JP4043634B2 - Activated carbon molded body, manufacturing method thereof and water purifier using the same - Google Patents

Activated carbon molded body, manufacturing method thereof and water purifier using the same Download PDF

Info

Publication number
JP4043634B2
JP4043634B2 JP06246699A JP6246699A JP4043634B2 JP 4043634 B2 JP4043634 B2 JP 4043634B2 JP 06246699 A JP06246699 A JP 06246699A JP 6246699 A JP6246699 A JP 6246699A JP 4043634 B2 JP4043634 B2 JP 4043634B2
Authority
JP
Japan
Prior art keywords
activated carbon
water
water purifier
cumulative
pore volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP06246699A
Other languages
Japanese (ja)
Other versions
JP2000256999A (en
JP2000256999A5 (en
Inventor
哲也 津島
寛枝 鷹取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Chemical Co Ltd
Original Assignee
Kuraray Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Chemical Co Ltd filed Critical Kuraray Chemical Co Ltd
Priority to JP06246699A priority Critical patent/JP4043634B2/en
Publication of JP2000256999A publication Critical patent/JP2000256999A/en
Publication of JP2000256999A5 publication Critical patent/JP2000256999A5/ja
Application granted granted Critical
Publication of JP4043634B2 publication Critical patent/JP4043634B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Fibers (AREA)
  • Paper (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は活性炭成形体、その製造方法及びそれを用いた浄水器に関する。さらに詳しくは、繊維状活性炭、二酸化チタン、二酸化ケイ素及びバインダーからなる混合物を成型した活性炭成型体、その製造方法及びそれを用いた浄水器に関する。本発明の活性炭成型体は、水中の遊離塩素、黴臭及びトリハロメタンの吸着除去性能に優れているだけでなく、鉛などの重金属の吸着除去性能に優れているので、カートリッジに作製してハウジングに装填し、浄水器として好適に使用される。
【0002】
【従来の技術】
活性炭は各種汚染物質の吸着能に優れているので、浄水用に多く使用されている。近年、飲料水、とくに水道水の水質に関する安全衛生上の関心が高まってきており、飲料水中に含まれる塩素、トリハロメタン、黴臭などの有害物質を除去することが望まれている。これらの要求に対しては、従来から粒状の活性炭をハウジングに充填した浄水器が主として検討されてきたが、通水時の圧損が大きくなるため、活性炭として繊維状の活性炭を使用することが多くなっている。
【0003】
例えば、特開平6−106162号公報に、繊維状活性炭を使用して水道水中の遊離塩素及び黴臭を吸着する浄水器が提案され、特開昭62−152533号公報、特開平6−99064号公報、特開平6−99065号公報及び特開平6−106161号公報に、特定の繊維状活性炭を使用して水道水中のトリハロメタンを除去することが開示されている。
【0004】
【発明が解決しようとする課題】
上記した浄水器によれば、特定の繊維状活性炭を使用することにより、水道水中の遊離塩素、黴臭及びトリハロメタンを吸着除去することができ、しかも、充填材が繊維状であるため、粒状の吸着剤を使用する場合に比べて通水時の抵抗が低いという利点がある。しかしながら、飲料水の味を改善する意味では勿論、最近では、環境ホルモン問題が大きく取り上げられるようになり、環境庁が定めた内分泌攪乱作用が疑われている物質として鉛があげられていることもあり、水道水から鉛などの重金属を極力除去する要求が強くなってきている。
【0005】
これまで、水中の鉛除去に関し、エンゲルハルド社からATSの商品名で二酸化チタン及び二酸化ケイ素を主成分とする粒状体が市販されており、これを活性炭に担持した商品名ATCが水処理に使用され、鉛の除去性能に優れていることが報告されている(Report on UltraPure Systems,Inc.WP―500LR Countertop Drinking Water Treatment System、1992年)。また、本出願人は、重金属イオンの除去性に優れる浄水器用カートリッジとして、繊維状活性炭、二酸化ケイ素、及び酸化マグネシウム又は酸化アルミニウムを主成分とする焼成物を成型したカートリッジを特願平5−180839号(特開平7−256239号)としてすでに特許出願した。
【0006】
水道水基準によると、水道水中の鉛の許容含有量は50ppb以下と規定され、浄水器協議会の基準でも同様であるが、上述したように、最近では飲料水の味については勿論、鉛などの重金属に対する要求は極めて厳しいものがあり、遊離塩素、黴臭の除去性能に加え、トリハロメタンや重金属イオンの除去性能にも優れる浄水器が要望されている。したがって、本発明の目的は、水中の遊離塩素及び黴臭の除去性能に優れ、しかもトリハロメタンや重金属の除去性能にも優れた、通水抵抗が低い浄水器を提供することにある。
【0007】
【課題を解決するための手段】
本発明者らは、鋭意検討を重ね、繊維状活性炭、二酸化チタン及び二酸化ケイ素を混合して成型した成型体をカートリッジとしてハウジングに装填してなる浄水器により上記目的を達成することができることを見出し、本発明に到達した。すなわち本発明は、繊維状活性炭、予め成形された二酸化チタンと二酸化ケイ素の混合物、及びバインダーからなる混合物を成型せしめてなる活性炭成型体を円筒状のカートリッジとしてハウジングに装填してなる浄水器であって、空間速度が2000(1/Hr)以下で累積透過水量が140(L/cc)のときの鉛の除去率が80%以上である浄水器である。
【0011】
【発明の実施の形態】
本発明において使用される繊維状活性炭としては、ピッチ系、フェノール系、セルロース系などの繊維を炭化した後、水蒸気、ガス又は薬品で賦活して調製されたものが使用される。これらの繊維状活性炭は3〜5mm程度に切断して使用する方が成型体に成型しやすく、好ましい。水道水中の遊離塩素をよく除去するには、ヨウ素吸着量が1200〜3000mg/gの繊維状活性炭を使用するのが好ましい。
【0012】
水道水中のトリハロメタンの除去性能をよくするには、比表面積1300m/g以上で、水蒸気吸着法で測定した細孔半径が9Å〜16Åの細孔の占める累積細孔容積が0.25cc/g以上で、かつ上記累積細孔容積が、細孔半径100Å以下の細孔の占める累積細孔容積の50%以上の繊維状活性炭を使用するのが好ましい。また、比表面積800m/g以上で、水蒸気吸着法で測定した細孔半径が9Å以下の細孔の占める累積細孔容積が0.20cc/g以上で、かつ上記累積細孔容積が、細孔半径100Å以下の細孔の占める累積細孔容積の50%以上の繊維状活性炭を使用してもよい。さらに、不活性ガス雰囲気中で、温度1200℃〜1700℃で加熱処理された繊維状活性炭を使用してもよい。
【0013】
本発明でいう比表面積とは、液体窒素温度での窒素ガス吸着等温線を作成し、BET法により求められる値であり、また、細孔半径は水蒸気吸着法により測定されるものである。水蒸気吸着法により測定される細孔半径とは、例えば特開平7−171385号公報などに詳述されているように、硫酸水溶液の硫酸濃度と平衡水蒸気圧との間に一定の関係があることを利用し、繊維状活性炭の各種濃度の硫酸水溶液における飽和吸着量を求め、対応する細孔半径をKelvinの式に基づいて算出し、対応する細孔半径以下の累積細孔容積を求め、細孔半径に対してプロットして細孔分布曲線を作成し、求められるものである。
【0014】
本発明に使用される二酸化チタンとしては、触媒機能に優れる点で、結晶構造がアナターゼ型のものが好ましい。粒径は小さい方が重金属イオンの吸着速度に優れるので好ましいが、あまり小さいと繊維状活性炭の繊維間に固定するのが困難となり、固定のためにバインダーを多く必要とするので、通水抵抗が大きくなる傾向にある。したがって、粒子の粒径は、好ましくは100μm以下、さらに好ましくは3μm〜90μmのものを使用するのが望ましい。二酸化ケイ素粒子の粒径も上述した同じ理由から、好ましくは100μm以下、さらに好ましくは3μm〜90μmである。
【0015】
二酸化チタンと二酸化ケイ素は別々に調合してもよいが、二酸化チタン及び二酸化ケイ素を混合物として予め成形された無機化合物を使用すると、効率よく成型することができ、また重金属イオンの除去効果に優れる傾向にあり好ましい。このような無機化合物としては、例えばエンゲルハルド社からATSの商品名で市販されている粒状に成形された化合物を例示することができる。二酸化チタンは、あまり少ないと効果の発現に乏しく、またあまり多くてもそれほどの効果が発現しないので、二酸化ケイ素100重量部に対し、20〜200重量部で使用される。
【0016】
バインダーは、繊維状活性炭、二酸化チタン及び二酸化ケイ素を成型するのにバインダー効果を発揮するものであればよいが、本発明の成型体は飲料水の浄水用に使用する点で、ミクロフィブリル化繊維、熱融着繊維、熱融着樹脂粉末又は熱硬化性樹脂粉末を使用するのが好ましい。ミクロフィブリル化繊維としては、ミクロフィブリル化ポリエチレン、ミクロフィブリル化ポリプロピレン、ミクロフィブリル化ナイロン、ミクロフィブリル化セルロースなどを例示することができる。
【0017】
熱融着繊維としては、例えば、ポリエチレン繊維、ポリプロピレン繊維、ポリエステル繊維、ポリアクリル系繊維、ポリエステルーポリエチレン芯鞘繊維などをあげることができる。また、熱融着性の樹脂粉末としては、例えば、ポリエチレン粉末、ポリプロピレン粉末などをあげることができる。粉末の中心平均粒子径は1〜50μmのものが活性炭を固定化する効果が大きく、好ましい。
【0018】
本発明の浄水器に用いる成型体を製造するには、先ず、繊維状活性炭、二酸化チタン、二酸化ケイ素及びバインダーをよく混合する。これらの混合割合は、繊維状活性炭100重量部に対し、二酸化チタン及び二酸化ケイ素5〜400重量部、バインダー5〜50重量部で実施される。次いで、該混合物を、固形物濃度が1〜5重量%となるように水中に分散させ、スラリーを調製する。そして、予め作製しておいた所望の形状の通水性の容器に該スラリーを流し込んで乾燥し、成型体とする。
【0019】
バインダーとして熱融着繊維又は熱融着樹脂粉末を使用する場合は、上記のようにして成型し、乾燥した後、さらに加熱処理することにより、成型物が強固に融着され、一層成型物の形状安定性及び強度を高めることができる。熱融着する方法は、とくに限定されず、例えば遠赤外線を照射して熱融着繊維又は熱融着樹脂粉末を溶融する方法によってもよいが、単に乾燥機などに成型体を静置して熱処理してもよい。この場合、熱処理は通常、80〜140℃程度、8〜16時間程度で行われる。
【0020】
容器の形状としては種々の通水性のものが作製可能であり、種々の成型体に成型することができる。成型体をカートリッジに作製すると、それをハウジングに装填して浄水器として使用することができるが、成型体を浄水器用のカートリッジとして使用する場合は、円筒状の容器とするのが通水抵抗を低下することができ、しかもカートリッジの装填・交換作業が簡単であり、好ましい。
【0021】
円筒状のカートリッジは、例えば200メッシュのステンレス製の金網で通水性の円筒形容器を作製しておき、この中に同じ長さの金網で小径の円筒形容器を作製して挿入することによって二重管状容器とし、該二重管状容器の内管と外管との間にスラリーを流し込むことによって成型することができる。
【0022】
カートリッジはハウジングに装填し、通水に供されるが、通水方式としては、原水を全量濾過する全濾過方式や循環濾過方式が採用される。原水及び透過水中の遊離塩素、鉛、トリハロメタンなどの濃度は、公知の分析方法によって測定することができ、例えば遊離塩素の濃度はO―トリジン法、鉛の濃度は原子吸光光度法などにより測定することができる。トリハロメタンの濃度は、試料を容器に採取し、密閉して気相部分をサンプリングし、ガスクロマトグラフで分析することによって測定することができる。また、2−メチルイソボネオール(2−MIB)は、濃縮してガスクロマトグラフー質量分析によって測定することができる。通水は2000(1/Hr)以下、好ましくは1000〜2000(1/Hr)の空間速度(SV)で実施され、原水及び透過水中の遊離塩素、トリハロメタン、鉛などの濃度から計算される各除去率と、通水開始から流した水量(L)とカートリッジの容積(cc)の比(累積透過水量L/cc)との関係をプロットすることにより、浄水器の性能を確認することができる。
【0023】
本発明の浄水器は、とくに鉛の除去性能に優れており、SVが2000(1/Hr)以下で累積透過水量が140(L/cc)のときに80%以上の鉛除去率を示す。本発明の活性炭成型体によれば、鉛イオンの他、コロイド状鉛も除去可能である。以下、本発明を実施例によって具体的に説明するが、本発明はこれらに限定されるものではない。
【0024】
【実施例】
実施例1
ヨウ素吸着量1500mg/g、平均繊維径15μmの繊維状活性炭(クラレケミカル株式会社製FR―15)を長さ3mmにカットし、粒径3〜20μmのエンゲルハルド社製ATS(二酸化チタン55重量%、二酸化ケイ素35重量%)及びユニチカ株式会社製の熱融着繊維アピエールA―1AWと、繊維状活性炭:ATS:バインダーを8:2:1(重量比)の割合で混合した後、固形物濃度が3重量%になるように水中に分散し、スラリーを調製した。
【0025】
200メッシュのステンレス金網で、直径3.6cm、長さ8cmの円筒状の容器を作製し、この中に同じ金網で作製した直径1cm、長さ8cmの円筒状の容器を挿入して、二重管状の容器を作製した。該二重管状容器の内管と外管との間に上記スラリーを注入し、乾燥して円筒状の成型体を作製した。
【0026】
該成型体を長さ7cmに切断し、外径3.6cm、内径1cm、長さ7cm(容積65ml、重量16g)のカートリッジとし、ハウジングに装填し、浄水器とした。水道水に次亜塩素酸ナトリウムと硝酸鉛を加えて、遊離塩素濃度が2ppm、鉛イオンを50ppbになるように調整した原水をカートリッジの外側から1.3L/分の割合で全濾過式に通水し、試験を行った。このときのSVは1200(1/Hr)であった。透過した水について、遊離塩素をO―トリジン法により分光光度計で測定し、鉛イオンを原子吸光光度法により分析した。試験開始から流した水量とカートリッジの容積の比を累積透過水量(L/cc)とし、遊離塩素の除去率(%)及び鉛除去率(%)との関係を調べた。結果を図1に示す。また、原水を2L/分で通水したときの初期通水抵抗は0.35kg・f/cmであった。1は遊離塩素の除去率(%)、2はトリハロメタンの除去率(%)、3は鉛の除去率(%)である。
【0027】
実施例2〜4
次の3種類の繊維状活性炭を準備した。
1.平均繊維径が14μmのフェノール系樹脂繊維(日本カイノール社製KT2400)を、1300℃のLPGガス(プロパン/空気の容積比が約1/24の混合ガスを燃焼させて得られたHO、CO、CO、H、C及びNの混合ガス)を供給しながら12分処理して、平均繊維径10μm、比表面積2100m/g、水蒸気吸着法で測定した細孔半径が9Å〜16Åの細孔の占める累積細孔容積が0.57cc/g、上記累積細孔容積が、細孔半径100Å以下の細孔の占める累積細孔容積の76.0%であるヨウ素吸着量が2000mg/gの繊維状活性炭を得た。
【0028】
2.同じフェノール系樹脂繊維(日本カイノール社製KT2400)を、980℃のLPGガス(プロパン/空気の容積比が約1/24の混合ガスを燃焼させて得られたHO、CO、CO、H、C及びNの混合ガス)を供給しながら10分処理して、平均繊維径10μm、比表面積1310m/g、水蒸気吸着法で測定した細孔半径が9Å以下の細孔の占める累積細孔容積が0.465cc/g、上記累積細孔容積が、細孔半径100Å以下の細孔の占める累積細孔容積の87.4%であるヨウ素吸着量が1280mg/gの繊維状活性炭を得た。
【0029】
3.クラレケミカル株式会社製の繊維状活性炭(商品名クラクテイブFT300−20)に、窒素ガスを0.5l/分導入しながら、昇温速度10℃/分で1500℃まで昇温し、ひき続き窒素中1500℃60分で熱処理し、冷却後取り出した。以上の3種類の繊維状活性炭を使用し、実施例1と同様にして成型体を作製し、ハウジングに充填して浄水器とした(各々実施例2〜4)。
【0030】
水道水に、黴臭成分として2−MIBを100ppt(parts per trillion)、トリハロメタンとしてクロロホルム25ppb、ブロモジクロロメタン10ppb、ジブロモクロロメタン10ppb及びブロモホルム5ppbの濃度になるように加え、さらに次亜塩素酸ナトリウムと硝酸鉛を加えて、遊離塩素濃度が2ppm、鉛イオンが50ppbになるように調整し、試験用の原水とした。実施例1と同様にして、上記3種類の成型体を充填した浄水器について通水試験を実施した。上記3種類についての通水試験の結果を各々図2〜図4に示す。透過水の黴臭は殆どなかった。
【0031】
実施例5〜7
熱融着繊維として、東洋紡績株式会社製のアクリル繊維からなるR56F、旭化成工業株式会社製のアクリル繊維からなるA―104及び株式会社クラレ製のPET繊維EP101を使用し、成型して乾燥した後、900℃で5時間の熱処理を施す以外は実施例1と同様にして通水試験を実施したところ、図1とほぼ同じ結果を得た。
【0032】
比較例1
エンゲルハルド社製の浄水用の粒状活性炭(商品名ATC:活性炭に二酸化ケイ素及び二酸化チタンを担持)を使用して通水試験を行った。原水を2L/分で通水したときの初期通水抵抗は0.46kg・f/cmであり、図5に示すように、鉛除去性能は本発明の成型体を使用した場合よりも50%低かった。
【0033】
比較例2
特開平7―256239号公報の実施例2に従って実施例1と同じ大きさのカートリッジを作製し、ハウジングに装填して浄水器とし、実施例1と同様に原水を通水して試験した。結果を図6に示す。以上の結果から本発明の効果は明らかである。
【0034】
【発明の効果】
本発明により、繊維状活性炭、二酸化チタン、二酸化ケイ素及びバインダーからなる混合物を成型した成型体を用いた浄水器を得ることができる。本発明の浄水器は、遊離塩素及び黴臭の他、トリハロメタンや鉛などの重金属の除去性能に優れている。
【図面の簡単な説明】
【図1】実施例1で作製した浄水器の試験結果を示すグラフである。
【図2】実施例2で作製した浄水器の試験結果を示すグラフである。
【図3】実施例3で作製した浄水器の試験結果を示すグラフである。
【図4】実施例4で作製した浄水器の試験結果を示すグラフである。
【図5】比較例1で作製した浄水器の試験結果を示すグラフである。
【図6】比較例2で作製した浄水器の試験結果を示すグラフである。
【符号の説明】
1…遊離塩素除去率(%)
2…トリハロメタン除去率(%)
3…鉛除去率(%)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an activated carbon molded body, a method for producing the same, and a water purifier using the same. More specifically, the present invention relates to an activated carbon molded body obtained by molding a mixture of fibrous activated carbon, titanium dioxide, silicon dioxide and a binder, a method for producing the same, and a water purifier using the same. The activated carbon molded body of the present invention is not only excellent in the adsorption and removal performance of free chlorine, odor and trihalomethane in water, but also is excellent in the adsorption removal performance of heavy metals such as lead. It is loaded and used suitably as a water purifier.
[0002]
[Prior art]
Activated carbon is excellent in the ability to adsorb various pollutants, so it is often used for water purification. In recent years, interest in health and safety related to the quality of drinking water, particularly tap water, has increased, and it is desired to remove harmful substances such as chlorine, trihalomethane, and bad smell contained in drinking water. In response to these requirements, water purifiers in which granular activated carbon is filled in the housing have been mainly studied. However, since the pressure loss during water flow increases, fibrous activated carbon is often used as activated carbon. It has become.
[0003]
For example, Japanese Patent Application Laid-Open No. 6-106162 proposes a water purifier that uses fibrous activated carbon to adsorb free chlorine and bad smell in tap water, and Japanese Patent Application Laid-Open No. 62-152533 and Japanese Patent Application Laid-Open No. 6-99064. JP-A-6-99065 and JP-A-6-106161 disclose the removal of trihalomethane in tap water using specific fibrous activated carbon.
[0004]
[Problems to be solved by the invention]
According to the above water purifier, by using specific fibrous activated carbon, it is possible to adsorb and remove free chlorine, odor and trihalomethane in tap water, and since the filler is fibrous, There is an advantage that resistance at the time of passing water is low compared to the case of using an adsorbent. However, of course, in order to improve the taste of drinking water, recently, the environmental hormone problem has been widely taken up, and lead has been cited as a substance suspected of endocrine disrupting action established by the Environment Agency. There is a growing demand to remove heavy metals such as lead from tap water as much as possible.
[0005]
So far, regarding the removal of lead in water, granular materials mainly composed of titanium dioxide and silicon dioxide have been commercially available from Engelhard under the trade name ATS, and the trade name ATC carrying this on activated carbon is used for water treatment. It has been reported that it has excellent lead removal performance (Report on UltraPure Systems, Inc. WP-500LR Countertop Drinking Water Treatment System, 1992). In addition, the applicant of the present invention applied as a water purifier cartridge excellent in removal of heavy metal ions, a cartridge formed from a fired product mainly composed of fibrous activated carbon, silicon dioxide, magnesium oxide or aluminum oxide. Patent application has already been filed as Japanese Patent No. 7-256239.
[0006]
According to the tap water standard, the allowable content of lead in tap water is defined as 50 ppb or less, which is the same in the standards of the water purifier council. The demand for heavy metals is extremely severe, and there is a demand for a water purifier that is excellent in the removal performance of trihalomethane and heavy metal ions in addition to the removal performance of free chlorine and odor. Accordingly, an object of the present invention is to provide a water purifier having a low water resistance, which is excellent in the removal performance of free chlorine and odor in water, and also excellent in the removal performance of trihalomethane and heavy metals.
[0007]
[Means for Solving the Problems]
The inventors of the present invention have made extensive studies and found that the above object can be achieved by a water purifier in which a molded body obtained by mixing fibrous activated carbon, titanium dioxide, and silicon dioxide is molded into a housing as a cartridge. The present invention has been reached. That is, the present invention is a water purifier in which an activated carbon molded body obtained by molding fibrous activated carbon, a pre-formed mixture of titanium dioxide and silicon dioxide, and a mixture of a binder is loaded into a housing as a cylindrical cartridge. Thus, the water purifier has a lead removal rate of 80% or more when the space velocity is 2000 (1 / Hr) or less and the accumulated permeated water amount is 140 (L / cc) .
[0011]
DETAILED DESCRIPTION OF THE INVENTION
As the fibrous activated carbon used in the present invention, those prepared by carbonizing pitch-type, phenol-type, cellulose-type or the like and then activating with water vapor, gas or chemicals are used. These fibrous activated carbons are preferably cut into about 3 to 5 mm for use in moldings. In order to sufficiently remove free chlorine in tap water, it is preferable to use fibrous activated carbon having an iodine adsorption amount of 1200 to 3000 mg / g.
[0012]
In order to improve the removal performance of trihalomethane in tap water, the cumulative pore volume occupied by pores having a specific surface area of 1300 m 2 / g or more and a pore radius of 9 to 16 cm measured by the water vapor adsorption method is 0.25 cc / g. It is preferable to use fibrous activated carbon having a cumulative pore volume of 50% or more of the cumulative pore volume occupied by pores having a pore radius of 100 mm or less. Further, the cumulative pore volume occupied by pores having a specific surface area of 800 m 2 / g or more and a pore radius measured by a water vapor adsorption method of 9 mm or less is 0.20 cc / g or more, and the cumulative pore volume is small. Fibrous activated carbon having 50% or more of the cumulative pore volume occupied by pores having a pore radius of 100 mm or less may be used. Furthermore, you may use the fibrous activated carbon heat-processed by the temperature of 1200 to 1700 degreeC in inert gas atmosphere.
[0013]
The specific surface area referred to in the present invention is a value obtained by preparing a nitrogen gas adsorption isotherm at liquid nitrogen temperature and obtained by the BET method, and the pore radius is measured by the water vapor adsorption method. The pore radius measured by the water vapor adsorption method has a certain relationship between the sulfuric acid concentration of the sulfuric acid aqueous solution and the equilibrium water vapor pressure, as detailed in, for example, JP-A-7-171385. To determine the saturated adsorption amount of sulfuric acid aqueous solution of various concentrations of fibrous activated carbon, calculate the corresponding pore radius based on the Kelvin equation, determine the cumulative pore volume below the corresponding pore radius, A pore distribution curve is created by plotting against the pore radius, and is obtained.
[0014]
As the titanium dioxide used in the present invention, an anatase type crystal structure is preferable in terms of excellent catalytic function. A smaller particle size is preferable because the adsorption rate of heavy metal ions is better. However, if the particle size is too small, it becomes difficult to fix between the fibers of the fibrous activated carbon, and a large amount of binder is required for fixing. It tends to grow. Therefore, it is desirable to use particles having a particle size of preferably 100 μm or less, more preferably 3 μm to 90 μm. The particle diameter of the silicon dioxide particles is also preferably 100 μm or less, more preferably 3 μm to 90 μm for the same reason described above.
[0015]
Titanium dioxide and silicon dioxide may be prepared separately, but if a pre-formed inorganic compound is used as a mixture of titanium dioxide and silicon dioxide, it can be molded efficiently and tends to be excellent in removing heavy metal ions. And preferred. As such an inorganic compound, for example, a compound formed into a granule commercially available from Engelhard under the trade name of ATS can be exemplified. If the amount of titanium dioxide is too small, the effect is poor, and if it is too much, the effect is not manifested, so 20 to 200 parts by weight is used with respect to 100 parts by weight of silicon dioxide.
[0016]
The binder is not particularly limited as long as it exhibits a binder effect for molding fibrous activated carbon, titanium dioxide, and silicon dioxide. However, the molded body of the present invention is microfibrillated fiber in that it is used for purifying drinking water. It is preferable to use a heat-sealable fiber, a heat-sealable resin powder or a thermosetting resin powder. Examples of the microfibrillated fiber include microfibrillated polyethylene, microfibrillated polypropylene, microfibrillated nylon, and microfibrillated cellulose.
[0017]
Examples of the heat-sealing fiber include polyethylene fiber, polypropylene fiber, polyester fiber, polyacrylic fiber, and polyester-polyethylene core-sheath fiber. Examples of the heat-fusible resin powder include polyethylene powder and polypropylene powder. A powder having an average particle diameter of 1 to 50 μm is preferable because it has a large effect of immobilizing activated carbon.
[0018]
In order to produce a molded body used for the water purifier of the present invention, first, fibrous activated carbon, titanium dioxide, silicon dioxide and a binder are mixed well. These mixing ratios are implemented with 5 to 400 parts by weight of titanium dioxide and silicon dioxide and 5 to 50 parts by weight of binder with respect to 100 parts by weight of fibrous activated carbon. Next, the mixture is dispersed in water so that the solid concentration is 1 to 5% by weight to prepare a slurry. Then, the slurry is poured into a water-permeable container having a desired shape prepared in advance and dried to obtain a molded body.
[0019]
When using heat-bonding fiber or heat-bonding resin powder as a binder, after molding and drying as described above, the molded product is firmly fused by further heat treatment, so that Shape stability and strength can be increased. The method of heat-sealing is not particularly limited, and for example, it may be a method of irradiating far-infrared rays to melt the heat-fusion fiber or the heat-fusion resin powder, but simply leave the molded body in a dryer or the like. You may heat-process. In this case, the heat treatment is usually performed at about 80 to 140 ° C. for about 8 to 16 hours.
[0020]
As the shape of the container, various water-permeable types can be produced and can be molded into various molded bodies. When the molded body is made into a cartridge, it can be loaded into a housing and used as a water purifier. However, when the molded body is used as a cartridge for a water purifier, a cylindrical container has a resistance to water flow. It can be reduced, and the cartridge loading and exchanging operations are simple and preferable.
[0021]
For example, a cylindrical cartridge is manufactured by making a water-permeable cylindrical container with a 200 mesh stainless steel wire mesh, and inserting a small-diameter cylindrical container with a wire mesh of the same length. A double tubular container can be formed by pouring a slurry between the inner tube and the outer tube of the double tubular container.
[0022]
The cartridge is loaded in a housing and supplied for water flow. As the water flow method, a total filtration method or a circulation filtration method for filtering the whole amount of raw water is adopted. The concentration of free chlorine, lead, trihalomethane, etc. in the raw water and permeated water can be measured by a known analytical method. For example, the concentration of free chlorine is measured by the O-tolidine method, and the concentration of lead is measured by the atomic absorption photometry method. be able to. The concentration of trihalomethane can be measured by taking a sample in a container, sealing it, sampling the gas phase portion, and analyzing it with a gas chromatograph. In addition, 2-methylisobonol (2-MIB) can be concentrated and measured by gas chromatography mass spectrometry. The water flow is carried out at a space velocity (SV) of 2000 (1 / Hr) or less, preferably 1000 to 2000 (1 / Hr), and calculated from the concentrations of free chlorine, trihalomethane, lead, etc. in the raw water and permeated water. The performance of the water purifier can be confirmed by plotting the removal rate and the relationship between the ratio (cumulative permeated water amount L / cc) of the water volume (L) flowed from the start of water flow and the volume (cc) of the cartridge. .
[0023]
The water purifier of the present invention is particularly excellent in lead removal performance, and exhibits a lead removal rate of 80% or more when the SV is 2000 (1 / Hr) or less and the cumulative permeated water amount is 140 (L / cc). According to the activated carbon molding of the present invention, in addition to lead ions, colloidal lead can also be removed. EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
[0024]
【Example】
Example 1
Fibrous activated carbon (FR-15 manufactured by Kuraray Chemical Co., Ltd.) having an iodine adsorption amount of 1500 mg / g and an average fiber diameter of 15 μm was cut into a length of 3 mm, and ATS manufactured by Engelhard Co., Ltd. having a particle diameter of 3 to 20 μm (55% by weight of titanium dioxide) , 35% by weight of silicon dioxide) and heat-bonding fiber pierre A-1AW manufactured by Unitika Co., Ltd. and fibrous activated carbon: ATS: binder in a ratio of 8: 2: 1 (weight ratio), and then solids concentration Was dispersed in water so as to be 3% by weight to prepare a slurry.
[0025]
A cylindrical container having a diameter of 3.6 cm and a length of 8 cm is made of a 200-mesh stainless steel wire mesh, and a cylindrical container having a diameter of 1 cm and a length of 8 cm made of the same wire mesh is inserted into the container. A tubular container was produced. The slurry was poured between the inner tube and the outer tube of the double tubular container and dried to produce a cylindrical molded body.
[0026]
The molded body was cut into a length of 7 cm to form a cartridge having an outer diameter of 3.6 cm, an inner diameter of 1 cm, and a length of 7 cm (volume: 65 ml, weight: 16 g). Tap water is added to sodium hypochlorite and lead nitrate so that the concentration of free chlorine is 2 ppm and lead ions are adjusted to 50 ppb. Watered and tested. The SV at this time was 1200 (1 / Hr). With respect to the permeated water, free chlorine was measured with a spectrophotometer by O-tolidine method, and lead ions were analyzed by atomic absorption photometry. The ratio of the amount of water flowed from the start of the test and the volume of the cartridge was defined as the cumulative permeated water amount (L / cc), and the relationship between the free chlorine removal rate (%) and the lead removal rate (%) was examined. The results are shown in FIG. The initial water resistance when the raw water was passed at 2 L / min was 0.35 kg · f / cm 2 . 1 is the removal rate of free chlorine (%), 2 is the removal rate of trihalomethane (%), and 3 is the removal rate of lead (%).
[0027]
Examples 2-4
The following three types of fibrous activated carbon were prepared.
1. A phenolic resin fiber (KT2400 manufactured by Nippon Kainol Co., Ltd.) having an average fiber diameter of 14 μm is mixed with 1300 ° C. LPG gas (H 2 O obtained by burning a mixed gas having a volume ratio of propane / air of about 1/24, CO 2 , CO, H 2 , C 3 H 8 and N 2 mixed gas) for 12 minutes, average fiber diameter 10 μm, specific surface area 2100 m 2 / g, pore radius measured by water vapor adsorption method Adsorption with a pore volume of 9 to 16 cm is 0.57 cc / g, and the cumulative pore volume is 76.0% of the cumulative pore volume with a pore radius of 100 mm or less A fibrous activated carbon having an amount of 2000 mg / g was obtained.
[0028]
2. The same phenol-based resin fiber (KT2400 manufactured by Nippon Kainol Co., Ltd.) was mixed with 980 ° C. LPG gas (H 2 O, CO 2 , CO, obtained by burning a mixed gas having a volume ratio of propane / air of about 1/24). H 2 , mixed gas of C 3 H 8 and N 2 ) for 10 minutes while supplying, an average fiber diameter of 10 μm, a specific surface area of 1310 m 2 / g, and a fine pore radius of 9 mm or less measured by the water vapor adsorption method. The cumulative pore volume occupied by the pores is 0.465 cc / g, and the cumulative pore volume is 87.4% of the cumulative pore volume occupied by pores having a pore radius of 100 mm or less, and the iodine adsorption amount is 1280 mg / g. Fibrous activated carbon was obtained.
[0029]
3. While introducing nitrogen gas at 0.5 l / min into fibrous activated carbon manufactured by Kuraray Chemical Co., Ltd. (product name: Kraftive FT300-20), the temperature was raised to 1500 ° C. at a rate of temperature increase of 10 ° C./min. It heat-processed at 1500 degreeC for 60 minutes, and took out after cooling. Using the above three types of fibrous activated carbon, a molded body was produced in the same manner as in Example 1, and filled in a housing to obtain a water purifier (each of Examples 2 to 4).
[0030]
To the tap water, 2-MIB was added as a odor component to 100ppt (parts per trillion), trihalomethane as chloroform 25ppb, bromodichloromethane 10ppb, dibromochloromethane 10ppb and bromoform 5ppb, and sodium hypochlorite and Lead nitrate was added to adjust the free chlorine concentration to 2 ppm and lead ions to 50 ppb, and used as raw water for testing. In the same manner as in Example 1, a water passage test was performed on the water purifier filled with the three types of molded bodies. The results of the water flow test for the above three types are shown in FIGS. There was almost no odor of permeated water.
[0031]
Examples 5-7
After molding and drying, R56F made of acrylic fiber made by Toyobo Co., Ltd., A-104 made of acrylic fiber made by Asahi Kasei Kogyo Co., Ltd., and PET fiber EP101 made by Kuraray Co., Ltd. were used as heat-bonding fibers. A water passage test was conducted in the same manner as in Example 1 except that a heat treatment was performed at 900 ° C. for 5 hours, and almost the same result as in FIG. 1 was obtained.
[0032]
Comparative Example 1
A water flow test was carried out using granular activated carbon for water purification (trade name ATC: activated carbon carrying silicon dioxide and titanium dioxide) manufactured by Engelhard. The initial water resistance when the raw water is passed at 2 L / min is 0.46 kg · f / cm 2 , and as shown in FIG. 5, the lead removal performance is 50 than that when the molded body of the present invention is used. % Lower.
[0033]
Comparative Example 2
A cartridge having the same size as that of Example 1 was prepared according to Example 2 of JP-A-7-256239, loaded into a housing to obtain a water purifier, and tested by passing raw water in the same manner as in Example 1. The results are shown in FIG. The effects of the present invention are clear from the above results.
[0034]
【The invention's effect】
According to the present invention, a water purifier using a molded body obtained by molding a mixture of fibrous activated carbon, titanium dioxide, silicon dioxide and a binder can be obtained. The water purifier of the present invention is excellent in removing heavy metals such as trihalomethane and lead in addition to free chlorine and odor.
[Brief description of the drawings]
FIG. 1 is a graph showing test results of a water purifier produced in Example 1. FIG.
FIG. 2 is a graph showing the test results of the water purifier produced in Example 2.
FIG. 3 is a graph showing test results of the water purifier produced in Example 3.
4 is a graph showing test results of the water purifier produced in Example 4. FIG.
5 is a graph showing test results of the water purifier produced in Comparative Example 1. FIG.
6 is a graph showing test results of the water purifier produced in Comparative Example 2. FIG.
[Explanation of symbols]
1 ... Free chlorine removal rate (%)
2 ... Trihalomethane removal rate (%)
3 ... Lead removal rate (%)

Claims (5)

繊維状活性炭、予め成形された二酸化チタンと二酸化ケイ素の混合物、及びバインダーからなる混合物を成型せしめてなる活性炭成型体を円筒状のカートリッジとしてハウジングに装填してなる浄水器であって、空間速度が2000(1/Hr)以下で累積透過水量が140(L/cc)のときの鉛の除去率が80%以上である浄水器。 A water purifier in which an activated carbon molded body obtained by molding a fibrous activated carbon, a mixture of titanium dioxide and silicon dioxide formed in advance, and a binder is loaded into a housing as a cylindrical cartridge, and the space velocity is A water purifier having a lead removal rate of 80% or more when the cumulative permeate flow rate is 140 (L / cc) at 2000 (1 / Hr) or less. 該繊維状活性炭が、比表面積1300m/g以上であり、水蒸気吸着法で測定した細孔半径が9Å〜16Åの細孔の占める累積細孔容積が0.25cc/g以上であり、かつ上記累積細孔容積が、細孔半径100Å以下の細孔の占める累積細孔容積の50%以上である請求項1記載の浄水器The fibrous activated carbon has a specific surface area of 1300 m 2 / g or more, a cumulative pore volume occupied by pores having a pore radius of 9 to 16 cm measured by a water vapor adsorption method is 0.25 cc / g or more, and The water purifier according to claim 1, wherein the cumulative pore volume is 50% or more of the cumulative pore volume occupied by pores having a pore radius of 100 mm or less. 該繊維状活性炭が、比表面積800m/g以上であり、水蒸気吸着法で測定した細孔半径が9Å以下の細孔の占める累積細孔容積が0.20cc/g以上であり、かつ上記累積細孔容積が、細孔半径100Å以下の細孔の占める累積細孔容積の50%以上である請求項1又は2記載の浄水器The fibrous activated carbon has a specific surface area of 800 m 2 / g or more, a cumulative pore volume occupied by pores having a pore radius of 9 mm or less measured by a water vapor adsorption method is 0.20 cc / g or more, and the cumulative The water purifier according to claim 1 or 2, wherein the pore volume is 50% or more of a cumulative pore volume occupied by pores having a pore radius of 100 mm or less. 該繊維状活性炭が、不活性ガス雰囲気中で、温度1200℃〜1700℃で加熱処理されたものである請求項1〜3いずれかに記載の浄水器The water purifier according to any one of claims 1 to 3 , wherein the fibrous activated carbon is heat-treated at a temperature of 1200 ° C to 1700 ° C in an inert gas atmosphere. 該バインダーが、ミクロフィブリル化繊維、熱融着繊維、熱融着樹脂粉末又は熱硬化性樹脂粉末である請求項1〜4いずれかに記載浄水器The water purifier according to any one of claims 1 to 4 , wherein the binder is a microfibrillated fiber, a heat fusion fiber, a heat fusion resin powder, or a thermosetting resin powder.
JP06246699A 1999-03-10 1999-03-10 Activated carbon molded body, manufacturing method thereof and water purifier using the same Expired - Lifetime JP4043634B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06246699A JP4043634B2 (en) 1999-03-10 1999-03-10 Activated carbon molded body, manufacturing method thereof and water purifier using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06246699A JP4043634B2 (en) 1999-03-10 1999-03-10 Activated carbon molded body, manufacturing method thereof and water purifier using the same

Publications (3)

Publication Number Publication Date
JP2000256999A JP2000256999A (en) 2000-09-19
JP2000256999A5 JP2000256999A5 (en) 2005-07-14
JP4043634B2 true JP4043634B2 (en) 2008-02-06

Family

ID=13201024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06246699A Expired - Lifetime JP4043634B2 (en) 1999-03-10 1999-03-10 Activated carbon molded body, manufacturing method thereof and water purifier using the same

Country Status (1)

Country Link
JP (1) JP4043634B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740406B2 (en) * 2000-12-15 2004-05-25 Kimberly-Clark Worldwide, Inc. Coated activated carbon
JP2003334543A (en) * 2002-05-16 2003-11-25 Kuraray Chem Corp Active carbon molding, manufacturing method therefor, and water purifier using the molding
JP4149292B2 (en) * 2002-06-26 2008-09-10 有限会社寿通商 Curved water purification cartridge and manufacturing method thereof
US6989101B2 (en) * 2003-04-04 2006-01-24 The Clorox Company Microorganism-removing filter medium having high isoelectric material and low melt index binder
JP4518311B2 (en) * 2004-04-26 2010-08-04 住金プラント株式会社 Simple toilet
JP2007021347A (en) * 2005-07-14 2007-02-01 Idemitsu Kosan Co Ltd Hardly decomposable substance-containing water treatment method
ATE537117T1 (en) 2006-03-22 2011-12-15 3M Innovative Properties Co USING A FILTER MEDIA
JP2007268341A (en) * 2006-03-30 2007-10-18 National Institute Of Advanced Industrial & Technology Device for adsorbing target substance from carrier fluid
WO2011016548A1 (en) 2009-08-06 2011-02-10 クラレケミカル株式会社 Molded activated charcoal and water purifier involving same
JP2016022399A (en) * 2014-07-16 2016-02-08 フタムラ化学株式会社 Water purification filter body
JP6401814B2 (en) * 2017-04-10 2018-10-10 田中貴金属工業株式会社 Method for recovering precious metal from hydrochloric acid acidic Sn-containing precious metal catalyst recovery liquid
JP2019023356A (en) * 2018-11-13 2019-02-14 田中貴金属工業株式会社 RECOVERY METHOD OF NOBLE METAL FROM HYDROCHLORIC ACID ACIDIC Sn-CONTAINING NOBLE METAL CATALYST RECOVERY LIQUID
KR102331384B1 (en) * 2018-12-28 2021-12-01 주식회사 쿠라레 Porous carbon material and its manufacturing method and use

Also Published As

Publication number Publication date
JP2000256999A (en) 2000-09-19

Similar Documents

Publication Publication Date Title
JP6283435B2 (en) Activated carbon molded body and water purifier using the same
JP4043634B2 (en) Activated carbon molded body, manufacturing method thereof and water purifier using the same
US5118655A (en) Water contaminant adsorption composition
US5082568A (en) Method for removing low concentrations of metal contaminants from water
US5024764A (en) Method of making a composite filter
CA3051593A1 (en) Chloramine and chlorine removal material and methods for making the same
US20040180190A1 (en) Composite particulate article and method for preparation thereof
JP4064309B2 (en) Water purifier
EP3812348A1 (en) Activated carbon
JP2008080315A (en) Cartridge for water purifiers, and water purifier
JP2003334543A (en) Active carbon molding, manufacturing method therefor, and water purifier using the molding
JP3915597B2 (en) Water purification cartridge
JP3723806B2 (en) Adsorption device and method of manufacturing the adsorption device
AU708178B2 (en) Acid contacted enhanced adsorbent particle and method of making and using therefor
JPH11151484A (en) Filter cartridge
JP2003334544A (en) Active carbon molding, cartridge, and water purifier
JP2001205253A (en) Activated carbon and water cleaner provided with the same
JPH07256239A (en) Cartridge for water purifier
JP2005001681A (en) Cartridge storing method, and water purifier
JP3412455B2 (en) Activated alumina for arsenate ion adsorption and method for adsorbing arsenate ions from aqueous solution using the same
JP3122205B2 (en) Filler for water purifier
JPH07222971A (en) Cartridge for water purifier
JP7427849B1 (en) Activated carbon for water treatment
JP4517700B2 (en) Water purifier
JP3206107B2 (en) Air purifier

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term