JP4044532B2 - Pneumatic tire - Google Patents

Pneumatic tire

Info

Publication number
JP4044532B2
JP4044532B2 JP2004087558A JP2004087558A JP4044532B2 JP 4044532 B2 JP4044532 B2 JP 4044532B2 JP 2004087558 A JP2004087558 A JP 2004087558A JP 2004087558 A JP2004087558 A JP 2004087558A JP 4044532 B2 JP4044532 B2 JP 4044532B2
Authority
JP
Japan
Prior art keywords
tread
rubber
tread surface
tire
columnar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004087558A
Other languages
Japanese (ja)
Other versions
JP2004168315A (en
Inventor
育嗣 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2004087558A priority Critical patent/JP4044532B2/en
Publication of JP2004168315A publication Critical patent/JP2004168315A/en
Application granted granted Critical
Publication of JP4044532B2 publication Critical patent/JP4044532B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0041Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers
    • B60C11/005Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers with cap and base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0041Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers
    • B60C11/005Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers with cap and base layers
    • B60C11/0058Tyre tread bands; Tread patterns; Anti-skid inserts comprising different tread rubber layers with cap and base layers with different cap rubber layers in the axial direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)

Description

本発明は、氷雪路での走行性能等を向上しうる空気入りタイヤに関する。   The present invention relates to a pneumatic tire that can improve traveling performance and the like on icy and snowy roads.

近年、氷雪路での走行性能を向上したタイヤ(例えばスタッドレスタイヤ)にあっては、路面と接地するトレッドゴムに有機又は無機の短繊維などを配合することが行われている。このような短繊維は、ランダムに配向されるものの他、例えばトレッドゴムの厚さ方向に沿ってほぼ配向するものが知られている。そして短繊維は、トレッドゴムから髭状に突出しかつ路面を引っ掻くこと(エッジ効果)を主たる作用効果として、氷雪路での摩擦係数を高めることができる。   In recent years, in tires (for example, studless tires) with improved running performance on icy and snowy roads, organic or inorganic short fibers have been blended with tread rubber that comes in contact with the road surface. Such short fibers are known to be oriented substantially along the thickness direction of the tread rubber, in addition to those oriented randomly. The short fiber can increase the coefficient of friction on the icy and snowy road by mainly protruding from the tread rubber in a bowl shape and scratching the road surface (edge effect).

また、この種のタイヤにあっては、通常、トレッド面にブロックを多数形成したブロックパターンが採用されるとともに、このブロックには、ほぼタイヤ軸方向にのびるサイピング(細溝)が多数形成されている。   In addition, this type of tire usually employs a block pattern in which a large number of blocks are formed on the tread surface, and this block has a large number of sipings (narrow grooves) extending substantially in the tire axial direction. Yes.

ところで、前記サイピングは、通常1ブロック当たり複数本刻設されるが、このサイピングはタイヤ加硫金型に設けたナイフブレードにより加硫成形される。しかしながら、加硫成形時のゴム流れとともに前記ナイフブレードをゴム中へ押し込むことによって、前記短繊維などの配向が不規則に乱れ、短繊維等による路面掻き取り効果が十分に得られないという問題がある。このため、さらに摩擦力を向上するために、例えばゴムを柔軟化させることが行われるが、この手法ではトレッド面の摩耗が激しくタイヤライフが著しく短くなる。また、前記短繊維などを配合したトレッドゴムは、一般に氷雪路では効果的であるものの、通常のドライアスファルト路面ではゴムの接地面積が減少するため、むしろグリップ力が低下するという問題がある。   Incidentally, a plurality of sipings are usually provided per block, and this siping is vulcanized by a knife blade provided in a tire vulcanizing mold. However, by pushing the knife blade into the rubber together with the rubber flow during vulcanization molding, the orientation of the short fibers and the like is irregularly disturbed, and the road surface scraping effect by the short fibers cannot be obtained sufficiently. is there. For this reason, in order to further improve the frictional force, for example, rubber is softened. However, in this method, the tread surface is heavily worn and the tire life is remarkably shortened. In addition, although the tread rubber blended with the short fibers is generally effective on icy and snowy roads, there is a problem that the grip force is rather lowered on the normal dry asphalt road surface because the rubber contact area decreases.

本発明にあっては、ゴム基材100重量部中に所定形状の柱状材を配合した防滑用ゴム材を用いてトレッド面の少なくとも一部を形成するとともに、柱状材の長さ方向をトレッド面に対して40〜90゜の角度で配向し、かつトレッド面を、前記防滑用ゴム材からなる第1の接地部と、柱状材を含まないゴム材からなる第2の接地部とを含むことを基本として、氷雪路での走行性能を高めつつドライアスファルト路面でのグリップ低下を抑制しうる空気入りタイヤを提供することを目的としている。   In the present invention, at least a part of the tread surface is formed using an anti-slip rubber material in which a columnar material having a predetermined shape is blended in 100 parts by weight of the rubber base material, and the length direction of the columnar material is set to the tread surface. And the tread surface includes a first grounding portion made of the anti-slip rubber material and a second grounding portion made of a rubber material not including a columnar material. Based on the above, it is an object to provide a pneumatic tire capable of suppressing a decrease in grip on a dry asphalt road surface while improving a running performance on an icy and snowy road.

本件請求項1に係る発明は、−10℃の雰囲気中のデュロメータA硬さを40〜60゜としたゴム基材100重量部中に底面積が10-4〜4.0mm2 、かつ長さが0.1〜15mmしかも路面に対してエッジ効果を発揮させる素材からなる柱状材を2〜40重量部含む防滑用ゴム材を用いてトレッド面の少なくとも一部を形成するとともに、
前記柱状材の長さ方向をトレッド面に対して40〜90゜の角度で配向する一方、
前記トレッド面は、前記防滑用ゴム材を用いて形成される第1の接地部と、柱状材を含まないゴム材からなる第2の接地部とを含み、
かつ前記トレッド面は、ブロックを並列したブロックパターンを具え、
しかもブロック面に、タイヤ軸方向に対して0〜60゜の傾き角度θで配され、ブロックのエッジ成分を増すサイピングを設けるとともに、
サイピングは、タイヤ周方向の配設ピッチが、3〜25mmとし、かつサイピング深さが、縦溝10の溝深さの0.3〜1.0倍とし、さらに前記トレッド面が、該トレッド面の中央部に前記第1の接地部を具えかつその両側にトレッド端までのびる前記第2の接地部を具えるとともに、前記第1の接地部のタイヤ軸方向の巾を、前記トレッド端間のタイヤ軸方向距離であるトレッド巾の0.4〜0.6倍としたことを特徴とする。
In the invention according to claim 1, the bottom area is 10 −4 to 4.0 mm 2 in 100 parts by weight of a rubber base material having a durometer A hardness of 40 to 60 ° in an atmosphere of −10 ° C. and a length. And forming at least a part of the tread surface using an anti-slip rubber material containing 2 to 40 parts by weight of a columnar material made of a material that exhibits an edge effect on the road surface.
While orienting the length direction of the columnar material at an angle of 40 to 90 ° with respect to the tread surface,
The tread surface includes a first grounding portion formed using the anti-slip rubber material, and a second grounding portion made of a rubber material not including a columnar material,
The tread surface has a block pattern in which blocks are arranged in parallel,
Moreover, the block surface is provided with an inclination angle θ of 0 to 60 ° with respect to the tire axial direction, and provided with siping that increases the edge component of the block,
In the siping, the arrangement pitch in the tire circumferential direction is 3 to 25 mm, the siping depth is 0.3 to 1.0 times the groove depth of the longitudinal groove 10, and the tread surface is the tread surface. The first grounding portion is provided at the center of the tire and the second grounding portion extends to the tread end on both sides of the first grounding portion, and the width of the first grounding portion in the tire axial direction is defined between the tread ends. It is characterized by being 0.4 to 0.6 times the tread width which is the distance in the tire axial direction.

また、請求項1の発明では、トレッド面に、柱状材を含む防滑用ゴム柱からなる第1の接地部と、柱状材を含まないゴム材からなる第2の接地部とを含むことにより、氷上走行性能とドライグリップ性能とを両立しうる。前記柱状材は、特に限定はされないが、円柱状又は角柱状をなすグラスファイバーを含むことがエッジ効果を高める上で好ましい。また前記トレッド面は、ブロックがタイヤ周方向に並ぶブロック列、又はタイヤ周方向に連続するリブ列が少なくとも1列形成されることにより、大きな駆動力を発生するのに役立つ。また前記防滑用ゴム材のデュロメータA硬さを40〜60゜とすることにより、路面との粘着力を増し、接地性をさらに向上して氷雪路での走行性能をさらに向上しうる。なお、「走行性能」とは、氷雪路での走行、制動性能を総称している。またトレッド面とは、タイヤをリム組みしてJATMA等の規格で定まる内圧と荷重の下で路面と接地する面をいう。   Further, in the invention of claim 1, the tread surface includes a first grounding portion made of a non-slip rubber column including a columnar material and a second grounding portion made of a rubber material not including a columnar material, Both on-ice performance and dry grip performance can be achieved. The columnar material is not particularly limited, but it preferably includes a glass fiber having a columnar shape or a prismatic shape in order to enhance the edge effect. The tread surface is useful for generating a large driving force by forming at least one row of blocks in which the blocks are arranged in the tire circumferential direction or a row of ribs continuous in the tire circumferential direction. Further, by setting the durometer A hardness of the rubber material for anti-slip to 40 to 60 °, it is possible to increase the adhesion with the road surface, further improve the ground contact property and further improve the running performance on icy and snowy roads. The “running performance” is a generic term for running and braking performance on icy and snowy roads. The tread surface refers to a surface that contacts a road surface under an internal pressure and a load determined by a standard such as JATMA by assembling a rim.

また請求項1に係る発明では、トレッド面の中央部に前記第1の接地部を設けかつその両側に第2の接地部を設けているので、氷雪路での発進、加速時などの駆動性能を向上するほか、ドライアスファルト路面での旋回走行時のグリップを高めうる。この場合、駆動時に大きな力が作用するトレッド面の中央部にて防滑作用が得られるため、特に駆動輪用とすることにより、氷雪路の走行時でもスリップの少ない発進、駆動作用が得られる。またこのとき、第1の接地部のタイヤ軸方向の巾を、例えばトレッド端間のタイヤ軸方向距離であるトレッド巾の0.4〜0.6倍とすることにより、ドライアスファルト路面でのグリップ力と氷雪路での駆動性能とをバランス良く向上させることができる。   In the invention according to claim 1, since the first grounding portion is provided at the center portion of the tread surface and the second grounding portions are provided on both sides thereof, the driving performance at the time of starting on a snowy road, acceleration, etc. In addition, it can improve grip when turning on dry asphalt roads. In this case, an anti-slip effect is obtained at the central portion of the tread surface where a large force is applied during driving. Therefore, by using the drive wheel in particular, it is possible to obtain a start-up and driving action with less slip even when traveling on an icy snowy road. At this time, the width of the first ground contact portion in the tire axial direction is set to 0.4 to 0.6 times the tread width that is the tire axial distance between the tread ends, for example, so that the grip on the dry asphalt road surface is achieved. It is possible to improve the power and driving performance on snowy roads in a well-balanced manner.

以下本発明の実施の一形態を図面に基づき説明する。
図1は本実施形態の空気入りタイヤの部分断面図、図2はそのトレッド面の展開図をそれぞれ示している。本実施形態の空気入りタイヤ1は、トレッド部2を具えかつ該トレッド部2の接地面となるトレッド面3の少なくとも一部を、防滑用ゴム材G1で形成しており、氷雪路の走行を向上させたいわゆるスタッドレスタイヤとして構成されている。即ちトレッド面3は、前記防滑用ゴム材G1を用いて形成される第1の接地部3aと、柱状材5を含まないゴム材G2からなる第2の接地部3bとを含んでいる。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a partial cross-sectional view of the pneumatic tire of the present embodiment, and FIG. 2 is a development view of the tread surface thereof. The pneumatic tire 1 of the present embodiment includes a tread portion 2 and at least a part of a tread surface 3 that serves as a ground contact surface of the tread portion 2 is formed of an anti-slip rubber material G1, and travels on icy and snowy roads. It is configured as an improved so-called studless tire. That is, the tread surface 3 includes a first grounding portion 3a formed using the anti-slip rubber material G1 and a second grounding portion 3b made of the rubber material G2 not including the columnar material 5.

前記防滑用ゴム材G1は、ゴム基材100重量部中に所定の形状を有する柱状材5を2〜40重量部含んで構成される。前記ゴム基材としては、例えばジエン系ゴムが好ましく、より具体的には天然ゴム、イソプレンゴム、スチレンブタジエンゴム、ブタジエンゴム、クロロプレンゴム、アクリロニトリルブタジエンゴムなどの1種又は2種以上をブレンドして用いることができる。   The anti-slip rubber material G1 includes 2 to 40 parts by weight of a columnar material 5 having a predetermined shape in 100 parts by weight of a rubber base material. As the rubber base material, for example, a diene rubber is preferable, and more specifically, natural rubber, isoprene rubber, styrene butadiene rubber, butadiene rubber, chloroprene rubber, acrylonitrile butadiene rubber or the like is blended. Can be used.

また前記柱状材5は、防滑用ゴム材G1に路面に対してエッジ効果を発揮させる素材から構成される。すなわち、柱状材5はゴム基材に混練されて分散するとともに加硫によっても消失しない素材からなることが先ず必要である。また柱状材5は、例えばゴム基材の表面から髭状に突出して該柱状材が直接路面を掻き削ることでエッジ効果を発揮させることができる。この場合、柱状材5は、容易に折れない程度の曲げ剛性が要求される。また柱状材5は、ゴム摩耗等の進行により、該ゴム表面から脱落した場合、その後に柱状材5が埋着されていたゴム表面に残る小孔によっても間接的にエッジ効果を発揮させることができ、また前記小孔を用いて氷上の水膜を吸着することもできる。   The columnar member 5 is made of a material that causes the anti-slip rubber material G1 to exert an edge effect on the road surface. That is, it is first necessary that the columnar material 5 is made of a material that is kneaded and dispersed in the rubber base material and does not disappear even by vulcanization. Further, the columnar member 5 can project an edge effect by projecting in a bowl shape from the surface of the rubber base material and scraping the road surface directly by the columnar member. In this case, the columnar member 5 is required to have a bending rigidity that does not easily break. Further, when the columnar material 5 falls off from the rubber surface due to progress of rubber wear or the like, the edge effect can also be indirectly exhibited by a small hole remaining on the rubber surface where the columnar material 5 is embedded thereafter. It is also possible to adsorb a water film on ice using the small holes.

このような柱状材5の素材の一例としては、例えば、ナイロン、ポリエステル、アラミド、レーヨン、ビニロン、芳香族ポリアミド、コットン、セルロース樹脂、結晶性ポリブタジエンなどの有機物の他、金属繊維、ウイスカ、ボロン、グラスファイバ等の無機材質が挙げられ、これらは単独でも、又2種以上を組合わせて使用することもできる。なお特に好ましくは、ゴムとの摩耗速度の差が小さい非金属材料、とりわけグラスファイバーとするのが良い。また柱状材5はゴム基材との接着性を向上させるために必要な表面処理などを施すこともある。   Examples of such materials for the columnar member 5 include, for example, organic materials such as nylon, polyester, aramid, rayon, vinylon, aromatic polyamide, cotton, cellulose resin, crystalline polybutadiene, metal fibers, whiskers, boron, Examples thereof include inorganic materials such as glass fiber, and these can be used alone or in combination of two or more. It is particularly preferable to use a non-metallic material, particularly glass fiber, which has a small difference in wear rate from rubber. Further, the columnar member 5 may be subjected to a surface treatment or the like necessary for improving the adhesiveness with the rubber base material.

また柱状材5の配合量は、前記ゴム基材100重量部に対して、2〜40重量部、より好ましくは15〜30重量部である。柱状材5が2重量部未満では、氷雪路での走行性能を十分に高めることができず、逆に40重量部を越えるとゴムの耐クラック性などが低下する傾向がある。   Moreover, the compounding quantity of the columnar material 5 is 2-40 weight part with respect to 100 weight part of said rubber base materials, More preferably, it is 15-30 weight part. If the columnar material 5 is less than 2 parts by weight, the running performance on icy and snowy roads cannot be sufficiently improved. Conversely, if it exceeds 40 parts by weight, the crack resistance of the rubber tends to decrease.

また柱状材5は、本例ではグラスファイバーからなり、例えば図3(a)〜(d)に示すように、円柱状又は角柱状で構成するのが望ましい。角柱状とする際、特に三角柱状ないし六角柱状とすることにより、柱状材5自体のエッジがより一層増加し、これによりさらに高いエッジ効果を期待することができる。また柱状材5の底面積Aは、10-4〜4.0mm2 とし、その長さLは0.1〜15mmとする。柱状材5の底面積Aが10-4mm2 未満或いは柱状材5の長さLが0.1mm未満であると、柱状材5自体による路面引っ掻き効果が低下し、逆に底面積Aが4.0mm2 よりも大或いは長さLが15mmよりも大であると、柱状材5が大きくなりすぎてゴムとの接着性が低下し耐摩耗性や耐クラック性が低下する。かかる観点より、柱状材5の底面積Aは、10-2〜4.0mm2 、その長さLは0.3〜15mmとすることが特に望ましい。なお前記底面積A、長さLはいずれも平均値である。 In addition, the columnar material 5 is made of glass fiber in this example, and is preferably configured in a columnar shape or a prismatic shape, for example, as shown in FIGS. When the prismatic shape is used, the edge of the columnar material 5 itself is further increased by using a triangular prism shape or a hexagonal prism shape, and thus a higher edge effect can be expected. The bottom area A of the columnar member 5 is 10 −4 to 4.0 mm 2 and the length L is 0.1 to 15 mm. If the bottom area A of the columnar member 5 is less than 10 −4 mm 2 or the length L of the columnar member 5 is less than 0.1 mm, the effect of scratching the road surface by the columnar member 5 itself is reduced. If it is larger than 0.0 mm 2 or the length L is larger than 15 mm, the columnar member 5 becomes too large, the adhesiveness to rubber is lowered, and the wear resistance and crack resistance are lowered. From such a viewpoint, it is particularly desirable that the bottom area A of the columnar member 5 is 10 −2 to 4.0 mm 2 and the length L is 0.3 to 15 mm. The bottom area A and the length L are both average values.

また防滑用ゴム材G1は、−10℃の雰囲気中で測定したときのデュロメータA硬さを40〜60゜、さらに好ましくは45〜60゜とするのが望ましい。これにより、低温時においても柔軟性を確保し路面との接地性をさらに向上して氷雪路での走行性能を高めるとともに、ドライアスファルト路面での操縦安定性も維持するのに役立つ。なお「デュロメータA硬さ」とは、JIS−K6253に基づくデュロメータータイプAによるゴム硬さとし、前記防滑用ゴム材G1の厚さ(タイヤ半径方向)の硬さとなるよう測定する。   Further, it is desirable that the anti-slip rubber material G1 has a durometer A hardness of 40 to 60 °, more preferably 45 to 60 ° when measured in an atmosphere of −10 ° C. As a result, flexibility is ensured even at low temperatures, and the contact performance with the road surface is further improved to improve the running performance on icy and snowy roads, and it also helps maintain the driving stability on the dry asphalt road surface. The “durometer A hardness” is a rubber hardness according to durometer type A based on JIS-K6253 and is measured so as to have a hardness (in the tire radial direction) of the rubber material for anti-slip G1.

またこの柱状材5は、その大部分(例えば90%以上)が、その長さ方向をトレッド面3に対して40〜90゜の角度となるほぼ垂直の状態で配向されている。柱状材5をこのように配向したゴムを得る方法としては、例えば図4(a)に示すように、カレンダーロールrを用いることができる。公知のように、ゴム基材、柱状材5の他、加硫成形に必要な所定の薬品などが必要に応じて配合された未加硫のゴム材料mをカレンダーロールr、rにて圧延加工した場合には、柱状材5の長さ方向は圧延方向Xに沿うものとなる。   Further, most of the columnar material 5 (for example, 90% or more) is oriented in a substantially vertical state in which the length direction is an angle of 40 to 90 ° with respect to the tread surface 3. As a method of obtaining the rubber in which the columnar members 5 are oriented in this way, for example, a calendar roll r can be used as shown in FIG. As is well known, unvulcanized rubber material m in which predetermined chemicals necessary for vulcanization molding are blended as necessary in addition to rubber base material and columnar material 5 is rolled with calender rolls r and r. In this case, the length direction of the columnar material 5 is along the rolling direction X.

そして、この圧延されたゴムシートgを図4(a)のように折り畳んで積層し所定巾に形成することにより、柱状材5が圧延方向と直角なZ方向に配向する。そして、このゴム積層体を、前記Z方向がタイヤ半径方向となるように用いることにより、柱状材5がトレッド面3にほぼ垂直に配向された材料を得ることができる。   Then, the rolled rubber sheet g is folded and laminated as shown in FIG. 4A to form a predetermined width, whereby the columnar material 5 is oriented in the Z direction perpendicular to the rolling direction. Then, by using this rubber laminate so that the Z direction is the tire radial direction, a material in which the columnar members 5 are oriented substantially perpendicular to the tread surface 3 can be obtained.

なお図4(b)に示すように、柱状材5を圧延方向に配向したゴムシートgを厚さ方向に積層するとともに、この積層体を柱状材5の配向方向と直角な面Jで切断して同様の材料をうることでも良い。   4B, the rubber sheet g in which the columnar material 5 is oriented in the rolling direction is laminated in the thickness direction, and the laminate is cut along a plane J perpendicular to the orientation direction of the columnar material 5. It is also possible to obtain the same material.

そして、これらの材料を第2の接地部3b用の柱状材5を含まないゴム材G2、ウイングゴム4cなどと貼り合わせたトレッドゴム4として成型するとともに、これを用いて生タイヤカバーを成型する。またこの生タイヤカバーを加硫することにより空気入りタイヤ1を製造しうる。このようなトレッド面3を具える空気入りタイヤ1では、配向された柱状材5等が路面を効果的に引っ掻くこと、あるいは柱状材5がゴムから脱落することにより形成されたゴム表面の小孔により氷雪路との間の摩擦係数を高め、走行性能が大幅に向上しうる。   Then, these materials are molded as a tread rubber 4 bonded to a rubber material G2, a wing rubber 4c and the like that do not include the columnar material 5 for the second grounding portion 3b, and a raw tire cover is molded using this. . Moreover, the pneumatic tire 1 can be manufactured by vulcanizing the green tire cover. In the pneumatic tire 1 having such a tread surface 3, a small hole on the rubber surface formed by the oriented columnar member 5 or the like effectively scratching the road surface or the columnar member 5 falling off the rubber. As a result, the friction coefficient between the snowy road and the road can be increased, and the running performance can be greatly improved.

また本実施形態の空気入りタイヤ1は、トレッド面2に、タイヤ加硫成形後の切削により形成されたサイピングSを設けており、本例では全てのサイピングSをタイヤ加硫成形後の切削により形成したものを例示している。一般に、図5に示す如く、加硫時に金型MのナイフブレードK等を用いてサイピングSを成形した場合、流動するゴム中に存在する柱状材5は、ナイフブレードKの押圧によるゴム流れ等により配向が乱れやすくなるが本実施形態では柱状材5は加硫ゴムによって既に配向が固定されているため、切削によりサイピングSを形成しても該柱状材5の配向が乱されることが防止される。従って、本実施形態の空気入りタイヤでは、加硫後の柱状材5の配向状態の乱れが非常に少ないため、氷雪路での走行性能向上効果がより一層期待できる。また、柱状材5の配向が従来に比して向上するため、例えば防滑用ゴム材G1のゴム硬さを増しても同程度の氷上性能を発揮することができ、この場合には防滑用ゴム材G1の耐摩耗性が向上してタイヤライフを延長させうる。   Moreover, the pneumatic tire 1 of this embodiment is provided with a siping S formed on the tread surface 2 by cutting after tire vulcanization molding. In this example, all the siping S is removed by cutting after tire vulcanization molding. What is formed is illustrated. In general, as shown in FIG. 5, when the siping S is molded using a knife blade K of a mold M or the like during vulcanization, the columnar material 5 present in the flowing rubber is a rubber flow caused by the pressure of the knife blade K. However, in this embodiment, since the orientation of the columnar material 5 is already fixed by vulcanized rubber, the orientation of the columnar material 5 is prevented from being disturbed even if the siping S is formed by cutting. Is done. Therefore, in the pneumatic tire of this embodiment, since the disorder of the orientation state of the columnar material 5 after vulcanization is very small, the effect of improving the running performance on icy and snowy roads can be further expected. Further, since the orientation of the columnar member 5 is improved as compared with the conventional one, for example, even if the rubber hardness of the anti-slip rubber material G1 is increased, the same performance on ice can be exhibited. The wear resistance of the material G1 can be improved and the tire life can be extended.

前記トレッド面3は、本例では図2に示したように、縦溝10、横溝11により区画されたブロックBがタイヤ周方向に並ぶブロック列BLを5列具えるブロックパターンで形成されたものが例示されており、各ブロックBには、少なくとも1本、好ましくは複数本のサイピングSが形成されている。なおブロック列BLに代えて接地部分がタイヤ周方向に連続するリブ列としても良い。また前記サイピングSは、例えばタイヤ軸方向に対して例えば0〜60゜の傾き角度θで配され、ブロックBのエッジ成分を効果的に増加させうる。   As shown in FIG. 2, the tread surface 3 is formed in a block pattern having five block rows BL in which the blocks B defined by the vertical grooves 10 and the horizontal grooves 11 are arranged in the tire circumferential direction. In each block B, at least one, preferably a plurality of sipings S are formed. Instead of the block row BL, a grounding portion may be a rib row that continues in the tire circumferential direction. The siping S is disposed, for example, at an inclination angle θ of, for example, 0 to 60 ° with respect to the tire axial direction, and can effectively increase the edge component of the block B.

またサイピングSは、本例の如く直線状をなすものの他、ジグザグ、波状或いはこれらの組み合わせなど種々の形状にて構成でき、本例のように両端が開口するオープンタイプの他、一端のみ開口するセミオープンタイプ、両端がブロック内で終端するクローズドタイプなど種々の態様にて加工しうる。なおサイピングSのタイヤ周方向の配設ピッチは、3〜25mmとし、またサイピング深さは、縦溝10の溝深さの0.3〜1.0倍としている。   Further, the siping S can be configured in various shapes such as a zigzag shape, a wave shape, or a combination thereof, in addition to a linear shape as in this example. In addition to the open type in which both ends are open as in this example, only one end is opened. It can be processed in various modes such as a semi-open type and a closed type in which both ends terminate in a block. The pitch of the siping S in the tire circumferential direction is 3 to 25 mm, and the siping depth is 0.3 to 1.0 times the groove depth of the longitudinal groove 10.

またサイピングSは、本例の如く直線状をなすものの他、ジグザグ、波状或いはこれらの組み合わせなど種々の形状にて構成でき、本例のように両端が開口するオープンタイプの他、一端のみ開口するセミオープンタイプ、両端がブロック内で終端するクローズドタイプなど種々の態様にて加工しうる。なおサイピングSのタイヤ周方向の配設ピッチは、例えば3〜25mmとし、またサイピング深さは、縦溝10の溝深さ例えば0.3〜1.0倍とするのが好ましい。   Further, the siping S can be configured in various shapes such as a zigzag shape, a wave shape, or a combination thereof, in addition to a linear shape as in this example. In addition to the open type in which both ends are open as in this example, only one end is opened. It can be processed in various modes such as a semi-open type and a closed type in which both ends terminate in a block. The pitch of the siping S in the tire circumferential direction is preferably 3 to 25 mm, for example, and the siping depth is preferably 0.3 to 1.0 times the depth of the longitudinal groove 10.

他方、柱状材5を配合した防滑用ゴム材G1は、氷雪路に対しては効果的な摩擦力を生じさせる反面、通常のドライアスファルト路面に対してはゴムの接地面積が減少してしまうためグリップ力が低下するという問題がある。そこで、本実施形態では、トレッド面3に、柱状材5を含まないゴム材G2からなる第2の接地部3bを含ませることにより、氷上走行性能とドライグリップ性能とを両立している。   On the other hand, the anti-slip rubber material G1 blended with the columnar material 5 produces an effective frictional force on icy and snowy roads, while the ground contact area of rubber is reduced on ordinary dry asphalt road surfaces. There is a problem that the grip force is reduced. Therefore, in the present embodiment, the on-ice running performance and the dry grip performance are compatible by including the second contact portion 3b made of the rubber material G2 not including the columnar material 5 in the tread surface 3.

また第1の接地部3aをトレッド面3のどの部分に配するかによってタイヤの走行性能に違いが生じる。本例のトレッド面3は、該トレッド面3の中央部に前記第1の接地部3aを具えかつその両側にトレッド端Eまでのびる第2の接地部3bを設けている。一般に、トレッド面3の中央部には発進時、加速時等に大きな力が作用するため、この部分に防滑用ゴム材G1を配することにより、氷雪路での発進、加速時などの駆動性能を向上するのに役立つ。つまり、駆動車輪に装着する駆動輪用タイヤとして好適である。反面、トレッド面3の軸方向の側部には、前記のように、柱状材5を含まないゴム材G2からなる第2の接地部3bを設けていることにより、ドライアスファルト路面での旋回走行時のグリップ力を高め、操縦安定性の低下が抑制される。   In addition, the running performance of the tire varies depending on which part of the tread surface 3 the first ground contact portion 3a is disposed. The tread surface 3 of the present example is provided with the first grounding portion 3a at the center of the tread surface 3, and the second grounding portion 3b extending to the tread end E on both sides thereof. In general, since a large force acts on the center of the tread surface 3 at the time of start, acceleration, etc., the anti-slip rubber material G1 is disposed on this part, so that the drive performance at the time of start, acceleration, etc. on icy and snowy roads. To help improve. That is, it is suitable as a drive wheel tire to be mounted on the drive wheel. On the other hand, as described above, the second ground contact portion 3b made of the rubber material G2 not including the columnar material 5 is provided on the side portion in the axial direction of the tread surface 3 so that the vehicle runs on the dry asphalt road surface. The grip power at the time is increased, and the decrease in steering stability is suppressed.

またこのとき、第1の接地部3aのタイヤ軸方向の巾W1(接地しない溝巾を含める)を、例えばトレッド面3の軸方向外端であるトレッド端E、E間のタイヤ軸方向距離であるトレッド巾TWの0.2〜0.6倍、より好ましくは0.3〜0.6倍とすることにより、ドライアスファルト路面でのグリップ力と氷雪路での駆動性能とをバランス良く向上しうる。なお第1の接地部3aの巾W1が、トレッド巾TWの0.2倍を下回ると、第1の接地部3aの接地巾が少なくなるため氷雪路での高摩擦力が得られ難い傾向があり、逆に0.6倍を超えると、第2の接地部3bの接地巾が小さくなるためドライアスファルト路面でのグリップ力の低下代が相対的に大きくなる。なお第1の接地部3aは、タイヤ赤道Cにほぼ中心を揃えて配されている。   Further, at this time, the width W1 in the tire axial direction of the first ground contact portion 3a (including the groove width not grounded) is, for example, the tire axial distance between the tread ends E and E that are the axial outer ends of the tread surface 3. By making the tread width TW 0.2 to 0.6 times, more preferably 0.3 to 0.6 times, the grip force on the dry asphalt road surface and the driving performance on the icy and snowy roads are improved in a balanced manner. sell. When the width W1 of the first ground contact portion 3a is less than 0.2 times the tread width TW, the ground contact width of the first ground contact portion 3a is reduced, so that it is difficult to obtain a high frictional force on icy and snowy roads. On the other hand, if it exceeds 0.6 times, the ground contact width of the second ground contact portion 3b becomes small, so that the reduction in grip force on the dry asphalt road surface becomes relatively large. The first ground contact portion 3a is arranged on the tire equator C with its center substantially aligned.

図6には、トレッド面3は、該トレッド面3の中央部に前記第2の接地部3bを具え、かつその両側に前記第1の接地部3aを単に例示している。一般に、トレッド面3の側部(いわゆるショルダ部)には旋回時に大きな横力が作用するため、この側部に防滑用ゴム材G1を配することにより、特に氷雪路での旋回性能を向上するのに役立つ。このようなタイヤは、旋回時に特に大きな横力が作用する操舵輪に装着されるのに好適な操舵輪用タイヤとして好適なものとなるときに採用できる。他方、トレッド面3の中央部には、柱状材5を含まないゴム材G2からなる第2の接地部3bを設けていることにより、ドライアスファルト路面でのグリップを高め、駆動性能などの低下が抑制される。 In FIG. 6, the tread surface 3 includes the second grounding portion 3 b at the center of the tread surface 3, and the first grounding portion 3 a is merely illustrated on both sides thereof . In general, since a large lateral force acts on the side portion of the tread surface 3 (so-called shoulder portion) during turning, the anti-slip rubber material G1 is provided on this side portion, thereby improving the turning performance particularly on icy and snowy roads. To help. Such a tire can be employed when it becomes suitable as a steering wheel tire suitable for being mounted on a steering wheel on which a particularly large lateral force acts during turning . On the other hand, by providing the second grounding portion 3b made of the rubber material G2 not including the columnar material 5 at the center portion of the tread surface 3, the grip on the dry asphalt road surface is improved, and the driving performance and the like are reduced. It is suppressed.

またこのようなゴム配置に際しては、各側での第1の接地部3aのタイヤ軸方向の巾W2を、前記トレッド巾TWの0.1〜0.25倍、より好ましくは0.15〜0.25倍とすることが望ましい。旋回走行時には、この範囲が主として大きな横力を負担するためである。   In such rubber arrangement, the width W2 of the first ground contact portion 3a on each side in the tire axial direction is 0.1 to 0.25 times the tread width TW, more preferably 0.15 to 0. .25 times is desirable. This is because this range mainly bears a large lateral force during turning.

また本例のトレッド面3は、トレッド端E、Eからタイヤ軸方向内側に小巾W3の範囲で柱状材5を含まないゴム材G2を露出させたものを例示している。この巾W3は、トレッド巾TWの0.05〜0.15倍、より好ましくは0.10〜0.15とするのが望ましい。前記防滑用ゴム材G1は、柱状材5を含むため、耐摩耗性、耐クラック性、耐引き裂き性等に若干劣る傾向があるため、トレッド端Eの周辺に柱状材5を含まないゴム材G2を小巾で露出させることにより、トレッド端Eでのゴム欠け、クラックなどを効果的に防止し、タイヤの見映えを長期に亘って向上しうる。なおこのゴム材G2は、前記防滑用ゴム材G1に比して耐摩耗性の高いゴム材から構成する。   Moreover, the tread surface 3 of this example illustrates the rubber material G2 that does not include the columnar material 5 in the range of the small width W3 from the tread ends E and E to the inside in the tire axial direction. The width W3 is 0.05 to 0.15 times the tread width TW, more preferably 0.10 to 0.15. Since the anti-slip rubber material G1 includes the columnar material 5, the rubber material G2 does not include the columnar material 5 around the tread edge E because the rubber material G1 includes the columnar material 5 and tends to be slightly inferior in wear resistance, crack resistance, tear resistance, and the like. Is exposed to a small width to effectively prevent rubber chipping and cracking at the tread edge E and improve the appearance of the tire over a long period of time. The rubber material G2 is made of a rubber material having higher wear resistance than the anti-slip rubber material G1.

なお、サイピングSは、前記第1の接地部3aを含んでのびる第1のサイピングS1と、前記第2の接地部3bだけをのびる第2のサイピングS2とが含まれる。そして、例えば第2のサイピングS2だけは、防滑用ゴム材G2とは無関係であるため、金型MのナイフブレードKによって加硫成形されたものが例示される。即ち、少なくとも第1のサイピングS1は、タイヤ加硫成形後の切削により形成される。これによって、タイヤの生産性の低下を減じうる。また、図7に示すように、トレッド面3の中央部と側部の両方に前記防滑用ゴム材G1からなる第1の接地部3aを設けてもよい。この場合には、ドライアスファルト路面でのグリップ力の向上はわずかになるものの、氷雪路での駆動、旋回といった両性能を同時に向上することが可能になる。 The siping S includes a first siping S1 extending including the first grounding portion 3a and a second siping S2 extending only the second grounding portion 3b. For example, only the second siping S2 is irrelevant to the anti-slip rubber material G2, and is vulcanized by the knife blade K of the mold M. That is, at least the first siping S1 is formed by cutting after tire vulcanization molding. This can reduce the decrease in tire productivity. Moreover, as shown in FIG. 7, you may provide the 1st earthing | grounding part 3a which consists of the said rubber material G1 for anti-slip in both the center part and side part of the tread surface 3. As shown in FIG. In this case, although the improvement of the grip force on the dry asphalt road surface becomes small, it becomes possible to simultaneously improve both performances such as driving and turning on an icy and snowy road.

次に、図1に示すタイヤ(実施例1,2)(参考例1)、図6、図7に示すタイヤ(参考例2〜7)、比較例1,2を試作し、氷上駆動性能、氷上旋回性能、ドライグリップ、ウエットグリップなどについてテストを行った。また比較のために、防滑用ゴム材からなる接地面を具えない夏用タイヤ(比較例1)、及びトレッド面の全面を防滑用ゴム材で形成したタイヤ(比較例2)についても併せて試作を行い性能を評価した。テストの方法は、次の通りである。 Next, the tires shown in FIG. 1 (Examples 1 and 2) (Reference Example 1), the tires shown in FIGS. 6 and 7 (Reference Examples 2 to 7), and Comparative Examples 1 and 2 were prototyped, and the driving performance on ice was Tests on ice turning performance, dry grip, wet grip, etc. For comparison, a summer tire (Comparative Example 1) that does not have a ground contact surface made of an anti-slip rubber material, and a tire (Comparative Example 2) in which the entire tread surface is formed of an anti-slip rubber material are also prototyped. To evaluate the performance. The test method is as follows.

<氷上駆動性能>
氷上での路面摩擦係数を測定し、比較例3を100とする指数によって評価した。数値が大きい程良好である。なお摩擦係数の測定にはインサイドドラムを用い、気温−1℃、ドラム速度5km/hの条件にて、スリップ率を10%、60%の2種設定して行った。
<Drive performance on ice>
The road surface friction coefficient on ice was measured and evaluated by an index with Comparative Example 3 taken as 100. The larger the value, the better. The friction coefficient was measured by using an inside drum and setting the slip rate to two types of 10% and 60% under conditions of an air temperature of −1 ° C. and a drum speed of 5 km / h.

<氷上旋回性能>
気温−1℃において、氷路面を速度30〜40km/hで定常円旋回(約40R)を行いそのタイムを計測する他、ドライバーの官能などを加えて指数評価した。数値が大きい程良好である。
<Swivel performance on ice>
At an air temperature of −1 ° C., a steady circular turn (about 40 R) was performed on the ice road surface at a speed of 30 to 40 km / h, and the time was measured. The larger the value, the better.

<ドライグリップ性能>
半径100mのアスファルト路面のコース上を、速度を段階的に増加させながら供試タイヤを装着した前記テスト車両を進入させ、横加速度(横G)を計測し、50〜80km/hの速度における前輪の平均横Gを算出した。結果は、比較例1を100とする指数で表示し、数値が大きい程良好である。
<Dry grip performance>
The test vehicle equipped with the test tire was entered on the course of the asphalt road surface with a radius of 100 m while gradually increasing the speed, the lateral acceleration (lateral G) was measured, and the front wheels at a speed of 50-80 km / h The average lateral G was calculated. A result is displayed by the index | exponent which sets the comparative example 1 to 100, and it is so favorable that a numerical value is large.

<ウエットグリップ性能>
半径100mのアスファルト路面に、水深5mm、長さ20mの水たまりを設けたコース上を、速度を段階的に増加させながら供試タイヤを装着した前記テスト車両を進入させ、横加速度(横G)を計測し、50〜80km/hの速度における前輪の平均横Gを算出した。結果は、比較例1を100とする指数で表示し、数値が大きい程良好である。
テストの結果を表1、表2に示す。
<Wet grip performance>
The test vehicle equipped with the test tire was entered while increasing the speed stepwise on a course with a water depth of 5 mm and a length of 20 m on an asphalt road surface with a radius of 100 m, and the lateral acceleration (lateral G) was increased. Measurement was made to calculate the average lateral G of the front wheels at a speed of 50 to 80 km / h. A result is displayed by the index | exponent which sets the comparative example 1 to 100, and it is so favorable that a numerical value is large.
The test results are shown in Tables 1 and 2.

Figure 0004044532
Figure 0004044532

Figure 0004044532
Figure 0004044532

テストの結果、実施例のタイヤでは、氷上制動性能などを向上しつつ、比較例2に比してドライグリップ性能を向上していることが確認できた。特に図7に示したものでは、氷上駆動性能が、また図8に示したものでは氷上旋回性能がそれぞれドライグリップ性能とバランス良く向上されていることが確認できた。   As a result of the test, it was confirmed that the tire of the example improved the dry grip performance as compared with Comparative Example 2 while improving the braking performance on ice. In particular, in the case shown in FIG. 7, it was confirmed that the driving performance on ice and the turning performance on ice in the case shown in FIG. 8 were improved in good balance with the dry grip performance.

本発明の一実施の形態であるトレッド部の部分断面図である。It is a fragmentary sectional view of the tread part which is one embodiment of the present invention. トレッド面の展開図である。It is a development view of the tread surface. (a)〜(d)は、柱状材を例示する略図である。(A)-(d) is the schematic which illustrates a columnar material. (a)、(b)は、防滑用ゴム材の製造方法を説明する略図である。(A), (b) is the schematic explaining the manufacturing method of the rubber material for anti-slip | skid. 全型の周方向に沿った部分断面図である。It is a fragmentary sectional view along the circumferential direction of all types. 他の実施形態であるトレッド部の部分断面図である。It is a fragmentary sectional view of the tread part which is other embodiments. さらに他の実施形態であるトレッド部の部分断面図である。It is a fragmentary sectional view of the tread part which is other embodiments.

符号の説明Explanation of symbols

2 トレッド部
3 トレッド面
3a 第1の接地部
3b 第2の接地部
5 柱状材
S サイピング
G1 防滑用ゴム材
E トレッド端
2 Tread part 3 Tread surface 3a First grounding part 3b Second grounding part 5 Columnar material S Siping G1 Anti-slip rubber material E Tread end

Claims (1)

−10℃の雰囲気中のデュロメータA硬さを40〜60゜としたゴム基材100重量部中に底面積が10 −4 〜4.0mm2 、かつ長さが0.1〜15mmしかも路面に対してエッジ効果を発揮させる素材からなる柱状材を2〜40重量部含む防滑用ゴム材を用いてトレッド面の少なくとも一部を形成するとともに、
前記柱状材の長さ方向をトレッド面に対して40〜90゜の角度で配向する一方、
前記トレッド面は、前記防滑用ゴム材を用いて形成される第1の接地部と、柱状材を含まないゴム材からなる第2の接地部とを含み、
かつ前記トレッド面は、ブロックを並列したブロックパターンを具え、
しかもブロック面に、タイヤ軸方向に対して0〜60゜の傾き角度θで配され、ブロックのエッジ成分を増すサイピングを設けるとともに、
サイピングは、タイヤ周方向の配設ピッチが、3〜25mmとし、かつサイピング深さが、縦溝10の溝深さの0.3〜1.0倍とし、
かつ前記トレッド面は、該トレッド面の中央部に前記第1の接地部を具えかつその両側にトレッド端までのびる前記第2の接地部を具えるとともに、
前記第1の接地部のタイヤ軸方向の巾を、前記トレッド端間のタイヤ軸方向距離であるトレッド巾の0.4〜0.6倍としたことを特徴とする空気入りタイヤ。
The bottom area is 10 −4 to 4.0 mm 2 and the length is 0.1 to 15 mm in 100 parts by weight of a rubber base material having a durometer A hardness of 40 to 60 ° in an atmosphere of −10 ° C. While forming at least a part of the tread surface using an anti-slip rubber material containing 2 to 40 parts by weight of a columnar material made of a material that exhibits an edge effect,
While orienting the length direction of the columnar material at an angle of 40 to 90 ° with respect to the tread surface,
The tread surface includes a first grounding portion formed using the anti-slip rubber material, and a second grounding portion made of a rubber material not including a columnar material,
The tread surface has a block pattern in which blocks are arranged in parallel,
Moreover, the block surface is provided with an inclination angle θ of 0 to 60 ° with respect to the tire axial direction, and provided with siping that increases the edge component of the block,
In the siping, the arrangement pitch in the tire circumferential direction is 3 to 25 mm, and the siping depth is 0.3 to 1.0 times the groove depth of the longitudinal groove 10,
The tread surface includes the first grounding portion at the center of the tread surface and the second grounding portion extending to the tread end on both sides thereof.
The pneumatic tire according to claim 1, wherein a width of the first ground contact portion in a tire axial direction is 0.4 to 0.6 times a tread width which is a tire axial distance between the tread ends.
JP2004087558A 2004-03-24 2004-03-24 Pneumatic tire Expired - Fee Related JP4044532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004087558A JP4044532B2 (en) 2004-03-24 2004-03-24 Pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004087558A JP4044532B2 (en) 2004-03-24 2004-03-24 Pneumatic tire

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP32717399A Division JP3577248B2 (en) 1999-11-17 1999-11-17 Pneumatic tire

Publications (2)

Publication Number Publication Date
JP2004168315A JP2004168315A (en) 2004-06-17
JP4044532B2 true JP4044532B2 (en) 2008-02-06

Family

ID=32709637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004087558A Expired - Fee Related JP4044532B2 (en) 2004-03-24 2004-03-24 Pneumatic tire

Country Status (1)

Country Link
JP (1) JP4044532B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007044946A (en) * 2005-08-09 2007-02-22 Bridgestone Corp Tire vulcanizing mold
JP5392950B2 (en) * 2009-01-30 2014-01-22 伊藤 善三 Tires and race competition methods
JP5677111B2 (en) * 2011-02-03 2015-02-25 住友ゴム工業株式会社 Evaluation method for starting and acceleration performance of tires on ice
CN110293797A (en) * 2018-03-22 2019-10-01 北京橡胶工业研究设计院有限公司 Half material tire of harbour service machinery

Also Published As

Publication number Publication date
JP2004168315A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
US9527349B2 (en) Pneumatic tire
JP4515318B2 (en) Pneumatic tire
JP5001991B2 (en) Pneumatic tire
JP2004203128A (en) Pneumatic tire and its manufacturing method
JP5010456B2 (en) Pneumatic tire
US6575215B1 (en) Studless tire including tread comprising short fibers
JP4524826B2 (en) Pneumatic tire for running on snowy and snowy roads
US20140060717A1 (en) Tire with tread having bridged areas with split contact faces within a lateral groove
JP2000168315A (en) Studless tire
JP2002192914A (en) Pneumatic tire for icy and snowy road
JP3308252B2 (en) Pneumatic tire
JPH0761209A (en) Pneumatic tire
JP5973142B2 (en) Vehicle tire mounting structure
JP2006176055A (en) Pneumatic tire
JP5782461B2 (en) Two-wheeled vehicle tire having a tread with sipes
JP4044532B2 (en) Pneumatic tire
JPS60252005A (en) Pneumatic tire
JP4943779B2 (en) Pneumatic tire
JP3577248B2 (en) Pneumatic tire
JP2001130220A (en) Studless tire
JP2807649B2 (en) Pneumatic tire
JPH02267007A (en) Pneumatic winter tire for heavy load
JPH0771884B2 (en) Pneumatic tire
JP2009214758A (en) Pneumatic tire
JP3352063B2 (en) studless tire

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060411

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees