α,αS1+nΔS に到達して舵角整合したことの検知を繰り返して、各車輪の操舵角度α1,α2,α3,α4をそれぞれ各操舵角度[α,α,α,αS1 から各操舵角度[α,α,α,αS2 へ変化させる4輪独立操舵車両の操舵制御方法である。
【0027】
【実施例】
以下この発明を、その実施例を示す図面を参考に説明する。図1はこの発明に係る電気移動車両の車体ベースの基本構成を示す平面図、図2は同車体ベースに装着される車輪操舵・駆動ブロックの斜視図である。図1において、1は電気移動車両の車体ベースで、点P1,P2は車体ベース1の下面に装着される左右二つの前車輪の位置を示し、点P3,P4は車体ベース1の下面に装着される左右二つの後車輪の位置を示すものである。また、21は右前車輪、22は左前車輪、23は右後車輪、24は左後車輪をそれぞれ示し、矢印Nは車両の前方直進方向を示している。点P1,P2,P3,P4の位置(車輪21,22,23,24の位置)は長方形の各頂点の位置にあって、Oはその長方形の中心点、すなわち各点P1,P2,P3,P4に対する中心点である。換言すればすなわち、図1,3からも明らかなように、各車輪の位置P1,P2,P3,P4に対する中心点Oは、四つの各車輪の位置P1、P2,P3,P4を頂点とする長方形の中心点、すなわち四つの各車輪位置から等距離にある点を意味する。X軸とY軸は中心点Oを通る直交座標軸でこの発明を説明するために仮想設定したものである。そしてX軸は前車輪21,22と後車輪23,24の間の中心線(車両の左右方向の中心線)であり、Y軸は右車輪21,23と左車輪22,24の間の中心線(車両の前後方向の中心線)である。なおY軸の方向は前記矢印Nに示す車両の前方直進方向と同じであり、H1は点P1,P2を結ぶ前車輪軸線で前車輪21,22の仮想車軸に相当し、H2は点P3,P4を結ぶ後車輪軸線で後車輪23,24の仮想車軸に相当する。LはX軸から各点P1,P2,P3,P4までの距離、WはY軸から各点P1,P2,P3,P4までの距離である。また、P0は右前車輪の位置P1と左前車輪の位置P2を結ぶ直線の中点を示している。さらにまた、Pnは車体ベース1上の任意の点で、例えば車両の運転者が立つ位置であり、点Pnの位置は直交座標軸X,Yに対する座標(X座標:xn,Y座標:yn)で示されている。A0は車両の走行に伴う点P0の移動方向を示し、α0は点P0の移動方向A0が車両の中心線Yとなす角度(操舵に伴う中点P0の移動方向角度)を示している。Anは車両の走行に伴う点Pnの移動方向を示し、αnは点Pnの移動方向Anが車両の中心線Yとなす角度(操舵に伴う点Pnの移動方向角度)を示している。
【0028】
,n,n,nは、それぞれ右前車輪21,左前車輪22,右後車輪23,左後車輪24の回転速度を表し、α,α,α,αは、それぞれ車両の操舵制御時における右前車輪21,左前車輪22,右後車輪23,左後車輪24の操舵角度を表している。なお、A1,A2,A3,A4は、それぞれ車両の操舵制御時における右前車輪21,左前車輪22,右後車輪23,左後車輪24の向き(走行向き)を表している。
【0029】
車両の操舵制御時における各車輪21,22,23,24の回転速度n,n,n,nとその操舵角度α,α,α,αは、それぞれ個別に独立制御されるもので、そのために図2に示すように、前車輪21,22と後車輪23,24のそれぞれに回転速度制御用の駆動モータ21a,22a,23a,24aと操舵角度制御用の操舵モータ21b,22b,23b,24bが連結されて個別の操舵・駆動ブロックB1,B2,B3,B4が形成されている。また、車両の走行制御時における各車輪21,22,23,24の実際の走行向き(実際の操舵角度)を操舵角度センサーで検出し、その検出信号を制御系にフィードバックして、運転者が設定した操舵指令値に対応する操舵角度α,α,α,α通りの操舵制御が維持されるようにしている。また、上記の車両に対して、操舵モードM1,M2,M3,M4,M5の操舵モードが用意され、各操舵モードを形成するために必要な各車輪の操舵角度と回転速度を算出する演算プログラムを備えた演算手段(コンピュータ)が電気移動車両に組み込まれている。なお、車輪の駆動モータには、直流モータ、同期モータ、誘導モータ4などが用いられるが、4個の駆動モータに同一仕様の直流モータを採用しこれらを直列接続とする場合は、4個の駆動モータの電気回路的な相補作用により、車輪の空転が無い限り、回転速度n,n,n,n,nの比は拘束条件式を自動的に満たすので、駆動モータを個別に独立制御する必要はない。
【0030】
操舵モードM1は、図3に示すように、前車輪の操舵角度α,αと後車輪の操舵角度α,αを互いに車両の進行方向に対し左右逆方向に切って左右の後車輪の軌跡がそれぞれ左右の前車輪の軌跡に追従する操舵モードである。なお図3において、点P5(X座標:R,Y座標:0)は車両の右回り旋回(時計回り旋回)(CW)時の中心となる点を示し、点P6(X座標:−R,Y座標:0)は車両の左回り旋回(反時計回り旋回)(CCW)時の中心となる点を示している。操舵モードM1においては、図3に示されるように、各車輪の旋回軌跡は同心円弧となるが、点P5,P6 はその同心円弧の中心となる点でもある。そして図3に照らせば明らかなように、操舵モードM1で走行するためには、操舵角度α,αが次の表1に示す条件下において、各車輪21,22,23,24の操舵角度α,α,α,αと回転速度n,n,n,nについて,次の操舵拘束条件式(条件式)(E11),(E12),(E13)が満たされ維持されなければならない。
【0031】
【表1】
Figure 0004045338
【0032】
Figure 0004045338
・・・・・式(E11)
Figure 0004045338
・・・・・式(E12)
Figure 0004045338
・・・・・式(E13)
【0033】
操舵モードM2は、図4に示すように、前車輪の操舵角度α,αと後車輪の操舵角度α,αを共に同方向同角度に切って前車輪と後車輪の軌跡を全て平行パターンとし車両が左右・斜めに平行的に移動する操舵モードである。そして図4に照らせば明らかなように、操舵モードM2で走行するためには、各車輪の操舵角度α,α,α,αと回転速度n,n,n,nについて次の条件式(E21),(E22)が満たされ維持されなければならない。
【0034】
Figure 0004045338
・・・・・式(E21)
Figure 0004045338
・・・・・式(E22)
【0035】
操舵モードM3は、図5に示すように、前車輪の操舵角度α,αのみを操舵する従来の自動車と同様の操舵モードで、前車輪と後車輪相互の軌跡は、いわゆる内輪差軌跡を描く操舵モードである。そして図5に照らせば明らかなように、操舵モードM3では、各車輪の操舵角度α,α,α,αと回転速度n,n,n,nについて、次の条件式(E31),(E32),(E33),(E34)が満たされ維持されている。なお図5に示されるように、操舵モードM3における右旋回の中心となる点P5’と左旋回の中心となる点P6’は、それぞれ後車輪軸線H2に対し距離dだけ離れているが、車両の速度が低い場合にはd≒0とみることができる。
【0036】
Figure 0004045338
・・・・・式(E31)
Figure 0004045338
・・・・・式(E32)
Figure 0004045338
・・・・式(E33)
Figure 0004045338
・・・・式(E34)
但し、
Figure 0004045338
Figure 0004045338
Figure 0004045338
なお、車両は低速で走行するので、d=0とする。
【0037】
操舵モードM4は、図6に示すように、右後車輪(点P3)を中心として車両を右回り旋回(時計回り旋回)(CW)させ、あるいは左後車輪(点P4)を中心として車両を左回り旋回(反時計回り旋回)(CCW)させる操舵モードである。そして図6に照らせば明らかなように、操舵モードM4の走行では、各車輪の操舵角度α,α,α,αと回転速度n,n,n,nについて次の条件式(E41),(E42),(E43),(E44),(E45),(E46),(E47),(E48)が満たされ維持されなければならない。
【0038】
すなわち、右後車輪(点P3)を回転中心として車両を時計回り方向(CW)に旋回させるとき、
Figure 0004045338
・・・・・式(E41)
Figure 0004045338
・・・・・式(E42)
Figure 0004045338
・・・・・式(E43)
Figure 0004045338
・・・・・式(E44)
但し、
Figure 0004045338
【0039】
すなわち、左後車輪(点P4)を回転中心として車両を反時計回り方向(CCW)に旋回させるとき、
Figure 0004045338
・・・・式(E45)
Figure 0004045338
・・・・・式(E46)
Figure 0004045338
・・・・・式(E47)
Figure 0004045338
・・・・・式(E48)
但し、
Figure 0004045338
【0040】
操舵モードM5は、図7に示すように、右前車輪(点P1)を中心として車両を右回り(時計回り)(CW)させ、あるいは左前車輪(点P2)を中心として車両を左回り(反時計回り)(CCW)に旋回させる操舵モードである。そして図7に照らせば明らかなように、操舵モードM5の走行では、各車輪の操舵角度α,α,α,αと回転速度n,n,n,nについて次の条件式(E51),(E52),(E53),(E54),(E55),(E56),(E57),(E58)が維持されなければならない。
【0041】
すなわち、右前車輪(点P1)を回転中心として車両を時計回り(CW)に旋回させるとき、
Figure 0004045338
・・・・・式(E51)
Figure 0004045338
・・・・・式(E52)
Figure 0004045338
・・・・・式(E53)
Figure 0004045338
・・・・・式(E54)
但し、
Figure 0004045338
【0042】
すなわち、左前車輪(点P2)を回転中心として車両を反時計回り(CCW)に旋回させるとき、
Figure 0004045338
・・・・・式(E55)
Figure 0004045338
・・・・式(E56)
Figure 0004045338
・・・・・式(E57)
Figure 0004045338
・・・・・式(E58)
但し、
Figure 0004045338
【0043】
このようにそれぞれの操舵モードM1,M2,M3,M4,M5において四つの各車輪が辿る軌跡が同じでないことから、各軌跡の円弧長に合わせた回転速度で車輪を駆動しなければならず、各車輪21,22,23,24の操舵角度α,α,α,αと回転速度n,n,n,nは、操舵遷移中も操舵終了後においても、車両の進行速度および進行方向の指令と、操舵モードによって決定される各条件式(E11)〜(E58)の条件を満たすように制御されなければならない。そしてこの条件が満たされない場合には、車輪の空転やスリップが生じたり、左右の車輪の間に開閉脚現象が生ずる。
【0044】
したがって車両には、操舵モードM1に沿う操舵に必要な操舵拘束条件式(E11)(E12)に基づいて各車輪の操舵角度α,α,α,α を演算する演算プログラム、操舵モードM2に沿う操舵に必要な操舵拘束条件式(E21)に基づいて各車輪の操舵角度α,α,α,α を演算する演算プログラム、操舵モードM3に沿う操舵に必要な操舵拘束条件式(E31),(E32),(E33)に基づいて各車輪の操舵角度α,α,α,α を演算する演算プログラム、操舵モードM4に沿う操舵に必要な操舵拘束条件式(E41),(E42),(E43),(E45),(E46),(E47)に基づいて各車輪の操舵角度α,α,α,α を演算する演算プログラム、操舵モードM5に沿う操舵に必要な操舵拘束条件式(E51),(E52),(E53),(E55),(E56),(E57)に基づいて各車輪の操舵角度α1,α2,α3,α4 を演算する演算プログラムが記憶された車輪操舵角度演算手段が搭載されている。
【0045】
また車両には、操舵モードM1に沿う操舵に必要な操舵拘束条件式(E13)に基づいて各車輪の回転速度n,n,n,n を算出する演算プログラム、操舵モードM2に沿う操舵に必要な操舵拘束条件式(E22)に基づいて各車輪の回転速度n,n,n,n を算出する演算プログラム、操舵モードM3に沿う操舵に必要な操舵拘束条件式(E34)に基づいて各車輪の回転速度n,n,n,n を算出する演算プログラム、操舵モードM4に沿う操舵に必要な操舵拘束条件式(E44),(E48)に基づいて各車輪の回転速度n,n,n,n を算出する演算プログラム、操舵モードM5に沿う操舵に必要な操舵拘束条件式(E54),(E58)に基づいて各車輪の回転速度n,n,n,n を演算する演算プログラムが記憶された車輪回転速度演算手段が搭載されている。
【0046】
この発明は、車両の走行中すなわち4輪独立操舵車両の操舵過程で常に上記の操舵拘束条件式を満たすように制御して車輪の開閉脚現象を防止するものであるが、そのために先ず、各車輪の操舵角度α,α,α,αを設定し変更するための「操舵指令値」について考える必要がある。
【0047】
例えば操舵モードM1では、先に記したように、操舵角度α,α,α,αが式(E11),式(E12)によって定められる。
Figure 0004045338
・・・・・式(E11)
Figure 0004045338
・・・・式(E12)
ここで、変数はα,α,α,αとRの5個で式は4個存在するから、変数のうちの一つを決めれば他の四つの変数は一義的に決まる。そして、距離Lと距離Wは車両設計によって決まっているから、距離Rを決めることにより操舵角度α,α,α,αは一義的に決まる。従って、距離(車両の回転半径)Rが「操舵指令値」として用いられてきた。
【0048】
また、例えば操舵モードM3では、先に記したように、操舵角度α,α,α,αが式(E31),式(E32),式(E33)によって定められる。
Figure 0004045338
・・・・・式(E31)
Figure 0004045338
・・・・・式(E32)
Figure 0004045338
・・・・式(E33)
ここで、変数はα,αとRの3個で式は2個存在するから、変数のうちの一つを決めれば他の二つの変数は一義的に決まる。そして、距離Lと距離Wは車両設計によって決まっているから、距離Rを決めることにより操舵角度α,α,α,αは一義的に決まる。従って、距離(車両の回転半径)Rが「操舵指令値」として用いられてきた。
【0049】
ここでW=0.5m,L=1mとして、距離Rと操舵角度α,α,α,αの値を求めると、操舵モードM1では図8に示す特性となり、操舵モードM3では図9に示す特性となる。次に操舵モードM1を例にとって、R=1mからR=2mに操舵したときの操舵角度α,αの変化を図8から調べると、操舵角度αは63.2度から33.7度に変化してその変化幅は63.2−33.7=29.5度であり、操舵角度αは33.7度から21.8度に変化してその変化幅は33.7−21.8=11.9度であることが分かる。そこで若し操舵角度αと操舵角度αとが同じ角速度で回転したとすれば、操舵角度αが目標値に達した時に操舵角度αは未だ目標値に向けての回転途上にあることになり、進行方向に対して左右の車輪が先拡がりの状態となって開脚現象が生ずる。また、R=1mからR=2mに操舵したときは、これとは逆の閉脚現象が生ずる。開閉脚現象が生ずると、操舵機構に無理が加わるのみならず、車両に乗っている人は前のめりになって危険なので開閉脚現象が生じないようにしなければならない。そして開閉脚現象を防止するためには、車両が動いている総ての時間断面において、条件式の式(E11),式(E12)が満たされていなければならないことが分かる。このことは操舵モードM1のみならず操舵モードM2,M3,M4,M5ついても同様である。このように車両の各車輪の操舵角度(各車輪の走行向き)がそれぞれの操舵拘束条件式を満たす角度になることを、本願においては、「舵角整合」という。
【0050】
舵角整合を実現させる一つの方法は、運転者が操舵指令値となる距離Rを変えて新たな操舵指令値(距離)を設定し操舵角度α,α,α,αを変える際に、操舵指令値(距離)Rを徐々に変化させながら、その時々に操舵拘束条件式を満たす操舵角度を演算して操舵角度α,α,α,αを徐々に変化させ、若干の操舵指令追随時間の後に、操舵指令値(距離)Rを上記の新たに設定した操舵指令値(変更後の操舵指令目標値)に導くと共に、操舵角度α,α,α,αを上記の新たに設定した操舵指令値に対応する所期の操舵角度へ移行させることである。
【0051】
すなわち、操舵指令値を変えることにより、所定の操舵モードを形成する操舵拘束条件式に従って車両の四つの車輪の各操舵角度α,α,α,αと各回転速度n,n,n,nを個別に制御して車両の走行方向を変える操舵制御において、各車輪の旋回軌跡が同心円弧となる場合の同心円弧の中心点と各車輪の位置に対する中心点の間の距離Rを操舵指令値とし、その操舵指令値RをRからRへ変えて、各車輪の操舵角度α,α,α,αを、操舵指令値Rに対応する各操舵角度[α,α,α,αR1 から操舵指令値Rに対応する各操舵角度[α,α,α,αR2 へ移行する過程で、操舵指令値Rに微小操舵指令値ΔRを加えた操舵指令値(R+ΔR)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αR1+ΔR と微小移行回転速度[n,n,n,nR1+ΔRを演算し、その微小移行操舵角度[α,α,α,αR1+ΔR とその微小移行回転速度[n,n,n,nR1+ΔRに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、各操舵角度α,α,α,αが前記微小移行操舵角度[α,α,α,αR1+ΔR に到達して舵角整合したことを検知した後、前記操舵指令値(R+ΔR)に更に微小操舵指令値ΔRを加えた操舵指令値(R+2ΔR)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αR1+2ΔR と微小移行回転速度[n,n,n,nR1+2ΔRを演算し、その微小移行操舵角度[α,α,α,αR1+2ΔR とその微小移行回転速度[n,n,n,nR1+2ΔR に向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、以後同様に、各車輪の操舵角度α,α,α,αが操舵整合したことを検知した後、微小操舵指令値ΔRを順次加えた操舵指令値(R+nΔR)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αR1+nΔRと微小移行回転速度[n,n,n,nR1+nΔRを演算し、その微小移行操舵角度[α,α,α,αR1+nΔR とその微小移行回転速度[n1,n2,n3,n4]R1+nΔRに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、各操舵角度α,α,α,αが微小移行操舵角度[α,α,α,αR1+nΔR に到達して舵角整合したことの検知を繰り返して、各車輪の操舵角度α,α,α,αをそれぞれ各操舵角度[α,α,α,αR1 から各操舵角度[α,α,α,αR2 へ変えるものであり、この操舵制御方法がこの発明の特徴である。
【0052】
次に操舵モードM1について、距離(車両の回転半径)(操舵指令値)Rに対する車輪の操舵角度αの感度を調べる。一般に次の公式(1),公式(2)があることから、条件式の式(E11)は次のように展開できる。
Figure 0004045338
のとき、
Figure 0004045338
・・・・公式(1)
Figure 0004045338
のとき、
Figure 0004045338
・・・・・公式(2)
Figure 0004045338
・・・・式(E11)
Figure 0004045338
・・・・・式(1)
同様に
Figure 0004045338
・・・・・式(2)
ここで、式(1)、式(2)に、W=0.5m、L=1mを入れて計算した結果を、図10に示す。図10に示されるところから明らかなように、Rが小さい領域ではαのRに対する感度は高く、また左右の車輪によって感度が違っていることが分かる。また操舵モードM3についても同様の計算をした結果を図11に示すが、同様にRが小さい領域でαのRに対する感度は高く、左右の車輪によって感度が違っていることが分かる。
【0053】
このように、車輪の操舵角度αの、距離(車両の回転半径すなわち操舵指令値)Rに対する感度は、Rの値によって大きく変わることから、距離(車両の回転半径)Rをそのまま操舵指令値とすることは適切ではない。そこで新たに距離Rと時間tの関数、R=f(t)を導入し、その関数R=f(t)を介して車輪の操舵角度αを制御することが考えられる。その場合の関数の導入過程は次の通りである。
【0054】
式(1)を次のように変形する。
Figure 0004045338
Figure 0004045338
・・・・・式(3)
同様に
Figure 0004045338
・・・・・式(4)
ここで
Figure 0004045338
とするには(但し,K=一定値)、
Figure 0004045338
・・・・式(5)
したがって、
Figure 0004045338
・・・・式(6)
Figure 0004045338
・・・・式(7)
となる。ここで次の公式(3)を適用すれば式(13)に至る。すなわち、
Figure 0004045338
・・・・・公式(3)
Figure 0004045338
・・・・式(8)
Figure 0004045338
・・・・式(9)
Figure 0004045338
・・・・式(10)
Figure 0004045338
・・・・・式(11)
ここで、R=0,W=0.5,L=1,t=0 とすると、積分定数CLは、CL=0.463648 (rad)となる。したがって、K=−π/20とすれば、
Figure 0004045338
・・・・・式(12)
Figure 0004045338
・・・・式(13)
すなわち、距離Rを式(13)に示す時間tの関数として変化させればよい。このとき、右前車輪の操舵角度α、左前車輪の操舵角度αは、それぞれ次の式(14)、式(15)、式(16)に示すようになる。
Figure 0004045338
・・・・・式(E11)
Figure 0004045338
・・・・・式(14)
Figure 0004045338
・・・・・式(E12)
Figure 0004045338
・・・・・式(15)
Figure 0004045338
・・・・式(16)
【0055】
図12は、時間tに対する距離R、右前車輪の操舵角度α、左前車輪の操舵角度αの変化を示しており、右前車輪の操舵角度αは時間tに対して直線的に変化することが分かる。このように、車両の前後方向の中心線Yから車両の回転中心までの距離Rを操舵指令値としたとき、Rの変化領域の中でdα/dRは大きく変化するので、これを一定にするような時間tと距離Rについての新しい関数R=f(t)(例えば操舵モードM1の場合、R=W+Ltan(−Kt+CL))を導入し、時間tの関数として距離Rを制御し、その距離Rから操舵角度αを制御することによって良好な制御を実現することができる。
【0056】
上述のように、距離Rを操舵指令値として用いると、理論展開の上ではシンプルとなるが、運転者が実際に操舵制御する場合には、運転者にとって操舵操作がやり難いことは否めない。すなわち、距離Rが小さい時と大きい時とでは感度dα/dRが2桁以上も違い、実際の運転で頻度が高い直進方向近傍の操舵角度範囲において感度dα/dRが過敏で、また距離Rが+∞から−∞へ又−∞から+∞へと不連続に反転し、さらに距離Rが車両の横方向の回転中心までの距離であるため運転者にとって実際の運転感覚と結び付き難いことから、運転者の操舵操作を難しくしている。
【0057】
そこでこの発明では、左右の前車輪を結ぶ直線上の中点P0の移動方向が車両の中心線となす角度αを、距離Rに代えて、操舵指令値とするものである。
【0058】
すなわち、例えば操舵モードM1(図3参照)においては、
Figure 0004045338
・・・・式(17)
Figure 0004045338
・・・・式(18)
式(18)を前記の式(E11),(E12),(E13)に代入すれば、各車輪の操舵角度α,α,α,α、および各車輪の回転速度n,n,n,nの比は次式のようになる。
Figure 0004045338
・・・・・式(19)
Figure 0004045338
・・・・式(20)
Figure 0004045338
・・・・・式(21)
【0059】
操舵モードM3(図5参照)においては、
Figure 0004045338
・・・・式(22)
Figure 0004045338
・・・・式(23)
式(23)を前記の式(E31),(E32),(E34)に代入すれば、各車輪の操舵角度α,αおよび各車輪の回転速度n,n,n,nの比は次式のようになる。
Figure 0004045338
・・・・・式(24)
Figure 0004045338
・・・・式(25)
Figure 0004045338
・・・・式(26)
【0060】
また、W=0.5m,L=1mとして、中点P0の移動方向が車両中心線Yとなす角度αと各車輪の操舵角度α1,α2,α3,α4の関係を求めると、操舵モードM1では図13に示すようになり、操舵モードM3では図14に示すようになる。このように、操舵制御の操舵指令値として、左右の前輪を結ぶ直線上の中点P0の移動方向が車両中心線Yとなす角度αを用いることによって、距離Rを操舵指令値として用いる場合に比し、制御系の過敏な特性と不連続特性の弊害を排し、運転者の実際の運転における車両走行方向感覚に沿った操舵制御を行うことができる。
【0061】
更にまた、上記の中点P0に代えて、車両上の任意の点Pn(X座標:x,Y座標:y)の移動方向が車両中心線Yとなす角度αを操舵指令値とすることもできる。(図3,図5参照)
【0062】
車両上の任意の点Pn(X座標:x,Y座標:y)の移動方向が車両中心線Yとなす角度αを操舵指令値とする場合、その角度αと点Pn座標(x,y)の間には次の関係がある。
Figure 0004045338
・・・・・式(27)
Figure 0004045338
・・・・・式(28)
【0063】
そして操舵モードM1においては、上記の式(28)を前記の式(E11),(E12),(E13)に代入することにより、次式(29),(30),(31)が導かれ、点Pnの移動方向角度(操舵指令値)αを基に、各車輪の操舵角度α,α,α,αと回転速度n,n,n,nを制御することができる。
Figure 0004045338
・・・・式(E11)
Figure 0004045338
・・・・・式(29)
Figure 0004045338
・・・・・式(E12)
Figure 0004045338
・・・・・式(30)
Figure 0004045338
・・・・式(31)
【0064】
また操舵モードM3においては、次のように、点Pnの移動方向角度(操舵指令値)αを基に、各車輪の操舵角度α,α,α3,α4と回転速度n,n,n,nを制御することができる。
Figure 0004045338
Figure 0004045338
・・・・・式(32)
Figure 0004045338
・・・・・式(33)
Figure 0004045338
・・・・・式(E33)
Figure 0004045338
・・・・・式(34)
【0065】
【発明の効果】
上記実施例からも明らかなように、この発明に係る4輪独立操舵車両の操舵制御方法によれば、所定の操舵モードを形成する操舵拘束条件式の中の一つの変数を操舵指令値Sとし、その操舵指令値SをSからSへ変えて、各車輪の操舵角度α,α,α,αを、操舵指令値Sに対応する各操舵角度[α,α,α,αS1 から操舵指令値Sに対応する各操舵角度[α,α,α,α]S へ移行する過程で、操舵指令値Sに微小操舵指令値ΔSを加えた操舵指令値(S+ΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,α]S+ΔS を演算し、その微小移行操舵角度[α,α,α,α]S+Δ に向けて各操舵角度α,α,α,αを変化させ、各操舵角度α,α,α,αが前記微小移行操舵角度[α,α,α,αS1+ΔS に到達して舵角整合したことを検知しながら、微小操舵指令値ΔSを順次加えた操舵指令値(S+nΔS)に対して操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αS1+nΔSを演算し、その微小移行操舵角度[α,α,α,αS1+nΔS に向けて各操舵角度α,α,α,αを変化させて、各車輪の操舵角度α,α,α,αをそれぞれ操舵指令値Sに対応する各操舵角度各操舵角度[α,α,α,αS1 から操舵指令値Sに対応する各操舵角度各操舵角度[α,α,α,αS2 へ変化させることにより、車両の操舵過程で車輪の開閉脚現象が生ずることを防止することができる。
【0066】
またこの発明によれば、例えば車両上に立つ運転者の位置など、車両上の任意の点Pnの移動方向が車両の右車輪・左車輪間の中心線Yとなす角度αや、あるいは左右の前車輪を結ぶ直線の中点Poの移動方向が車両の右車輪・左車輪間の中心線Yとなす角度αを操舵指令値として用いることにより、操舵指令値が運転者の操舵方向感覚に適合したものとなって、運転者の操舵操作の錯覚を防ぎ所望の方向への操舵を迅速正確に実行できるようになる。
【0067】
またこの発明によれば、車両を停止状態から発信させる際、あるいは所定の操舵モードにおける操舵モード変更時に、各車輪の操舵角度α,α,α,αを一旦α=α=α=α=0の直進方向にリセットした後に、所定の操舵モードを形成する操舵拘束条件式に従って各操舵角度α,α,α,αを個別に変化させる。
【0068】
またこの発明によれば、車両の発進時あるいは所定操舵モードの変更時に、各車輪の操舵角度α,α,α,αが、所定の操舵モードを形成する操舵拘束条件式を満たした後に、車両を走行駆動させることから、車両が停止状態から始動する際、あるいは操舵モードの変更時に、車両に衝撃を生ずることを防止して走行上の安全性を高め、車両を所定の操舵モードで所望に方向へ正しく円滑に始走行させることができる。
【図面の簡単な説明】
【図1】 この発明に係る電気移動車両の車体ベースの基本構成を示す平面図。
【図2】 同車体ベースに装着される車輪駆動・操舵ブロックの斜視図。
【図3】 操舵モードM1の説明図。
【図4】 操舵モードM2の説明図。
【図5】 操舵モードM3の説明図。
【図6】操舵モードM4の説明図。
【図7】操舵モードM5の説明図。
【図8】操舵モードM1における車両回転半径と操舵角度の関係図。
【図9】操舵モードM3における車両回転半径と操舵角度の関係図。
【図10】操舵モードM1における操舵角度の車両回転半径に対する感度の関係図。
【図11】操舵モードM3における操舵角度の車両回転半径に対する感度の関係図。
【図12】操舵モードM1における車両回転半径と操舵角度の時間に対する関係図。
【図13】操舵モードM1における操舵指令値と各車輪の操舵角度の関係図。
【図14】操舵モードM3における操舵指令値と各車輪の操舵角度の関係図。
【符号の説明】
1 :車体ベース
21 :右前車輪
21a:右前車輪の駆動モータ 21b:右前車輪の操舵モータ
22 :左前車輪
22a:左前車輪の駆動モータ 22b:左前車輪の操舵モータ
23 :左前車輪
23a:右後車輪の駆動モータ 23b:右後車輪の操舵モータ
24 :左後車輪
24a:左後車輪の駆動モータ 24b:左後車輪の駆動モータ
A1 :右前車輪の走行向き B1 :右前車輪の操舵・駆動ブロック
A2 :左前車輪の走行向き B2 :左前車輪の操舵・駆動ブロック
A3 :右後車輪の走行向き B3 :右後車輪の操舵・駆動ブロック
A4 :左後車輪の走行向き B4 :左後車輪の操舵・駆動ブロック
Ao :左右の前車輪を結ぶ直線上の中点の移動方向
An :車両上の任意の点の移動方向
d :点P5’,P6’の後車輪軸線H2からの距離
H1 :前車輪軸線 H2 :後車輪軸線
L :点P1,P2,P3,P4の車両中心線Xからの距離
M1,M2,M3,M4,M5:操舵モード
N :車両の前方直進方向
:右前車輪の回転速度
:左前車輪の回転速度
:右後車輪の回転速度
:左後車輪の回転速度
O :各車輪位置P1,P2,P3,P4に対する中心点
P1 :右前車輪の位置(点)
P2 :左前車輪の位置(点)
P3 :右後車輪の位置(点)
P3 :左後車輪の位置(点)
P5 :操舵モードM1における各車輪の右旋回同心円弧軌跡の中心点
P6 :操舵モードM1における各車輪の左旋回同心円弧軌跡の中心点
P5’ :操舵モードM3における右旋回の中心点
P6’ :操舵モードM3における左旋回の中心点
Po :左右の前車輪を結ぶ直線上の中点
Pn :車両上の任意の点(X座標:xn,Y座標:yn
R :操舵指令値(各車輪の旋回軌跡が同心円弧となる場合の同心円弧の中心点と各車輪の位置に対する中心点の間の距離)
W :点P1,P2,P3,P4の車両中心線Yからの距離
X :前車輪と後車輪の間の中心線(X軸)
Y :右車輪と左車輪の間の中心線(Y軸)
α :右前車輪の操舵角度
α :左前車輪の操舵角度
α :右後車輪の操舵角度
α :左後車輪の操舵角度
α :操舵指令値(左右の前車輪を結ぶ直線上の中点の移動方向が車両中心線Yとなす角度)
α :操舵指令値(車両上の任意の点の移動方向が車両中心線Yとなす角度)
ΔR,Δα,Δα,:微小操舵指令値[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to a steering control method for a vehicle (especially an electric mobile vehicle) that travels by four-wheel independent steering, and the vehicle is operated in a steering mode that adapts to the path configuration of a facility where the vehicle is traveling and the arrangement of objects around the path. The present invention relates to a vehicle steering control method for smoothly and safely traveling a vehicle. In the present invention, the “steering mode” means a basic pattern of a trajectory drawn by each wheel of a vehicle by steering.In the present invention, the “center point with respect to the position of each wheel” means a rectangular center point with the positions of the four wheels as apexes, that is, a point equidistant from the four wheel positions.
[0002]
[Prior art]
  In various indoor and outdoor facilities such as medical institutions, welfare facilities, logistics bases, computer storage buildings, large commercial facilities, libraries, sports / entertainment facilities, amusement parks, etc. In response to this, a method for running control of a four-wheel independent steering electric mobile vehicle in an appropriate steering mode has already been proposed in Japanese Patent Application No. 2001-351127.
[0003]
  That is, Japanese Patent Application No. 2001-351127 discloses an electric mobile vehicle in which left and right front wheels and left and right rear wheels are respectively steered and controlled by separate steering motors and drive motors. Steering modes M1, M2, M3, M4, and M5 are shown. As an example of the steering mode, the right rear wheel traveling locus and the left rear wheel traveling locus are respectively the right front wheel traveling locus and the left front wheel traveling. Steering mode M1 following the trajectory, Steering mode M2 in which the traveling trajectories of the front wheels and the rear wheels are parallel to each other, Steering mode M3 in which the trajectory of the rear wheels is a so-called inner wheel differential trajectory with respect to the turning trajectory of the front wheels, Steering mode M4 for turning the vehicle clockwise around the rear wheel or turning the vehicle counterclockwise around the left rear wheel, and turning the vehicle right around the right front wheel Steering mode M5 turning the vehicle counter-clockwise is shown around a is allowed or the front left wheel pivot Ri. Then, a steering mode suitable for the condition of the passage is selected from the steering modes M1, M2, M3, M4, and M5, and a steering constraint conditional expression (abbreviated as “condition” for the formation of the selected predetermined steering mode) is selected. The rotation of each steering motor and each drive motor is controlled according to the equation), and the steering angle α of each wheel is controlled.1, Α2, Α3, Α4And rotation speed n1, N2, N3, N4There has been proposed a steering control method for controlling.
[0004]
  The following formulas have been proposed as steering constraint conditional formulas (conditional formulas) along the above-described steering modes.
For steering mode M1:
Figure 0004045338
... Formula (E11)
Figure 0004045338
... Formula (E12)
Figure 0004045338
.... Formula (E13)
For steering mode M2:
Figure 0004045338
... Formula (E21)
Figure 0004045338
... Formula (E22)
For steering mode M3:
Figure 0004045338
... Formula (E31)
Figure 0004045338
... Formula (E32)
Figure 0004045338
... Formula (E33)
Figure 0004045338
... Formula (E34)
For steering mode M4:
When turning right,
Figure 0004045338
... Formula (E41)
Figure 0004045338
... Formula (E42)
Figure 0004045338
... Formula (E43)
Figure 0004045338
.... Formula (E44)
When turning left,
Figure 0004045338
... Formula (E45)
Figure 0004045338
... Formula (E46)
Figure 0004045338
... Formula (E47)
Figure 0004045338
... Formula (E48)
For steering mode M5:
When turning right,
Figure 0004045338
... Formula (E51)
Figure 0004045338
... Formula (E52)
Figure 0004045338
... Formula (E53)
Figure 0004045338
.... Formula (E54)
When turning left,
Figure 0004045338
... Formula (E55)
Figure 0004045338
... Formula (E56)
Figure 0004045338
... Formula (E57)
Figure 0004045338
... Formula (E58)
However, in the above conditional expression,
α1Is the steering angle for the right front wheel.
α2Is the steering angle for the left front wheel.
α3Is the steering angle for the right rear wheel.
α4Is the steering angle for the left rear wheel.
n1Is the rotation speed for the right front wheel.
n2Is the rotation speed for the left front wheel.
n3Is the rotational speed for the right rear wheel.
n4Is the rotational speed for the left rear wheel.
L is the distance between the center line X between the front wheel and the rear wheel and each wheel.
W is the distance between each wheel and the center line Y between the right and left wheels.
R is the distance between the center of the concentric arc and the center point with respect to the position of each wheel when the turning trajectory of each wheel is a concentric arc. (Distance from the center of the vehicle to the turning center of the vehicle, that is, the turning radius of the vehicle)
[0005]
  However, in order to change the traveling direction of the vehicle, the steering angle of each wheel according to the above conditional expression is obtained by increasing or decreasing the set value of the steering command value R using the distance (the turning radius of the vehicle) R as the steering command value. α1, Α2, Α3, Α4When the vehicle traveling direction is changed by decreasing or increasing the steering command value R, the steering command value R is changed to the current steering command value R.1To the desired steering command value R2Even if the setting is changed to1, Α2, Α3, Α4Since there is a slight time difference (steering command tracking time) until the vehicle reaches a new steering angle defined by the above conditional expression, in the steering process during the steering command tracking time, However, there is a possibility that an open leg phenomenon that causes the vehicle to spread in the traveling direction of the vehicle or a closed leg phenomenon in which the directions of the left and right wheels are in a sag state with respect to the traveling direction of the vehicle. In addition, the open leg phenomenon and the closed leg phenomenon are collectively referred to as an open / close leg phenomenon. If the open / close leg phenomenon occurs in the steering process, an excessive force is applied to the steering mechanism to cause a failure, and the stability of people and objects on the vehicle is impaired, which is dangerous.
[0006]
  In addition, it is difficult for a driver who actually rides and steers a vehicle to intuitively and physically sense the physical relationship between the wheel steering angle (vehicle traveling direction) and the distance R, and the distance R is In this case, the distance R changes discontinuously from −∞ to + ∞ or from + ∞ to −∞ on the left and right sides of the straight traveling direction of the vehicle.1, Α2, Α3, Α4It is not preferable to use it as a steering command value, that is, a steering angle setting parameter.
[0007]
[Patent Document 1]
Japanese Patent Application No. 2001-351127
[0008]
[Problems to be solved by the invention]
In view of the above-described steering problems, the present invention prevents a wheel opening / closing leg phenomenon from occurring in the steering process of a four-wheel independent steering vehicle, and at the same time, a distance R corresponding to the turning (turning) radius of the vehicle. By using a steering command value that makes it easier to understand the physical relationship between the steering command value and the vehicle traveling direction in light of the steering feeling of the driver operating the vehicle, It is intended to prevent the illusion of steering operation and to steer quickly and accurately in a desired direction. Also, when starting to run from when the vehicle is stopped or when changing the steering mode, it is intended to prevent the vehicle from being impacted and to prevent the vehicle from starting and running in an unintended direction. is there.
[0009]
[Means for Solving the Problems]
  In order to solve the above problems and achieve the object, the present invention uses the following various means.
[0010]
In order to prevent the opening / closing leg phenomenon of the wheels from occurring in the steering process of the four-wheel independent steering vehicle, the present invention is adapted to change the steering command value to change the four vehicle conditions according to the steering constraint condition formula that forms a predetermined steering mode. Wheel steering angle α1, Α2, Α3, Α4In the steering control that individually controls the vehicle and changes the traveling direction of the vehicle, one variable in the steering constraint condition formula is set as the steering command value S, and the steering command value S is set to S1To S2Change the steering angle α of each wheel1, Α2, Α3, Α4Steering command value S1Each steering angle corresponding to [α1, Α2, Α3, Α4]S1 To steering command value S2Each steering angle corresponding to [α1, Α2, Α3, Α4]S2 In the process of shifting to the steering command value S1To the steering command value (S1+ ΔS), a small transition steering angle satisfying the steering constraint condition formula [α1, Α2, Α3, Α4]S1 + ΔS Is calculated, and the small transition steering angle [α1, Α2, Α3, Α4]S1 + ΔS Each steering angle α toward1, Α2, Α3, Α4Each steering angle α1, Α2, Α3, Α4Is the minute transition steering angle [α1, Α2, Α3, Α4] S1 + ΔS , The steering command value (S1Steering command value (S) obtained by adding a small steering command value ΔS to + ΔS)1+ 2ΔS), a small transition steering angle satisfying the steering constraint condition formula [α1, Α2, Α3, Α4] S1+ 2ΔS is calculated, and its small transition steering angle [α1, Α2, Α3, Α4]S1 + 2ΔS Each steering angle α toward1, Α2, Α3, Α4Thereafter, similarly, the steering angle α of each wheel1, Α2, Α3, Α4After detecting that the steering angle is matched, the steering command value (S1+ NΔS), a small transition steering angle satisfying the steering constraint condition formula [α1, Α2, Α3, Α4]S1 + nΔSIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]S1 + nΔS Each steering angle α toward1, Α2, Α3, Α4Each steering angle α1, Α2, Α3, Α4Is the small transition steering angle [α1, Α2, Α3, Α4]S1 + nΔS The steering angle α of each wheel is1, Α2, Α3, Α4For each steering angle [α1, Α2, Α3, Α4]S1 To each steering angle [α1, Α2, Α3, Α4]S2 The steering control of the four-wheel independent steering vehicle is performed by changing to
[0011]
  When the wheel drive motor is a synchronous motor or an induction motor, the steering angle α of each wheel1, Α2, Α3, Α4And rotation speed n1, N2, N3, N4Steering control is performed by individually changing. That is, each steering angle α of each of the four wheels of the vehicle according to a steering constraint conditional expression that forms a predetermined steering mode by changing the steering command value.1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4In the steering control that individually controls the vehicle and changes the traveling direction of the vehicle, one variable in the steering constraint condition formula is set as the steering command value S, and the steering command value S is set to S1To S2Change the steering angle α of each wheel1, Α2, Α3, Α4Steering command value S1Each steering angle corresponding to [α1, Α2, Α3, Α4]S1 To steering command value S2Each steering angle corresponding to [α1, Α2, Α3, Α4]S2 In the process of shifting to the steering command value S1To the steering command value (S1+ ΔS), a small transition steering angle satisfying the steering constraint condition formula [α1, Α2, Α3, Α4]S1 + ΔS And minute transition rotation speed [n1, N2, N3, n4]S1 + ΔSIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]S1 + ΔS And its minute transition rotation speed [n1, N2, N3, N4]S1 + ΔSEach steering angle α toward1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4Each steering angle α1, Α2, Α3, Α4Is the minute transition steering angle [α1, Α2, Α3, Α4]S1 + ΔS , The steering command value (S1Steering command value (S) obtained by adding a small steering command value ΔS to + ΔS)1+ 2ΔS), a small transition steering angle satisfying the steering constraint condition formula [α1, Α2, Α3, Α4]S1 + 2ΔS And minute transition rotation speed [n1, N2, N3, N4]S1 + 2ΔSIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]S1 + 2ΔS And its minute transition rotation speed [n1, N2, N3, N4]S1 + 2ΔSEach steering angle α toward1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4Thereafter, similarly, the steering angle α of each wheel1, Α2, Α3, Α4Steering command value obtained by sequentially adding a small steering command value ΔS after detecting that the steering angle is matched.(S1 + nΔS)The small transition steering angle [α satisfying the steering constraint condition formula1, Α2, Α3, Α4]S1 + nΔSAnd minute transition rotation speed [n1, N2, N3, N4]S1 + nΔSIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]S1 + nΔS And its minute transition rotation speed [n1, N2, N3, N4]S1 + nΔSEach steering angle α toward1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4Each steering angle α1, Α2, Α3, Α4Is the small transition steering angle [α1, Α2, Α3, Α4]S1 + nΔS The steering angle α of each wheel is1, Α2, Α3, Α4For each steering angle [α1, Α2, Α3, Α4]S1 To each steering angle [α1, Α2, Α3, Α4]S2 The steering control of the four-wheel independent steering vehicle is performed by changing to
[0012]
  As an example of the steering command value actually used, the distance R between the center point of the concentric arc when the turning trajectory of each wheel is a concentric arc and the center point with respect to the position of each wheel is used as the steering command value. That is, each steering angle α of each of the four wheels of the vehicle according to a steering constraint conditional expression that forms a predetermined steering mode by changing the steering command value.1, Α2, Α3, Α4In the steering control to change the traveling direction of the vehicle by individually controlling the vehicle, the steering command value is the distance R between the center point of the concentric arc when the turning trajectory of each wheel is a concentric arc and the center point with respect to the position of each wheel. And the steering command value R is R1To R2Change the steering angle α of each wheel1, Α2, Α3, Α4Steering command value R1Each steering angle corresponding to [α1, Α2, Α3, Α4]R1 To each steering angle [α corresponding to the steering command value R21, Α2, Α3, Α4]R2 In the process of shifting to the steering command value (R) obtained by adding a small steering command value ΔR to the steering command value R1.1+ ΔR), a small transition steering angle that satisfies the steering constraint condition formula [α1, Α2, Α3, Α4]R1 + ΔR Is calculated, and the small transition steering angle [α1, Α2, Α3, Α4]R1 + ΔR Each steering angle α toward1, Α2, Α3, Α4Each steering angle α1, Α2, Α3, Α4Is the minute transition steering angle [α1, Α2, Α3, Α4]R1 + ΔR , The steering command value (R1Steering command value (R) obtained by adding a small steering command value ΔR to + ΔR)1+ 2ΔR), a small transition steering angle that satisfies the steering constraint condition formula [α1, Α2, Α3, Α4]R1 + 2ΔR Is calculated, and the small transition steering angle [α1, Α2, Α3, Α4]R1 + 2ΔR Each steering angle α toward1, Α2, Α3, Α4Thereafter, similarly, the steering angle α of each wheel1, Α2, Α3, Α4After detecting that the steering angle is matched, the steering command value (R1+ NΔR), a small transition steering angle satisfying the steering constraint condition formula [α1, Α2, Α3, Α4]R1 + nΔR Is calculated, and the small transition steering angle [α1, Α2, Α3, Α4]R1 + nΔR Each steering angle α toward1, Α2, Α3, Α4Each steering angle α1, Α2, Α3, Α4Is the small transition steering angle [α1, Α2, Α3, Α4]R1 + nΔR The steering angle α of each wheel is1, Α2, Α3, Α4For each steering angle [α1, Α2, Α3, Α4]R1 To each steering angle [α1, Α2, Α3, Α4]R2 The steering control of the four-wheel independent steering vehicle is performed by changing to
[0013]
  When the wheel drive motor is a synchronous motor or an induction motor, the steering command value is the distance R between the center point of the concentric arc when the turning trajectory of each wheel is a concentric arc and the center point with respect to the position of each wheel. The steering command value R is R1To R2Change the steering angle α of each wheel1, Α2, Α3, Α4Steering command value R1Each steering angle corresponding to [α1, Α2, Α3, Α4]R1 To steering command value R2Each steering angle corresponding to [α1, Α2, Α3, Α4]R2  In the process of shifting to the steering command value R1To the steering command value (R1+ ΔR), a small transition steering angle that satisfies the steering constraint condition formula [α1, Α2, Α3, Α4]R1 + ΔR And minute transition rotation speed [n1, N2, N3, N4]R1 + ΔRIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]R1 + ΔR And its minute transition rotation speed [n1, N2, N3, N4]R1 + ΔREach steering angle α toward1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4Each steering angle α1, Α2, Α3, Α4Is the minute transition steering angle [α1, Α2, Α3, Α4]R1 + ΔR , The steering command value (R1Steering command value (R) obtained by adding a small steering command value ΔR to + ΔR)1+ 2ΔR), a small transition steering angle that satisfies the steering constraint condition formula [α1, Α2, Α3, Α4]R1 + 2ΔR And minute transition rotation speed [n1, N2, N3, N4]R1 + 2ΔRIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]R1 + 2ΔR And its minute transition rotation speed [n1, N2, N3, N4]R1 + 2ΔR  Each steering angle α toward1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4Thereafter, similarly, the steering angle α of each wheel1, Α2, Α3, Α4After the steering alignment is detected, a steering command value (R1+ NΔR), a small transition steering angle satisfying the steering constraint condition formula [α1, Α2, Α3, Α4]R1 + nΔRAnd minute transition rotation speed [n1, N2, N3, N4]R1 + nΔRIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]R1 + nΔR And its minute transition rotation speed [n1, N2, N3, N4]R1 + nΔREach steering angle α toward1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4Each steering angle α1, Α2, Α3, Α4Is the small transition steering angle [α1, Α2, Α3, Α4]R1 + nΔR The steering angle α of each wheel is1, Α2, Α3, Α4For each steering angle [α1, Α2, Α3, Α4]R1 To each steering angle [α1, Α2, Α3, Α4]R2 The steering control of the wheel independent steering vehicle is performed by changing to
[0014]
  In addition, as an example of a predetermined steering mode which is considered to be frequently used, a steering mode (abbreviated for the right rear wheel and the left front wheel follows the right front wheel and the left front wheel respectively) And a steering restraint condition that forms a steering mode for a steering mode (abbreviated as “steering mode M3” for short) in which the turning trajectory of the rear wheel is a so-called inner wheel difference trajectory with respect to the turning trajectory of the front wheel. Make the expression explicit.
[0015]
That is, when the steering command value is the distance R between the center point of the concentric arc when the turning trajectory of each wheel is a concentric arc and the center point with respect to the position of each wheel, the right front wheel, the left front wheel, The steering angle for each of the left rear wheels is α1, Α2, Α3, Α4And the rotational speed for each of the right front wheel, left front wheel, right rear wheel, and left rear wheel is n.1, N2, N3, N4And the distance between the center line X between the front wheel and the rear wheel and each wheel is L, and the distance between the center line Y between the right wheel and the left wheel and each wheel is W,
The steering constraint conditional expression that forms the steering mode M1 is
Figure 0004045338
Figure 0004045338
Figure 0004045338
And a conditional expression that can be expressed as
The steering restraint conditional expression that forms the steering mode M3 is
Figure 0004045338
Figure 0004045338
Figure 0004045338
Figure 0004045338
A conditional expression that can be expressed as
Note that the rotational speed n for each of the right front wheel, the left front wheel, the right rear wheel, and the left rear wheel in steering control1, N2, N3, N4If it is not necessary to forcibly control the1: N2: N3: N4The conditional expression for is unnecessary.
[0016]
  Further, the present invention provides the above steering command value so that the steering command value is adapted to the driver's sense of steering direction, and the illusion of the steering operation of the driver is prevented so that steering in a desired direction can be performed reliably. As a steering command value instead of the value R (distance R corresponding to the turning radius of the vehicle), an angle α formed by the moving direction of an arbitrary point Pn on the vehicle and the center line Y between the right wheel and the left wheel of the vehiclen, Or the angle α between the moving direction of the midpoint Po of the straight line connecting the left and right front wheels and the center line Y between the right and left wheels of the vehicle0Is used.
[0017]
  That is, according to the present invention, the steering angle α of each of the four wheels of the vehicle is changed according to the steering constraint conditional expression that forms a predetermined steering mode by changing the way of taking the steering command value.1, Α2, Α3, Α4In the steering control in which the traveling direction of the vehicle is changed by individually controlling the vehicle, the angle α between the moving direction of an arbitrary point Pn on the vehicle and the center line Y between the right wheel and the left wheel of the vehiclenIs the steering command value, and the steering command value αnΑn1To αn2Change the steering angle α of each wheel1, Α2, Α3, Α4Steering command value αn1Each steering angle corresponding to [α1, Α2, Α3, Α4]αn1 To steering command value αn2Each steering angle corresponding to [α1, Α2, Α3, Α4]αn2 In the process of shifting to the steering command value αn1A small steering command value ΔαnSteering command value (αn1+ Δαn) With respect to the small steering angle [α1, Α2, Α3, Α4]αn1 + ΔαnIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]αn1 + ΔαnEach steering angle α toward1, Α2, Α3, Α4Each steering angle α1, Α2, Α3, Α4Is the minute transition steering angle [α1, Α2, Α3, Α4]αn1 + ΔαnAnd the steering command value (αn1+ Δαn) Further steering command value ΔαnSteering command value (αn1+ 2Δαn) With respect to the small steering angle [α1, Α2, Α3, Α4]αn1 + 2Δαn Is calculated, and the small transition steering angle [α1, Α2, Α3, Α4]αn1 + 2Δαn Each steering angle α toward1, Α2, Α3, Α4Thereafter, similarly, the steering angle α of each wheel1, Α2, Α3, Α4After detecting that the steering angle is matched, the small steering command value ΔαnSteering command value (αn1+ NΔαn) With respect to the small steering angle [α1, Α2, Α3, Α4]αn1 + nΔαnIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]αn1 + nΔαn Each steering angle α toward1, Α2, Α3, Α4Each steering angle α1, Α2, Α3, Α4Is the small transition steering angle [α1, Α2, Α3, Α4]αn1 + nΔαnThe steering angle α of each wheel is1, Α2, Α3, Α4For each steering angle [α1, Α2, Α3, Α4]αn1 To each steering angle [α1, Α2, Α3, Α4]αn2 The steering control of the four-wheel independent steering vehicle is performed by changing to
[0018]
  Alternatively, the steering angle α of each of the four wheels of the vehicle is changed according to a steering constraint conditional expression that forms a predetermined steering mode by changing how to take the steering command value.1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4In the steering control in which the traveling direction of the vehicle is changed by individually controlling the vehicle, the angle α between the moving direction of an arbitrary point Pn on the vehicle and the center line Y between the right wheel and the left wheel of the vehiclenIs the steering command value, and the steering command value αnΑn1To αn2Change the steering angle α of each wheel1, Α2, Α3, Α4Steering command value αn1Each steering angle corresponding to [α1, Α2, Α3, Α4]αn1 To steering command value αn2Each steering angle corresponding to [α1, Α2, Α3, Α4]αn2 In the process of shifting to the steering command value αn1A small steering command value ΔαnSteering command value (αn1+ Δαn) With respect to the small steering angle [α1, Α2, Α3, Α4]αn1 + ΔαnAnd minute transition rotation speed [n1, N2, N3, N4]αn + ΔαnIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]αn1 + ΔαnAnd its minute transition rotation speed [n1, N2, N3, N4]αn1 + ΔαnEach steering angle α toward1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4Each steering angle α1, Α2, Α3, Α4Is the minute transition steering angle [α1, Α2, Α3, Α4]αn1 + ΔαnAnd the steering command value (αn1+ Δαn) Further steering command value ΔαnSteering command value (αn1+ 2Δαn) With respect to the small steering angle [α1, Α2, Α3, Α4]αn1 + 2ΔαnAnd minute transition rotation speed [n1, N2, N3, N4]αn1 + 2ΔαnIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]αn1 + 2Δαn And its minute transition rotation speed [n1, N2, N3, N4]αn1 + 2ΔαnEach steering angle α toward1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4Thereafter, similarly, the steering angle α of each wheel1, Α2, Α3, Α4After detecting that the steering angle is matched, the small steering command value ΔαnSteering command value (αn1+ NΔαn) With respect to the small steering angle [α1, Α2, Α3, Α4]αn1 + nΔαnAnd minute transition rotation speed [n1, N2, N3, N4]αn1 + nΔαnIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]αn1 + nΔαnAnd its minute transition rotation speed [n1, N2, N3, N4]αn1 + nΔαnEach steering angle α toward1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4Each steering angle α1, Α2, Α3, Α4Is the small transition steering angle [α1, Α2, Α3, Α4]αn1 + nΔαnThe steering angle α of each wheel is1, Α2, Α3, Α4For each steering angle [α1, Α2, Α3, Α4]αn1 To each steering angle [α1, Α2, Α3, Α4]αn2 The steering control of the four-wheel independent steering vehicle is performed by changing the position.
[0019]
  The steering angle for each of the right front wheel, left front wheel, right rear wheel, and left rear wheel is α1, Α2, Α3, Α4And the rotational speed for each of the right front wheel, left front wheel, right rear wheel, and left rear wheel is n.1, N2, N3, N4The distance between the center line X between the front wheel and the rear wheel and each wheel is L, the center line Y between the right wheel and the left wheel and the distance between each wheel is W, and any on the vehicle X coordinate of the point Pnn, Y coordinate is ynAnd the angle between the movement direction of the point Pn and the center line Y between the right and left wheels of the vehicle is αnAnd the angle αnAs a steering command value, a steering constraint conditional expression for forming a predetermined steering mode M1 is
Figure 0004045338
Figure 0004045338
Figure 0004045338
And a conditional expression that can be expressed as
The steering constraint conditional expression that forms the predetermined steering mode M3 is
Figure 0004045338
Figure 0004045338
Figure 0004045338
Figure 0004045338
A conditional expression that can be expressed as
Note that the rotational speed n for each of the right front wheel, the left front wheel, the right rear wheel, and the left rear wheel in steering control1, N2, N3, N4If it is not necessary to forcibly control the1: N2: N3: N4The conditional expression for is unnecessary.
[0020]
  In addition, the present invention changes each steering angle α of the four wheels of the vehicle in accordance with a steering constraint conditional expression that forms a predetermined steering mode by changing how to take the steering command value.1, Α2, Α3, Α4In the steering control that changes the traveling direction of the vehicle by individually controlling the vehicle, the angle α formed by the moving direction of the midpoint P0 of the straight line connecting the left and right front wheels with the center line Y between the right wheel and the left wheel of the vehicle0Is the steering command value, and the steering command value α0Α01To α02Change each steering angle α1, Α2, Α3, Α4Steering command value α01Each steering angle corresponding to [α1, Α2, Α3, Α4]α01 To steering command value α02Each steering angle corresponding to [α1, Α2, Α3, Α4]α02In the process of shifting to the steering command value α01A small steering command value Δα0Steering command value (α01+ Δα0) With respect to the small steering angle [α1, Α2, Α3, Α4]α01 + Δα0Is calculated, and the small transition steering angle [α1, Α2, Α3, Α4]α01 + Δα0Each steering angle α toward1, Α2, Α3, Α4Each steering angle α1, Α2, Α3, Α4Is the minute transition steering angle [α1, Α2, Α3, Α4]α01 + Δα0 And the steering command value (α01+ Δα0) Further steering command value Δα0Steering command value (α01+ 2Δα0) With respect to the small steering angle [α1, Α2, Α3, Α4]αn1 + 2Δα0Is calculated, and the small transition steering angle [α1, Α2, Α3, Α4]α01 + 2Δα0Each steering angle α toward1, Α2, Α3, Α4After that, similarly, each steering angle α of each wheel1, Α2, Α3, Α4After detecting that the steering angle is matched, the small steering command value Δα0Steering command value (α01+ NΔα0) With respect to the small steering angle [α1, Α2, Α3, Α4]α01 + nΔα0Is calculated, and the small transition steering angle [α1, Α2, Α3, Α4]α01 + nΔα0Each steering angle α toward1, Α2, Α3, Α4Each steering angle α1, Α2, Α3, Α4Is the small transition steering angle [α1, Α2, Α3, Α4]α01 + nΔα0The steering angle α of each wheel is1, Α2, Α3, Α4For each steering angle [α1, Α2, Α3, Α4]α01 To each steering angle [α1, Α2, Α3, Α4]α02 The steering control of the four-wheel independent steering vehicle is performed by changing to.
[0021]
Alternatively, the steering angle α of each of the four wheels of the vehicle is changed according to a steering constraint conditional expression that forms a predetermined steering mode by changing how to take the steering command value.1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4In the steering control that changes the traveling direction of the vehicle by individually controlling the angle α, the angle α between the moving direction of the midpoint Po of the straight line connecting the left and right front wheels and the center line Y between the right wheel and the left wheel of the vehicle0Is the steering command value, and the steering command value α0Α01To α02Change the steering angle α of each wheel1, Α2, Α3, Α4Steering command value α01Each steering angle corresponding to [α1, Α2, Α3, Α4]α01 To each steering command value α02Each steering angle corresponding to [α1, Α2, Α3, Α4]α02 In the process of shifting to the steering command value α01A small steering command value Δα0Steering command value (α01+ Δα0) With respect to the small steering angle [α1, Α2, Α3, Α4]α01 + Δα0 And minute transition rotation speed [n1, N2, N3, N4]α01 + Δα0Is calculated, and the small steering angle [α1, Α2, Α3, Α4]α01 + Δα0 And its minute transition rotation speed [n1, N2, N3, N4]α01 + Δα0Each steering angle α toward1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4Each steering angle α1, Α2, Α3, Α4Is the minute transition steering angle [α1, Α2, Α3, Α4]α01 + Δα0 And the steering command value (α01+ Δα0) Further steering command value Δα0Steering command value (α01+ 2Δα0) With respect to the small steering angle [α1, Α2, Α3, Α4]α01 + 2Δα0 And minute transition rotation speed [n1, N2, N3, N4]α01 + 2Δα0Is calculated, and the small transition steering angle [α1, Α2, Α3, Α4]α01 + 2Δα0 And its minute transition rotation speed [n1, N2, N3, N4]α01 + 2Δα0Each steering angle α toward1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4Thereafter, similarly, the steering angle α of each wheel1, Α2, Α3, Α4After detecting that the steering angle is matched, the small steering command value Δα0Steering command value (α01+ NΔα0) With respect to the small steering angle [α1, Α2, Α3, Α4]α01 + nΔα0And minute transition rotation speed [n1, N2, N3, N4]α01 + nΔα0Is calculated, and the small transition steering angle [α1, Α2, Α3, Α4]α01 + nΔα0 And its minute transition rotation speed [n1, N2, N3, N4]α01 + nΔα0Each steering angle α toward1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4Each steering angle α1, Α2, Α3, Α4Is the small transition steering angle [α1, Α2, Α3, Α4]α01 + nΔα0The steering angle α of each wheel is1, Α2, Α3, Α4For each steering angle [α1, Α2, Α3, Α4]α01 To each steering angle [α1, Α2, Α3, Α4]α02 The steering control of the four-wheel independent steering vehicle is performed by changing to.
[0022]
  The steering angle for each of the right front wheel, left front wheel, right rear wheel, and left rear wheel is α1, Α2, Α3, Α4And the rotational speed for each of the right front wheel, left front wheel, right rear wheel, and left rear wheel is n.1, N2, N3, N4The distance between the center line X between the front wheel and the rear wheel and each wheel is L, the distance between the center line Y between the right wheel and the left wheel and each wheel is W, and the left and right front wheels The angle formed by the movement direction of the midpoint Po of the straight line connecting the vehicle and the center line Y between the right and left wheels of the vehicle is α0And the angle α0As a steering command value, a steering constraint conditional expression for forming a predetermined steering mode M1 is
Figure 0004045338
Figure 0004045338
Figure 0004045338
And a conditional expression that can be expressed as
The steering constraint conditional expression that forms the predetermined steering mode M3 is
Figure 0004045338
Figure 0004045338
Figure 0004045338
Figure 0004045338
A conditional expression that can be expressed as
Note that the rotational speed n for each of the right front wheel, the left front wheel, the right rear wheel, and the left rear wheel in steering control1, N2, N3, N4If it is not necessary to forcibly control the1: N2: N3: N4The conditional expression for is unnecessary.
[0023]
  Further, the present invention enables a vehicle to start and run smoothly in a desired direction in a predetermined steering mode without causing an impact on the vehicle when the vehicle starts running from a stopped state or when the steering mode is changed. In addition, when changing the steering mode in a plurality of types of steering modes including forward / reverse modes of the vehicle, the steering angle α of each wheel1, Α2, Α3, Α4Once α1= Α2= Α3= Α4After resetting in the straight direction of = 0, each steering angle α according to the steering constraint condition formula that forms a predetermined steering mode1, Α2, Α3, Α4Vary individually.
[0024]
  In addition, when changing a predetermined steering mode arbitrarily selected from a plurality of types of steering modes including forward / reverse modes of the vehicle, the steering angle α of each wheel1, Α2, Α3, Α4However, after satisfying the steering constraint condition formula after the change of the steering mode, the vehicle is driven to travel.
[0025]
DETAILED DESCRIPTION OF THE INVENTION
One of the basic embodiments of the present invention is that each steering angle α of each of the four wheels of the vehicle is changed according to a steering constraint conditional expression that forms a predetermined steering mode by changing a steering command value.1, Α2, Α3, Α4In the steering control that individually controls the vehicle and changes the traveling direction of the vehicle, one variable in the steering constraint condition formula is set as the steering command value S, and the steering command value S is set to S1To S2Change the steering angle α of each wheel1, Α2, Α3, Α4Steering command value S1Each steering angle corresponding to [α1, Α2, Α3, Α4] S1 To each steering angle [α corresponding to the steering command value S21, Α2, Α3, Α4]S2 In the process of shifting to the steering command value S1To the steering command value (S1+ ΔS), a small transition steering angle satisfying the steering constraint condition formula [α1, Α2, Α3, Α4]S1 + ΔS Is calculated, and the small transition steering angle [α1, Α2, Α3, Α4]S1 + ΔS Each steering angle α toward1, Α2, Α3, Α4Each steering angle α1, Α2, Α3, Α4Is the minute transition steering angle [α1, Α2, Α3, Α4]S1 + ΔS , The steering command value (S1Steering command value (S) obtained by adding a small steering command value ΔS to + ΔS)1+ 2ΔS), a small transition steering angle satisfying the steering constraint condition formula [α1, Α2, Α3, Α4]S1 + 2ΔS Is calculated, and the small transition steering angle [α1, Α2, Α3, Α4]S1 + 2ΔS Each steering angle α toward1, Α2, Α3, Α4Thereafter, similarly, the steering angle α of each wheel1, Α2, Α3, Α4After detecting that the steering angle is matched, the steering command value (S1+ NΔS), a small transition steering angle satisfying the steering constraint condition formula [α1, Α2, Α3, Α4]S1 + nΔSIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]S1 + nΔS Each steering angle α toward1, Α2, Α3, Α4Each steering angle α1, Α2, Α3, Α4Is the small transition steering angle [α1, Α2, Α3, Α4]S1 + nΔS The steering angle α of each wheel is1, Α2, Α3, Α4For each steering angle [α1, Α2, Α3, Α4]S1 To each steering angle [α1, Α2, Α3, Α4]S2 This is a steering control method for a four-wheel independent steering vehicle to be changed to
[0026]
  Further, in another basic embodiment of the present invention, the steering angle α of each of the four wheels of the vehicle is changed in accordance with a steering constraint conditional expression that forms a predetermined steering mode by changing the way of taking the steering command value.1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4In the steering control that individually controls the vehicle and changes the traveling direction of the vehicle, one variable in the steering constraint condition formula is set as the steering command value S, and the steering command value S is set to S1To S2Change the steering angle α of each wheel1, Α2, Α3, Α4Steering command value S1Each steering angle corresponding to [α1, Α2, Α3, Α4]S1 To steering command value S2Each steering angle corresponding to [α1, Α2, Α3, Α4] S2 In the process of shifting to the steering command value S1To the steering command value (S1+ ΔS), a small transition steering angle satisfying the steering constraint condition formula [α1, Α2, Α3, Α4]S1 + ΔS And minute transition rotation speed [n1, N2, N3, N4]S1 + ΔSIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]S1 + ΔS And its minute transition rotation speed [n1, N2, N3, N4]S1 + ΔSEach steering angle α toward1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4Each steering angle α1, Α2, Α3, Α4Is the minute transition steering angle [α1, Α2, Α3, Α4]S1 + ΔS , The steering command value (S1Steering command value (S) obtained by adding a small steering command value ΔS to + ΔS)1+ 2ΔS), a small transition steering angle satisfying the steering constraint condition formula [α1, Α2, Α3, Α4]S1 + 2ΔS And minute transition rotation speed [n1, N2, N3, N4]S2 + 2ΔSIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]S1 + 2ΔS And its minute transition rotation speed [n1, N2, N3, N4]S1 + 2ΔSEach steering angle α toward1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4Thereafter, similarly, the steering angle α of each wheel1, Α2, Α3, Α4After detecting that the steering angle is matched, the steering command value (S1+ NΔS), a small transition steering angle satisfying the steering constraint condition formula [α1, Α2, Α3, Α4]S1 + nΔSAnd minute transition rotation speed [n1, N2, N3, N4]S1 + nΔSIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]S1 + nΔS And its minute transition rotation speed [n1, N2, N3, N4]S1 + nΔSEach steering angle α toward1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4Each steering angle α1, Α2, Α3, Α4Is the small transition steering angle [α1, Α2, Α3, Α4]S1 + nΔS The steering angle α1, α2, α3, α4 of each wheel is changed to each steering angle [α1, Α2, Α3, Α4]S1 To each steering angle [α1, Α2, Α3, Α4]S2 This is a steering control method for a four-wheel independent steering vehicle to be changed to
[0027]
【Example】
  The present invention will be described below with reference to the drawings showing its embodiments. FIG. 1 is a plan view showing a basic structure of a vehicle body base of an electric mobile vehicle according to the present invention, and FIG. 2 is a perspective view of a wheel steering / drive block mounted on the vehicle body base. In FIG. 1, 1 is a vehicle body base of an electric mobile vehicle, points P1 and P2 indicate the positions of two left and right front wheels mounted on the lower surface of the vehicle body base 1, and points P3 and P4 are mounted on the lower surface of the vehicle body base 1. It shows the position of the two left and right rear wheels. Further, 21 indicates a right front wheel, 22 indicates a left front wheel, 23 indicates a right rear wheel, 24 indicates a left rear wheel, and an arrow N indicates a straight forward direction of the vehicle. The positions of the points P1, P2, P3, P4 (the positions of the wheels 21, 22, 23, 24) are at the positions of the vertices of the rectangle, and O is the center point of the rectangle, that is, the points P1, P2, P3. This is the center point for P4.In other words, as is clear from FIGS. 1 and 3, the center point O with respect to the positions P1, P2, P3, and P4 of the respective wheels has apexes at the positions P1, P2, P3, and P4 of the four wheels. It means a rectangular center point, that is, a point equidistant from each of the four wheel positions.The X axis and the Y axis are orthogonal coordinate axes passing through the center point O and are virtually set to explain the present invention. The X axis is the center line between the front wheels 21 and 22 and the rear wheels 23 and 24 (the center line in the left-right direction of the vehicle), and the Y axis is the center between the right wheels 21 and 23 and the left wheels 22 and 24. It is a line (center line in the longitudinal direction of the vehicle). The direction of the Y-axis is the same as the forward straight direction of the vehicle indicated by the arrow N, H1 is the front wheel axis connecting the points P1 and P2, and corresponds to the virtual axle of the front wheels 21 and 22, and H2 is the point P3. The rear wheel axis connecting P4 corresponds to the virtual axles of the rear wheels 23 and 24. L is the distance from the X axis to each point P1, P2, P3, P4, and W is the distance from the Y axis to each point P1, P2, P3, P4. P0 represents the midpoint of a straight line connecting the position P1 of the right front wheel and the position P2 of the left front wheel. Furthermore, Pn is an arbitrary point on the vehicle body base 1, for example, a position where the driver of the vehicle stands. The position of the point Pn is a coordinate (X coordinate: xn, Y coordinate: yn) with respect to the orthogonal coordinate axes X, Y. It is shown. A0 indicates the moving direction of the point P0 as the vehicle travels, and α0 indicates the angle (the moving direction angle of the midpoint P0 accompanying steering) that the moving direction A0 of the point P0 makes with the center line Y of the vehicle. An indicates the moving direction of the point Pn as the vehicle travels, and αn indicates the angle that the moving direction An of the point Pn makes with the center line Y of the vehicle (the moving direction angle of the point Pn due to steering).
[0028]
n1, N2, N3, N4Are the rotational speeds of the right front wheel 21, the left front wheel 22, the right rear wheel 23, and the left rear wheel 24, respectively.1, Α2, Α3, Α4These represent the steering angles of the right front wheel 21, the left front wheel 22, the right rear wheel 23, and the left rear wheel 24, respectively, during the steering control of the vehicle. A1, A2, A3, and A4 represent the directions (traveling directions) of the right front wheel 21, the left front wheel 22, the right rear wheel 23, and the left rear wheel 24, respectively, during the steering control of the vehicle.
[0029]
Rotational speed n of each wheel 21, 22, 23, 24 at the time of vehicle steering control1, N2, N3, N4And its steering angle α1, Α2, Α3, Α4Are individually controlled independently. For this reason, as shown in FIG. 2, drive motors 21a, 22a, 23a, 24a for rotational speed control are respectively provided on the front wheels 21, 22 and the rear wheels 23, 24. Steering motors 21b, 22b, 23b, 24b for steering angle control are connected to form individual steering / drive blocks B1, B2, B3, B4. Further, the actual traveling direction (actual steering angle) of each of the wheels 21, 22, 23, and 24 during vehicle traveling control is detected by a steering angle sensor, and the detection signal is fed back to the control system so that the driver can Steering angle α corresponding to the set steering command value1, Α2, Α3, Α4Street steering control is maintained. In addition, steering modes M1, M2, M3, M4, and M5 are prepared for the above-described vehicle, and a calculation program for calculating the steering angle and rotational speed of each wheel necessary to form each steering mode. The calculation means (computer) provided with is incorporated in the electric mobile vehicle. Note that a DC motor, a synchronous motor, an induction motor 4 or the like is used as a wheel drive motor. However, when a DC motor of the same specification is adopted for four drive motors and these are connected in series, four motors are used. As long as there is no idling of the wheel due to the electric circuit complementary action of the drive motor, the rotational speed n1, N2, N3, N3, N4This ratio automatically satisfies the constraint equation, so there is no need to control the drive motors independently.
[0030]
  As shown in FIG. 3, the steering mode M1 is a steering angle α of the front wheels.1, Α2And rear wheel steering angle α3, Α4Is a steering mode in which the trajectories of the left and right rear wheels follow the trajectories of the left and right front wheels, respectively. In FIG. 3, point P5 (X coordinate: R, Y coordinate: 0) indicates the center point when the vehicle turns clockwise (clockwise turn) (CW), and point P6 (X coordinate: -R, Y coordinate: 0) indicates a center point when the vehicle turns counterclockwise (counterclockwise) (CCW). In the steering mode M1, as shown in FIG. 3, the turning trajectory of each wheel is a concentric arc, but the points P5 and P6 are also the centers of the concentric arc. As is clear from FIG. 3, in order to travel in the steering mode M1, the steering angle α1, Α2Is the steering angle α of each wheel 21, 22, 23, 24 under the conditions shown in Table 1 below.1, Α2, Α3, Α4And rotation speed n1, N2, N3, N4The following steering constraint conditional expressions (conditional expressions) (E11), (E12), and (E13) must be satisfied and maintained.
[0031]
[Table 1]
Figure 0004045338
[0032]
Figure 0004045338
... Formula (E11)
Figure 0004045338
... Formula (E12)
Figure 0004045338
..... Formula (E13)
[0033]
As shown in FIG. 4, the steering mode M2 is a steering angle α of the front wheels.1, Α2And rear wheel steering angle α3, Α4This is a steering mode in which the vehicle is moved in parallel in the left-right and diagonal directions with the front and rear wheels all in a parallel pattern by cutting both the same direction and the same angle. As apparent from FIG. 4, in order to travel in the steering mode M2, the steering angle α of each wheel1, Α2, Α3, Α4And rotation speed n1, N2, N3, N4The following conditional expressions (E21) and (E22) must be satisfied and maintained.
[0034]
Figure 0004045338
... Formula (E21)
Figure 0004045338
... Formula (E22)
[0035]
As shown in FIG. 5, the steering mode M3 is a steering angle α of the front wheels.1, Α2In the same steering mode as a conventional automobile that only steers the vehicle, the trajectory between the front wheels and the rear wheels is a steering mode that draws a so-called inner wheel difference trajectory. As apparent from FIG. 5, in the steering mode M3, the steering angle α of each wheel1, Α2, Α3, Α4And rotation speed n1, N2, N3, N4The following conditional expressions (E31), (E32), (E33), and (E34) are satisfied and maintained. As shown in FIG. 5, the point P5 ′ serving as the center of the right turn and the point P6 ′ serving as the center of the left turn in the steering mode M3 are respectively separated from the rear wheel axis H2 by a distance d. When the vehicle speed is low, it can be considered that d≈0.
[0036]
Figure 0004045338
... Formula (E31)
Figure 0004045338
... Formula (E32)
Figure 0004045338
.... Formula (E33)
Figure 0004045338
.... Formula (E34)
However,
Figure 0004045338
Figure 0004045338
Figure 0004045338
Since the vehicle travels at a low speed, d = 0 is set.
[0037]
In the steering mode M4, as shown in FIG. 6, the vehicle turns clockwise (clockwise) (CW) around the right rear wheel (point P3), or the vehicle turns around the left rear wheel (point P4). This is a steering mode for turning counterclockwise (counterclockwise) (CCW). As apparent from FIG. 6, in traveling in the steering mode M4, the steering angle α of each wheel is1, Α2, Α3, Α4And rotation speed n1, N2, N3, N4The following conditional expressions (E41), (E42), (E43), (E44), (E45), (E46), (E47), and (E48) must be satisfied and maintained.
[0038]
That is, when turning the vehicle in the clockwise direction (CW) with the right rear wheel (point P3) as the center of rotation,
Figure 0004045338
... Formula (E41)
Figure 0004045338
... Formula (E42)
Figure 0004045338
... Formula (E43)
Figure 0004045338
... Formula (E44)
However,
Figure 0004045338
[0039]
  That is, when turning the vehicle counterclockwise (CCW) with the left rear wheel (point P4) as the center of rotation,
Figure 0004045338
.... Formula (E45)
Figure 0004045338
... Formula (E46)
Figure 0004045338
... Formula (E47)
Figure 0004045338
... Formula (E48)
However,
Figure 0004045338
[0040]
As shown in FIG. 7, the steering mode M5 turns the vehicle clockwise (clockwise) (CW) around the right front wheel (point P1) or turns the vehicle counterclockwise (counterclockwise) around the left front wheel (point P2). This is a steering mode for turning clockwise (CCW). As is apparent from FIG. 7, in the traveling in the steering mode M5, the steering angle α of each wheel is1, Α2, Α3, Α4And rotation speed n1, N2, N3, N4The following conditional expressions (E51), (E52), (E53), (E54), (E55), (E56), (E57), and (E58) must be maintained.
[0041]
That is, when turning the vehicle clockwise (CW) with the front right wheel (point P1) as the center of rotation,
Figure 0004045338
... Formula (E51)
Figure 0004045338
・ ・ ・ ・ ・ Formula (E52)
Figure 0004045338
... Formula (E53)
Figure 0004045338
... Formula (E54)
However,
Figure 0004045338
[0042]
That is, when turning the vehicle counterclockwise (CCW) with the left front wheel (point P2) as the center of rotation,
Figure 0004045338
... Formula (E55)
Figure 0004045338
.... Formula (E56)
Figure 0004045338
... Formula (E57)
Figure 0004045338
... Formula (E58)
However,
Figure 0004045338
[0043]
  Thus, since the trajectory followed by each of the four wheels in the respective steering modes M1, M2, M3, M4, and M5 is not the same, the wheel must be driven at a rotational speed that matches the arc length of each trajectory. Steering angle α of each wheel 21, 22, 23, 241, Α2, Α3, Α4And rotation speed n1, N2, N3, N4Must be controlled to satisfy the conditions of the conditional expressions (E11) to (E58) determined by the vehicle speed and direction commands and the steering mode both during and after the steering transition. . If this condition is not satisfied, the wheel slips or slips, or an open / close leg phenomenon occurs between the left and right wheels.
[0044]
  Therefore, the vehicle has the steering angle α of each wheel based on the steering constraint conditional expressions (E11) and (E12) necessary for steering along the steering mode M1.1, Α2, Α3, Α4 The steering angle α of each wheel is calculated based on a calculation constraint calculation formula (E21) necessary for steering along the steering mode M2.1, Α2, Α3, Α4 And the steering angle α of each wheel based on the steering constraint conditional expressions (E31), (E32), and (E33) necessary for steering along the steering mode M3.1, Α2, Α3, Α4 Steering angle of each wheel based on a calculation program for calculating the steering constraint conditional expressions (E41), (E42), (E43), (E45), (E46), and (E47) necessary for steering along the steering mode M4 α1, Α2, Α3, Α4 Steering angle of each wheel based on the calculation program for calculating the steering restraint conditional expressions (E51), (E52), (E53), (E55), (E56), and (E57) necessary for steering along the steering mode M5 Wheel steering angle calculation means storing a calculation program for calculating α1, α2, α3, α4 is installed.
[0045]
Further, the vehicle has a rotational speed n of each wheel based on the steering constraint conditional expression (E13) necessary for steering along the steering mode M1.1, N2, N3, N4 , The rotational speed n of each wheel based on the steering constraint conditional expression (E22) required for steering along the steering mode M2.1, N2, N3, N4 , The rotational speed n of each wheel based on the steering restraint conditional expression (E34) necessary for steering along the steering mode M3.1, N2, N3, N4 Based on the steering constraint conditional expressions (E44) and (E48) necessary for steering along the steering mode M4, and the rotational speed n of each wheel.1, N2, N3, N4 Based on the steering constraint conditional expressions (E54) and (E58) necessary for steering along the steering mode M5, and the rotational speed n of each wheel.1, N2, N3, N4 Wheel rotation speed calculation means in which a calculation program for calculating is stored is installed.
[0046]
  The present invention is designed to prevent the opening / closing leg phenomenon of the wheels by controlling so as to always satisfy the above-described steering restraint conditional expression while the vehicle is running, that is, in the steering process of the four-wheel independent steering vehicle. Wheel steering angle α1, Α2, Α3, Α4It is necessary to consider the “steering command value” for setting and changing.
[0047]
For example, in the steering mode M1, as described above, the steering angle α1, Α2, Α3, Α4Is defined by the equations (E11) and (E12).
Figure 0004045338
... Formula (E11)
Figure 0004045338
.... Formula (E12)
Where the variable is α1, Α2, Α3, Α4Since there are four formulas with 5 and R, if one of the variables is determined, the other four variables are uniquely determined. Since the distance L and the distance W are determined by the vehicle design, the steering angle α is determined by determining the distance R.1, Α2, Α3, Α4Is uniquely determined. Accordingly, the distance (the turning radius of the vehicle) R has been used as the “steering command value”.
[0048]
Further, for example, in the steering mode M3, as described above, the steering angle α1, Α2, Α3, Α4Is defined by the equations (E31), (E32), and (E33).
Figure 0004045338
... Formula (E31)
Figure 0004045338
... Formula (E32)
Figure 0004045338
.... Formula (E33)
Where the variable is α1, Α2Since there are two formulas with 3 and R, if one of the variables is determined, the other two variables are uniquely determined. Since the distance L and the distance W are determined by the vehicle design, the steering angle α is determined by determining the distance R.1, Α2, Α3, Α4Is uniquely determined. Accordingly, the distance (the turning radius of the vehicle) R has been used as the “steering command value”.
[0049]
  Here, W = 0.5m, L = 1m, distance R and steering angle α1, Α2, Α3, Α4Is obtained in the steering mode M1, and the characteristic shown in FIG. 9 is obtained in the steering mode M3. Next, taking the steering mode M1 as an example, the steering angle α when steering from R = 1 m to R = 2 m1, Α2When the change of the steering angle α is examined from FIG.1Changes from 63.2 degrees to 33.7 degrees, and the range of change is 63.2-33.7 = 29.5 degrees, the steering angle α2It can be seen that changes from 33.7 degrees to 21.8 degrees and the range of change is 33.7-21.8 = 11.9 degrees. Therefore, the steering angle α1And steering angle α2Are rotated at the same angular velocity, the steering angle α2When the target value is reached, the steering angle α1Is still in the middle of rotation toward the target value, and the left and right wheels are in a state of spreading forward with respect to the traveling direction, and a leg opening phenomenon occurs. Further, when steering from R = 1 m to R = 2 m, the opposite leg closing phenomenon occurs. When the open / close leg phenomenon occurs, not only the steering mechanism is forced, but also the person riding in the vehicle must turn forward and be dangerous, so the open / close leg phenomenon must be prevented. In order to prevent the open / close leg phenomenon, it is understood that the conditional expressions (E11) and (E12) must be satisfied in all time sections in which the vehicle is moving. The same applies to the steering modes M2, M3, M4, and M5 as well as the steering mode M1. In this application, that the steering angle of each wheel of the vehicle (the traveling direction of each wheel) becomes an angle that satisfies each steering constraint condition expression is referred to as “steering angle matching” in the present application.
[0050]
  One method for realizing the steering angle matching is that the driver changes the distance R, which is the steering command value, and sets a new steering command value (distance) to change the steering angle α.1, Α2, Α3, Α4When the steering command value (distance) R is gradually changed, the steering angle satisfying the steering constraint condition formula is calculated at each time to obtain the steering angle α1, Α2, Α3, Α4After a slight steering command follow time, the steering command value (distance) R is led to the newly set steering command value (changed steering command target value) and the steering angle α1, Α2, Α3, Α4Is shifted to the intended steering angle corresponding to the newly set steering command value.
[0051]
That is, by changing the steering command value, each steering angle α of each of the four wheels of the vehicle according to a steering constraint condition formula that forms a predetermined steering mode.1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4In the steering control to change the traveling direction of the vehicle by individually controlling the vehicle, the steering command value is the distance R between the center point of the concentric arc when the turning trajectory of each wheel is a concentric arc and the center point with respect to the position of each wheel. And the steering command value R is R1To R2Change the steering angle α of each wheel1, Α2, Α3, Α4Steering command value R1Each steering angle corresponding to [α1, Α2, Α3, Α4]R1 To steering command value R2Each steering angle corresponding to [α1, Α2, Α3, Α4]R2  In the process of shifting to the steering command value R1To the steering command value (R1+ ΔR), a small transition steering angle that satisfies the steering constraint condition formula [α1, Α2, Α3, Α4]R1 + ΔR And minute transition rotation speed [n1, N2, N3, N4]R1 + ΔRIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]R1 + ΔR And its minute transition rotation speed [n1, N2, N3, N4]R1 + ΔREach steering angle α toward1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4Each steering angle α1, Α2, Α3, Α4Is the minute transition steering angle [α1, Α2, Α3, Α4]R1 + ΔR , The steering command value (R1Steering command value (R) obtained by adding a small steering command value ΔR to + ΔR)1+ 2ΔR), a small transition steering angle that satisfies the steering constraint condition formula [α1, Α2, Α3, Α4]R1 + 2ΔR And minute transition rotation speed [n1, N2, N3, N4]R1 + 2ΔRIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]R1 + 2ΔR And its minute transition rotation speed [n1, N2, N3, N4]R1 + 2ΔR  Each steering angle α toward1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4Thereafter, similarly, the steering angle α of each wheel1, Α2, Α3, Α4After the steering alignment is detected, a steering command value (R1+ NΔR), a small transition steering angle satisfying the steering constraint condition formula [α1, Α2, Α3, Α4]R1 + nΔRAnd minute transition rotation speed [n1, N2, N3, N4]R1 + nΔRIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]R1 + nΔR And its minute transition rotation speed [n1, n2, n3, n4]R1 + nΔREach steering angle α toward1, Α2, Α3, Α4And each rotation speed n1, N2, N3, N4Each steering angle α1, Α2, Α3, Α4Is the small transition steering angle [α1, Α2, Α3, Α4]R1 + nΔR The steering angle α of each wheel is1, Α2, Α3, Α4For each steering angle [α1, Α2, Α3, Α4]R1 To each steering angle [α1, Α2, Α3, Α4]R2 This steering control method is a feature of the present invention.
[0052]
  Next, for the steering mode M1, the sensitivity of the steering angle α of the wheel with respect to the distance (vehicle turning radius) (steering command value) R is examined. Since there are generally the following formulas (1) and (2), the conditional expression (E11) can be expanded as follows.
Figure 0004045338
When,
Figure 0004045338
・ ・ ・ ・ Official (1)
Figure 0004045338
When,
Figure 0004045338
...... Official (2)
Figure 0004045338
.... Formula (E11)
Figure 0004045338
・ ・ ・ ・ ・ Formula (1)
As well
Figure 0004045338
・ ・ ・ ・ ・ Formula (2)
Here, FIG. 10 shows the calculation results obtained by adding W = 0.5 m and L = 1 m to the expressions (1) and (2). As is apparent from FIG. 10, in the region where R is small, the sensitivity of α to R is high, and the sensitivity differs depending on the left and right wheels. FIG. 11 shows the result of the same calculation for the steering mode M3. Similarly, it can be seen that α has a high sensitivity to R in a region where R is small, and the sensitivity differs depending on the left and right wheels.
[0053]
  Thus, the sensitivity of the wheel steering angle α to the distance (vehicle turning radius, that is, the steering command value) R varies greatly depending on the value of R. Therefore, the distance (vehicle turning radius) R is directly used as the steering command value. It is not appropriate to do. Therefore, it is conceivable to introduce a new function of distance R and time t, R = f (t), and to control the steering angle α of the wheel via the function R = f (t). The function introduction process in this case is as follows.
[0054]
  Equation (1) is modified as follows.
Figure 0004045338
Figure 0004045338
・ ・ ・ ・ ・ Formula (3)
As well
Figure 0004045338
・ ・ ・ ・ ・ Formula (4)
here
Figure 0004045338
(However, K = constant value)
Figure 0004045338
.... Formula (5)
Therefore,
Figure 0004045338
.... Formula (6)
Figure 0004045338
.... Formula (7)
It becomes. If the following formula (3) is applied here, the formula (13) is reached. That is,
Figure 0004045338
...... Official (3)
Figure 0004045338
.... Formula (8)
Figure 0004045338
.... Formula (9)
Figure 0004045338
.... Formula (10)
Figure 0004045338
..... Formula (11)
Here, if R = 0, W = 0.5, L = 1, and t = 0, the integral constant CL is CL = 0.463648 (rad). Therefore, if K = −π / 20,
Figure 0004045338
..... Formula (12)
Figure 0004045338
.... Formula (13)
That is, the distance R may be changed as a function of the time t shown in Expression (13). At this time, the steering angle α of the right front wheel1, Steering angle α of front left wheel2Are as shown in the following equations (14), (15), and (16), respectively.
Figure 0004045338
... Formula (E11)
Figure 0004045338
..... Formula (14)
Figure 0004045338
... Formula (E12)
Figure 0004045338
..... Formula (15)
Figure 0004045338
.... Formula (16)
[0055]
  FIG. 12 shows the distance R with respect to time t and the steering angle α of the right front wheel.1, Steering angle α of front left wheel2It can be seen that the steering angle α of the right front wheel changes linearly with respect to time t. In this way, when the distance R from the center line Y in the front-rear direction of the vehicle to the rotation center of the vehicle is used as the steering command value, dα / dR changes greatly in the change region of R, so this is made constant. Introducing a new function R = f (t) for time t and distance R (for example, R = W + Ltan (−Kt + CL) in the case of the steering mode M1) and controlling the distance R as a function of time t Then, good control can be realized by controlling the steering angle α from the distance R.
[0056]
  As described above, when the distance R is used as the steering command value, the theoretical development becomes simple. However, when the driver actually performs steering control, it cannot be denied that the steering operation is difficult for the driver. That is, when the distance R is small and large, the sensitivity dα / dR is more than two orders of magnitude, the sensitivity dα / dR is oversensitive in the steering angle range in the vicinity of the straight traveling direction that is frequently used in actual driving, and the distance R is Since it reverses discontinuously from + ∞ to −∞ and from −∞ to + ∞, and since the distance R is the distance to the center of rotation of the vehicle in the lateral direction, it is difficult for the driver to be connected to the actual driving feeling. This makes the driver's steering operation difficult.
[0057]
  Therefore, in the present invention, the angle α formed by the moving direction of the midpoint P0 on the straight line connecting the left and right front wheels with the center line of the vehicle0Is a steering command value instead of the distance R.
[0058]
That is, for example, in the steering mode M1 (see FIG. 3),
Figure 0004045338
.... Formula (17)
Figure 0004045338
.... Formula (18)
If the equation (18) is substituted into the above equations (E11), (E12), (E13), the steering angle α of each wheel1, Α2, Α3, Α4, And the rotational speed n of each wheel1, N2, N3, N4The ratio is as follows:
Figure 0004045338
... Formula (19)
Figure 0004045338
.... Formula (20)
Figure 0004045338
..... Formula (21)
[0059]
  In the steering mode M3 (see FIG. 5),
Figure 0004045338
.... Formula (22)
Figure 0004045338
.... Formula (23)
If formula (23) is substituted into formulas (E31), (E32), and (E34), the steering angle α of each wheel1, Α2And the rotational speed n of each wheel1, N2, N3, N4The ratio is as follows:
Figure 0004045338
... Formula (24)
Figure 0004045338
.... Formula (25)
Figure 0004045338
.... Formula (26)
[0060]
  Further, assuming that W = 0.5 m and L = 1 m, an angle α formed by the movement direction of the midpoint P0 with the vehicle center line Y0And the steering angles α1, α2, α3, and α4 of the wheels are as shown in FIG. 13 in the steering mode M1 and as shown in FIG. 14 in the steering mode M3. Thus, as the steering command value of the steering control, the angle α formed by the moving direction of the midpoint P0 on the straight line connecting the left and right front wheels with the vehicle center line Y0Compared with the case where the distance R is used as a steering command value, the control of the steering system in accordance with the sense of the vehicle traveling direction in the actual driving of the driver is eliminated. It can be performed.
[0061]
  Furthermore, instead of the midpoint P0, an arbitrary point Pn on the vehicle (X coordinate: xn, Y coordinate: yn) Is the angle α between the moving direction and the vehicle center line YnCan also be used as a steering command value. (See Figs. 3 and 5)
[0062]
Any point Pn on the vehicle (X coordinate: xn, Y coordinate: yn) Is the angle α between the moving direction and the vehicle center line YnIs the steering command value, the angle αnAnd point Pn coordinates (xn, Yn) Have the following relationship:
Figure 0004045338
... Formula (27)
Figure 0004045338
... Formula (28)
[0063]
  In the steering mode M1, the following expressions (29), (30), and (31) are derived by substituting the above expression (28) into the above expressions (E11), (E12), and (E13). , Angle of movement of point Pn (steering command value) αnBased on the steering angle α of each wheel1, Α2, Α3, Α4And rotation speed n1, N2, N3, N4Can be controlled.
Figure 0004045338
.... Formula (E11)
Figure 0004045338
... Formula (29)
Figure 0004045338
... Formula (E12)
Figure 0004045338
... Formula (30)
Figure 0004045338
.... Formula (31)
[0064]
  In the steering mode M3, the movement direction angle (steering command value) α of the point Pn is as follows.nBased on the steering angle α of each wheel1, Α2, ΑThree, ΑFourAnd rotation speed n1, N2, N3, N4Can be controlled.
Figure 0004045338
Figure 0004045338
... Formula (32)
Figure 0004045338
... Formula (33)
Figure 0004045338
... Formula (E33)
Figure 0004045338
... Formula (34)
[0065]
【The invention's effect】
  As apparent from the above embodiment, according to the steering control method for a four-wheel independent steering vehicle according to the present invention, one variable in the steering constraint conditional expression forming the predetermined steering mode is set as the steering command value S. The steering command value S is set to S1To S2Change the steering angle α of each wheel1, Α2, Α3, Α4Steering command value S1Each steering angle corresponding to [α1, Α2, Α3, Α4]S1 To steering command value S2Each steering angle corresponding to [α1, Α2, Α3, Α4] S2 In the process of shifting to the steering command value S1To the steering command value (S1+ ΔS), a small transition steering angle satisfying the steering constraint condition formula [α1, Α2, Α3, Α4] S1+ ΔS is calculated, and the small transition steering angle [α1, Α2, Α3, Α4] S1+ ΔS Each steering angle α toward1, Α2, Α3, Α4Each steering angle α1, Α2, Α3, Α4Is the minute transition steering angle [α1, Α2, Α3, Α4]S1 + ΔS The steering command value (S1+ NΔS), a small transition steering angle that satisfies the steering constraint condition formula [α1, Α2, Α3, Α4]S1 + nΔSIs calculated, and the small transition steering angle [α1, Α2, Α3, Α4]S1 + nΔS Each steering angle α toward1, Α2, Α3, Α4To change the steering angle α of each wheel.1, Α2, Α3, Α4Steering command value S1Each steering angle corresponding to each steering angle [α1, Α2, Α3, Α4]S1 To steering command value S2Each steering angle corresponding to each steering angle [α1, Α2, Α3, Α4]S2 Thus, it is possible to prevent the opening / closing leg phenomenon of the wheels from occurring during the steering process of the vehicle.
[0066]
  Further, according to the present invention, for example, the angle α formed by the movement direction of an arbitrary point Pn on the vehicle, such as the position of the driver standing on the vehicle, with the center line Y between the right wheel and the left wheel of the vehicle.nOr the angle α between the moving direction of the midpoint Po of the straight line connecting the left and right front wheels and the center line Y between the right and left wheels of the vehicle0Is used as a steering command value so that the steering command value is adapted to the driver's sense of steering direction, so that the driver's illusion of steering operation can be prevented and steering in a desired direction can be executed quickly and accurately. Become.
[0067]
  Further, according to the present invention, the steering angle α of each wheel when the vehicle is transmitted from a stopped state or when the steering mode is changed in a predetermined steering mode.1, Α2, Α3, Α4Once α1= Α2= Α3= Α4After resetting in the straight direction of = 0, each steering angle α according to the steering constraint condition formula that forms a predetermined steering mode1, Α2, Α3, Α4Vary individually.
[0068]
  Further, according to the present invention, the steering angle α of each wheel when the vehicle starts or when the predetermined steering mode is changed.1, Α2, Α3, Α4However, since the vehicle is driven after satisfying the steering constraint condition formula that forms the predetermined steering mode, it is possible to prevent the vehicle from being shocked when the vehicle is started from a stopped state or when the steering mode is changed. Thus, it is possible to improve safety in traveling and to start the vehicle correctly and smoothly in a desired direction in a predetermined steering mode.
[Brief description of the drawings]
FIG. 1 is a plan view showing a basic configuration of a vehicle body base of an electric mobile vehicle according to the present invention.
FIG. 2 is a perspective view of a wheel drive / steering block mounted on the vehicle body base.
FIG. 3 is an explanatory diagram of a steering mode M1.
FIG. 4 is an explanatory diagram of a steering mode M2.
FIG. 5 is an explanatory diagram of a steering mode M3.
FIG. 6 is an explanatory diagram of a steering mode M4.
FIG. 7 is an explanatory diagram of a steering mode M5.
FIG. 8 is a relationship diagram between a vehicle turning radius and a steering angle in a steering mode M1.
FIG. 9 is a relationship diagram between a vehicle turning radius and a steering angle in a steering mode M3.
FIG. 10 is a relationship diagram of the sensitivity of the steering angle to the vehicle turning radius in the steering mode M1.
FIG. 11 is a relationship diagram of the sensitivity of the steering angle to the vehicle turning radius in the steering mode M3.
FIG. 12 is a relationship diagram of vehicle turning radius and steering angle with respect to time in a steering mode M1.
FIG. 13 is a relationship diagram between a steering command value and a steering angle of each wheel in a steering mode M1.
FIG. 14 is a relationship diagram between a steering command value and a steering angle of each wheel in a steering mode M3.
[Explanation of symbols]
1: Body base
21: Front right wheel
21a: Driving motor for right front wheel 21b: Steering motor for right front wheel
22: Left front wheel
22a: Driving motor for left front wheel 22b: Steering motor for left front wheel
23: Front left wheel
23a: Driving motor for right rear wheel 23b: Steering motor for right rear wheel
24: Left rear wheel
24a: Drive motor for left rear wheel 24b: Drive motor for left rear wheel
A1: Driving direction of right front wheel B1: Steering / driving block of right front wheel
A2: Driving direction of left front wheel B2: Steering / drive block of left front wheel
A3: Driving direction of right rear wheel B3: Steering / drive block of right rear wheel
A4: Left rear wheel travel direction B4: Left rear wheel steering / drive block
Ao: Direction of movement of the midpoint on the straight line connecting the left and right front wheels
An: Direction of movement of any point on the vehicle
d: Distance from point P5 ', P6' to rear wheel axis H2
H1: Front wheel axis H2: Rear wheel axis
L: Distance from points P1, P2, P3, P4 to vehicle center line X
M1, M2, M3, M4, M5: Steering mode
N: Straight ahead direction of the vehicle
n1   : Rotation speed of front right wheel
n2   : Rotational speed of front left wheel
n3  : Right rear wheel rotation speed
n4  : Rotation speed of left rear wheel
O: Center point for each wheel position P1, P2, P3, P4
P1: Front right wheel position (point)
P2: Left front wheel position (point)
P3: Right rear wheel position (point)
P3: Left rear wheel position (point)
P5: Center point of the right-turning concentric circular arc trajectory of each wheel in the steering mode M1
P6: Center point of left-turning concentric arc trajectory of each wheel in steering mode M1
P5 ′: Center point of right turn in steering mode M3
P6 ': Center point of left turn in steering mode M3
Po: Midpoint on the straight line connecting the left and right front wheels
Pn: Any point on the vehicle (X coordinate: xn, Y coordinate: yn)
R: Steering command value (distance between the center point of the concentric arc when the turning trajectory of each wheel is a concentric arc and the center point with respect to the position of each wheel)
W: Distance from points P1, P2, P3, P4 to vehicle center line Y
X: Center line between the front and rear wheels (X axis)
Y: Center line between right and left wheels (Y axis)
α1 : Steering angle of right front wheel
α2 : Steering angle of front left wheel
α3 : Steering angle of right rear wheel
α4 : Steering angle of left rear wheel
α0 : Steering command value (An angle formed by the moving direction of the midpoint on the straight line connecting the left and right front wheels with the vehicle center line Y)
αn : Steering command value (angle formed by the movement direction of an arbitrary point on the vehicle and the vehicle center line Y)
ΔR, Δαn, Δα0,: Micro steering command value

Claims (23)

操舵指令値の取り方を変えることにより、所定の操舵モードを形成する操舵拘束条件式に従って車両の四つの車輪の各操舵角度α,α,α,αを個別に制御して車両の走行方向を変える操舵制御において、操舵拘束条件式中の一つの変数を操舵指令値Sとし、その操舵指令値SをSからSへ変えて、各車輪の操舵角度α,α,α,αを、操舵指令値Sに対応する各操舵角度[α,α,α,αS1 から操舵指令値Sに対応する各操舵角度[α,α,α,αS2 へ移行する過程で、操舵指令値Sに微小操舵指令値ΔSを加えた操舵指令値(S+ΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αS1+ΔS を演算し、その微小移行操舵角度[α,α,α,αS1+ΔS に向けて各操舵角度α,α,α,αを変化させ、各操舵角度α,α,α,αが前記微小移行操舵角度[α,α,α,αS1+ΔS に到達して舵角整合したことを検知した後、前記操舵指令値(S+ΔS)に更に微小操舵指令値ΔSを加えた操舵指令値(S+2ΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αS1+2ΔS を演算し、その微小移行操舵角度[α,α,α,αS1+2ΔS に向けて各操舵角度α,α,α,αを変化させ、以後同様に、各車輪の操舵角度α,α,α,αが舵角整合したことを検知した後、微小操舵指令値ΔSを順次加えた操舵指令値(S+nΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αS1+nΔSを演算し、その微小移行操舵角度[α,α,α,αS1+nΔS に向けて各操舵角度α,α,α,αを変化させ、各操舵角度α1,α2,α3,α4が微小移行操舵角度[α,α,α,αS1+nΔS に到達して舵角整合したことの検知を繰り返して、各車輪の操舵角度α,α,α,αをそれぞれ各操舵角度[α,α,α,αS1 から各操舵角度[α,α,α,αS2 へ変化させることを特徴とする4輪独立操舵車両の操舵制御方法。By changing the method of obtaining the steering command value, the vehicle is controlled by individually controlling the steering angles α 1 , α 2 , α 3 , α 4 of the four wheels of the vehicle in accordance with a steering constraint conditional expression that forms a predetermined steering mode. In the steering control for changing the traveling direction of the vehicle, one variable in the steering constraint condition formula is set as the steering command value S, and the steering command value S is changed from S 1 to S 2, and the steering angles α 1 , α 2 of the respective wheels are changed. , alpha 3, the alpha 4, each steering angle corresponding to the steering command value S 1 [α 1, α 2 , α 3, α 4] each steering angle corresponding to the steering command value S 2 from S11, α 2, α 3, α 4] in the process of transition to S2, micro transition steering satisfying the steering constraint condition with respect to the steering command value S steering command value obtained by adding a small steering command value [Delta] S to 1 (S 1 + ΔS) Calculate the angle [α 1 , α 2 , α 3 , α 4 ] S1 + ΔS, and perform the minute transition steering Angle [α 1, α 2, α 3, α 4] S1 + ΔS each steering angle alpha 1 toward, α 2, α 3, α 4 are changed and the steering angle α 1, α 2, α 3 , α 4 Is detected to reach the minute transition steering angle [α 1 , α 2 , α 3 , α 4 ] S1 + ΔS and the steering angle is matched, and then the steering command value (S 1 + ΔS) is further reduced to the minute steering command value ΔS. Is calculated with respect to the steering command value (S 1 + 2ΔS) to which a small transition steering angle [α 1 , α 2 , α 3 , α 4 ] S1 + 2ΔS that satisfies the steering constraint conditional expression is calculated. 1 , α 2 , α 3 , α 4 ] S1 + 2ΔS , the steering angles α 1 , α 2 , α 3 , α 4 are changed, and thereafter the steering angles α 1 , α 2 , α 3 of the respective wheels are similarly changed. , after detecting that the alpha 4 has aligned steering angle, successively added steering command value small steering command value [Delta] S (S 1 + Small transition steering angles that satisfy the steering constraint condition expression for ΔS) [α 1, α 2 , α 3, α 4] S1 + nΔS computes its small transition steering angles [α 1, α 2, α 3, α 4 ] Each steering angle α 1 , α 2 , α 3 , α 4 is changed toward S 1 + nΔS , and each steering angle α 1 , α 2 , α 3 , α 4 becomes a minute transition steering angle [α 1 , α 2 , α 3 , α 4 ] The detection that the steering angle is matched by reaching S1 + nΔS is repeated, and the steering angles α 1 , α 2 , α 3 , α 4 of the respective wheels are changed to the respective steering angles [α 1 , α 2 , α 3 , α 4 ] A steering control method for a four-wheel independent steering vehicle, wherein the steering angle is changed from S1 to each steering angle [α 1 , α 2 , α 3 , α 4 ] S2 . 操舵指令値の取り方を変えることにより、所定の操舵モードを形成する操舵拘束条件式に従って車両の四つの車輪の各操舵角度α,α,α,αと各回転速度n,n,n,nを個別に制御して車両の走行方向を変える操舵制御において、操舵拘束条件式中の一つの変数を操舵指令値Sとし、その操舵指令値SをSからSへ変えて、各車輪の操舵角度α,α,α,αを、操舵指令値Sに対応する各操舵角度[α,α,α,αS1 から操舵指令値Sへ対応する各操舵角度[α,α,α,αS2 に移行する過程で、操舵指令値Sに微小操舵指令値ΔSを加えた操舵指令値(S+ΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αS1+ΔS と微小移行回転速度[n,n,n,nS1+ΔSを演算し、その微小移行操舵角度[α,α,α,αS1+ΔS とその微小移行回転速度[n,n,n,nS1+ΔSに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、各操舵角度α,α,α,αが前記微小移行操舵角度[α,α,α,αS1+ΔS に到達して舵角整合したことを検知した後、前記操舵指令値(S+ΔS)に更に微小操舵指令値ΔSを加えた操舵指令値(S+2ΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αS1+2ΔS と微小移行回転速度[n,n,n,nS1+2ΔSを演算し、その微小移行操舵角度[α,α,α,αS1+2ΔS とその微小移行回転速度[n,n,n,nS1+2ΔSに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、以後同様に、各車輪の操舵角度α,α,α,αが舵角整合したことを検知した後、微小操舵指令値ΔSを順次加えた操舵指令値(S+nΔS)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αS1+nΔSと微小移行回転速度[n,n,n,nS1+nΔSを演算し、その微小移行操舵角度[α,α,α,αS1+nΔS とその微小移行回転速度[n,n,n,nS1+nΔSに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、各操舵角度α,α,α,αが微小移行操舵角度[α,α,α,αS1+nΔS に到達して舵角整合したことの検知を繰り返して、各車輪の操舵角度α,α,α,αをそれぞれ各操舵角度[α,α,α,αS1 から各操舵角度[α,α,α,αS2 へ変化させることを特徴とする4輪独立操舵車両の操舵制御方法。By changing the way of taking the steering command value, the steering angles α 1 , α 2 , α 3 , α 4 and the rotational speeds n 1 , 4 of the four wheels of the vehicle according to the steering constraint condition formula that forms a predetermined steering mode. In the steering control in which n 2 , n 3 , and n 4 are individually controlled to change the traveling direction of the vehicle, one variable in the steering constraint conditional expression is set as a steering command value S, and the steering command value S is changed from S 1 to S 2 to change the steering angles α 1 , α 2 , α 3 , α 4 of the wheels from the steering angles [α 1 , α 2 , α 3 , α 4 ] S1 corresponding to the steering command value S 1. each steering angle corresponding to the command value S 2 [α 1, α 2 , α 3, α 4] in the process of transition to S2, the steering command value S steering command value obtained by adding a small steering command value ΔS to 1 (S 1 + [Delta] S) satisfying the steering constraint condition formula [ 1] , [alpha] 2 , [alpha] 3 , [alpha] 4 ] S1 + ΔS and minute transition rotation speed [n 1 , n 2 , n 3 , n 4 ] S1 + ΔS is calculated, and its minute transition steering angle [α 1 , α 2 , α 3 , α 4 ] S1 + ΔS and its minute transition rotation speed [N 1 , n 2 , n 3 , n 4 ] Change each steering angle α 1 , α 2 , α 3 , α 4 and each rotational speed n 1 , n 2 , n 3 , n 4 toward S 1 + ΔS , After detecting that each steering angle α 1 , α 2 , α 3 , α 4 has reached the minute transition steering angle [α 1 , α 2 , α 3 , α 4 ] S1 + ΔS and matched the steering angle, the steering is performed. A small transition steering angle [α 1 , α 2 , α 3 , α satisfying the steering constraint condition with respect to a steering command value (S 1 + 2ΔS) obtained by adding a small steering command value ΔS to the command value (S 1 + ΔS). 4 ] S1 + 2ΔS and minute transition rotational speed [n 1 , n 2 , n 3 , n 4 ] S1 + 2 ΔS is calculated, and the small transition steering angles [α 1 , α 2 , α 3 , α 4 ] S1 + 2ΔS and the small transition rotational speeds [n 1 , n 2 , n 3 , n 4 ] S1 + 2ΔS toward each steering angle α 1 , α 2 , α 3 , α 4 and the rotational speeds n 1 , n 2 , n 3 , n 4 are changed, and thereafter the steering angles α 1 , α 2 , α 3 , α 4 of the respective wheels are similarly changed. After detecting that the steering angle is matched, the small transition steering angle [α 1 , α 2 , α satisfying the steering constraint condition expression with respect to the steering command value (S 1 + nΔS) obtained by sequentially adding the small steering command value ΔS. 3 , α 4 ] S1 + nΔS and the minute transition rotation speed [n 1 , n 2 , n 3 , n 4 ] S1 + nΔS , and the minute transition steering angle [α 1 , α 2 , α 3 , α 4 ] S1 + nΔS and its micro shift revolution speed [n 1, n 2, n 3, n 4] towards the S1 + nΔS Each steering angle α 1, α 2, α 3 , α 4 and changing the respective rotational speed n 1, n 2, n 3 , n 4, each steering angle α 1, α 2, α 3 , α 4 minute migration Steering angles [α 1 , α 2 , α 3 , α 4 ] S1 + nΔS is reached and the detection of the steering angle alignment is repeated, and the steering angles α 1 , α 2 , α 3 , α 4 of the respective wheels are respectively set. Steering control of a four-wheel independent steering vehicle characterized by changing the steering angle [α 1 , α 2 , α 3 , α 4 ] S1 to each steering angle [α 1 , α 2 , α 3 , α 4 ] S2 . Method. 操舵指令値の取り方を変えることにより、所定の操舵モードを形成する操舵拘束条件式に従って車両の四つの車輪の各操舵角度α1,α2,α3,α4を個別に制御して車両の走行方向を変える操舵制御において、各車輪の旋回軌跡が同心円弧となる場合の同心円弧の中心点と、各車輪の位置に対する中心点、すなわち各車輪の位置を頂点とする長方形の中心点、すなわち各車輪位置から等距離にある点との間の距離Rを操舵指令値とし、その操舵指令値RをR1からR2へ変えて、各車輪の操舵角度α1,α2,α3,α4を、操舵指令値R1に対応する各操舵角度[α1,α2,α3,α4]R1 から操舵指令値R2に対応する各操舵角度[α1,α2,α3,α4]R2 へ移行する過程で、操舵指令値R1に微小操舵指令値ΔRを加えた操舵指令値(R1+ΔR)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α1,α2,α3,α4]R1+ΔR を演算し、その微小移行操舵角度[α1,α2,α3,α4]R1+ΔR に向けて各操舵角度α1,α2,α3,α4を変化させ、各操舵角度α1,α2,α3,α4が前記微小移行操舵角度[α1,α2,α3,α4]R1+ΔR に到達して舵角整合したことを検知した後、前記操舵指令値(R1+ΔR)に更に微小操舵指令値ΔRを加えた操舵指令値(R1+2ΔR)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α1,α2,α3,α4]R1+2ΔR を演算し、その微小移行操舵角度[α1,α2,α3,α4]R1+2ΔR に向けて各操舵角度α1,α2,α3,α4を変化させ、以後同様に、各車輪の操舵角度α1,α2,α3,α4が舵角整合したことを検知した後、微小操舵指令値ΔRを順次加えた操舵指令値(R1+nΔR)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α1,α2,α3,α4]R1+nΔR を演算し、その微小移行操舵角度[α1,α2,α3,α4]R1+nΔR に向けて各操舵角度α1,α2,α3,α4を変化させ、各操舵角度α1,α2,α3,α4が微小移行操舵角度[α1,α2,α3,α4]R1+nΔR に到達して舵角整合したことの検知を繰り返して、各車輪の操舵角度α1,α2,α3,α4をそれぞれ各操舵角度[α1,α2,α3,α4]R1 から各操舵角度[α1,α2,α3,α4]R2 へ変化させることを特徴とする4輪独立操舵車両の操舵制御方法。By changing the way of taking the steering command value, the steering angle α1, α2, α3, α4 of the four wheels of the vehicle is individually controlled according to the steering constraint condition formula that forms a predetermined steering mode, thereby changing the traveling direction of the vehicle. In the steering control to be changed, the center point of the concentric arc when the turning trajectory of each wheel is a concentric arc, and the center point with respect to the position of each wheel, that is, the center point of the rectangle whose vertex is the position of each wheel, that is, each wheel position The distance R from the point equidistant to the steering wheel is a steering command value, the steering command value R is changed from R1 to R2, and the steering angles α1, α2, α3, α4 of the wheels are changed to the steering command value R1. Each corresponding steering angle [α1, α2, α3, α4] R1 To each steering angle [α1, α2, α3, α4] R2 corresponding to the steering command value R2 In the process of shifting to the steering command value R1, a small steering angle [α1, α2, α3, α4] R1 + ΔR that satisfies the steering constraint condition with respect to the steering command value (R1 + ΔR) obtained by adding the small steering command value ΔR to the steering command value R1 Calculate and the minute transition steering angle [α1, α2, α3, α4] R1 + ΔR Each steering angle α1, α2, α3, α4 is changed toward the steering angle α1, α2, α3, α4, and the steering angle alignment is achieved by reaching the minute transition steering angle [α1, α2, α3, α4] R1 + ΔR. After detecting that the steering command value (R1 + ΔR) and the steering command value (R1 + 2ΔR) obtained by adding the small steering command value ΔR, the small transition steering angle [α1, α2, α3 satisfying the steering constraint condition formula is satisfied. , Α4 ] R1 + 2ΔR , and the small steering angle [α1, α2, α3, α4] R1 + 2ΔR Each of the steering angles α1, α2, α3, α4 is changed toward, and thereafter, similarly, after detecting that the steering angles α1, α2, α3, α4 of the wheels are matched to the steering angle, the minute steering command value ΔR is changed. A minute transition steering angle [α1, α2, α3, α4] satisfying the steering constraint condition is calculated with respect to the sequentially applied steering command value (R1 + nΔR), and R1 + nΔR is calculated, and the minute transition steering angle [α1, α2, α3, α4] is calculated. ] R1 + nΔR The steering angles α1, α2, α3, and α4 are changed toward the same, and the steering angles α1, α2, α3, and α4 reach the minute transition steering angles [α1, α2, α3, α4] R1 + nΔR , and the steering angles are matched. By repeating this detection, the steering angles α1, α2, α3, α4 of the wheels are changed to the steering angles [α1, α2, α3, α4] R1, respectively. To each steering angle [α1, α2, α3, α4] R2 A steering control method for a four-wheel independent steering vehicle, characterized by comprising: 右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する操舵角度をα,α,α,αとし、前車輪と後車輪の間の中心線Xと各車輪の間の距離をLとし、右車輪と左車輪の間の中心線Yと各車輪の間の距離をWとし、各車輪の旋回軌跡が同心円弧となる場合の同心円弧の中心点と各車輪の位置に対する中心点の間の距離をRとしたとき、距離Rを操舵指令値とし、所定の操舵モードを形成する操舵拘束条件式が、
Figure 0004045338
Figure 0004045338
で表すことができる条件式であることを特徴とする請求項3に記載の4輪独立操舵車両の操舵制御方法。
The steering angle for each of the right front wheel, left front wheel, right rear wheel, and left rear wheel is α 1 , α 2 , α 3 , α 4, and the distance between the center line X between the front wheel and the rear wheel and each wheel. Is L, and the distance between the center line Y between the right wheel and the left wheel and each wheel is W, and the center point of the concentric arc when the turning trajectory of each wheel is a concentric arc and the center with respect to the position of each wheel When the distance between the points is R, the steering restraint conditional expression that forms the predetermined steering mode with the distance R as the steering command value,
Figure 0004045338
Figure 0004045338
The steering control method for a four-wheel independent steering vehicle according to claim 3, wherein the conditional expression is expressed by:
右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する操舵角度をα,α,α,αとし、前車輪と後車輪の間の中心線Xと各車輪の間の距離をLとし、右車輪と左車輪の間の中心線Yと各車輪の間の距離をWとし、各車輪の旋回軌跡が同心円弧となる場合の同心円弧の中心点と各車輪の位置に対する中心点の間の距離をRとしたとき、距離Rを操舵指令値とし、所定の操舵モードを形成する操舵拘束条件式が、
Figure 0004045338
Figure 0004045338
Figure 0004045338
で表すことができる条件式であることを特徴とする請求項3に記載の4輪独立操舵車両の操舵制御方法。
The steering angle for each of the right front wheel, left front wheel, right rear wheel, and left rear wheel is α 1 , α 2 , α 3 , α 4, and the distance between the center line X between the front wheel and the rear wheel and each wheel. Is L, and the distance between the center line Y between the right wheel and the left wheel and each wheel is W, and the center point of the concentric arc when the turning trajectory of each wheel is a concentric arc and the center with respect to the position of each wheel When the distance between the points is R, the steering restraint conditional expression that forms the predetermined steering mode with the distance R as the steering command value,
Figure 0004045338
Figure 0004045338
Figure 0004045338
The steering control method for a four-wheel independent steering vehicle according to claim 3, wherein the conditional expression is expressed by:
操舵指令値の取り方を変えることにより、所定の操舵モードを形成する操舵拘束条件式に従って車両の四つの車輪の各操舵角度α1,α2,α3,α4と各回転速度n1,n2,n3,n4を個別に制御して車両の走行方向を変える操舵制御において、各車輪の旋回軌跡が同心円弧となる場合の同心円弧の中心点と、各車輪の位置に対する中心点、すなわち各車輪の位置を頂点とする長方形の中心点、すなわち各車輪位置から等距離にある点との間の距離Rを操舵指令値とし、その操舵指令値RをR1からR2へ変えて、各車輪の操舵角度α1,α2,α3,α4を、操舵指令値R1に対応する各操舵角度[α1,α2,α3,α4]R1 から操舵指令値R2に対応する各操舵角度[α1,α2,α3,α4]R2 へ移行する過程で、操舵指令値R1に微小操舵指令値ΔRを加えた操舵指令値(R1+ΔR)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α1,α2,α3,α4]R1+ΔR と微小移行回転速度[n1,n2,n3,n4]R1+ΔRを演算し、その微小移行操舵角度[α1,α2,α3,α4]R1+ΔR とその微小移行回転速度[n1,n2,n3,n4]R1+ΔRに向けて各操舵角度α1,α2,α3,α4と各回転速度n1,n2,n3,n4を変化させ、各操舵角度α1,α2,α3,α4が前記微小移行操舵角度[α1,α2,α3,α4]R1+ΔR に到達して舵角整合したことを検知した後、前記操舵指令値(R1+ΔR)に更に微小操舵指令値ΔRを加えた操舵指令値(R1+2ΔR)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α1,α2,α3,α4]R1+2ΔR と微小移行回転速度[n1,n2,n3,n4]R1+2ΔRを演算し、その微小移行操舵角度[α1,α2,α3,α4]R1+2ΔR とその微小移行回転速度[n1,n2,n3,n4]R1+2ΔR に向けて各操舵角度α1,α2,α3,α4と各回転速度n1,n2,n3,n4を変化させ、以後同様に、各車輪の操舵角度α1,α2,α3,α4が操舵整合したことを検知した後、微小操舵指令値ΔRを順次加えた操舵指令値(R1+nΔR)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α1,α2,α3,α4]R1+nΔRと微小移行回転速度[n1,n2,n3,n4]R1+nΔRを演算し、その微小移行操舵角度[α1,α2,α3,α4]R1+nΔR とその微小移行回転速度[n1,n2,n3,n4]R1+nΔRに向けて各操舵角度α1,α2,α3,α4と各回転速度n1,n2,n3,n4を変化させ、各操舵角度α1,α2,α3,α4が微小移行操舵角度[α1,α2,α3,α4]R1+nΔR に到達して舵角整合したことの検知を繰り返して、各車輪の操舵角度α1,α2,α3,α4をそれぞれ各操舵角度[α1,α2,α3,α4]R から各操舵角度[α1,α2,α3,α4]R へ変化させることを特徴とする4輪独立操舵車両の操舵制御方法。By changing the method of obtaining the steering command value, the steering angles α1, α2, α3, α4 and the rotational speeds n1, n2, n3, n4 of the four wheels of the vehicle according to the steering constraint condition formula that forms a predetermined steering mode. In the steering control that changes the traveling direction of the vehicle by controlling the vehicle individually, the center point of the concentric arc when the turning trajectory of each wheel is a concentric arc and the center point with respect to the position of each wheel, that is, the position of each wheel The distance R between the center point of the rectangle, i.e., a point equidistant from each wheel position, is used as a steering command value, and the steering command value R is changed from R1 to R2 to change the steering angle α1, α2 of each wheel. , Α3, α4 are the steering angles [α1, α2, α3, α4] R1 corresponding to the steering command value R1. In the process of shifting to each steering angle [α1, α2, α3, α4] R2 corresponding to the steering command value R2, the steering command value (R1 + ΔR) obtained by adding the minute steering command value ΔR to the steering command value R1 is described above. The minute transition steering angle [α1, α2, α3, α4] R1 + ΔR and the minute transition rotational speed [n1, n2, n3, n4] R1 + ΔR that satisfy the steering constraint condition are calculated, and the minute transition steering angle [α1, α2, α3] is calculated. , Α4] R1 + ΔR And its minute transition rotational speed [n1, n2, n3, n4] Each steering angle α1, α2, α3, α4 and each rotational speed n1, n2, n3, n4 are changed toward R1 + ΔR , and each steering angle α1, α2 is changed. , Α3, α4 reach the minute transition steering angle [α1, α2, α3, α4] R1 + ΔR and detect that the steering angle is matched, and then add the minute steering command value ΔR to the steering command value (R1 + ΔR). A small transition steering angle [α1, α2, α3, α4] R1 + 2ΔR and a small transition rotational speed [n1, n2, n3, n4] R1 + 2ΔR that satisfy the steering constraint condition formula with respect to the steering command value (R1 + 2ΔR), The minute transition steering angle [α1, α2, α3, α4] R1 + 2ΔR And its minute transition rotational speed [n1, n2, n3, n4] The steering angles α1, α2, α3, α4 and the rotational speeds n1, n2, n3, n4 are changed toward R1 + 2ΔR. After detecting that the steering angles α1, α2, α3, and α4 of the steering are matched, the small transition steering angle satisfying the steering constraint condition formula with respect to the steering command value (R1 + nΔR) obtained by sequentially adding the small steering command value ΔR [ [alpha] 1, [alpha] 2, [alpha] 3, [alpha] 4] R1 + n [ Delta ] R and a minute transition rotational speed [n1, n2, n3, n4] R1 + n [ Delta ] R are calculated and the minute transition steering angle [[alpha] 1, [alpha] 2, [alpha] 3, [alpha] 4] R1 + n [ Delta ] R And its minute transition rotational speed [n1, n2, n3, n4] Each steering angle α1, α2, α3, α4 and each rotational speed n1, n2, n3, n4 are changed toward R1 + nΔR , and each steering angle α1, α2 is changed. , Α3, α4 have reached a minute transition steering angle [α1, α2, α3, α4] R1 + nΔR is repeatedly detected and the steering angle alignment is repeated, and the steering angles α1, α2, α3, α4 of the respective wheels are respectively steered. Angle [α1, α2, α3, α4] R 1 To each steering angle [α1, α2, α3, α4] R 2 A steering control method for a four-wheel independent steering vehicle, characterized by comprising: 右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する操舵角度をα,α,α,αとし、右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する回転速度をn,n,n,nとし、前車輪と後車輪の間の中心線Xと各車輪の間の距離をLとし、右車輪と左車輪の間の中心線Yと各車輪の間の距離をWとし、各車輪の旋回軌跡が同心円弧となる場合の同心円弧の中心点と各車輪の位置に対する中心点の間の距離をRとしたとき、距離Rを操舵指令値とし、所定の操舵モードを形成する操舵拘束条件式が、
Figure 0004045338
Figure 0004045338
Figure 0004045338
で表すことができる条件式であることを特徴とする請求項6に記載の4輪独立操舵車両の操舵制御方法。
The steering angles for the right front wheel, the left front wheel, the right rear wheel, and the left rear wheel are α 1 , α 2 , α 3 , and α 4, and the rotational speeds for the right front wheel, the left front wheel, the right rear wheel, and the left rear wheel, respectively. N 1 , n 2 , n 3 , n 4 , the distance between the center line X between the front wheel and the rear wheel and each wheel is L, the center line Y between the right wheel and the left wheel and each wheel The distance R is the steering command value, where R is the distance between the center point of the concentric arc when the turning trajectory of each wheel is a concentric arc and the center point with respect to the position of each wheel. The steering constraint condition formula that forms the predetermined steering mode is
Figure 0004045338
Figure 0004045338
Figure 0004045338
The steering control method for a four-wheel independent steering vehicle according to claim 6, wherein the conditional expression is expressed by:
右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する操舵角度をα,α,α,αとし、右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する回転速度をn,n,n,nとし、前車輪と後車輪の間の中心線Xと各車輪の間の距離をLとし、右車輪と左車輪の間の中心線Yと各車輪の間の距離をWとし、各車輪の旋回軌跡が同心円弧となる場合の同心円弧の中心点と各車輪の位置に対する中心点の間の距離をRとしたとき、距離Rを操舵指令値とし、所定の操舵モードを形成する操舵拘束条件式が、
Figure 0004045338
Figure 0004045338
Figure 0004045338
Figure 0004045338
で表すことができる条件式であることを特徴とする請求項6に記載の4輪独立操舵車両の操舵制御方法。
The steering angles for the right front wheel, the left front wheel, the right rear wheel, and the left rear wheel are α 1 , α 2 , α 3 , and α 4, and the rotational speeds for the right front wheel, the left front wheel, the right rear wheel, and the left rear wheel, respectively. N 1 , n 2 , n 3 , n 4 , the distance between the center line X between the front wheel and the rear wheel and each wheel is L, the center line Y between the right wheel and the left wheel and each wheel The distance R is the steering command value, where R is the distance between the center point of the concentric arc when the turning trajectory of each wheel is a concentric arc and the center point with respect to the position of each wheel. The steering constraint condition formula that forms the predetermined steering mode is
Figure 0004045338
Figure 0004045338
Figure 0004045338
Figure 0004045338
The steering control method for a four-wheel independent steering vehicle according to claim 6, wherein the conditional expression is expressed by:
操舵指令値の取り方を変えることにより、所定の操舵モードを形成する操舵拘束条件式に従って車両の四つの車輪の各操舵角度α,α,α,αを個別に制御して車両の走行方向を変える操舵制御において、車両上の任意の点Pnの移動方向が車両の右車輪・左車輪間の中心線Yとなす角度αを操舵指令値とし、その操舵指令値αをαn1からαn2へ変えて、各車輪の操舵角度α,α,α,αを、操舵指令値αn1に対応する各操舵角度[α,α,α,ααn1 から操舵指令値αn2に対応する各操舵角度[α,α,α,ααn2 へ移行する過程で、操舵指令値αn1に微小操舵指令値Δαを加えた操舵指令値(αn1+Δα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,ααn1+Δαn を演算し、その微小移行操舵角度[α,α,α,ααn1+Δαn に向けて各操舵角度α,α,α,αを変化させ、各操舵角度α,α,α,αが前記微小移行操舵角度[α,α,α,ααn1+Δαn に到達して舵角整合したことを検知した後、前記操舵指令値(αn1+Δα)に更に微小操舵指令値Δαを加えた操舵指令値(αn1+2Δα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,ααn1+2Δαn を演算し、その微小移行操舵角度[α,α,α,ααn1+2Δαn に向けて各操舵角度α,α,α,αを変化させ、以後同様に、各車輪の操舵角度α,α,α,αが舵角整合したことを検知した後、微小操舵指令値Δαを順次加えた操舵指令値(αn1+nΔα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,ααn1+nΔαn を演算し、その微小移行操舵角度[α,α,α,ααn1+nΔαn に向けて各操舵角度α,α,α,αを変化させ、各操舵角度α,α,α,αが微小移行操舵角度[α,α,α,α4]αn1+nΔαn に到達して舵角整合したことの検知を繰り返して、各車輪の操舵角度α,α,α,αをそれぞれ各操舵角度[α,α,α,ααn1 から各操舵角度[α,α,α,ααn2 へ変化させることを特徴とする4輪独立操舵車両の操舵制御方法。By changing the method of obtaining the steering command value, the vehicle is controlled by individually controlling the steering angles α 1 , α 2 , α 3 , α 4 of the four wheels of the vehicle in accordance with a steering constraint conditional expression that forms a predetermined steering mode. in the steering control of changing the running direction of the angle alpha n formed between the center line Y between the arbitrary point Pn moving direction vehicle right wheels and left wheels on the vehicle as the steering command value, the steering command value alpha n By changing from α n1 to α n2 , the steering angles α 1 , α 2 , α 3 , α 4 of the wheels are changed to the steering angles [α 1 , α 2 , α 3 , α 4 corresponding to the steering command value α n1. ] each steering angle corresponding to the steering command value alpha n2 from αn1 [α 1, α 2, α 3, in the process of transition to α 4] αn2, steering plus a small steering command value [Delta] [alpha] n to the steering command value alpha n1 A small transition steering angle satisfying the steering constraint condition with respect to the command value (α n1 + Δα n ) [ α 1, α 2, α 3 , calculates the α 4] αn1 + Δαn, the minute migration steering angle [α 1, α 2, α 3, α 4] αn1 + the steering angle alpha 1 toward the Δαn, α 2, α 3 changes the alpha 4, each steering angle α 1, α 2, α 3 , α 4 are the small transition steering angles [α 1, α 2, α 3, α 4] αn1 + that matched the steering angle reaches the Δαn after detecting the steering command value (α n1 + Δα n) further steering command value obtained by adding a small steering command value Δα n (α n1 + 2Δα n ) small transition steering angles that satisfy the steering constraint condition expression for [ α 1, α 2, α 3 , calculates the α 4] αn1 + 2Δαn, the minute migration steering angle [α 1, α 2, α 3, α 4] αn1 + the steering angle alpha 1 toward the 2Δαn, α 2, α 3 It changes the alpha 4, similarly hereinafter steering angle alpha 1 of the wheels, alpha 2, alpha 3 After the alpha 4 has detected that the matched steering angle, small transition steering angles [alpha 1 satisfying the steering constraint condition expression for sequential addition steering command value small steering command value Δα n (α n1 + nΔα n ), α 2, α 3, calculates the α 4] αn1 + nΔαn, the minute migration steering angle [α 1, α 2, α 3, α 4] αn1 + the steering angle alpha 1 toward the nΔαn, α 2, α 3, α 4 , And it is repeatedly detected that the steering angles α 1 , α 2 , α 3 , α 4 reach the minute transition steering angles [α 1 , α 2 , α 3 , α4] αn1 + nΔαn and are matched to the steering angle. , the steering angle alpha 1 of the wheels, alpha 2, alpha 3, the steering angle alpha 4 each [α 1, α 2, α 3, α 4] each steering angle from αn1 [α 1, α 2, α 3, α 4 ] A steering control method for a four-wheel independent steering vehicle, wherein the steering control method is changed to αn2 . 右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する操舵角度をα,α,α,αとし、前車輪と後車輪の間の中心線Xと各車輪の間の距離をLとし、右車輪と左車輪の間の中心線Yと各車輪の間の距離をWとし、車両上の任意の点PのX座標をx,Y座標をyとし、点Pnの移動方向が車両の右車輪・左車輪間の中心線Yとなす角度をαとしたとき、角度αを操舵指令値とし、所定の操舵モードを形成する操舵拘束条件式が、
Figure 0004045338
Figure 0004045338
で表すことができる条件式であることを特徴とする請求項9に記載の4輪独立操舵車両の操舵制御方法。
The steering angle for each of the right front wheel, left front wheel, right rear wheel, and left rear wheel is α 1 , α 2 , α 3 , α 4, and the distance between the center line X between the front wheel and the rear wheel and each wheel. the is L, the distance between the center line Y and the respective wheel between the right wheel and the left wheel and is W, the X-coordinate of an arbitrary point P n on the vehicle to x n, the Y-coordinate and y n, the point Pn When the angle between the movement direction of the vehicle and the center line Y between the right wheel and the left wheel of the vehicle is α n , the steering constraint condition formula that forms the predetermined steering mode with the angle α n as the steering command value is
Figure 0004045338
Figure 0004045338
The steering control method for a four-wheel independent steering vehicle according to claim 9, wherein the conditional expression is expressed by:
右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する操舵角度をα,α,α,αとし、前車輪と後車輪の間の中心線Xと各車輪の間の距離をLとし、右車輪と左車輪の間の中心線Yと各車輪の間の距離をWとし、車両上の任意の点PnのX座標をx,Y座標をyとし、点Pnの移動方向が車両の右車輪・左車輪間の中心線Yとなす角度をαとしたとき、角度αを操舵指令値とし、所定の操舵モードを形成する操舵拘束条件式が、
Figure 0004045338
Figure 0004045338
Figure 0004045338
で表すことができる条件式であることを特徴とする請求項9に記載の4輪独立操舵車両の操舵制御方法。
The steering angle for each of the right front wheel, left front wheel, right rear wheel, and left rear wheel is α 1 , α 2 , α 3 , α 4, and the distance between the center line X between the front wheel and the rear wheel and each wheel. the is L, the distance between the center line Y and the respective wheel between the right wheel and the left wheel and is W, and the X-coordinate of an arbitrary point Pn on the vehicle x n, the Y-coordinate and y n, the point Pn When the angle between the moving direction and the center line Y between the right wheel and the left wheel of the vehicle is α n , the steering constraint conditional expression that forms a predetermined steering mode with the angle α n as a steering command value is:
Figure 0004045338
Figure 0004045338
Figure 0004045338
The steering control method for a four-wheel independent steering vehicle according to claim 9, wherein the conditional expression is expressed by:
操舵指令値の取り方を変えることにより、所定の操舵モードを形成する操舵拘束条件式に従って車両の四つの車輪の各操舵角度α,α,α,αと各回転速度n,n,n,nを個別に制御して車両の走行方向を変える操舵制御において、車両上の任意の点Pnの移動方向が車両の右車輪・左車輪間の中心線Yとなす角度αを操舵指令値とし、その操舵指令値αをαn1からαn2へ変えて、各車輪の操舵角度α,α,α,αを、操舵指令値αn1に対応する各操舵角度[α,α,α,ααn1 から操舵指令値αn2に対応する各操舵角度[α,α,α,ααn2 へ移行する過程で、操舵指令値αn1に微小操舵指令値Δαを加えた操舵指令値(αn1+Δα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,ααn1+Δαn と微小移行回転速度[n,n,n,nαn1+Δαnを演算し、その微小移行操舵角度[α,α,α,ααn1+Δαn とその微小移行回転速度[n,n,n,nαn1+Δαnに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、各操舵角度α,α,α,αが前記微小移行操舵角度[α,α,α,ααn1+Δαn に到達して舵角整合したことを検知した後、前記操舵指令値(αn1+Δα)に更に微小操舵指令値Δαを加えた操舵指令値(αn1+2Δα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,ααn1+2Δαn と微小移行回転速度[n,n,n,nαn1+2Δαnを演算し、その微小移行操舵角度[α,α,α,ααn1+2Δαn とその微小移行回転速度[n,n,n,nαn1+2Δαnに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、以後同様に、各車輪の操舵角度α,α,α,αが舵角整合したことを検知した後、微小操舵司令値Δαを順次加えた操舵指令値(αn1+nΔα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,ααn1+nΔαn と微小移行回転速度[n,n,n,nαn1+nΔαnを演算し、その微小移行操舵角度[α,α,α,ααn1+nΔαn とその微小移行回転速度[n,n,n,nαn1+nΔαnに向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、各操舵角度α,α,α,αが微小移行操舵角度[α,α,α,ααn1+nΔαn に到達して舵角整合したことの検知を繰り返して、各車輪の操舵角度α,α,α,αをそれぞれ各操舵角度[α,α,α,ααn1 から各操舵角度[α,α,α,ααn2 ヘ変化させることを特徴とする4輪独立操舵車両の操舵制御方法。By changing the way of taking the steering command value, the steering angles α 1 , α 2 , α 3 , α 4 and the rotational speeds n 1 , 4 of the four wheels of the vehicle according to the steering constraint condition formula that forms a predetermined steering mode. In the steering control in which the traveling direction of the vehicle is changed by individually controlling n 2 , n 3 , and n 4 , the angle formed by the movement direction of an arbitrary point Pn on the vehicle with the center line Y between the right wheel and the left wheel of the vehicle α n is a steering command value, the steering command value α n is changed from α n1 to α n2, and the steering angles α 1 , α 2 , α 3 , α 4 of each wheel correspond to the steering command value α n1 . each steering angle [α 1, α 2, α 3, α 4] each steering angle corresponding to the steering command value alpha n2 from αn1 [α 1, α 2, α 3, α 4] in the process of transition to Arufaenu2, steering wherein the command value alpha n1 relative small steering command value [Delta] [alpha] n the steering command value obtained by adding (α n1 + Δα n) Small transition steering angles that satisfy the steering constraint condition expression [α 1, α 2, α 3, α 4] αn1 + Δαn and small shift revolution speed [n 1, n 2, n 3, n 4] calculates a αn1 + Δαn, the minute migration Steering angle [α 1 , α 2 , α 3 , α 4 ] αn1 + Δαn and its minute transition rotational speed [n 1 , n 2 , n 3 , n 4 ] Each steering angle α 1 , α 2 , α 3 toward αn1 + Δαn , alpha 4 and changing the respective rotational speed n 1, n 2, n 3 , n 4, each steering angle α 1, α 2, α 3 , α 4 are the small transition steering angles [α 1, α 2, α 3, α 4] αn1 + after detecting that the matched steering angle reaches the Derutaarufaenu, the steering command value (α n1 + Δα n) further steering command value obtained by adding a small steering command value Δα n (α n1 + 2Δα n ) Is a small transition steering angle [α 1 , α 2 that satisfies the steering constraint condition formula , Α 3 , α 4 ] αn1 + 2Δαn and minute transition rotation speed [n 1 , n 2 , n 3 , n 4 ] αn1 + 2Δαn are calculated, and the minute transition steering angle [α 1 , α 2 , α 3 , α 4 ] αn1 + 2Δαn And its minute transition rotational speed [n 1 , n 2 , n 3 , n 4 ] toward each of the steering angles α 1 , α 2 , α 3 , α 4 and the rotational speeds n 1 , n 2 , n 3 , αn1 + 2Δαn . n 4 is changed, thereafter Similarly, the steering angle alpha 1 of the wheels, alpha 2, alpha 3, after the alpha 4 has detected that the matched steering angle, successively added steering command value small steering commander value [Delta] [alpha] n Minute transition steering angle [α 1 , α 2 , α 3 , α 4 ] αn1 + nΔαn and minute transition rotational speed [n 1 , n 2 , n 3 , n satisfying the steering constraint condition formula for (α n1 + nΔα n ) 4] calculates a αn1 + nΔαn, the minute migration steering angle [alpha , Α 2, α 3, α 4] αn1 + nΔαn its small shift revolution speed [n 1, n 2, n 3, n 4] each steering angle alpha 1 toward the αn1 + nΔαn, α 2, α 3, and alpha 4 each The rotational speeds n 1 , n 2 , n 3 , and n 4 are changed so that the steering angles α 1 , α 2 , α 3 , and α 4 are minute transition steering angles [α 1 , α 2 , α 3 , α 4 ] αn1 + nΔαn The steering angle α 1 , α 2 , α 3 , α 4 of each wheel is changed to each steering angle [α 1 , α 2 , α 3 , α 4 ] αn 1 To each steering angle [α 1 , α 2 , α 3 , α 4 ] αn 2 . 右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する操舵角度をα,α,α,αとし、右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する回転速度をn,n,n,nとし、前車輪と後車輪の間の中心線Xと各車輪の間の距離をLとし、右車輪と左車輪の間の中心線Yと各車輪の間の距離をWとし、車両上の任意の点PnのX座標をx,Y座標をyとし、点Pnの移動方向が車両の右車輪・左車輪間の中心線Yとなす角度をαとしたとき、角度αを操舵指令値とし、所定の操舵モードを形成する操舵拘束条件式が、
Figure 0004045338
Figure 0004045338
Figure 0004045338
で表すことができる条件式であることを特徴とする請求項12に記載の4輪独立操舵車両の操舵制御方法。
The steering angles for the right front wheel, the left front wheel, the right rear wheel, and the left rear wheel are α 1 , α 2 , α 3 , and α 4, and the rotational speeds for the right front wheel, the left front wheel, the right rear wheel, and the left rear wheel, respectively. N 1 , n 2 , n 3 , n 4 , the distance between the center line X between the front wheel and the rear wheel and each wheel is L, the center line Y between the right wheel and the left wheel and each wheel angular distance was is W, forming the X-coordinate of an arbitrary point Pn on the vehicle x n, the Y-coordinate and y n, the moving direction of the point Pn is the center line Y between right wheels and left wheels of the vehicle during Where α n is an angle α n is a steering command value, and a steering constraint conditional expression that forms a predetermined steering mode is
Figure 0004045338
Figure 0004045338
Figure 0004045338
The steering control method for a four-wheel independent steering vehicle according to claim 12, wherein the conditional expression is expressed by:
右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する操舵角度をα,α,α,αとし、右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する回転速度をn,n,n,nとし、前車輪と後車輪の間の中心線Xと各車輪の間の距離をLとし、右車輪と左車輪の間の中心線Yと各車輪の間の距離をWとし、車両上の任意の点PnのX座標をx,Y座標をyとし、点Pnの移動方向が車両の右車輪・左車輪間の中心線Yとなす角度をαとしたとき、角度αを操舵指令値とし、所定の操舵モードを形成する操舵拘束条件式が、
Figure 0004045338
Figure 0004045338
Figure 0004045338
Figure 0004045338
で表すことができる条件式であることを特徴とする請求項12に記載の4輪独立操舵車両の操舵制御方法。
The steering angles for the right front wheel, the left front wheel, the right rear wheel, and the left rear wheel are α 1 , α 2 , α 3 , and α 4, and the rotational speeds for the right front wheel, the left front wheel, the right rear wheel, and the left rear wheel, respectively. N 1 , n 2 , n 3 , n 4 , the distance between the center line X between the front wheel and the rear wheel and each wheel is L, the center line Y between the right wheel and the left wheel and each wheel angular distance was is W, forming the X-coordinate of an arbitrary point Pn on the vehicle x n, the Y-coordinate and y n, the moving direction of the point Pn is the center line Y between right wheels and left wheels of the vehicle during Where α n is an angle α n is a steering command value, and a steering constraint conditional expression that forms a predetermined steering mode is
Figure 0004045338
Figure 0004045338
Figure 0004045338
Figure 0004045338
The steering control method for a four-wheel independent steering vehicle according to claim 12, wherein the conditional expression is expressed by:
操舵指令値の取り方を変えることにより、所定の操舵モードを形成する操舵拘束条件式に従って車両の四つの車輪の各操舵角度α,α,α,αを個別に制御して車両の走行方向を変える操舵制御において、左右の前車輪を結ぶ直線の中点Pnの移動方向が車両の右車輪・左車輪間の中心線Yとなす角度αを操舵指令値とし、その操舵指令値αをα01からα02へ変えて各操舵角度α,α,α,αを、操舵指令値α01に対応する[α,α,α,α]α01 から操舵指令値α02に対応する[α,α,α,α]α02へ移行する過程で、操舵指令値α01に微小操舵指令値Δαを加えた操舵指令値(α01+Δα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αα01+Δα0 を演算し、その微小移行操舵角度[α,α,α,αα01+Δα0 に向けて各操舵角度α,α,α,αを変化させ、各操舵角度α,α,α,αが前記微小移行操舵角度[α,α,α,αα01+Δα0 に到達して舵角整合したことを検知した後、前記操舵指令値(α01+Δα)に更に微小操舵指令値Δαを加えた操舵指令値(α01+2Δα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,ααn1+2Δα0 を演算し、その微小移行操舵角度[α,α,α,αα01+2Δα0 に向けて各操舵角度α,α,α,αを変化させ、以後同様に、各車輪の各操舵角度α,α,α,αが舵角整合したことを検知した後、微小操舵指令値Δαを順次加えた操舵指令値(α01+nΔα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αα01+nΔα0 を演算し、その微小移行操舵角度[α,α,α,αα01+nΔα0 に向けて各操舵角度α,α,α,αを変化させ、各操舵角度α,α,α,αが微小移行操舵角度[α,α,α,αα01+nΔα0 に到達して舵角整合したことの検知を繰り返して,各車輪の操舵角度α,α,α,αをそれぞれ各操舵角度[α,α,α,α]α01 から各操舵角度[α,α,α,α]α02 へ変えることを特徴とする4輪独立操舵車両の操舵制御方法。By changing the method of obtaining the steering command value, the vehicle is controlled by individually controlling the steering angles α 1 , α 2 , α 3 , α 4 of the four wheels of the vehicle according to the steering constraint condition formula that forms a predetermined steering mode. In the steering control for changing the traveling direction of the vehicle, the angle α 0 formed by the moving direction of the midpoint Pn of the straight line connecting the left and right front wheels and the center line Y between the right wheel and the left wheel of the vehicle is used as the steering command value. The value α 0 is changed from α 01 to α 02 , and the respective steering angles α 1 , α 2 , α 3 , α 4 correspond to the steering command value α 011 , α 2 , α 3 , α 4 ] α In the process of shifting from [ 01] to [[alpha] 1 , [alpha] 2 , [alpha] 3 , [alpha] 4 ] [alpha] 02 corresponding to the steering command value [alpha] 02 , the steering command value ([alpha] 0) is added to the steering command value [alpha] 01. α 01 + Δα 0) the steering constraint micro transition steering angles that satisfy the expression for [α 1, α 2, α , Α 4] α01 + Δα0 computes its small transition steering angles [α 1, α 2, α 3, α 4] α01 + Δα0 the steering angle alpha 1 toward, alpha 2, alpha 3, changing the alpha 4, each After detecting that the steering angles α 1 , α 2 , α 3 , α 4 have reached the minute transition steering angles [α 1 , α 2 , α 3 , α 4 ] α01 + Δα0 and matched the steering angle, the steering command value (α 01 + Δα 0) further steering command value obtained by adding a small steering command value Δα 0 (α 01 + 2Δα 0 ) small transition steering angles that satisfy the steering constraint condition expression for [α 1, α 2, α 3 , Α 4 ] αn1 + 2Δα0 is calculated, and the steering angles α 1 , α 2 , α 3 , α 4 are changed toward the small transition steering angles [α 1 , α 2 , α 3 , α 4 ] α01 + 2Δα0 , and thereafter Similarly, each steering angle alpha 1 of the wheels, α 2, α 3, α 4 are the steering SumiSei After it is detected that the micro transition steering angles [alpha 1 satisfying the steering constraint condition expression for sequential addition steering command value small steering command value Δα 0 (α 01 + nΔα 0 ), α 2, α 3, calculates the α 4] α01 + nΔα0, the minute migration steering angle [α 1, α 2, α 3, α 4] α01 + nΔα0 the steering angle alpha 1 toward, α 2, α 3, by changing the alpha 4, each steering Steering of each wheel is repeated by detecting that the angles α 1 , α 2 , α 3 , α 4 have reached the minute transition steering angles [α 1 , α 2 , α 3 , α 4 ] α01 + nΔα0 and the steering angles are aligned. The angles α 1 , α 2 , α 3 , α 4 are changed from the steering angles [α 1 , α 2 , α 3 , α 4 ] α 01 to the steering angles [α 1 , α 2 , α 3 , α 4 ] α, respectively. A steering control method for a four-wheel independent steering vehicle, wherein the steering control method is changed to 02 . 右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する操舵角度をα,α,α,αとし、前車輪と後車輪の間の中心線Xと各車輪の間の距離をLとし、右車輪と左車輪の間の中心線Yと各車輪の間の距離をWとし、左右の前車輪を結ぶ直線の中点Pnの移動方向が車両の右車輪・左車輪間の中心線Yとなす角度をαとしたとき、角度αを操舵指令値とし、所定の操舵モードを形成する操舵拘束条件式が、
Figure 0004045338
Figure 0004045338
で表すことができる条件式であることを特徴とする請求項15に記載の4輪独立操舵車両の操舵制御方法。
The steering angle for each of the right front wheel, left front wheel, right rear wheel, and left rear wheel is α 1 , α 2 , α 3 , α 4, and the distance between the center line X between the front wheel and the rear wheel and each wheel. Is L, the distance between the center line Y between the right and left wheels and the distance between each wheel is W, and the moving direction of the midpoint Pn of the straight line connecting the left and right front wheels is between the right and left wheels of the vehicle when the angle between the center line Y and the alpha 0, the angle alpha 0 and the steering command value, the steering constraint condition equations for forming a prescribed steering mode,
Figure 0004045338
Figure 0004045338
The steering control method for a four-wheel independent steering vehicle according to claim 15, wherein the conditional expression is expressed by:
右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する操舵角度をα,α,α,αとし、前車輪と後車輪の間の中心線Xと各車輪の間の距離をLとし、右車輪と左車輪の間の中心線Yと各車輪の間の距離をWとし、左右の前車輪を結ぶ直線の中点P0の移動方向が車両の右車輪・左車輪間の中心線Yとなす角度をαとしたとき、角度αを操舵指令値とし、所定の操舵モードを形成する操舵拘束条件式が、
Figure 0004045338
Figure 0004045338
Figure 0004045338
で表すことができる条件式であることを特徴とする請求項15に記載の4輪独立操舵車両の操舵制御方法。
The steering angle for each of the right front wheel, left front wheel, right rear wheel, and left rear wheel is α 1 , α 2 , α 3 , α 4, and the distance between the center line X between the front wheel and the rear wheel and each wheel. Is L, the distance between the center line Y between the right and left wheels and the distance between each wheel is W, and the moving direction of the midpoint P0 of the straight line connecting the left and right front wheels is between the right and left wheels of the vehicle when the angle between the center line Y and the alpha 0, the angle alpha 0 and the steering command value, the steering constraint condition equations for forming a prescribed steering mode,
Figure 0004045338
Figure 0004045338
Figure 0004045338
The steering control method for a four-wheel independent steering vehicle according to claim 15, wherein the conditional expression is expressed by:
操舵指令値の取り方を変えることにより、所定の操舵モードを形成する操舵拘束条件式に従って車両の四つの車輪の各操舵角度α,α,α,αと各回転速度n,n,n,nを個別に制御して車両の走行方向を変える操舵制御において、左右の前車輪を結ぶ直線の中点P0の移動方向が車両の右車輪・左車輪間の中心線Yとなす角度αを操舵指令値とし、その操舵指令値αをα01からα02へ変えて、各車輪の操舵角度α,α,α,αを、操舵指令値α01に対応する各操舵角度[α,α,α,αα01 から各操舵指令値α02に対応する各操舵角度[α,α,α,αα02 へ移行する過程で、操舵指令値α01に微小操舵司令値Δαを加えた操舵司令値(α01+Δα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αα01+Δα0 と微小移行回転速度[n,n,n,nα01+Δα0を演算し,その微小移行操舵角度[α,α,α,αα01+Δα0 とその微小移行回転速度[n,n,n,nα01+Δα0に向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、各操舵角度α,α,α,αが前記微小移行操舵角度[α,α,α,ααn1+Δα0に到達して舵角整合したことを検知した後、前記操舵指令値(α01+Δα)に更に微小操舵指令値Δα加えた操舵指令値(α01+2Δα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αα01+2Δαn と微小移行回転速度[n,n,n,nα01+2Δα0を演算し、その微小移行操舵角度[α,α,α,αα01+2Δα0 とその微小移行回転速度[n,n,n,nα01+2Δα0に向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、以後同様に、各車輪の操舵角度α,α,α,αが舵角整合したことを検知した後、微小操舵指令値Δαを順次加えた操舵指令値(α01+nΔα)に対して前記操舵拘束条件式を満たす微小移行操舵角度[α,α,α,αα01+nΔα0と微小移行回転速度[n,n,n,nα01+nΔα0を演算し、その微小移行操舵角度[α,α,α,αα01+nΔα0 とその微小移行回転速度[n,n,n,nα01+nΔα0に向けて各操舵角度α,α,α,αと各回転速度n,n,n,nを変化させ、各操舵角度α,α,α,αが微小移行操舵角度[α,α,α,αα01+nΔα0 に到達して舵角整合したことの検知を繰り返して、各車輪の操舵角度α,α,α,αをそれぞれ各操舵角度[α,α,α,αα01 から各操舵角度[α,α,α,αα02 へ変えることを特徴とする4輪独立操舵車両の操舵制御方法。By changing the way of taking the steering command value, the steering angles α 1 , α 2 , α 3 , α 4 and the rotational speeds n 1 , 4 of the four wheels of the vehicle according to the steering constraint condition formula that forms a predetermined steering mode. In steering control in which n 2 , n 3 , and n 4 are individually controlled to change the traveling direction of the vehicle, the moving direction of the midpoint P0 of the straight line connecting the left and right front wheels is the center line between the right and left wheels of the vehicle. The angle α 0 formed with Y is set as the steering command value, the steering command value α 0 is changed from α 01 to α 02, and the steering angles α 1 , α 2 , α 3 , α 4 of the respective wheels are changed to the steering command value α. each steering angle corresponding to 01 [α 1, α 2, α 3, α 4] each steering angle corresponding to each steering command value alpha 02 from α01 [α 1, α 2, α 3, α 4] goes to α02 in the course of the steering command value alpha 01 a minute steering commander value [Delta] [alpha] 0 steering commander value plus (α 01 + Δα 0 The steering micro transition steering angles that satisfy the constraint condition expression [α 1, α 2, α 3, α 4] α01 + Δα0 and small shift revolution speed [n 1, n 2, n 3, n 4] calculates the α01 + Δα0 against its small transition steering angles [α 1, α 2, α 3, α 4] α01 + Δα0 its small shift revolution speed [n 1, n 2, n 3, n 4] each steering angle alpha 1 toward the α01 + Δα0, α 2 , α 3 , α 4 and the rotational speeds n 1 , n 2 , n 3 , n 4 are changed, and the steering angles α 1 , α 2 , α 3 , α 4 are changed to the minute transition steering angles [α 1 , alpha 2, alpha 3, after detecting the α 4] αn1 + Δα0 be aligned steering angle to reach the said steering command value (α 01 + Δα 0) to further fine steering command value [Delta] [alpha] 0 was added a steering command value (alpha 01 + 2Δα 0) small transition steering angles that satisfy the steering constraint condition expression for α 1, α 2, α 3 , α 4] α01 + 2Δαn and small shift revolution speed [n 1, n 2, n 3, n 4] calculates the α01 + 2Δα0, the minute migration steering angle [α 1, α 2, α 3 , Α 4 ] α01 + 2Δα0 and its minute transition rotational speed [n 1 , n 2 , n 3 , n 4 ] toward each of the steering angles α 1 , α 2 , α 3 , α 4 and the rotational speeds n 1 , n toward α01 + 2Δα0. 2 , n 3 , n 4 are changed, and thereafter, similarly, after detecting that the steering angles α 1 , α 2 , α 3 , α 4 of the respective wheels are matched to the steering angle, the minute steering command value Δα 0 is sequentially set. Minute transition steering angle [α 1 , α 2 , α 3 , α 4 ] satisfying the steering constraint condition with respect to the added steering command value (α 01 + nΔα 0 ) α01 + nΔα0 and minute transition rotational speed [n 1 , n 2 , n 3, n 4] calculates the α01 + nΔα0, the minute migration Steering angle [α 1, α 2, α 3, α 4] α01 + nΔα0 its small shift revolution speed [n 1, n 2, n 3, n 4] each steering angle alpha 1 toward the α01 + nΔα0, α 2, α 3 , Α 4 and the rotational speeds n 1 , n 2 , n 3 , n 4 are changed, and the steering angles α 1 , α 2 , α 3 , α 4 are changed to the minute transition steering angles [α 1 , α 2 , α 3. , Α 4 ] by repeatedly detecting that the steering angle has been matched by reaching α01 + nΔα0 , the steering angles α 1 , α 2 , α 3 , α 4 of the wheels are set to the steering angles [α 1 , α 2 , α 3, respectively. , alpha 4] each steering angle from α01 [α 1, α 2, α 3, α 4] 4 -wheel independent steering steering control method for a vehicle, characterized in that changing to Arufa02. 右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する操舵角度をα,α,α,αとし、右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する回転速度をn,n,n,nとし、前車輪と後車輪の間の中心線Xと各車輪の間の距離をLとし、右車輪と左車輪の間の中心線Yと各車輪の間の距離をWとし、左右の前車輪を結ぶ直線の中点P0の移動方向が車両の右車輪・左車輪間の中心線Yとなす角度をαとしたとき、角度αを操舵指令値とし、所定の操舵モードを形成する操舵拘束条件式が、
Figure 0004045338
Figure 0004045338
Figure 0004045338
で表すことができる条件式であることを特徴とする請求項18に記載の4輪独立操舵車両の操舵制御方法。
The steering angles for the right front wheel, the left front wheel, the right rear wheel, and the left rear wheel are α 1 , α 2 , α 3 , and α 4, and the rotational speeds for the right front wheel, the left front wheel, the right rear wheel, and the left rear wheel, respectively. N 1 , n 2 , n 3 , n 4 , the distance between the center line X between the front wheel and the rear wheel and each wheel is L, the center line Y between the right wheel and the left wheel and each wheel When the distance between the left and right wheels is W and the angle between the midpoint P0 of the straight line connecting the left and right front wheels and the center line Y between the right and left wheels of the vehicle is α 0 , the angle α 0 is steered The steering restraint conditional expression that forms a predetermined steering mode as a command value is
Figure 0004045338
Figure 0004045338
Figure 0004045338
The steering control method for a four-wheel independent steering vehicle according to claim 18, wherein the conditional expression is expressed by:
右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する操舵角度をそれぞれα,α,α,αとし、右前車輪、左前車輪、右後車輪、左後車輪のそれぞれに対する回転速度をn,n,n,nとし、前車輪と後車輪の間の中心線Xと各車輪の間の距離をLとし、右車輪と左車輪の間の中心線Yと各車輪の間の距離をWとし、左右の前車輪を結ぶ直線の中点P0の移動方向が車両の右車輪・左車輪間の中心線Yとなす角度をαとしたとき、角度αを操舵指令とし、所定の操舵モードを形成する操舵拘束条件式が、
Figure 0004045338
Figure 0004045338
Figure 0004045338
Figure 0004045338
で表すことができる条件式であることを特徴とする請求項18に記載の4輪独立操舵車両の操舵制御方法。
The steering angles for the right front wheel, the left front wheel, the right rear wheel, and the left rear wheel are α 1 , α 2 , α 3 , and α 4 respectively, and the rotation is performed for each of the right front wheel, the left front wheel, the right rear wheel, and the left rear wheel The speed is n 1 , n 2 , n 3 , n 4 , the distance between the center line X between the front wheel and the rear wheel and each wheel is L, the center line Y between the right wheel and the left wheel and each When the distance between the wheels is W and the angle between the moving direction of the midpoint P0 of the straight line connecting the left and right front wheels and the center line Y between the right wheel and the left wheel of the vehicle is α 0 , the angle α 0 is Steering restraint conditional expression that forms a predetermined steering mode as a steering command is
Figure 0004045338
Figure 0004045338
Figure 0004045338
Figure 0004045338
The steering control method for a four-wheel independent steering vehicle according to claim 18, wherein the conditional expression is expressed by:
操舵指令値に微小操舵指令値を加える回数を3回以下とした請求項1ないし請求項20のいずれか1項に記載の4輪独立操舵車両の操舵制御方法。  The steering control method for a four-wheel independent steering vehicle according to any one of claims 1 to 20, wherein the number of times the minute steering command value is added to the steering command value is three or less. 所定の操舵モードは、車両の前進・後進モードを含む複数種類の操舵モードから任意に選択される操舵モードであって、操舵モード変更時に各車輪の操舵角度α,α,α,αを、α=α=α=α=0の直進方向にリセットした後に、所定の操舵モードを形成する操舵拘束条件式に従って各操舵角度α,α,α,αを個別に変化させることを特徴とする請求項1ないし請求項21のいずれか1項に記載の4輪独立操舵車両の操舵制御方法。The predetermined steering mode is a steering mode arbitrarily selected from a plurality of types of steering modes including a forward / reverse mode of the vehicle, and the steering angles α 1 , α 2 , α 3 , α of the wheels when the steering mode is changed. 4 is reset to the straight traveling direction of α 1 = α 2 = α 3 = α 4 = 0, and then the respective steering angles α 1 , α 2 , α 3 , α 4 according to the steering constraint conditional expression forming a predetermined steering mode. The steering control method for a four-wheel independently-steered vehicle according to any one of claims 1 to 21, wherein the steering wheel is changed individually. 所定の操舵モードは、車両の前進・後進モードを含む複数種類の操舵モードから任意に選択される操舵モードであって、操舵モード変更時に各車輪の操舵角度α,α,α,αが、操舵モード変更後の操舵拘束条件式を満たした後に、車両を走行駆動することを特徴とする請求項1ないし請求項22のいずれか1項に記載の4輪独立操舵車両の操舵制御方法。The predetermined steering mode is a steering mode arbitrarily selected from a plurality of types of steering modes including a forward / reverse mode of the vehicle, and the steering angles α 1 , α 2 , α 3 , α of the wheels when the steering mode is changed. 4, after filling the steering constraint condition after the steering mode is changed, the steering control of a four-wheel independent steering vehicle according to any one of claims 1 to 22, characterized in that driving and moving the vehicle Method.
JP2003136158A 2003-05-14 2003-05-14 Steering control method for four-wheel independent steering vehicle Expired - Fee Related JP4045338B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003136158A JP4045338B2 (en) 2003-05-14 2003-05-14 Steering control method for four-wheel independent steering vehicle
US10/822,610 US7184869B2 (en) 2003-05-14 2004-04-12 Electric vehicle steering/drive control method
DE602004006920T DE602004006920T2 (en) 2003-05-14 2004-04-29 Steering control method for electric vehicle
EP04010176A EP1477387B1 (en) 2003-05-14 2004-04-29 Electric vehicle steering control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003136158A JP4045338B2 (en) 2003-05-14 2003-05-14 Steering control method for four-wheel independent steering vehicle

Publications (3)

Publication Number Publication Date
JP2004338497A JP2004338497A (en) 2004-12-02
JP2004338497A5 JP2004338497A5 (en) 2006-09-07
JP4045338B2 true JP4045338B2 (en) 2008-02-13

Family

ID=33028373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003136158A Expired - Fee Related JP4045338B2 (en) 2003-05-14 2003-05-14 Steering control method for four-wheel independent steering vehicle

Country Status (4)

Country Link
US (1) US7184869B2 (en)
EP (1) EP1477387B1 (en)
JP (1) JP4045338B2 (en)
DE (1) DE602004006920T2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793637B (en) * 2020-08-20 2023-02-21 為昇科科技股份有限公司 Vehicle sensing system

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070131473A1 (en) * 2005-12-09 2007-06-14 Ford Global Technologies, Llc All wheel steering for passenger vehicle
GB2464413B (en) * 2010-01-05 2014-07-02 Protean Electric Ltd Control Device for a Vehicle
JP5880953B2 (en) * 2012-03-22 2016-03-09 株式会社ジェイテクト Vehicle steering system
US9387872B2 (en) * 2012-06-18 2016-07-12 Hanwha Techwin Co., Ltd. Control method of vehicle, and vehicle adopting the method
US9254866B2 (en) * 2013-11-08 2016-02-09 GM Global Technology Operations LLC Method of controlling steering of a ground vehicle
JP6919349B2 (en) * 2017-06-09 2021-08-18 株式会社アイシン Driving support system
US11358660B2 (en) 2018-11-28 2022-06-14 Cargotec Patenter Ab Autonomous vehicle having rotatable fifth wheel
US11396326B2 (en) * 2018-11-28 2022-07-26 Cargotec Patenter Ab Autonomous vehicle having independent steering

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3932790A1 (en) * 1988-10-12 1990-04-19 Zahnradfabrik Friedrichshafen Fail=safe steering for rear wheels - has rotating field motor and feedback control to block adjustment if error occurs
US5465806A (en) * 1989-03-31 1995-11-14 Kabushiki Kaisha Shikoku Sogo Kenkyujo Electric vehicle
GB8913212D0 (en) * 1989-06-08 1989-07-26 Lotus Group Plc A wheeled vehicle steering system
US5052111A (en) * 1990-10-09 1991-10-01 Ammco Tools Technology Corporation Method and apparatus for providing runout compensation in a wheel
US5453930A (en) * 1991-02-08 1995-09-26 Nissan Motor Co., Ltd. Drive system for electric automobiles
US5379220A (en) * 1991-07-29 1995-01-03 Caterpillar Inc. Electronic steering control
DE4202699A1 (en) * 1992-01-31 1993-08-05 Bosch Gmbh Robert DEVICE FOR CONTROLLING THE STEERING ANGLE
JP2857555B2 (en) * 1993-01-27 1999-02-17 三菱電機株式会社 Electric power steering device
GB9507021D0 (en) * 1995-04-05 1995-05-31 Price Richard D Improvements relating to vehicle steering systems
JP2001260836A (en) * 2000-03-23 2001-09-26 Toyota Motor Corp Control device for distribution of vehicle driving force
JP3721973B2 (en) * 2000-09-28 2005-11-30 日産自動車株式会社 Vehicle steering device
AUPR047300A0 (en) * 2000-10-03 2000-10-26 Spark, Ian James Improved off road vehicle
US6526336B2 (en) * 2001-02-01 2003-02-25 Invacare Corp. System and method for steering a multi-wheel drive vehicle
JP2003054435A (en) * 2001-08-09 2003-02-26 Aisin Seiki Co Ltd Rear wheel steering control system
JP3747316B2 (en) * 2001-11-16 2006-02-22 学校法人金沢工業大学 Electric mobile vehicle steering / drive control method, electric mobile vehicle steering / drive control device, and electric mobile vehicle
US6827176B2 (en) * 2003-01-07 2004-12-07 Jlg Industries, Inc. Vehicle with offset extendible axles and independent four-wheel steering control
JP4165380B2 (en) * 2003-01-31 2008-10-15 株式会社豊田中央研究所 Vehicle control method and vehicle control apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI793637B (en) * 2020-08-20 2023-02-21 為昇科科技股份有限公司 Vehicle sensing system

Also Published As

Publication number Publication date
EP1477387B1 (en) 2007-06-13
DE602004006920D1 (en) 2007-07-26
EP1477387A3 (en) 2005-08-31
US20040230361A1 (en) 2004-11-18
EP1477387A2 (en) 2004-11-17
DE602004006920T2 (en) 2008-02-14
JP2004338497A (en) 2004-12-02
US7184869B2 (en) 2007-02-27

Similar Documents

Publication Publication Date Title
JP3721973B2 (en) Vehicle steering device
US6871125B2 (en) Electric vehicle steering/drive control method, electric vehicle steering/drive control apparatus, and electric vehicle
CN108706007B (en) Lane change advisor
CN108473132B (en) Parking assistance system, parking assistance method, and program
JP4557817B2 (en) Driving support device
JP4238663B2 (en) On-vehicle camera calibration method and calibration apparatus
JP4045338B2 (en) Steering control method for four-wheel independent steering vehicle
CN107082055A (en) The travel controlling system of vehicle
JP2005075013A (en) Parking assist device
JP2001255937A (en) Automatic traveling controller for vehicle
JP2005014775A (en) Vehicular travel support device
JPH02270005A (en) Autonomous traveling vehicle
JPS6319011A (en) Guiding method for unattended mobile machine by point tracking system
JP7322911B2 (en) Vehicle control method, vehicle control system, and vehicle
CN114677874B (en) Driver training method and system based on vehicle pose prediction
JP4248335B2 (en) Vehicle travel support device
US10416317B2 (en) Vehicle and map generating method for the vehicle
JP2003205806A (en) Parking supporting device
JP2009101776A (en) Vehicular parking support device
JP4622452B2 (en) Vehicle steering device
JP2006123605A (en) Automatic guidance system
JP4136982B2 (en) Parking support method and parking support device
JP2020023221A (en) Vehicle control device and vehicle control method
CN207644444U (en) A kind of steering control system and four-wheel automobile
JP3012651B2 (en) Driving / steering control method for omnidirectional vehicles

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040913

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040913

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070910

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071025

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees