JP4043652B2 - Roof structure of powder storage facility - Google Patents

Roof structure of powder storage facility Download PDF

Info

Publication number
JP4043652B2
JP4043652B2 JP22090099A JP22090099A JP4043652B2 JP 4043652 B2 JP4043652 B2 JP 4043652B2 JP 22090099 A JP22090099 A JP 22090099A JP 22090099 A JP22090099 A JP 22090099A JP 4043652 B2 JP4043652 B2 JP 4043652B2
Authority
JP
Japan
Prior art keywords
roof
pillar
ring
granular material
compression ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22090099A
Other languages
Japanese (ja)
Other versions
JP2001040909A (en
Inventor
新谷  登
寿美 浴
明文 中下
英治 松井
斉 清水
博志 畝
卓 平井
博邦 田村
正利 加藤
敏雄 柴田
誠 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Chugoku Electric Power Co Inc
Takenaka Civil Engineering and Construction Co Ltd
Sumitomo Mitsui Construction Co Ltd
Original Assignee
Takenaka Corp
Chugoku Electric Power Co Inc
Takenaka Civil Engineering and Construction Co Ltd
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp, Chugoku Electric Power Co Inc, Takenaka Civil Engineering and Construction Co Ltd, Sumitomo Mitsui Construction Co Ltd filed Critical Takenaka Corp
Priority to JP22090099A priority Critical patent/JP4043652B2/en
Publication of JP2001040909A publication Critical patent/JP2001040909A/en
Application granted granted Critical
Publication of JP4043652B2 publication Critical patent/JP4043652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Tents Or Canopies (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、石炭に代表されるような粉粒体を、生産地や種類別に大量に効率良く貯蔵し、しかも先入れ先出し方式により機械化して貯蔵する粉粒体貯蔵施設の技術分野に属し、更に言えば、貯蔵中の粉粒体を風雨から守り、飛散を防止する屋根架構に関する。
【0002】
【従来の技術】
従来、石炭に代表されるような粉粒体を大量に効率良く貯蔵し、先入れ先出し方式により機械化して貯蔵する粉粒体貯蔵施設としては、例えば特開昭61ー145038号、及び実開昭61ー18240号公報に開示されているように、サイロのような貯蔵容器を構築し、その上部に屋根を設置すると共に、前記屋根部分へ投入コンベアを接続し、サイロ下部に貯蔵物の払い出しコンベアを設置した技術が開示されている。
【0003】
次に、特開昭57ー85706号公報に記載された粉粒体貯蔵施設は、外周縁を周辺基礎で支持され、内端は1本の中心柱で支持され、周辺基礎と中心柱との間で断面が山形状をなす屋根が、前記の中心柱を対称点として、且つ平面を円形状に形成され、前記山形状屋根の頂部に搬入用のループコンベアを設置し、これに外部の搬入用コンベアが接続され、床部に掻き出し機及び払い出しコンベアが設置された構成である。
【0004】
特開昭58ー113455号公報に記載された吊り屋根型の粉粒体貯蔵施設は、2列縦隊の配列により一定のピッチで建てた複数の支柱により高架に一直線状に架設された搬入コンベアと、前記搬入コンベアに接続された外部コンベアと、前記搬入コンベアの直下が粉粒体の貯蔵スペースとされ、その地下に設置された払い出しコンベアと、前記支柱の列方向の上下に架設された吊りケーブルと押さえケーブル、及び前記の各ケーブルから直角方向のサブガーダー支柱との間に架設した吊りケーブルと押さえケーブルを基礎にして、くら形曲面(HP曲面)に編まれたケーブルネット状の吊り屋根とで構成されている。
【0005】
【本発明が解決しようとする課題】
上記したように、従来、貯蔵する粉粒体の周囲を覆って風雨を防ぎ、外部への飛散を防止する目的で屋根を架けることは既に行われている。
【0006】
しかし、上記特開昭61ー145038号、及び実開昭61ー18240号公報に開示されているように、サイロのような貯蔵容器を構築し、その上端に屋根を設置した貯蔵施設は、一見合理的ではある。しかし、例えば石炭は生産地や種類別に分けて大量に効率良く貯蔵することが肝要である。そのためには結局サイロの個数を増やすほかはなく、トータルで非常に高価な施設になってしまう。また、貯蔵施設の占有敷地面積も大きくなり不経済である。
【0007】
上記特開昭57ー85706号公報に記載された粉粒体貯蔵施設は、周辺基礎と中心柱との間で断面が山形状をなす屋根架構に特徴が認められる。すなわち、周辺基礎を反力点として無柱の大空間ドーム屋根を架ける場合に比して、屋根材の応力負荷、柱脚へのスラスト力(放射方向への水平力)は数分の一に軽減され、屋根材断面の縮小化、軽量化を図れるであろうと推考される。しかし、この粉粒体施設の場合は、周辺基礎と中心柱との間の床全面が粉粒体貯蔵スペースとされ、そこに屋根天井部のループコンベアの旋回によって投入した粉粒体の山を築くので、大重量になる貯蔵粉粒体の床下に払い出しコンベアその他の地下施設を構築することになる。よって、貯蔵粉粒体の積載負荷に耐えるように大断面の地下構造を構築することになって不経済である。前記貯蔵粉粒体の大きな積載負荷は、地盤を通じて周辺基礎に対するスラスト力としても作用するので、これらに耐えるように周辺基礎を巨大に構築することを余儀なくされ、不経済なものとなる。その上、中心柱が、屋根荷重の中心部負荷を一点で支持する構造なので、この中心柱が巨大な構造になってしまい、該柱を支持する支持杭等が多数施工される結果、この中心柱の部位には粉粒体の貯蔵に必要な施設類を設備することは難しいという不都合もある。
【0008】
上記特開昭58ー113455号公報に記載された吊り屋根型の粉粒体貯蔵施設は、くら形曲面(HP曲面)に編まれたケーブルネット状の吊り屋根として一見合理的に構築されている。しかし、吊り屋根の現場施工が技術的に難しい上に、複数の支柱によって高架に一直線状に架設された搬入コンベアの直下が粉粒体の貯蔵スペースとされ、更にその床下に払い出しコンベアを設置する構成なので、払い出しコンベアは貯蔵粉粒体の巨大な積載荷重に耐える大断面の構造に構築することを余儀なくされ不経済である。
【0009】
本発明の目的は、中心部(内周部)のコンプレッションリングの範囲内は屋根荷重の作用を一切受けない露天(青天井)の構造で、その範囲内には貯蔵施設に必要な施設を耐荷重設計において有利な小断面構造で経済的に構築することができ、一方、外周部のテンションリングと内周部のコンプレッションリングとの間にドーナツ形状に構築される、断面が山形状の屋根は、外柱をテンションリングで、内柱はコンプレッションリングで合理的に支持する構成とした粉粒体貯蔵施設の屋根架構を提供することである。
【0010】
本発明の次の目的は、平面的にみて複数の粉粒体の山が隣接する接点部を通る放射線上に位置させる主要屋根合掌材を、前記テンションリングの内方位置及びコンプレッションリングの外方位置にそれぞれ中間柱を建て、これら中間柱と外柱及び内柱によって支持させ、前記中間柱と外柱または内柱との間は基礎梁によって各柱脚部(フーチング基礎)を一体的に連結し、主要屋根合掌材により、剛性が低い前記部レース構造屋根面の応力を効果的にテンションリング、コンプレッションリングへ伝達して処理する構成に改良した、粉粒体貯蔵施設の屋根架構を提供することである。
【0011】
本発明の次の目的は、前記外柱、内柱に中間柱を加えて支持する主要屋根合掌材同士の周方向の間隔部分はブレース構造屋根面により連続する構成とした、粉粒体貯蔵施設の屋根架構を提供することである。
【0012】
本発明の更なる目的は、床下の払い出しコンベアなどを設備する洞道(トンネル)付近の支持杭へ作用する水平力(スラスト力)を低減し、杭の本数を減らし、払い出しコンベア等との干渉を避けられる構成とした粉粒体貯蔵施設の屋根架構を提供することである。
【0013】
【課題を解決するための手段】
上述の課題を解決するための手段として、請求項1に記載した発明に係る粉粒体貯蔵施設の屋根架構は、
外周縁にテンションリングが、内周縁にコンプレッションリングが配置されており、前記テンションリングとコンプレッションリングの間の部位が粉粒体の貯蔵スペースとされ、貯蔵すべき粉粒体は前記部位に粉粒体の山を平面的に見て複数隣接して形成すること、
屋根は、前記テンションリングとコンプレッションリングの間の断面形状を、一つの粉粒体の山の底面幅及び高さよりも大きいほぼ相似形の山形状に形成され、これを周方向に連続させて複数の粉粒体の山の全部を覆うように平面がドーナツ形状の屋根架構が構築されていること、
平面的に見て前記複数の粉粒体の山同士が隣接する接点部を通る放射線上の位置であって、前記テンションリングの内方位置及びコンプレッションリングの外方位置にそれぞれ中間柱が立てられ、テンションリングの位置に建てた外柱及びコンプレッションリングの位置に建てた内柱と前記中間柱とが基礎梁によって連結されており、前記の各中間柱と外柱、及び内柱とによって主要屋根合掌材が支持されていることを特徴とする。
【0014】
請求項2記載の発明は、請求項1に記載した粉粒体貯蔵施設の屋根架構において、平面的に見て複数の粉粒体の山同士が隣接する接点部を通る放射線上の位置に配置され、中間柱と外柱及び内柱によって支持された主要屋根合掌材同士は、周方向の間隔部分をブレース構造屋根面により連続する構成とされていることを特徴とする。
【0015】
【発明の実施形態及び実施例】
請求項1、2に記載した発明に係る粉粒体貯蔵施設の屋根架構の実施形態を図1以下に示した。
【0016】
図1は、屋根架構の概念を鳥瞰図的に示したもので、外周縁にテンションリング1が配置され、内周縁にコンプレッションリング2が配置されている。前記テンションリング1とコンプレッションリング2との間の部位の床面3が粉粒体の貯蔵スペースとされ、貯蔵すべき粉粒体は、前記部位3に粉粒体の山4を図4のように平面的に見て複数(図示例では6個)隣接して(同心円状の配置に)形成される。
【0017】
図3、図4の実施例の場合、テンションリング1は平面形状を約正六角形状に形成され、前記の各粉粒体の山4はそれぞれ、屋根中心とテンションリングの六つの角とを結ぶ放射線上に中心を有する配置とされている。但し、外部払い出しコンベア19の設置部分には、その設置に必要な相当幅Bの空きスペースBを確保した構成とされている。各粉粒体の山4は、その中心部の位置を通る放射線に沿う配置で、その床下に個別の搬出コンベア20が屋根中心位置の集荷場21へ接続する配置に設置され、粉粒体は前記の集荷場21を中継して外部払い出しコンベア19によって目的の場所へ搬送される。
【0018】
この粉粒体貯蔵施設の屋根は、貯蔵スペースである前記テンションリング1とコンプレッションリング2の間の部位3に架けた断面形状として、一つの粉粒体の山4の底面幅D及び高さH(図2を参照)よりも少し大きいほぼ相似形の山形状に形成され(図2)、これを周方向に連続させて複数の粉粒体の山4の全部を覆うように、図示例では平面が正六角のドーナツ形状をなす屋根架構として構築されている(図6)。
【0019】
図1と図2に示した屋根架構は、山形状をなす外側の屋根部材11を前記外周縁のテンションリング1と屋根頂部に位置する頂部外側リング12との間に架設し、内側の屋根部材13は前記内周縁のコンプレッションリング2と屋根頂部に位置する頂部内側リング14との間に架設されている。そして、前記頂部の内側リング14及び外側リング12は、水平放射状配置の繋ぎ材15にて連結した構成とされている。
【0020】
従って、図1中に点線17で例示した形態に単純に無柱のドーム形屋根として構築する場合に比すると、山形状の屋根部材11、13に作用する負荷は、外周縁のテンションリング1の位置における反力の大きさが、鉛直方向反力は約1/3に、水平方向反力(スラスト力)は約1/8に低減される。よって、屋根部材11、13の構成材断面を約1/8程度に縮小化できるし、テンションリング1及びコンプレッションリング2の部材断面もそれなりに小さくて済む。
【0021】
前記水平な繋ぎ材15の下側に外部コンベア22が図1のように配置され、これと接続した搬入コンベア23が各山4毎に周方向に設置され(図2)、各搬入コンベア23の他端は粉粒体を投下し直下に上述の山4を個別に形成するべき位置の投入シュート18と接続されている(図2参照)。
【0022】
更に具体的に説明すると、図3と図4が分かりやすいように、平面的に見て前記複数の粉粒体の山4、4同士が隣接する接点部を通る放射線P上の位置に、同線上における前記テンションリング1より内方の位置、及びコンプレッションリング2より外方の位置にそれぞれ中間柱5、6が建てられている。ちなみに前記の放射線Pは、図3、図4のように平面を正六角形状に配置されたテンションリング1の角から角を結ぶ直線部のほぼ中点を通る配置とされている。そして、テンションリング1の位置に建てた外柱7、及びコンプレッションリング2の位置に建てた内柱8と前記の各中間柱5、6とは、各々の柱脚部10(フーチング基礎)が基礎梁9によって水平力の伝達が可能な構造で一連に連結されている。
【0023】
前記放射線P上の位置に主要屋根合掌材16が山形状に配置され、前記の各中間柱5、6と外柱7及び内柱8との合計4本の柱によって主要屋根合掌材16が支持されている。この主要梁合掌材16も、各々の上端部は上記した頂部外側リング12及び頂部内側リング14と接合されている。
【0024】
その屋根架構図を図5に示した。山形状をなす主要屋根合掌材16の荷重は、前記の各中間柱5、6と外柱7及び内柱8の4本に分担して支持され、外柱7及び内柱8の荷重負担は数分の一に軽減される。しかも図5に示したように、中間柱6を設置した屋根架構は、中間柱6の存在と基礎張り9による接続効果により一般部分の屋根架構(図2参照、中間柱がない。)に比して水平力に対する抵抗力を大きくできる。従って、中間柱6を設置した図5の屋根架構は、地震時や強風時に生じる水平力を一般屋根架構よりも多く分担できる。その結果、周辺位置の床下コンベアを設置する洞道付近の架構が分担する水平力を低減し、その部分の支持杭の本数を減らし、コンベアの配置との干渉を避けることに寄与する。
【0025】
ちなみに、上記の主要屋根合掌材16はトラス梁構造に構成され、図2に例示したように前記外柱7との交点部に一例としてH形鋼状のテンションリング1が設置される。また、内柱8との交点部には一例として角鋼管状のコンプレッションリング2が設置される(以上、請求項1記載の発明)。
【0026】
上記したように外周縁のテンションリング1と内周縁のコンプレッションリング2との間の部位に断面をほぼ山形状に架設され、平面的に見て前記複数の粉粒体の山同士が隣接する接点部を通る放射線上の位置に配置され前記中間柱6と外柱7及び内柱8によって支持された主要屋根合掌材16同士は、図6のように周方向の間隔部分をブレース構造屋根面24により連続する構成とされ、もって剛性が低い前記ブレース構造屋根面24の応力を効果的に、合理的にテンションリング1、コンプレッションリング2へ伝達して処理する構成とし、屋根の軽量化と経済設計に実効を奏するものとされている(請求項2記載の発明)。
【0027】
【本発明が奏する効果】
請求項1と2に記載した発明に係る粉粒体貯蔵施設の屋根架構は、平面がドーナツ形状をなす屋根中心部(内周部)のコンプレッションリングの範囲内は屋根荷重の作用を一切受けない露天(青天井)の構造であるから、その範囲内に貯蔵施設に必要な施設を耐荷重設計において有利な小断面構造で経済的に構築することができる。
【0028】
一方、外周部のテンションリングと内周部のコンプレッションリングとの間にドーナツ形状に構築される、断面が山形状の屋根は、外柱をテンションリングで、内柱はコンプレッションリングで合理的に支持する構成としたから、外周部のテンションリング及び内周部のコンプレッションリングに作用する鉛直応力及び水平応力(スラスト力)を、単純なドーム形屋根に比して数分の一に低減化できるから、ひいては屋根部材の断面の縮小化、軽量化に寄与して経済設計を可能にする。
【0029】
平面的にみて複数の粉粒体の山が隣接する接点部を通る放射線上に位置させる主要屋根合掌材を、前記テンションリングの内方位置及びコンプレッションリングの外方位置にそれぞれ中間柱を建て、これら中間柱と外柱及び内柱によって支持させるから、各柱の荷重負担を分散して軽減化できる。しかも前記中間柱と外柱または内柱との間は基礎梁によって各柱脚部(フーチング基礎)を一体的に連結し、もって前記スラスト力の分散化を図ることができることは勿論、前記基礎梁は貯蔵粉粒体の載荷重が作用しない位置に構築するから、その分小断面構造に構築できる。
【0030】
前記主要屋根合掌材同士の周方向の間隔部分はブレース構造屋根面により連続する構成とし、主要屋根合掌材により剛性が低い前記ブレース構造屋根面の応力を効果的、合理的にテンションリング、コンプレッションリングへ伝達して処理するので、屋根の経済設計が可能であり、また、床下の払い出しコンベアなどを設備する洞道(トンネル)付近の支持杭へ作用する水平力(スラスト力)を低減し、杭の本数を減らし、払い出しコンベア等との干渉を避けられる構成の粉粒体貯蔵施設の屋根架構を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る屋根架構の原理を説明した斜視図である。
【図2】屋根架構の断面図である。
【図3】主に柱脚部の配置を示す平面図である。
【図4】貯蔵する粉粒体の山と屋根架構との関係を示した平面図である。
【図5】屋根架構を示す骨組み図である。
【図6】屋根架構の斜視図である。
【符号の説明】
1 テンションリング
2 コンプレッションリング
3 粉粒体貯蔵スペース
4 粉粒体の山
11、13屋根材
P 放射線
5、6 中間柱
7 外柱
8 内柱
16 主要屋根合掌材
24 ブレース構造屋根面
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to the technical field of a granular material storage facility that efficiently stores a large amount of granular material represented by coal by production area and type, and mechanized by a first-in first-out method. For example, the present invention relates to a roof frame that protects powder particles during storage from wind and rain and prevents scattering.
[0002]
[Prior art]
Conventionally, for example, JP-A-61-145038 and JP-A-61-61 are known as powder storage facilities for efficiently storing a large amount of powder particles typified by coal and mechanizing them using a first-in first-out method. As disclosed in Japanese Patent No. 18240, a storage container such as a silo is constructed, a roof is installed on the upper part thereof, a loading conveyor is connected to the roof part, and a storage material discharge conveyor is provided at the lower part of the silo. The installed technology is disclosed.
[0003]
Next, the granular material storage facility described in Japanese Patent Application Laid-Open No. 57-85706 is supported by a peripheral foundation at the outer peripheral edge, and supported by a single central pillar at the inner edge. A roof with a mountain-shaped cross section is formed with the central column as a symmetry point and a circular plane, and a loading loop conveyor is installed at the top of the mountain-shaped roof. The conveyor is connected, and the scraper and the payout conveyor are installed on the floor.
[0004]
The suspended roof type granular material storage facility described in Japanese Patent Application Laid-Open No. 58-113455 includes a carry-in conveyor that is erected in a straight line by a plurality of columns built at a constant pitch by an arrangement of two rows of columns. An external conveyor connected to the carry-in conveyor, a storage space for powder particles immediately below the carry-in conveyor, a payout conveyor installed in the basement, and a suspension cable installed above and below in the column direction of the columns A cable net-shaped suspended roof knitted into a curved surface (HP curved surface) based on the suspension cable and the retainer cable, and the suspension cable laid between the above cables and the sub girder support in the perpendicular direction. It is configured.
[0005]
[Problems to be solved by the present invention]
As described above, conventionally, it has already been done to cover the surroundings of the granular material to be stored, to prevent wind and rain, and to build a roof for the purpose of preventing scattering to the outside.
[0006]
However, as disclosed in the above-mentioned JP-A-61-145038 and JP-A-61-1240240, a storage facility in which a storage container such as a silo is constructed and a roof is installed on the upper end thereof is not apparent. It is reasonable. However, for example, it is important to store coal efficiently in large quantities according to production areas and types. To that end, the number of silos must be increased, resulting in a very expensive facility in total. In addition, the area occupied by the storage facility becomes large, which is uneconomical.
[0007]
The particulate storage facility described in the above-mentioned Japanese Patent Application Laid-Open No. 57-85706 is characterized by a roof frame having a mountain-shaped cross section between the peripheral foundation and the central column. In other words, the stress load of the roofing material and the thrust force on the column base (horizontal force in the radial direction) are reduced by a fraction of those when a large space dome roof without pillars is built using the surrounding foundation as a reaction point. It is assumed that the roof material cross section can be reduced in size and weight. However, in the case of this granular facility, the entire floor between the surrounding foundation and the central pillar is used as a granular storage space, and a pile of granular particles thrown in by turning the loop conveyor on the roof ceiling is placed there. Since it is built, it will be constructed under the floor of the heavy storage powder granulate and a conveyor and other underground facilities. Therefore, it is uneconomical to construct an underground structure with a large cross section so as to withstand the loading load of stored granular materials. Since the large loading load of the stored granular material also acts as a thrust force on the surrounding foundation through the ground, it is necessary to construct the surrounding foundation enormously so as to withstand these, and it becomes uneconomical. In addition, since the central column is a structure that supports the central load of the roof load at one point, this central column becomes a huge structure, and as a result of a large number of supporting piles etc. that support the column, this center There is also an inconvenience that it is difficult to install facilities necessary for storage of the granular material in the column part.
[0008]
The suspended roof type granular material storage facility described in the above-mentioned Japanese Patent Application Laid-Open No. 58-113455 is reasonably constructed as a cable net-like suspended roof knitted into a curving surface (HP curved surface). . However, on-site construction of a suspended roof is technically difficult, and the storage space for the granular material is directly below the carry-in conveyor built up in a straight line by multiple columns, and a payout conveyor is installed under the floor. Because of the construction, the payout conveyor is uneconomical because it is forced to construct a large cross-sectional structure that can withstand a huge load of stored powder particles.
[0009]
The purpose of the present invention is an open-air (blue ceiling) structure that is not subject to any roof load within the range of the compression ring at the center (inner periphery), and the facilities required for storage facilities are tolerated within that range. It can be economically constructed with a small cross-sectional structure that is advantageous in load design, while a roof with a mountain-shaped cross section that is built in a donut shape between the tension ring on the outer periphery and the compression ring on the inner periphery It is to provide a roof structure of the granular material storage facility in which the outer pillar is rationally supported by the tension ring and the inner pillar is reasonably supported by the compression ring.
[0010]
Another object of the present invention is to provide a main roof joint material for positioning a plurality of granular piles on a radiation passing through adjacent contact portions in plan view, an inward position of the tension ring and an outward direction of the compression ring. Intermediate pillars are built at each position, supported by these intermediate pillars, outer pillars, and inner pillars, and the pillars (footing foundations) are connected together by foundation beams between the intermediate pillars and outer pillars or inner pillars. And providing a roof structure for the granular material storage facility improved to a structure in which the stress of the roof surface of the partial race structure having low rigidity is effectively transmitted to the tension ring and compression ring by the main roof joint material. That is.
[0011]
The next object of the present invention is to provide a granular material storage facility in which the circumferential interval between the main roof joint members supported by adding an intermediate column to the outer column and the inner column is continuous with the brace structure roof surface. Is to provide a roof frame.
[0012]
A further object of the present invention is to reduce the horizontal force (thrust force) acting on the supporting piles near the tunnel (tunnel) where the under-floor payout conveyor is installed, reduce the number of piles, and interfere with the payout conveyor, etc. It is to provide a roof structure of a granular material storage facility that is configured to avoid the above.
[0013]
[Means for Solving the Problems]
As means for solving the above-mentioned problems, the roof frame of the granular material storage facility according to the invention described in claim 1 is:
A tension ring is disposed on the outer peripheral edge, and a compression ring is disposed on the inner peripheral edge. A portion between the tension ring and the compression ring is used as a storage space for the granular material. Forming a plurality of adjacent piles in a plan view of the mountain of the body,
The roof is formed in a cross-sectional shape between the tension ring and the compression ring into a substantially similar mountain shape that is larger than the bottom width and height of a mountain of a single granular material, and a plurality of these are continuously formed in the circumferential direction. A roof frame with a donut-shaped plane is constructed so as to cover all of the piles of
When viewed in plan, the plurality of granular particles are positioned on the radiation passing through adjacent contact portions, and intermediate pillars are respectively set at the inner position of the tension ring and the outer position of the compression ring. The outer pillar built in the position of the tension ring and the inner pillar built in the position of the compression ring and the intermediate pillar are connected by the foundation beam, and the main roof is connected to each of the intermediate pillar, the outer pillar, and the inner pillar. It is characterized in that a palm material is supported.
[0014]
Invention of Claim 2 is arrange | positioned in the position on the radiation which passes through the contact part to which the piles of several granular material see planarly in the roof frame of the granular material storage facility described in Claim 1 The main roof joint members supported by the intermediate column, the outer column, and the inner column are configured such that the circumferential interval portion is continuous by the brace structure roof surface.
[0015]
Embodiments and Examples of the Invention
Embodiments of the roof frame of the granular material storage facility according to the invention described in claims 1 and 2 are shown in FIG.
[0016]
FIG. 1 is a bird's-eye view of the concept of a roof frame, in which a tension ring 1 is disposed on the outer peripheral edge and a compression ring 2 is disposed on the inner peripheral edge. The floor surface 3 of the part between the tension ring 1 and the compression ring 2 is used as a storage space for the granular material. The granular material to be stored has a pile 4 of the granular material in the part 3 as shown in FIG. A plurality (six in the illustrated example) are formed adjacent to each other (in a concentric arrangement).
[0017]
3 and 4, the tension ring 1 is formed in a regular hexagonal shape in plan view, and the above-mentioned peak 4 of each granular material connects the center of the roof and the six corners of the tension ring. It is an arrangement having a center on the radiation. However, the installation portion of the external payout conveyor 19 is configured to ensure an empty space B having an equivalent width B necessary for the installation. The piles 4 of each granular material are arranged along the radiation passing through the position of the central portion thereof, and are installed in an arrangement in which individual carry-out conveyors 20 are connected to the collection place 21 at the center of the roof under the floor. The product is transported to a target place by an external delivery conveyor 19 via the collection area 21.
[0018]
The roof of this granular material storage facility has a bottom surface width D and a height H of one granular particle mountain 4 as a cross-sectional shape spanning a portion 3 between the tension ring 1 and the compression ring 2 which is a storage space. In the illustrated example, it is formed in a substantially similar mountain shape slightly larger than (see FIG. 2) (FIG. 2), and is continuous in the circumferential direction so as to cover all of the plurality of powder particle peaks 4. It is constructed as a roof frame whose plane is a regular hexagonal donut shape (FIG. 6).
[0019]
The roof frame shown in FIG. 1 and FIG. 2 is constructed such that an outer roof member 11 having a mountain shape is laid between the tension ring 1 at the outer peripheral edge and a top outer ring 12 located at the roof top portion. 13 is constructed between the compression ring 2 on the inner peripheral edge and the top inner ring 14 located on the roof top. And the inner ring 14 and the outer ring 12 at the top part are connected by a connecting member 15 in a horizontal radial arrangement.
[0020]
Therefore, the load acting on the mountain-shaped roof members 11 and 13 is less than that of the tension ring 1 on the outer peripheral edge, as compared to the case where the structure illustrated as a dotted line 17 in FIG. The magnitude of the reaction force at the position is reduced to about 1/3 of the vertical reaction force and to about 1/8 of the horizontal reaction force (thrust force). Therefore, the cross-sections of the constituent members of the roof members 11 and 13 can be reduced to about 1/8, and the cross-sections of the tension ring 1 and the compression ring 2 can be reduced accordingly.
[0021]
An external conveyor 22 is arranged below the horizontal connecting material 15 as shown in FIG. 1, and a carry-in conveyor 23 connected to this is installed in the circumferential direction for each mountain 4 (FIG. 2). The other end is connected to a charging chute 18 at a position where the above-mentioned ridges 4 should be individually formed immediately after dropping the granular material (see FIG. 2).
[0022]
More specifically, in order to make it easy to understand FIGS. 3 and 4, the plurality of powder peaks 4, 4 are located at the same positions on the radiation P passing through adjacent contact portions when viewed in plan. Intermediate columns 5 and 6 are erected on the line at a position inside the tension ring 1 and a position outside the compression ring 2, respectively. Incidentally, the radiation P is arranged so as to pass through substantially the midpoint of the straight line connecting the corners of the tension ring 1 arranged in a regular hexagonal plane as shown in FIGS. The outer pillar 7 built at the position of the tension ring 1 and the inner pillar 8 built at the position of the compression ring 2 and the intermediate pillars 5 and 6 are based on the respective column bases 10 (footing foundations). The beam 9 is connected in series with a structure capable of transmitting a horizontal force.
[0023]
A main roof joint material 16 is arranged in a mountain shape at a position on the radiation P, and the main roof joint material 16 is supported by a total of four pillars including the intermediate pillars 5 and 6 and the outer pillar 7 and the inner pillar 8. Has been. The upper ends of the main beam joint members 16 are also joined to the top outer ring 12 and the top inner ring 14 described above.
[0024]
The roof frame composition is shown in FIG. The load of the main roof joint material 16 having a mountain shape is supported by being divided and supported by each of the intermediate pillars 5 and 6 and the outer pillar 7 and the inner pillar 8, and the load burden on the outer pillar 7 and the inner pillar 8 is It is reduced to a fraction. Moreover, as shown in FIG. 5, the roof frame with the intermediate column 6 installed is compared to the roof frame of the general part (see FIG. 2, there is no intermediate column) due to the presence of the intermediate column 6 and the connection effect by the foundation 9. Thus, the resistance to horizontal force can be increased. Therefore, the roof frame of FIG. 5 in which the intermediate column 6 is installed can share more horizontal force generated during an earthquake or strong wind than a general roof frame. As a result, the horizontal force shared by the frame near the cave where the underfloor conveyor at the peripheral position is shared is reduced, the number of supporting piles in that portion is reduced, and interference with the arrangement of the conveyor is avoided.
[0025]
Incidentally, the main roof joint material 16 is configured in a truss beam structure, and an H-shaped steel tension ring 1 is installed as an example at the intersection with the outer column 7 as illustrated in FIG. In addition, a square steel tubular compression ring 2 is installed at the intersection with the inner column 8 as an example (the invention according to claim 1 above).
[0026]
As described above, the cross section of the section between the outer peripheral tension ring 1 and the inner peripheral compression ring 2 is mounted in a substantially mountain shape, and the peaks of the plurality of powder particles are adjacent to each other in plan view. The main roof joint members 16 arranged at positions on the radiation passing through the section and supported by the intermediate column 6, the outer column 7 and the inner column 8 are arranged at intervals in the circumferential direction as shown in FIG. Therefore, the stress of the roof surface 24 of the brace structure having low rigidity is effectively transmitted to the tension ring 1 and the compression ring 2 for processing, thereby reducing the weight of the roof and the economic design. The invention is effective (the invention according to claim 2).
[0027]
[Effects of the present invention]
The roof frame of the granular material storage facility according to the first and second aspects of the present invention is not affected at all by the load of the roof within the range of the compression ring at the center (inner periphery) of the roof where the plane forms a donut shape. Since it is an open-air (blue ceiling) structure, the facilities required for the storage facility can be economically constructed within the range with a small cross-sectional structure advantageous in load-bearing design.
[0028]
On the other hand, a donut-shaped roof constructed between the tension ring on the outer periphery and the compression ring on the inner periphery, the outer pillar is rationally supported by the tension ring and the inner pillar is supported by the compression ring. The vertical stress and horizontal stress (thrust force) acting on the tension ring on the outer periphery and the compression ring on the inner periphery can be reduced to a fraction of that of a simple dome-shaped roof. As a result, the cross-section of the roof member can be reduced and the weight can be reduced, thereby enabling economic design.
[0029]
In the plan view, a plurality of granular piles are positioned on the radiation that passes through the adjacent contact portion, and the main roof joint material is constructed with an intermediate column at the inner position of the tension ring and the outer position of the compression ring, respectively. Since they are supported by these intermediate pillars, outer pillars and inner pillars, the load burden of each pillar can be dispersed and reduced. In addition, it is possible to integrally connect each column base (footing foundation) between the intermediate column and the outer column or the inner column by a foundation beam, so that the thrust force can be dispersed. Since it is constructed at a position where the loaded load of the stored granular material does not act, it can be constructed with a small cross-sectional structure accordingly.
[0030]
The circumferential interval between the main roof joints is continuous with the brace structure roof surface, and the rigidity of the brace structure roof surface, which is low in rigidity due to the main roof joint material, is effective and reasonably effective. It is possible to economically design the roof, and to reduce the horizontal force (thrust force) that acts on the supporting pile near the tunnel (tunnel) that is equipped with a payout conveyor under the floor. It is possible to provide a roof frame for a granular material storage facility having a configuration in which the number of the particles can be reduced and interference with a payout conveyor or the like can be avoided.
[Brief description of the drawings]
FIG. 1 is a perspective view illustrating the principle of a roof frame according to the present invention.
FIG. 2 is a cross-sectional view of a roof frame.
FIG. 3 is a plan view mainly showing the arrangement of column bases.
FIG. 4 is a plan view showing a relationship between a pile of granular material to be stored and a roof frame.
FIG. 5 is a skeleton diagram showing a roof frame.
FIG. 6 is a perspective view of a roof frame.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Tension ring 2 Compression ring 3 Granules storage space 4 Pile 11 and 13 Roof material P Radiation 5 and 6 Middle pillar 7 Outer pillar 8 Inner pillar 16 Main roof joint material 24 Brace structure roof surface

Claims (2)

外周縁にテンションリングが、内周縁にコンプレッションリングが配置されており、前記テンションリングとコンプレッションリングの間の部位が粉粒体の貯蔵スペースとされ、貯蔵すべき粉粒体は前記部位に粉粒体の山を平面的に見て複数隣接して形成すること、
屋根は、前記テンションリングとコンプレッションリングの間の断面形状を、一つの粉粒体の山の底面幅及び高さよりも大きいほぼ相似形の山形状に形成され、これを周方向に連続させて前記複数の粉粒体の山を全部覆うように平面がドーナツ形状の屋根架構が構築されていること、
平面的に見て前記複数の粉粒体の山同士が隣接する接点部を通る放射線上の位置であって、前記テンションリングの内方位置及びコンプレッションリングの外方位置にそれぞれ中間柱が立てられ、テンションリングの位置に建てた外柱及びコンプレッションリングの位置に建てた内柱と前記中間柱とが基礎梁によって連結されており、前記の各中間柱と外柱、及び内柱とによって主要屋根合掌材が支持されていることを特徴とする、粉粒体貯蔵施設の屋根架構。
A tension ring is disposed on the outer peripheral edge, and a compression ring is disposed on the inner peripheral edge. A portion between the tension ring and the compression ring is used as a storage space for the granular material. Forming a plurality of adjacent piles in a plan view of the mountain of the body,
The roof has a cross-sectional shape between the tension ring and the compression ring formed into a substantially similar mountain shape that is larger than the bottom width and height of the mountain of one granular material, A roof frame with a donut-shaped plane is constructed so as to cover all the piles of multiple granular materials,
When viewed in plan, the plurality of granular particles are positioned on the radiation passing through adjacent contact portions, and intermediate pillars are respectively set at the inner position of the tension ring and the outer position of the compression ring. The outer pillar built in the position of the tension ring and the inner pillar built in the position of the compression ring and the intermediate pillar are connected by the foundation beam, and the main roof is connected to each of the intermediate pillar, the outer pillar, and the inner pillar. A roof structure of a granular material storage facility, characterized in that a palm material is supported.
平面的に見て複数の粉粒体の山同士が隣接する接点部を通る放射線上の位置に配置され、中間柱と外柱及び内柱とによって支持された主要合掌材同士は、周方向の間隔部分をブレース構造屋根面により連続する構成とされていることを特徴とする、請求項1に記載した粉粒体貯蔵施設の屋根架構。When viewed from above, a plurality of granular particles are arranged at a position on the radiation passing through the adjacent contact points, and the main joint members supported by the intermediate column, the outer column, and the inner column are in the circumferential direction. The roof frame of the granular material storage facility according to claim 1, wherein the interval portion is configured to be continuous by a brace structure roof surface.
JP22090099A 1999-08-04 1999-08-04 Roof structure of powder storage facility Expired - Fee Related JP4043652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22090099A JP4043652B2 (en) 1999-08-04 1999-08-04 Roof structure of powder storage facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22090099A JP4043652B2 (en) 1999-08-04 1999-08-04 Roof structure of powder storage facility

Publications (2)

Publication Number Publication Date
JP2001040909A JP2001040909A (en) 2001-02-13
JP4043652B2 true JP4043652B2 (en) 2008-02-06

Family

ID=16758303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22090099A Expired - Fee Related JP4043652B2 (en) 1999-08-04 1999-08-04 Roof structure of powder storage facility

Country Status (1)

Country Link
JP (1) JP4043652B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4589516B2 (en) * 2000-10-26 2010-12-01 株式会社竹中工務店 Construction method of roof frame
KR102070348B1 (en) * 2019-10-10 2020-01-28 주식회사 더비씨 conveying apparatus for industrial air dome

Also Published As

Publication number Publication date
JP2001040909A (en) 2001-02-13

Similar Documents

Publication Publication Date Title
US4218859A (en) Working bin
US6439436B2 (en) Storage bin for particulate materials
CA2514987A1 (en) Modular load-bearing structural column
US20030159369A1 (en) Cone shaped polygon roof structure
JP4043652B2 (en) Roof structure of powder storage facility
JP6865550B2 (en) How to build silo roof and silo roof structure
JP4313903B2 (en) Roof structure of powder storage facility
EP0043820A4 (en) Silo.
JP4060016B2 (en) Large space roof frame with ring-shaped beam
US3486282A (en) Silo construction
JP3814751B2 (en) Donut-shaped large space roof frame
US3308972A (en) Load supporting system
CN2314020Y (en) Prefabricated assembled shell born with cross arched beams
US3871148A (en) Grain hopper structure
CN214144953U (en) Material storage rectangular bin with built-in tie beam and group bin structure thereof
JPS6226385Y2 (en)
CN202273451U (en) Silo
CN202187592U (en) Silo bottom structure of silo
JP3212517B2 (en) Batch construction method for silos in proximity using swiveling cranes
JPH03504148A (en) Single-story multi-span modular industrial building
IL30178A (en) An overhead annular covering in a dual cable system for polygonal,elliptical or circular plan buildings,such as sports grounds or the like
JP3299645B2 (en) Pyramidal frame structure
JPS6118486B2 (en)
JP3581885B2 (en) Grain dry storage facility
CN112922423A (en) Silo and silo top structure thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060328

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071009

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees