JP4045260B2 - Pulse generation circuit - Google Patents

Pulse generation circuit Download PDF

Info

Publication number
JP4045260B2
JP4045260B2 JP2004149441A JP2004149441A JP4045260B2 JP 4045260 B2 JP4045260 B2 JP 4045260B2 JP 2004149441 A JP2004149441 A JP 2004149441A JP 2004149441 A JP2004149441 A JP 2004149441A JP 4045260 B2 JP4045260 B2 JP 4045260B2
Authority
JP
Japan
Prior art keywords
resistor
capacitor
pulse
semiconductor switch
discharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004149441A
Other languages
Japanese (ja)
Other versions
JP2005333376A (en
Inventor
真司 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004149441A priority Critical patent/JP4045260B2/en
Publication of JP2005333376A publication Critical patent/JP2005333376A/en
Application granted granted Critical
Publication of JP4045260B2 publication Critical patent/JP4045260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、例えば車載レーダに使用されるパルス発生回路に関するものである。   The present invention relates to a pulse generation circuit used for, for example, an in-vehicle radar.

従来のパルスレーダ装置として、特許文献1にて提案されているものがある。この装置は、同文献の図1に示すように、送出手段によってパルス状の信号を周期的に出力し、物標からの反射パルスを受信手段によって連続的に受信し、2値化手段によって2値化する。そしてサンプリング手段が、送出手段の送出タイミング後、一定の1つ又は複数のサンプリング点毎に2値化信号をサンプリングして0又は1のサンプリング値を得て、これをサンプリング点それぞれの点に対応する加算手段に与える。そこで、加算手段が送出手段による信号の所定の送出回数分ずつ0又は1のサンプリング値を加算する。所定回数分の加算処理が終了すると、判定手段が加算手段毎の加算値を加算回数で除算して得られる正規化加算値を所定の閾値と比較し、その大小に基づいて外部の物標からの反射信号が存在するか否かを判定し、これに基づいて外部の物標の有無を判定するものから構成されている。   As a conventional pulse radar device, there is one proposed in Patent Document 1. As shown in FIG. 1 of this document, this apparatus periodically outputs a pulsed signal by a sending unit, continuously receives reflected pulses from a target by a receiving unit, and 2 by a binarizing unit. Convert to value. The sampling means samples the binarized signal at a certain sampling point or points after the sending timing of the sending means to obtain a sampling value of 0 or 1, corresponding to each point of the sampling point. Is given to the adding means. Therefore, the adding means adds 0 or 1 sampling values for each predetermined number of times the signal is sent by the sending means. When the addition process for the predetermined number of times is completed, the determination unit compares the normalized addition value obtained by dividing the addition value for each addition unit by the number of additions with a predetermined threshold, and based on the magnitude, from the external target It is comprised from what determines whether the reflection signal of this exists, and determines the presence or absence of an external target based on this.

しかしながら、送信・受信のアイソレーションが悪く、いわゆる漏れ波形が存在する場合、あるいはレドームがある場合、次のような理由により、従来の装置を用いて10m未満の距離に存在する物体の検出、およびその物体までの距離の測定を行うことは困難である。すなわち、従来の装置では、その送信パルス幅が距離にして10mに相当する66.7nsであるので、10mよりも近い距離に物体が存在する場合、漏れ波形あるいは2次レドームによる反射波と物体による反射波の波形が重なり合った波形が検出される。そのため、非送信中の受信レベル、いわゆるノイズレベルをもとに閾値を設定したのでは、漏れ波形の立ち上がりしか検出できず、本当に検出したい反射波の立ち上がりを検出することができなかった。   However, when transmission / reception isolation is poor and a so-called leaky waveform exists, or when there is a radome, detection of an object existing at a distance of less than 10 m using a conventional apparatus for the following reasons, and It is difficult to measure the distance to the object. That is, in the conventional apparatus, the transmission pulse width is 66.7 ns corresponding to 10 m in terms of distance, and therefore when an object is present at a distance closer than 10 m, a leakage waveform or a reflected wave due to the secondary radome and the object A waveform in which the waveforms of the reflected waves overlap is detected. Therefore, if the threshold is set based on the reception level during non-transmission, so-called noise level, only the rise of the leakage waveform can be detected, and the rise of the reflected wave that is really desired to be detected cannot be detected.

従来はこのような問題があり、近距離を検出することが困難であったが、近年、米国のFCC連邦通信委員会の規則が昨年改定され、これに従い、車載レーダにおいてUWB(Ultra Wide Band)技術の利用が可能となった。   Conventionally, there has been such a problem, and it has been difficult to detect short distances. However, in recent years, the rules of the FCC Federal Communications Commission in the United States have been revised last year, and in accordance with this, UWB (Ultra Wide Band) in in-vehicle radar Technology can be used.

UWB技術が使用できることとなり、近距離を検出するための手段として、非特許文献1に記載のように、パルス幅を350psといった非常に短いものにする方法が提案されている。しかしながら、この文献に記載されているように送信パルス幅を350psまで短くすると、物体までの距離が約5cm以下の場合しか漏れ波形と反射波の波形が重ならないので、上述の課題は解決されるが、パルスを発生するためのパルス発生回路が、従来の単安定マルチバイブレーターや水晶振動子などの発振素子とロジックICの組み合わせによるものが使用できなくなった。   The UWB technique can be used, and as a means for detecting a short distance, a method of making the pulse width as short as 350 ps as described in Non-Patent Document 1 has been proposed. However, as described in this document, when the transmission pulse width is shortened to 350 ps, the leakage waveform and the reflected wave waveform overlap only when the distance to the object is about 5 cm or less. However, the conventional pulse generation circuit for generating a pulse cannot be used by a combination of an oscillation element such as a monostable multivibrator or a crystal resonator and a logic IC.

ここで、UWBとは,数百psecから数nsecの極めて短いパルスを用いて変調を行う通信方式のことで、高周波(極短)パルスを用いるため、極めて広い周波数帯域幅をもち、広範囲にスペクトルが拡散することから低い送信電力となり、他の機器に影響を及ぼさない特徴がある。   Here, UWB is a communication method in which modulation is performed using extremely short pulses of several hundred psec to several nsec. Since a high frequency (ultra short) pulse is used, it has an extremely wide frequency bandwidth and has a wide spectrum. Has a low transmission power because it spreads and does not affect other devices.

ゆえに従来のパルス発生回路では、入手しやすいシリコン系の半導体で構成されていたパルス発生回路が、高周波(極短)パルス、つまりパルス立ち上がりから立ち下がりまでが2nsec以下(周波数100MHz帯域以上)のパルスを発生させるために、高周波用の半導体デバイス、つまりガリウム砒素(以下GaAs)などの元素を使用した電子移動度の速い半導体を使用せざるを得なくなった。   Therefore, in the conventional pulse generation circuit, the pulse generation circuit composed of an easily available silicon-based semiconductor is a high-frequency (very short) pulse, that is, a pulse of 2 nsec or less (frequency of 100 MHz band or more) from pulse rising to falling. Therefore, a semiconductor device for high frequency, that is, a semiconductor having a high electron mobility using an element such as gallium arsenide (hereinafter referred to as GaAs) has to be used.

また、低周波で一般的に使用されているシリコン(以下Siと記す)系の元素記号をもった半導体デバイスで、前記高周波パルスを発生させる場合、市販されているTTL出力(0V〜5Vの電圧出力)のロジックICで高周波パルス動作をさせることが不可能であり、ECL(−0.8V〜−1.8Vの電圧出力)、PECL(3.2V〜4.2Vの電圧出力)などの出力電圧レベル(インターフェイス)が違う半導体を使用しなくてはならなくなった。   In addition, when a high frequency pulse is generated in a semiconductor device having a silicon (hereinafter referred to as Si) element symbol generally used at low frequencies, a commercially available TTL output (voltage of 0V to 5V) is used. Output) logic ICs are not capable of high-frequency pulse operation, and output such as ECL (-0.8 V to -1.8 V voltage output), PECL (3.2 V to 4.2 V voltage output), etc. Semiconductors with different voltage levels (interfaces) must be used.

特開平7−72237号公報JP-A-7-72237 W. Weidmann and D. Steinbuch, "HighResolution Radar for Short Range Automotive Applications", 28th EuropeanMicrowave Conference Amsterdam, 1998W. Weidmann and D. Steinbuch, "HighResolution Radar for Short Range Automotive Applications", 28th European Microwave Conference Amsterdam, 1998

GaAsなどの元素記号をもつ半導体を使用すると、価格が高いだけでなく、取り扱い自体も難しく、特に車載用になると環境性能(特にサージ)が厳しくなることもあり、半導体素子の入手性が悪く、また、信頼性の実績が少なく、量産するのが難しくなるという問題があった。   When semiconductors with element symbols such as GaAs are used, they are not only expensive but also difficult to handle themselves, and environmental performance (especially surge) may be severe, especially for automotive applications, and the availability of semiconductor elements is poor. In addition, there is a problem that reliability is low and mass production becomes difficult.

また、低周波で一般的に使用されているSi系の元素記号をもった半導体デバイスで、高周波パルスを発生させる場合、ECL、PECL出力のデバイスを使用するので、出力電圧のレベル変換など素子単体の価格はもとより、それに付加する部品の価格が高くなるという問題があった。   In addition, when generating a high-frequency pulse in a semiconductor device having a Si-based element symbol that is generally used at a low frequency, an ECL or PECL output device is used. In addition to the price of, there was a problem that the price of parts added to it would be high.

また、ECL、PECLなどのデバイスは、消費電流が多く、デバイスの発熱量が増加し、自身の環境性能をさらに悪化させるという問題があった。   In addition, devices such as ECL and PECL have a problem that current consumption is large, the amount of heat generated by the device increases, and the environmental performance of the device further deteriorates.

また、高周波パルス動作ができるSi系デバイスになると、C−MOSロジックIC、コンパレータなど、2値化するデバイスはほとんど市販されておらず、トランジスタ、OPアンプ(ただし、利得は1〜2倍程度まで)が存在する程度であり、入手困難であった。   In addition, when it comes to Si-based devices capable of high-frequency pulse operation, there are almost no devices that are binarized, such as C-MOS logic ICs and comparators. ) Existed and it was difficult to obtain.

本発明は、上述の問題を解決するためになされたレーダ用パルス発生回路であり、安価で、かつ、例えば車載用として入手性、信頼性にそれほど難なく、しかも容易に構成できる。   The present invention is a radar pulse generation circuit designed to solve the above-described problems, and is inexpensive and can be easily configured without being so difficult in terms of availability and reliability, for example, for in-vehicle use.

この発明に係るパルス発生回路は、直流電源、該直流電源に充電抵抗を通して接続されたコンデンサ、該コンデンサの充電エネルギーを放電する放電抵抗、上記コンデンサと上記放電抵抗との間に挿入されされるとともに制御信号により制御され、上記コンデンサを上記充電抵抗側と上記放電抵抗側のいずれかに切換える単極双投形の半導体スイッチ、および上記放電抵抗の出力端に接続された増幅器を備え、上記半導体スイッチを通して上記コンデンサから上記放電抵抗へ放電をしたときに上記放電抵抗の出力端に発生するパルスを上記増幅器を通して取り出すようにしたものである。 Pulse generating circuit according to the present invention includes a DC power supply, a capacitor connected through the charging resistor to the DC power source, a discharge resistor for discharging a charging energy of the capacitor, is inserted between the capacitor and the discharge resistor Rutotomoni A single-pole double-throw semiconductor switch controlled by a control signal to switch the capacitor to either the charging resistor side or the discharging resistor side ; and an amplifier connected to an output terminal of the discharging resistor, the semiconductor switch The pulse generated at the output terminal of the discharge resistor when discharging from the capacitor to the discharge resistor is taken out through the amplifier.

本発明のパルス発生回路は、電子移動度の速い、GaAsなどの半導体素子を使用することなく、コンデンサの充放電とシリコン系低周波用半導体スイッチだけで、高周波パルスを発生させることができる。   The pulse generation circuit of the present invention can generate a high-frequency pulse only by charging and discharging a capacitor and a silicon-based low-frequency semiconductor switch without using a semiconductor element such as GaAs having a high electron mobility.

実施の形態1.
図1はこの発明の実施の形態1に係るパルス発生回路である。この発明に係るパルス発生回路は、所望の電圧を与える直流電源101と、この直流電源101に接続された充電抵抗102と、この充電抵抗102に接続された充放電波形発生用のコンデンサ103と、このコンデンサ103に一端が接続された半導体スイッチ105と、この半導体スイッチ105の他端に接続された放電抵抗104と、この放電抵抗104に接続された増幅器106とを有している。
Embodiment 1 FIG.
1 is a pulse generation circuit according to Embodiment 1 of the present invention. A pulse generation circuit according to the present invention includes a DC power supply 101 for applying a desired voltage, a charging resistor 102 connected to the DC power supply 101, a capacitor 103 for generating a charge / discharge waveform connected to the charging resistor 102, The semiconductor switch 105 has one end connected to the capacitor 103, a discharge resistor 104 connected to the other end of the semiconductor switch 105, and an amplifier 106 connected to the discharge resistor 104.

半導体スイッチ105は例えばシリコン系の単極単投のスイッチで、制御端子aに加わるパルス信号により開閉が制御されるようになされている。増幅器106は入力端に加わるパルスの増幅、インピーダンス変換、もしくは出力電圧リミットを行うための増幅器である。   The semiconductor switch 105 is, for example, a silicon-based single-pole single-throw switch whose opening and closing is controlled by a pulse signal applied to the control terminal a. The amplifier 106 is an amplifier for performing amplification, impedance conversion, or output voltage limit of a pulse applied to the input terminal.

次に動作を説明する。コンデンサ103は、半導体スイッチ105の制御端子aに加わる図2(a)の制御パルスに同期して充放電される(図2(b)参照)。半導体スイッチ105のオン時に充電コンデンサ103より半導体スイッチ105を通り、放電用抵抗104に放電された電流は、半導体スイッチ105の立ち上がり時間と、充電コンデンサ103と放電抵抗104との時定数できまる出力パルス(図2(c)参照)を、増幅器106の出力端cを通して、高周波パルスとして出力する。   Next, the operation will be described. The capacitor 103 is charged and discharged in synchronization with the control pulse of FIG. 2A applied to the control terminal a of the semiconductor switch 105 (see FIG. 2B). When the semiconductor switch 105 is turned on, the current discharged from the charging capacitor 103 through the semiconductor switch 105 to the discharging resistor 104 is an output pulse determined by the rise time of the semiconductor switch 105 and the time constant of the charging capacitor 103 and the discharging resistor 104. (See FIG. 2C) is output as a high-frequency pulse through the output terminal c of the amplifier 106.

ここで、増幅器106から得られた高周波パルスの幅Pwは、立上がり期間Thuと立下がりThdとからなる。図3のように、パルス立ち上がりThuは、半導体スイッチ105の立ち上がり速度で決定され、パルス立下りThdは、半導体スイッチ105の抵抗や配線用パターンの抵抗等の抵抗成分をRon、放電抵抗104を抵抗値R2、充放電コンデンサ103を容量Cとすると、理想的には下記で決定する。

Pw=Thu+Thd
Thu=半導体スイッチのスイッチング速度
Thd≒5×(R2+Ron)×C
Here, the width Pw of the high-frequency pulse obtained from the amplifier 106 is composed of a rising period Thu and a falling Thd. As shown in FIG. 3, the pulse rising Thu is determined by the rising speed of the semiconductor switch 105, and the pulse falling Thd is a resistance component such as the resistance of the semiconductor switch 105 and the resistance of the wiring pattern Ron, and the resistance of the discharge resistor 104. Assuming that the value R2 and the charge / discharge capacitor 103 are capacitance C, ideally the following is determined.

Pw = Thu + Thd
Thu = Switching speed of semiconductor switch
Thd ≒ 5 × (R2 + Ron) × C

また、半導体スイッチ105がオンし、コンデンサ103のエネルギーが放電しきっても、充電抵抗102と放電抵抗104の比で出力電圧レベルが決定するため、放電後、早く半導体スイッチをオンからオフに戻さなくても不要な電圧を発生することがない。   Even if the semiconductor switch 105 is turned on and the energy of the capacitor 103 is completely discharged, the output voltage level is determined by the ratio of the charging resistor 102 and the discharging resistor 104, so that the semiconductor switch does not return from on to off immediately after discharging. However, no unnecessary voltage is generated.

ここで、放電後の増幅器106より出力される不要な出力電圧Voutは、電源電圧をVcc、充電抵抗102をR1、放電抵抗104をR2とすると、
Vout=Vcc×R2/(R1+R2)
となり、R1≫R2としておけば、放電後の出力電圧Voutは、小さくなり、高速で、半導体スイッチをオフしなくても、出力Voutとして不要な電圧レベルを発生することがない。
Here, the unnecessary output voltage Vout output from the amplifier 106 after discharging is that the power supply voltage is Vcc, the charging resistor 102 is R1, and the discharging resistor 104 is R2.
Vout = Vcc × R2 / (R1 + R2)
Therefore, if R1 >> R2, the output voltage Vout after discharge becomes small, and an unnecessary voltage level is not generated as the output Vout at high speed without turning off the semiconductor switch.

また、増幅器106は、高周波用の演算増幅器(OPアンプでエミッタフォロワを構成)であり、この増幅器106がない場合でもパルス発生可能であるが、後段に接続されるデバイス等へのインピーダンスマッチング、また、OPアンプの電源電圧にパルス出力電圧が制限されるため、後段素子の保護などの目的で入れるほうが好ましい。   Further, the amplifier 106 is a high-frequency operational amplifier (an OP follower constitutes an emitter follower), and can generate pulses even without the amplifier 106, but impedance matching to a device or the like connected in the subsequent stage, or Since the pulse output voltage is limited to the power supply voltage of the OP amplifier, it is preferable to input it for the purpose of protecting the subsequent stage elements.

実施の形態2.
図4はこの発明の実施の形態2を示すもので、半導体スイッチ405以外は図1と同様である。図1と同一要素には同一符号を付して説明を省略する。半導体スイッチ405は単極双投のシリコン系低周波用スイッチであり、コンデンサ103の端子が充電抵抗102側と放電抵抗104側とに、端子aに加わる信号(図5の(a)参照)に同期して切り替わる構成になっている。
Embodiment 2. FIG.
FIG. 4 shows Embodiment 2 of the present invention, and is the same as FIG. 1 except for the semiconductor switch 405. The same elements as those in FIG. The semiconductor switch 405 is a single-pole double-throw silicon low-frequency switch, and the terminal of the capacitor 103 is applied to the terminal a on the charging resistor 102 side and the discharging resistor 104 side (see FIG. 5A). It is configured to switch synchronously.

次に動作を説明する。コンデンサ103が充電抵抗102側に接続されている間、充電抵抗102を通して充電されたコンデンサ103は、半導体スイッチ405の切換により充電抵抗102側から切り離されて放電抵抗104側へ接続され、放電抵抗104を通して放電し、そのときに生じるパルスを増幅器106から取り出す。図5はその様子を示すシーケンスである。図5(a)は半導体スイッチ405の制御端子aに加わる制御パルス、(b)はコンデンサ103の充放電電圧波形、(c)は増幅器106の出力端子cから取り出されるパルス波形である。   Next, the operation will be described. While the capacitor 103 is connected to the charging resistor 102 side, the capacitor 103 charged through the charging resistor 102 is disconnected from the charging resistor 102 side by switching the semiconductor switch 405 and connected to the discharging resistor 104 side. And the resulting pulse is taken out of the amplifier 106. FIG. 5 is a sequence showing this state. 5A is a control pulse applied to the control terminal a of the semiconductor switch 405, FIG. 5B is a charge / discharge voltage waveform of the capacitor 103, and FIG. 5C is a pulse waveform taken out from the output terminal c of the amplifier 106.

本実施の形態では、半導体スイッチ405として単極双投スイッチを用いていることにより、充電抵抗102の抵抗値をより小さくすることができ、コンデンサ103へのエネルギー充電時間が短くなり、パルス送信周期を早めることができる。また、実施の形態1の構成で発生していた、エネルギー放電後の不要電圧がなくなり、かつ充電抵抗102の抵抗値R1と放電抵抗104の抵抗値R2を自由に設定できる。   In this embodiment, by using a single-pole double-throw switch as the semiconductor switch 405, the resistance value of the charging resistor 102 can be further reduced, the energy charging time to the capacitor 103 is shortened, and the pulse transmission cycle Can be expedited. Further, the unnecessary voltage after the energy discharge generated in the configuration of the first embodiment is eliminated, and the resistance value R1 of the charging resistor 102 and the resistance value R2 of the discharging resistor 104 can be freely set.

この発明は、車載レーダなどのパルス発生回路として利用できる。   The present invention can be used as a pulse generation circuit such as an in-vehicle radar.

この発明の実施の形態1に係るパルス発生回路を示す回路図である。1 is a circuit diagram showing a pulse generation circuit according to Embodiment 1 of the present invention. FIG. 図1の動作を説明する波形図である。It is a wave form diagram explaining the operation | movement of FIG. 図1の回路で形成されるパルスを示す波形図である。It is a wave form diagram which shows the pulse formed with the circuit of FIG. この発明の実施の形態2に係るパルス発生回路を示す回路図である。It is a circuit diagram which shows the pulse generation circuit which concerns on Embodiment 2 of this invention. 図4の動作を説明する波形図である。It is a wave form diagram explaining the operation | movement of FIG.

符号の説明Explanation of symbols

101 直流電源、 102 充電抵抗、
103 コンデンサ、 104 放電抵抗、
105 半導体スイッチ(単極単投形)、 106 増幅器、
405 半導体スイッチ(単極双投形)。
101 DC power supply, 102 charging resistance,
103 capacitor, 104 discharge resistance,
105 semiconductor switch (single pole single throw type), 106 amplifier,
405 Semiconductor switch (single pole double throw type).

Claims (2)

直流電源、該直流電源に充電抵抗を通して接続されたコンデンサ、該コンデンサの充電エネルギーを放電する放電抵抗、上記コンデンサと上記放電抵抗との間に挿入されるとともに制御信号により制御され、上記コンデンサを上記充電抵抗側と上記放電抵抗側のいずれかに切換える単極双投形の半導体スイッチ、および上記放電抵抗の出力端に接続された増幅器を備え、上記半導体スイッチを通して上記コンデンサから上記放電抵抗へ放電をしたときに上記放電抵抗の出力端に発生するパルスを上記増幅器を通して取り出すようにしたことを特徴とするパルス発生回路。 DC power supply, a capacitor connected through a charging resistor to the DC power source, a discharge resistor for discharging a charging energy of the capacitor is controlled by the inserted Rutotomoni control signals between the capacitor and the discharge resistor, the said capacitor A single-pole double-throw type semiconductor switch that switches between the charging resistor side and the discharging resistor side , and an amplifier connected to the output terminal of the discharging resistor, and discharging from the capacitor to the discharging resistor through the semiconductor switch A pulse generation circuit characterized in that a pulse generated at the output terminal of the discharge resistor is extracted through the amplifier. 上記半導体スイッチは、シリコン系の低周波用スイッチであることを特徴とする請求項1に記載のパルス発生回路。 2. The pulse generation circuit according to claim 1 , wherein the semiconductor switch is a silicon-based low frequency switch .
JP2004149441A 2004-05-19 2004-05-19 Pulse generation circuit Expired - Fee Related JP4045260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004149441A JP4045260B2 (en) 2004-05-19 2004-05-19 Pulse generation circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004149441A JP4045260B2 (en) 2004-05-19 2004-05-19 Pulse generation circuit

Publications (2)

Publication Number Publication Date
JP2005333376A JP2005333376A (en) 2005-12-02
JP4045260B2 true JP4045260B2 (en) 2008-02-13

Family

ID=35487729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004149441A Expired - Fee Related JP4045260B2 (en) 2004-05-19 2004-05-19 Pulse generation circuit

Country Status (1)

Country Link
JP (1) JP4045260B2 (en)

Also Published As

Publication number Publication date
JP2005333376A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
US7209523B1 (en) Ultra-wideband receiver and transmitter
US6606054B2 (en) Pulse radar apparatus
JP4460056B2 (en) Transceiver
CN111007469B (en) Receiver of radar simulator
JP2006313163A (en) Short electron pulse generator and its method
CN110737189A (en) Pulse laser interval measuring circuit
US20060062278A1 (en) Ultrawideband radio transmitter, ultrawideband radio receiver, and ultrawideband radio transmission/reception system
KR20050071687A (en) Method and apparatus to detect and decode information
JP2008045987A (en) Radar device, and detection method of short-distance target of radar device
JP5104712B2 (en) Transmitter
JP4045260B2 (en) Pulse generation circuit
JP2005180992A (en) Radar apparatus
JP4924434B2 (en) Radar apparatus and processing method thereof
US7855589B2 (en) Pulse generator circuit and communication apparatus
US9140778B2 (en) Baseband amplifier unit and pulse radar device
Kolakowski Application of ultra-fast comparator for UWB pulse time of arrival measurement
JP4160416B2 (en) Signal generation circuit
Abuasaker et al. A high sensitive receiver for baseband pulse microwave radar sensor using hybrid technology
CN106130510B (en) Tunable trigger type ultra-wideband narrow pulse generation device and method
Protiva et al. Sub-nanosecond pulse generator for through-the-wall radar application
US20230124956A1 (en) Signal-Adaptive and Time-Dependent Analog-to-Digital Conversion Rate in a Ranging Receiver
KR102291920B1 (en) Impulse transceiver
Ahajjam et al. Range distance measurements using an UWB tapered slot 0.43 GHz to 6 GHz antenna for IoT application
JP5121380B2 (en) Pulse modulator
US20100061483A1 (en) Pulse radio transmission apparatus and transceiver

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071119

R151 Written notification of patent or utility model registration

Ref document number: 4045260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees