JP4043933B2 - Water-cooled conductor for high voltage and large current - Google Patents

Water-cooled conductor for high voltage and large current Download PDF

Info

Publication number
JP4043933B2
JP4043933B2 JP2002362719A JP2002362719A JP4043933B2 JP 4043933 B2 JP4043933 B2 JP 4043933B2 JP 2002362719 A JP2002362719 A JP 2002362719A JP 2002362719 A JP2002362719 A JP 2002362719A JP 4043933 B2 JP4043933 B2 JP 4043933B2
Authority
JP
Japan
Prior art keywords
conductor
water
voltage
cooled
rectangular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002362719A
Other languages
Japanese (ja)
Other versions
JP2004193067A (en
Inventor
高明 礒野
崇 加藤
栄介 多田
敬博 片岡
義則 後藤
昌宏 北
雅行 今野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002362719A priority Critical patent/JP4043933B2/en
Publication of JP2004193067A publication Critical patent/JP2004193067A/en
Application granted granted Critical
Publication of JP4043933B2 publication Critical patent/JP4043933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Insulated Conductors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、高電圧、大電流の送電に用いる常伝導タイプの水冷導体に関する。
【0002】
【従来の技術】
国際核融合実験炉、所謂ITERは、コスト削減を目指したコンパクト炉の最終設計段階にある。このITERには、高温プラズマの閉じ込めの面で有利と考えられているトカマク型の炉が採用される。トカマク型の炉は、ドーナツ状の真空容器の外側に磁場コイルを巻き、プラズマを真空容器中に浮かせ、このプラズマを電流を流して加熱する。そのトカマク型核融合実験炉に採用される超伝導マグネット等には大電力を供給する必要があるので、基幹部での電力供給は、ブスバー(以下導体と言う)での対応を検討せざるを得ない。
【0003】
【発明が解決しようとする課題】
国内で使用されている導体は、低電圧大電流用又は高電圧低電流用であり、ITERで使用するような高電圧大電流用導体は他に類を見ない。
【0004】
このため、ITERで使用する導体の仕様を従来の概念で設計すると碍子を使用した自冷、気中絶縁方式の大電流裸導体となり、スペース面での設置規制により使用不可能なものになってしまう。
【0005】
ITERは、コスト削減のためのコンパクト設計がなされており、裸導体を充分な絶縁空間距離を保って配置できるだけのスペースを確保できない。
【0006】
そこで、ITERなどに使用できる高電圧、大電流用のコンパクトな導体を新たに開発する必要性が生じた。
【0007】
この発明は、その要求に応えることを課題としている。
【0008】
【課題を解決するための手段】
上記の課題を解決するため、この発明においては、内部に冷媒通路を、外周に第1絶縁被覆をそれぞれ設けた角導体を2本寄り添わせ、その外側に2本の角導体を一括して覆う第2絶縁被覆を設け、さらに、その外側に接地処理する遮蔽層と2本の角導体の結束具を設け、それぞれの角導体の冷媒通路に純水の冷却水を流し、角導体の一方を直流送電路、他方を帰路として使用するようにした高電圧、大電流用水冷導体を提供する。
【0009】
角導体は、軽量で取扱い易いアルミ導体が好ましい。
【0010】
また、第1絶縁被覆は、電気絶縁性、耐熱性、耐火性、耐水性等に優れる絶縁材、例えば、マイカ、ガラスファイバなどの無機絶縁材料を含む絶縁材で形成すると好ましい。中でもマイカテープが施工し易く、安価でもあり、特に好ましい。
【0011】
一方、第2絶縁被覆は、放射能耐性を有し、化学的にも安定な架橋高密度ポリエチレンなどの架橋処理された絶縁材で形成するのが好ましい。電子線やγ線を照射するなどして架橋された熱収縮チューブを用いてもよいが、収縮後のチューブに皺が残るとその部分の絶縁耐力が低下するので、この点には注意を要する。
【0012】
接地処理する遮蔽層は、図1〜図3に示すように、締結具(ボルト・ナット7)で締結して組立てる金属製(耐食性のあるステンレススチールが好ましい)の2個の対向配置した半割り筒で形成すると、2本の角導体2,2の結束具を兼用したものにすることができる。金属テープを巻き重ねるなどして遮蔽層を形成し、その外側に結束層となる保護被覆を設ける(保護被覆による結束力が不足するときはその外側をリングなどで締付ける)構造にしてもよく、コスト面ではこの方が有利と思われる。
【0013】
結束具は、通電時に2本の角導体間に強い電磁反発力が生じるので、その力に耐え得るものが必要である。
【0014】
また、角導体中に流す冷媒は、高絶縁性が要求されるので純水を使用する。
【0015】
【作用】
この発明の水冷導体は、角導体を純水で強制冷却するので、高電圧、大電流を流すことができる。
【0016】
また、それぞれに絶縁処理した角導体を2本寄り添わせて結束し、角導体の一方を直流送電路、他方を帰路として使用するので、コンパクト化が図れ、敷設スペースが少なくて済む。
【0017】
【発明の実施の形態】
図1乃至図4に、この発明の水冷導体の実施形態を示す。これ等の水冷導体1は、2本の角導体2と、各々の角導体の外周に設ける第1絶縁被覆3と、互いに寄り添わせた2本の角導体を一括して覆う第2絶縁被覆4と、結束具を兼ねる遮蔽層5とからなる。
【0018】
角導体2は、アルミ導体であり、内部に、導体の一端から他端に抜ける冷媒通路(穴)6を設けている。この冷媒通路は、図1に示すようにひとつの導体に複数設けてもよい。
【0019】
第1絶縁被覆3は、絶縁マイカテープを所要厚みに巻きつけて形成されている。
【0020】
また、第2絶縁被覆4は、架橋された樹脂の絶縁材、例えば、架橋高密度ポリエチレン、架橋低密度ポリエチレン等で形成されている。試作導体では熱収縮チューブ(住友電工製イラックススリーブSC)を用いた。
【0021】
遮蔽層5は、合わせ面に鍔を有し、その鍔をボルト・ナット7などの締結具で締付けて組立てるステンレススチール製の結束具を兼用した半割り筒5aを用いた。8は遮蔽層5の内側の隙間を受けるスペーサであり、必要に応じて設けられる。
【0022】
図1の水冷導体1は68KA用、図2のそれは45KA用、図3のそれは10KA用として設計されている。これ等の水冷導体の寸法諸元を表1にまとめた。
【0023】
【表1】

Figure 0004043933
【0024】
絶縁被覆の厚みは、耐電圧試験を行って決定した。耐電圧試験は、絶縁油中で導体とその外周に設けた絶縁被覆との間に電圧を印加し、貫通絶縁破壊が生じたときの電圧を測定する方法で行った。この試験では例えば38KV×1分間と75KVインパルス電圧印加の場合、問題の無い耐圧性をもたせるために3mm以上(推奨値4mm)の絶縁被覆厚みが必要であった。また、空気中における絶縁空間距離(接地した遮蔽層の端部から導体露出部までの間の絶縁被覆長さ)の確認試験では75KVインパルスに対応するために最低350mm(推奨値525mm)の沿面距離が必要であった。
【0025】
なお、試作導体については、第2絶縁被覆4を熱収縮チューブで形成したが、その熱収縮チューブは導体に対する被覆加工が大変であった。また、耐圧試験時に、熱収縮チューブに生じている皺の部分と熱収縮チューブ上に取付けた接地サポート間で印加電圧30KV以上で放電現象が確認された。従って、印加電圧が30KVを越える導体ではチューブに皺を生じさせないようにする必要があり、加工が益々大変になる。この不具合を無くすために、第2絶縁被覆4は自己融着型の絶縁テープなどを巻きつけて形成することも考えられる。
【0026】
また、結束具を兼ねる図示の遮蔽層5は、半割り筒5aをプレス成形して作る必要があり、ボルト・ナット7の締付け数も多くなるので、図4に示すように、第2絶縁被覆4の外側に金属テープなどから成る遮蔽層9を設け、その外側に結束層10を設ける構造にしてコスト低減を図ることも考えられる。結束層10は、補強繊維(非導電性のガラス繊維などを用いる)に樹脂を含浸させたプリプレグを巻きつけて含浸樹脂を硬化させたものなどが考えられる。この結束層による結束力に不安があれば、結束層の外側に適当な間隔で締付リングを取付けて補強すればよい。
【0027】
図5は、この発明の水冷導体のITERでの使用箇所の一例を示す。図中11は、トカマク型核融合実験炉12を収納する水平免震構造のトカマク建屋、13は非免震構造の電源建屋である。電源建屋13内に設置される電源盤14から建屋の端まで、及びトカマク建屋の端から実験炉12までの間にこの発明の水冷導体1を敷設し、建屋11、13間はトカマク建屋11の地震等による揺れを吸収する水冷ケーブル(フレキシブル導体)15(別途特許出願)で結ぶ構造にしている。
【0028】
16は、水冷導体機器取合部、17は水冷導体直線接続部、18水冷導体直角接続部であり、これ等は遮蔽カバー19で囲われる。20は水冷導体支持部、21は接地部、22は水冷ケーブル15の吊り下げ金具、23はケーブル15の間隔保持スペーサ、24はケーブル15の支持碍子である。また、25は、絶縁ゴムホース26を介して水冷導体1の冷媒通路につながれる冷却水出入口である。剛体の水冷導体1とフレキシブルなケーブル15の冷媒通路間も絶縁ゴムホース26でつながれる。
【0029】
【発明の効果】
以上述べたように、この発明の水冷導体は、冷却用純水を内部に通す角導体を第1絶縁被覆で覆い、その角導体を2本寄り添わせてその外周を第2絶縁被覆で覆い、その外側に遮蔽層を設け、その遮蔽層を兼用するなどした結束具で2本の角導体をひとつに束ねる構造にしたので、コンパクトなもので高電圧大電流を流すことができ、コンパクトに設計されたITER用の導体としても使用できる。
【図面の簡単な説明】
【図1】この発明の水冷導体の一例を示す断面図
【図2】他の例を示す断面図
【図3】更に他の例を示す断面図
【図4】遮蔽層と結束層を独立させた例を示す断面図
【図5】ITERにおける水冷導体の使用箇所の一例を示す図
【符号の説明】
1 水冷導体
2 角導体
3 第1絶縁被覆
4 第2絶縁被覆
5 結束具を兼用した遮蔽層
5a ステンレススチール製半割筒
6 冷媒通路
7 ボルト・ナット
8 スペーサ
9 遮蔽層
10 結束具[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a normal-type water-cooled conductor used for high-voltage, large-current power transmission.
[0002]
[Prior art]
The international fusion experimental reactor, the so-called ITER, is in the final design stage of a compact reactor aimed at cost reduction. For this ITER, a tokamak type furnace considered to be advantageous in terms of confinement of high temperature plasma is adopted. In a tokamak type furnace, a magnetic field coil is wound around the outside of a donut-shaped vacuum vessel, the plasma is floated in the vacuum vessel, and this plasma is heated by passing an electric current. Since it is necessary to supply a large amount of power to the superconducting magnets used in the Tokamak Fusion Experimental Reactor, it is necessary to consider the use of bus bars (hereinafter referred to as conductors) for the power supply at the core. I don't get it.
[0003]
[Problems to be solved by the invention]
The conductors used in Japan are for low-voltage high-current or high-voltage low-current, and there are no other high-voltage high-current conductors used in ITER.
[0004]
For this reason, if the specifications of the conductor used in ITER are designed with the conventional concept, it becomes a self-cooled, air-insulated high-current bare conductor using an insulator, and becomes unusable due to installation restrictions in space. End up.
[0005]
The ITER has a compact design for cost reduction, and it is not possible to secure a space enough to arrange a bare conductor with a sufficient insulation space distance.
[0006]
Therefore, it has become necessary to newly develop a compact conductor for high voltage and large current that can be used for ITER.
[0007]
This invention makes it a subject to respond to the request | requirement.
[0008]
[Means for Solving the Problems]
In order to solve the above-described problems, in the present invention, two rectangular conductors each having a refrigerant passage inside and a first insulating coating on the outer periphery are brought close to each other, and the two rectangular conductors are collectively put on the outside thereof. A second insulating coating is provided, and a shielding layer for grounding treatment and a binder for two rectangular conductors are provided on the outer side thereof. Pure water cooling water is allowed to flow through the refrigerant passages of the respective rectangular conductors. A high-voltage, high-current water-cooled conductor is provided in which the DC is used as a DC transmission line and the other as a return path.
[0009]
The square conductor is preferably an aluminum conductor that is lightweight and easy to handle.
[0010]
The first insulating coating is preferably formed of an insulating material that is excellent in electrical insulation, heat resistance, fire resistance, water resistance, and the like, for example, an insulating material including an inorganic insulating material such as mica and glass fiber. Of these, mica tape is particularly easy to construct and inexpensive.
[0011]
On the other hand, the second insulating coating is preferably formed of a cross-linked insulating material such as cross-linked high-density polyethylene that has radioactivity resistance and is chemically stable. You may use a heat-shrinkable tube that has been cross-linked by irradiating it with an electron beam or γ-ray. However, if wrinkles remain in the tube after shrinkage, the dielectric strength of that part will decrease, so this point requires attention. .
[0012]
The shielding layer 5 to the ground processing, as shown in FIGS. 1 to 3, two opposed and semi fasteners (bolts and nuts 7) metallic assembling signed with (preferably stainless steel with a corrosion resistant) If it is formed of a split cylinder, it can be used as a binding tool for the two rectangular conductors 2 and 2 . A shielding layer may be formed by wrapping a metal tape or the like, and a protective coating serving as a binding layer may be provided on the outer side (when the binding force due to the protective coating is insufficient, the outer side may be tightened with a ring or the like) This seems to be advantageous in terms of cost.
[0013]
Since a strong electromagnetic repulsive force is generated between the two rectangular conductors when energized, the binding tool needs to be able to withstand that force.
[0014]
Moreover, since the coolant flowing through the rectangular conductor is required to have high insulation, pure water is used.
[0015]
[Action]
In the water-cooled conductor according to the present invention, the square conductor is forcibly cooled with pure water, so that a high voltage and a large current can flow.
[0016]
In addition, since two rectangular conductors that are insulated are attached to each other and bound, and one of the rectangular conductors is used as a DC power transmission path and the other as a return path, the size can be reduced and installation space can be reduced.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
1 to 4 show an embodiment of the water-cooled conductor of the present invention. These water-cooled conductors 1 include two rectangular conductors 2, a first insulating coating 3 provided on the outer periphery of each rectangular conductor, and a second insulating coating that collectively covers the two rectangular conductors close to each other. 4 and a shielding layer 5 also serving as a binding tool.
[0018]
The rectangular conductor 2 is an aluminum conductor, and a coolant passage (hole) 6 is provided in the conductor so as to pass from one end of the conductor to the other end. A plurality of the refrigerant passages may be provided in one conductor as shown in FIG.
[0019]
The first insulating coating 3 is formed by winding an insulating mica tape to a required thickness.
[0020]
The second insulating coating 4 is formed of a crosslinked resin insulating material, for example, a crosslinked high-density polyethylene, a crosslinked low-density polyethylene, or the like. For the prototype conductor, a heat shrinkable tube (Irax sleeve SC manufactured by Sumitomo Electric) was used.
[0021]
As the shielding layer 5, a half cylinder 5 a that also has a stainless steel binding tool that has a flange on a mating surface and is assembled by fastening the flange with a fastener such as a bolt and a nut 7. Reference numeral 8 denotes a spacer that receives a gap inside the shielding layer 5 and is provided as necessary.
[0022]
The water-cooled conductor 1 in FIG. 1 is designed for 68 KA, in FIG. 2 for 45 KA, and in FIG. 3 for 10 KA. The dimensions of these water-cooled conductors are summarized in Table 1.
[0023]
[Table 1]
Figure 0004043933
[0024]
The thickness of the insulating coating was determined by conducting a withstand voltage test. The withstand voltage test was performed by applying a voltage between the conductor and the insulation coating provided on the outer periphery thereof in insulating oil, and measuring the voltage when through dielectric breakdown occurred. In this test, for example, in the case of applying 38 KV × 1 minute and 75 KV impulse voltage, an insulation coating thickness of 3 mm or more (recommended value of 4 mm) was necessary to give a satisfactory pressure resistance. Also, in the confirmation test of the insulation space distance in air (the length of the insulation coating from the end of the grounded shielding layer to the exposed conductor), the creepage distance of at least 350 mm (recommended value 525 mm) to cope with 75 KV impulse Was necessary.
[0025]
For the prototype conductor, the second insulating coating 4 was formed of a heat shrinkable tube, but the heat shrinkable tube was difficult to coat the conductor. Further, during the pressure resistance test, a discharge phenomenon was confirmed at an applied voltage of 30 KV or more between the ridge portion formed in the heat shrinkable tube and the ground support attached on the heat shrinkable tube. Therefore, it is necessary to prevent the tube from being wrinkled with a conductor whose applied voltage exceeds 30 KV, and the processing becomes more and more difficult. In order to eliminate this problem, the second insulating coating 4 may be formed by winding a self-bonding type insulating tape or the like.
[0026]
Further, the illustrated shielding layer 5 that also serves as a binding tool needs to be formed by press-molding the half cylinder 5a, and the number of bolts and nuts 7 to be tightened increases. Therefore, as shown in FIG. It is also conceivable to reduce the cost by providing a shielding layer 9 made of metal tape or the like on the outer side of 4 and a binding layer 10 on the outer side. The binding layer 10 may be one obtained by winding a prepreg obtained by impregnating a resin around a reinforcing fiber (using non-conductive glass fiber or the like) and curing the impregnated resin. If there is anxiety about the bundling force by this bundling layer, a tightening ring may be attached to the outside of the bundling layer at an appropriate interval for reinforcement.
[0027]
FIG. 5 shows an example of the use location of the water-cooled conductor of the present invention in ITER. In the figure, 11 is a tokamak building with a horizontal seismic isolation structure that houses the tokamak type nuclear fusion experimental reactor 12, and 13 is a power source building with a non-base isolation structure. The water-cooled conductor 1 of the present invention is laid from the power panel 14 installed in the power supply building 13 to the end of the building, and from the end of the tokamak building to the experimental furnace 12, and the space between the buildings 11 and 13 is that of the tokamak building 11. It is structured to be connected by a water-cooled cable (flexible conductor) 15 (separately applied for a patent) that absorbs shaking caused by an earthquake or the like.
[0028]
Reference numeral 16 denotes a water-cooled conductor device coupling portion, 17 denotes a water-cooled conductor straight line connecting portion, and 18 water-cooled conductor right-angle connecting portion, which are surrounded by a shielding cover 19. Reference numeral 20 denotes a water-cooled conductor support portion, 21 denotes a grounding portion, 22 denotes a hanging metal fitting for the water-cooled cable 15, 23 denotes a space holding spacer for the cable 15, and 24 denotes a support insulator for the cable 15. Reference numeral 25 denotes a cooling water inlet / outlet connected to the refrigerant passage of the water-cooling conductor 1 via the insulating rubber hose 26. The insulating water hose 26 also connects between the rigid water-cooled conductor 1 and the refrigerant passage of the flexible cable 15.
[0029]
【The invention's effect】
As described above, in the water-cooled conductor of the present invention, the rectangular conductor through which pure water for cooling passes is covered with the first insulating coating, the two rectangular conductors are brought close to each other, and the outer periphery thereof is covered with the second insulating coating. Since it has a structure in which two rectangular conductors are bundled together with a tying tool that has a shielding layer on the outside and also serves as the shielding layer, it is compact and can flow high voltage and large current. It can also be used as a designed ITER conductor.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a water-cooled conductor according to the present invention. FIG. 2 is a cross-sectional view showing another example. FIG. 3 is a cross-sectional view showing still another example. FIG. 5 is a cross-sectional view showing an example of use of a water-cooled conductor in ITER.
DESCRIPTION OF SYMBOLS 1 Water-cooled conductor 2 Square conductor 3 1st insulation coating 4 2nd insulation coating 5 Shielding layer 5a which also serves as binding tool Stainless steel half cylinder 6 Refrigerant passage 7 Bolt / nut 8 Spacer 9 Shielding layer 10 Binding tool

Claims (5)

内部に冷媒通路を、外周に第1絶縁被覆をそれぞれ設けた角導体を2本寄り添わせ、その外側に2本の角導体を一括して覆う第2絶縁被覆を設け、さらに、その外側に接地処理する遮蔽層と前記2本の角導体の結束具を設け、それぞれの角導体の冷媒通路に純水の冷却水を流し、角導体の一方を直流送電路、他方を帰路として使用するようにした使用電圧30KV以上、使用電流10KA以上の高電圧、大電流用水冷導体。Two rectangular conductors each provided with a coolant passage and an outer periphery with a first insulating coating are brought close to each other, and a second insulating coating is provided on the outside to collectively cover the two rectangular conductors. the tie between the shielding layer for grounding the two rectangular conductor is provided passing a cooling water pure water coolant passages of the respective rectangular conductor, to use one of the DC power transmission path of the rectangular conductor, the other as the return path High-voltage, high-current water-cooled conductor with a working voltage of 30 KV or higher, a working current of 10 KA or higher. アルミ導体を前記角導体として用いた請求項1記載の高電圧、大電流用水冷導体。The high-voltage, large-current water-cooled conductor according to claim 1, wherein an aluminum conductor is used as the rectangular conductor. 無機系絶縁材料を含む絶縁材前記第1絶縁被覆を形成した請求項1又は2記載の高電圧、大電流用水冷導体。The high-voltage, large-current water-cooled conductor according to claim 1 or 2, wherein the first insulating coating is formed of an insulating material including an inorganic insulating material. 放射能耐性を有し、化学的にも安定な架橋高密度ポリエチレン又は架橋低密度ポリエチレン前記第2絶縁被覆を形成した請求項1乃至3のいずれかに記載の高電圧、大電流用水冷導体。The high-voltage, high-current water-cooled conductor according to any one of claims 1 to 3, wherein the second insulating coating is formed of a crosslinked high-density polyethylene or a crosslinked low-density polyethylene that has radioactivity resistance and is chemically stable. . 前記第2絶縁被覆の外側にステンレススチール製の2個の半割り筒を対向させて配置し、この2個の半割り筒を締結具で締結して組立て、この2個の半割り筒前記遮蔽層及び前記結束具として兼用して前記2本の角導体を結束した請求項1乃至4のいずれかに記載の高電圧、大電流用水冷導体。 Said second insulated outside to face the two half cylinder made of scan Ten-less steel coating disposed, assembling and fastening the two halves tube with the fastener, the two half cylinder the shielding layer and a high voltage according to any one of claims 1 to 4 wherein also serves as a tie to tie the rectangular conductor of the two, a large current for a water-cooled conductor.
JP2002362719A 2002-12-13 2002-12-13 Water-cooled conductor for high voltage and large current Expired - Lifetime JP4043933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002362719A JP4043933B2 (en) 2002-12-13 2002-12-13 Water-cooled conductor for high voltage and large current

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002362719A JP4043933B2 (en) 2002-12-13 2002-12-13 Water-cooled conductor for high voltage and large current

Publications (2)

Publication Number Publication Date
JP2004193067A JP2004193067A (en) 2004-07-08
JP4043933B2 true JP4043933B2 (en) 2008-02-06

Family

ID=32761085

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002362719A Expired - Lifetime JP4043933B2 (en) 2002-12-13 2002-12-13 Water-cooled conductor for high voltage and large current

Country Status (1)

Country Link
JP (1) JP4043933B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114694884A (en) * 2022-03-29 2022-07-01 中国科学院合肥物质科学研究院 Fully-insulated bipolar laminated bus

Also Published As

Publication number Publication date
JP2004193067A (en) 2004-07-08

Similar Documents

Publication Publication Date Title
US6873236B2 (en) Fault current limiter
EP1320859B1 (en) Electric device
JP4043933B2 (en) Water-cooled conductor for high voltage and large current
JP2001509957A (en) Power transformer / inductor
CN108808617B (en) Three-phase cable intermediate joint
Harvey Radiation-hardened magnets using mineral-insulated conductors
Caverly et al. Air core reactors: magnetic clearances, electrical connection, and grounding of their supports
CN107644731B (en) Power transformer comprising insulating material and method of manufacturing such a transformer
CN220604473U (en) High-voltage-grade dry-type transformer
JP2004119811A (en) Stationary inductive electric apparatus
Du et al. Induced voltages and power losses in single-conductor armored cables
CN220357849U (en) High temperature resistant electric wire that can resist compression
JP2018207025A (en) Stationary induction apparatus
CN116631743A (en) High-voltage-grade dry-type transformer
JP6200402B2 (en) Superconducting cable line and insulated pipe
EP1085632A1 (en) Structure of conductors for transmission of electric energy
JP2003272928A (en) Transformer
RU2765872C1 (en) Smoothing reactor for soft starting device of electric motor
RU193653U1 (en) Smoothing reactor
CN108352249A (en) Current sensor
JP2001527373A (en) substation
Kreutz et al. Design of superconducting quadrupole magnets for CEBAF's Hall A spectrometer
JP2004193069A (en) Water cooling cable for high voltage and large current
JP3698588B2 (en) Gas insulated transformer
CN116937898A (en) High-voltage propulsion module of superconducting linear motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

R150 Certificate of patent or registration of utility model

Ref document number: 4043933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term