JP4043626B2 - Load drive circuit - Google Patents

Load drive circuit Download PDF

Info

Publication number
JP4043626B2
JP4043626B2 JP35175198A JP35175198A JP4043626B2 JP 4043626 B2 JP4043626 B2 JP 4043626B2 JP 35175198 A JP35175198 A JP 35175198A JP 35175198 A JP35175198 A JP 35175198A JP 4043626 B2 JP4043626 B2 JP 4043626B2
Authority
JP
Japan
Prior art keywords
relay
circuit
load
contact
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35175198A
Other languages
Japanese (ja)
Other versions
JP2000173383A (en
Inventor
坂井  正善
白井  稔人
弘一 蓬原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP35175198A priority Critical patent/JP4043626B2/en
Publication of JP2000173383A publication Critical patent/JP2000173383A/en
Application granted granted Critical
Publication of JP4043626B2 publication Critical patent/JP4043626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、負荷に供給する負荷電流を直接ON/OFFする常用遮断スイッチと、常用遮断スイッチのON故障時に負荷電流を強制的に遮断する非常用遮断スイッチとを直列接続して構成される負荷駆動回路に関する。
【0002】
【従来の技術】
例えば、機械可動部を駆動制御する場合、作者等の安全を考慮すると、停止すべき時に停止できる能力が重要視され冗長構成としている。例えば、機械可動部の通電を制御する場合、通電回路に直列に2つのスイッチを介装し、一方のスイッチにON故障が生じても他方のスイッチで通電路を強制遮断できる構成とする。かかる直列二重系の構成を用いた負荷駆動回路は、例えば国際公報WO98/10452等で公知である。
【0003】
に、このような直列二重系構成の従来の負荷駆動回路の一例を示す。
において、負荷(図示せず)の通電回路1に、各電磁リレー2,3のそれぞれの動作接点(励磁時ONとなる)2a,3aを直列に介装する。前記各電磁リレー2,3としては、前記動作接点2a,3aとON/OFF動作が互いに相補の関係にある復帰接点2b,3bを有する強制操作型電磁リレーを用いる。リレー制御回路4は、負荷駆動信号が入力すると、復帰接点2b,3bがONしていることを条件(動作接点2a,3aのOFFの確認で、バックチェックと呼ぶ)に出力(交流信号)を発生し、この出力を自己保持する自己保持機能及びこの自己保持回路の出力をオン・ディレーするオン・ディレー機能を備えたシーケンス回路5を有する。そして、1系として自己保持出力を直接受ける交流増幅器6A、トランス6B、整流回路6C及びオフ・ディレー回路6Dからなるリレー駆動回路6が設けられて電磁リレー2を駆動し、2系としてオン・ディレー出力を受けて電磁リレー3を駆動する半導体スイッチ回路7が設けられる。
【0004】
従って、負荷通電開始時は、1系の動作接点2aがONしてから2系の動作接点3aがONし、負荷通電終了時は、2系の動作接点3aがOFFしてから1系の動作接点2aがOFFする。
【0005】
負荷駆動信号IN、動作接点2a,3aのON/OFF動作及び負荷電流Iの関係は、図10のようになる。
即ち、1系の動作接点2aは、直接負荷電流を遮断せず非常遮断スイッチの機能を有し、2系の動作接点3aは、直接負荷電流の遮断/通電を制御する常用遮断スイッチの機能を有する。この回路では、半導体スイッチのOFF機能正常の確認は、負荷通電中に負荷動作に影響を与えない時間で間欠的に半導体スイッチをOFFさせて確認できる。
【0006】
また、別の従来例として、図11に示すように、常用遮断スイッチ側を、2つの動作接点3a,3a′の並列回路による並列二重系で構成し、それぞれ半導体スイッチ回路7,7′で電磁リレー3,3′を駆動する。そして、図12のタイムチャートに示すように、負荷通電中に2つの電磁リレー3,3′を交互にON/OFF駆動する。図中、3b′は電磁リレー3′の復帰接点を示す。
【0007】
この回路では、常用遮断スイッチ側の電磁リレーのOFF機能正常確認は、負荷通電中に各電磁リレーの復帰接点がON/OFF動作を繰り返すことで確認できる。尚、図と同一部分には同一符号を付してある。
【0008】
【発明が解決しようとする課題】
しかしながら、上述した従来の負荷駆動回路では、1系と2系の動作シーケンスを保証するために、フェールセーフなオフ・ディレー回路やオン・ディレー回路を必要とし、リレー制御回路の構成が煩雑である。また、電磁リレーの駆動にトランス結合を用いているため、大出力の場合、回路が大型化する等の問題がある。
【0009】
本発明は上記の事情に鑑みてなされたもので、回路構成の簡素化及び小型化、が図れ、しかも、高い信頼性を備えた負荷駆動回路を提供することを目的とする。
【0010】
【課題を解決するための手段】
このため、本発明の請求項1では、負荷給電回路に、常用遮断スイッチと非常用遮断スイッチを直列に介装し、負荷駆動信号の入力で、非常用遮断スイッチ、常用遮断スイッチの順でON駆動して負荷に給電し、前記負荷駆動信号の停止で、常用遮断スイッチ、非常用遮断スイッチの順でOFF駆動して負荷の給電を停止する構成の負荷駆動回路において、励磁時にそれぞれONする第1動作接点と第2動作接点と、前記第1動作接点と相補の関係でON/OFF動作する第1復帰接点と、前記第2動作接点と相補の関係でON/OFF動作する第2復帰接点とを備え、第1動作接点の可動接点と固定接点間距離が第2動作接点の可動接点と固定接点間距離より短い構成の電磁リレーを設け、該電磁リレーの前記第1動作接点を前記非常用遮断スイッチとし、前記第2動作接点を前記常用遮断スイッチとすると共に、前記第1及び第2復帰接点が共にONしていることを条件に、前記負荷駆動信号の入力でリレー駆動信号を出力するリレー制御手段を備え、前記リレー制御手段を、トリガ端子に前記第1及び第2復帰接点が共にONした時にトリガ信号が入力し、ホールド端子に前記負荷駆動信号が入力して出力を発生し当該出力でトリガ信号を自己保持する自己保持回路と、該自己保持回路の出力に基づいてトランス結合を介して前記リレー駆動信号を発生するリレー駆動回路とを備える構成とした。
【0011】
かかる構成では、負荷駆動信号が入力すると、電磁リレーが励磁される。この場合、可動接点と固定接点間距離の短い第1動作接点が先にONとなり、その後に第2動作接点がONする。負荷駆動信号が停止して電磁リレーが非励磁になった時は、逆に、第2動作接点が先にOFFし、その後に第1動作接点がOFFするようになる。また、電磁リレーの第1及び第2復帰接点が共にONしている時、即ち、第1及び第2動作接点のOFF機能が正常の時のみ、負荷駆動信号の入力で電磁リレーが励磁されるようになる。更に、トランス結合により交流信号を用いて電磁リレーを駆動するので、フェールセーフなリレー駆動回路となる。
【0015】
請求項2の発明は、負荷給電回路に、常用遮断スイッチと非常用遮断スイッチを直列に介装し、負荷駆動信号の入力で、非常用遮断スイッチ、常用遮断スイッチの順でON駆動して負荷に給電し、前記負荷駆動信号の停止で、常用遮断スイッチ、非常用遮断スイッチの順でOFF駆動して負荷の給電を停止する構成の負荷駆動回路において、励磁時にそれぞれONする第1動作接点及び第2動作接点と、前記第1動作接点と相補の関係でON/OFF動作する第1復帰接点と、前記第2動作接点と相補の関係でON/OFF動作する第2復帰接点とを備え、第1動作接点の可動接点と固定接点間距離が第2動作接点の可動接点と固定接点間距離より短い構成の電磁リレーを複数個設け、これら電磁リレーの各第1動作接点を前記非常用遮断スイッチとし、各第2動作接点を前記常用遮断スイッチとすると共に、前記第1及び第2復帰接点が共にONしていることを条件に、前記負荷駆動信号の入力でリレー駆動信号を出力するリレー制御手段を備え、前記リレー制御手段、トリガ端子に前記第1及び第2復帰接点が共にONした時にトリガ信号が入力し、ホールド端子に前記負荷駆動信号が入力して出力を発生し当該出力でトリガ信号を自己保持する自己保持回路と、前記複数個の電磁リレー毎に設けられ、前記自己保持回路の出力に基づいて対応する各電磁リレーにリレー駆動信号をそれぞれ出力する複数個の半導体スイッチ回路とを備えて構成した。
【0016】
かかる構成では、負荷の通電制御が多重系構成となり、全ての半導体スイッチ回路にON故障が発生しない限り、負荷の通電を遮断する機能が失われることはない。
【0017】
請求項では、前記各半導体スイッチ回路は、前記電磁リレーと直列接続され前記自己保持回路の出力に基づいて入力するパルス信号のON/OFFによりON/OFF動作して負荷電磁リレーへの電流の通電/遮断を制御するリレー通電用半導体スイッチと、電磁リレーに対して並列接続し前記パルス信号のON/OFFによりON/OFF動作して電磁リレーの両端を短絡するリレー短絡用半導体スイッチとを備え、前記リレー通電用半導体スイッチがON故障した時に過電流の発生で電磁リレーの通電経路が遮断されると共に、回路故障時に故障検出出力を発生する故障検出機能を有する構成とした。
【0018】
かかる構成では、リレー通電用半導体スイッチがON故障すると、リレー短絡用半導体スイッチがONした時に過電流が流れリレーの通電経路が遮断される。また、回路故障時には故障検出機能で故障検出ができるようになる。
【0019】
請求項では、前記各半導体スイッチ回路は、前記リレー通電用半導体スイッチ及びリレー短絡用半導体スイッチをそれぞれ2個備え、一方のリレー通電用及びリレー短絡用の各半導体スイッチの直列回路と、他方のリレー通電用及びリレー短絡用の各半導体スイッチの直列回路とを、電源端子と接地端子との間に互いに並列接続してブリッジ回路を構成し、各直列回路の半導体スイッチ間を接続して電磁リレーを介装し、該電磁リレーに並列接続して回路故障検出用のフォトカプラを設ける構成とした。
【0020】
【発明の実施の形態】
以下、本発明の負荷駆動回路の実施形態を図面に基づいて説明する。
図1は、本発明に係る負荷駆動回路の第1実施形態の構成図である。
【0021】
図1において、本実施形態の負荷駆動回路は、後述する電磁リレー20の2つの復帰接点b1,b2が共にON状態にあることを条件に負荷駆動信号INが入力した時にリレー駆動信号を出力するリレー制御手段としてのリレー制御回路10を備える。
【0022】
リレー制御回路10は、前記復帰接点b1,b2が共にONしている時に後述の動作接点a1,a2のOFF確認信号(電源電圧VCC)がトリガ端子Tにトリガ信号として入力し、ホールド端子Hに負荷駆動信号INが入力した時に交流出力を発生し、この交流出力をトリガ端子Tに帰還してトリガ信号を自己保持する自己保持回路11と、この自己保持回路11の交流出力に基づいてトランス結合を介して電磁リレー20を励磁するリレー駆動信号を出力するリレー駆動回路12とを備える。尚、自己保持回路としては、フェールセーフな論理積演算発振器を用いた国際公開WO94/23303号公報、国際公開WO94/23496号公報等で公知のフェールセーフな回路を用いることができる。
【0023】
前記リレー駆動回路12は、自己保持回路11の交流出力を増幅する交流増幅回路12Aと、1次側に入力する交流増幅回路12Aの増幅出力を2次側に伝達するトランス12Bと、トランス12Bの交流出力を整流して電磁リレー20にリレー駆動信号を出力する整流回路12Cとを備える。
【0024】
電磁リレー20の2つの動作接点a1,a2は、負荷(図示せず)に給電するための負荷給電回路14に直列に介装されて構成される。
図2に、本実施形態の電磁リレー20の接点構造を示す。
【0025】
図2において、本実施形態の電磁リレー20は、前述のように2つの第1及び第2動作接点a1,a2と、該第1及び第2動作接点a1,a2とそれぞれ相補の関係でON/OFF動作する第1及び第2復帰接点b1,b2を備えている。
【0026】
また、第1及び第2動作接点a1,a2は、それぞれ互いに向き合う可動接点a11,a21と固定接点a12,a22からなり、第1及び第2復帰接点b1,b2は、それぞれ互いに向き合う可動接点b11,b21と固定接点b12,b22からなる。
【0027】
そして、各可動接点a11,a21,b11,b21は、励磁時に図の右方向(図中の矢印方向)に移動し、非励磁時に例えばバネの弾性復帰力により矢印方向とは逆方向に移動し元の位置に復帰する可動絶縁板21に可撓性を有する支持部材を介して図示のように固定される。また、各固定接点a12,a22,b12,b22は、可動絶縁板21に対面配置された固定絶縁板22に可撓性を有する支持部材を介して図示のように固定される。尚、可動絶縁板21の復帰力は、第2動作接点a2に溶着が生じても第1動作接点a1の引き離し距離x1を確保できる力を設定しておけばよい。
【0028】
そして、第1動作接点a1の可動接点a11と固定接点a12間距離x1と、第2動作接点a2の可動接点a21と固定接点a22間距離x2は、距離x1が距離x2より短く(x1<x2)設定されている。
【0029】
従って、本実施形態の電磁リレー20は、図3に示すように、励磁時は電磁力の増大に伴い第1動作接点a1がONした後で第2動作接点a2がONし、非励磁時は逆に電磁力の減少に伴い第2動作接点a2がOFFした後で第1動作接点a1がOFFする。ここで、第1動作接点a1が非常時に負荷給電回路14を遮断するための非常用遮断スイッチの機能を有し、第2動作接点a2が通常時に負荷給電回路14の電流を遮断するための常用遮断スイッチの機能を有する。
【0030】
次に第1実施形態の回路の動作を説明する。
負荷への給電開始時、電磁リレー20の第1及び第2動作接点a1,a2が正常にOFF状態にあれば、その第1及び第2復帰接点b1,b2はON状態にあり、電源電圧VCCがリレー制御回路10の自己保持回路11のトリガ端子Tに入力する。この状態で、負荷駆動信号INがホールド端子Hに入力すると自己保持回路11から交流出力が発生し、リレー駆動回路6の交流増幅回路12A、トランス12B及び整流回路12Cを介して電磁リレー20が励磁される。これにより、第1動作接点a1がONし、その後、第2動作接点a2がONして負荷給電回路14が閉路して負荷に給電される。第1動作接点a1がONした時点でその復帰接点b1はOFFになるが、自己保持回路11の自己保持機能によって自己保持回路11の出力が継続し負荷への通電は継続する。
【0031】
負荷駆動信号INが停止すると、自己保持回路11の出力が停止して電磁リレー20が非励磁となる。これにより、第2動作接点a2が先にOFFして負荷の給電が停止し、その後、第1動作接点a1がOFFする。第1及び第2動作接点a1,a2が正常にOFFすれば、第1及び第2復帰接点b1,b2がONとなり、第1及び第2動作接点a1,a2のOFF確認信号が自己保持回路11のトリガ端子Tに入力し、次の負荷給電動作に備える。
【0032】
第2動作接点a2に溶着故障が生じた場合、負荷駆動信号INの停止で第1動作接点a1がOFFして負荷の給電は停止できる。そして、次の給電動作時には、第2復帰接点b2がONせず、リレーのOFF確認信号が発生しないので、リレー制御回路10からリレー駆動信号が生成されず負荷への給電は行われない。
【0033】
かかる構成によれば、従来のように、オフ・ディレー回路やオン・ディレー回路等を用いる必要がなくリレー制御回路の構成を簡素化できる。また、トランス結合により交流信号を利用して電磁リレー20を駆動する構成としているので、フェールセーフな信号処理となり、安全性が低下することはない。
【0034】
図4は、本発明の第2実施形態の構成図である。
図4において、本実施形態の負荷駆動回路は、第1実施形態で説明した構造を有する2個の電磁リレー20A,20Bの動作接点a1A,a2Aとa1B,a2Bを負荷給電回路14に直列に介装する。また、電磁リレー20A,20Bの各復帰接点b1A,b2Aとb1B,b2Bも、電源電圧VCC端子とリレー制御回路30の自己保持回路31のトリガ端子Tとの間に直列に接続する。そして、本実施形態のリレー制御回路30は、図1に示す自己保持回路を備えた出力制御回路31と、自己保持回路の出力に基づく出力制御回路31の出力により電磁リレー20Aを駆動する半導体スイッチ回路32と、同じく出力制御回路31の出力に基づいて電磁リレー20Bを駆動する半導体スイッチ回路33とを備える構成である。
【0035】
図5に、前記各半導体スイッチ回路32,33の一例を示す。尚、各半導体スイッチ回路32,33は同一構成である。
図5において、電源電圧VCC端子とGND端子との間に、ヒューズF、抵抗R1,R2及びNPNトランジスタQ1が順次直列接続する。前記抵抗R1,R2とNPNトランジスタQ1の直列回路に対して並列に、PNPトランジスタQ2とNPNトランジスタQ3の直列回路が接続する。抵抗R1とR2の中間点を前記トランジスタQ2のベースに接続し、トランジスタQ1のコレクタ端子をトランジスタQ3のベースに接続する。トランジスタQ2とQ3の互いのコレクタ端子間に抵抗を介してコンデンサCが接続する。そして、トランジスタQ3に並列に、半導体スイッチ回路32では電磁リレー20Aが、半導体スイッチ回路33では電磁リレー20Bが接続する。ここで、トランジスタQ2がリレー通電用半導体スイッチの機能を有し、トランジスタQ3がリレー短絡用半導体スイッチの機能を有する。
【0036】
かかる半導体スイッチ回路32,33では、トランジスタQ1のベースに、図5に示すようなパルス波形の入力信号が入力すると、トランジスタQ1がONし、トランジスタQ2がON、トランジスタQ3がOFFとなって、電磁リレーが励磁される。入力信号がONからOFFになると、トランジスタQ1がOFFし、トランジスタQ2がOFF、トランジスタQ3がONとなって、電磁リレーは非励磁となる。前記入力信号のOFF時間は、電磁リレー20A,20Bの動作接点a1A,a2Aとa1B,a2BがON状態を維持できるように十分短く設定される。
【0037】
かかる半導体スイッチ回路32,33によれば、トランジスタQ2に短絡(ON側)故障を生じると、入力信号がOFFした時にトランジスタQ3がONし、電源電圧端子とGND端子間が短絡されて過電流が流れることにより、ヒューズFが溶断し、半導体スイッチ回路の出力を停止する。仮にヒューズFが溶断しない場合でも、トランジスタQ2の短絡故障時には図5のV1点に交流信号が発生するので、コンデンサCによる交流結合を介してその交流信号を整流して出力を取り出すことで、トランジスタQ2の短絡故障を検出することが可能である。前記コンデンサCが回路故障検出機能の役割を果たす。トランジスタQ2に断線(OFF側)故障が生じると、故障検出用のコンデンサCの充電時定数が長くなって、その交流出力信号の振幅が低下する。
【0038】
次に動作を説明する。
電磁リレー20A,20Bの正常時には、負荷駆動信号INの入力による自己保持回路の出力に基づいて、出力制御回路31から図5に示すような間欠的にOFFとなるパルス波形の入力信号が発生する。この入力信号により各半導体スイッチ回路32,33からリレー駆動信号がそれぞれ発生して各電磁リレー20A,20Bが駆動される。この場合、各電磁リレー20A,20Bの第1動作接点a 1A,a 1BがONし、その後、第2動作接点a 2A,a 2BがONして負荷給電回路14に負荷電流が流れる。負荷駆動信号INが停止すれば、第2動作接点a 2A,a 2BがOFFして負荷の給電が停止し、その後、第1動作接点a 1A,a 1BがOFFする。
【0039】
かかる構成によれば、半導体スイッチ回路32,33のどちらか一方に出力のON故障(出力が発生し続ける故障)が発生しても、負荷駆動信号INが停止すれば、正常側の半導体スイッチ回路により電磁リレーが駆動されて負荷の給電を停止できる。即ち、2つの電磁リレー20A,20Bで直列2重系を構成して冗長構成としている。これにより、トランス結合を利用することなく半導体スイッチ回路を用いても安全性を確保でき、負荷駆動回路の小型化が容易となる。
【0040】
ただし、図5の半導体スイッチ回路の構成では、トランジスタQ1に短絡故障が生じると、入力信号の有無に関係なくトランジスタQ2のON状態及びトランジスタQ3のOFF状態が継続して、リレー駆動信号の遮断能力が喪失し、電磁リレーが励磁され続けてしまう。従って、半導体スイッチ回路32,33の両方にトランジスタQ1の短絡故障が生じた場合、負荷の給電を遮断できなくなる。
【0041】
図6は、半導体スイッチ回路の別の構成例を示す。尚、図5と同一要素には同一符号を付してある。
図6において、抵抗R3とトランジスタQ1のコレクタとの間とトランジスタQ2のベースとの間に、コンデンサC1,C2とダイオードD1,D2からなる倍電圧整流回路を設け、倍電圧整流回路の出力端V2(ダイオードD2とコンデンサC2の接続点)をトランジスタQ2のベースに接続する。トランジスタQ2は、出力端V2の電圧が電源電圧VCCより大きい時OFFし、電源電圧VCC以下の時ONする。また、出力端V2の出力電圧を分圧する抵抗R4,R5を設け、この分圧点をトランジスタQ3のベースに接続する。前記抵抗R4,R5は、出力端V2の出力電圧が電源電圧VCCより高い時にトランジスタQ3がONし、電源電圧VCC以下の時にトランジスタQ3がOFFするよう抵抗値を設定する。電磁リレー20A,20BはトランジスタQ2に並列接続され、トランジスタQ3に直列接続する。従って、この半導体スイッチ回路32′,33′では、トランジスタQ2がリレー短絡用半導体スイッチの機能を有し、トランジスタQ3がリレー通電用半導体スイッチの機能を有する。
【0042】
この半導体スイッチ回路32′,33′は、図6に示すように、間欠的にOFFとなる高周波の信号を入力信号に使用する。この入力信号と出力端V2の出力電圧との関係を図7に示す。
【0043】
かかる構成では、高周波信号がONの期間は、電源電圧VCCより高い倍電圧整流出力が出力端V2に発生する。この時、トランジスタQ2がOFF、トランジスタQ3がONとなり、電磁リレー20A,20Bは励磁される。高周波信号がOFFの期間は、出力端V2の電圧は電源電圧VCC以下となって、トランジスタQ2がON、トランジスタQ3がOFFとなって、電磁リレー20A,20Bは非励磁となる。
【0044】
この半導体スイッチ回路32′,33′の構成によれば、トランジスタQ1に短絡(ON側)故障が生じると、出力端V2には電源電圧VCCより高い電位は発生し得ない。従って、トランジスタQ3はONせず電磁リレー20A,20Bは非励磁となるので、図5の半導体スイッチ回路32,33のようにトランジスタQ1に短絡(ON側)故障でリレー駆動信号が発生し続けるという問題を解消できる。
【0045】
尚、図6の回路構成では、トランジスタQ2に断線(OFF側)故障を生じると、回路故障検出用のコンデンサCに充電された電荷は、電磁リレー20A,20Bを介して放電されることになるので、その交流出力信号の振幅が低下する。
【0046】
ところで、図5及び図6の半導体スイッチ回路の構成は、リレー通電用半導体スイッチ(図5ではトランジスタQ2、図6ではトランジスタQ3)とリレー短絡用半導体スイッチ(図5ではトランジスタQ3、図6ではトランジスタQ2)を設け、リレー通電用半導体スイッチに短絡故障が生じた場合、リレー短絡用半導体スイッチがONすることによりヒューズFを溶断し、電磁リレーを非励磁とする構成としている。リレー短絡用半導体スイッチの断線(OFF側)故障は、この機能の喪失を意味し、リレー短絡用半導体スイッチにOFF側故障が生じている状況で、リレー通電用半導体スイッチに短絡(ON側)故障を生じると電磁リレーが励磁され続け負荷の給電を停止できなくなる。このため、リレー短絡用半導体スイッチのOFF側故障の検出は極めて重要である。
【0047】
図8は、リレー短絡用半導体スイッチのOFF側故障の検出を一層確実にした半導体スイッチ回路の構成例を示す。尚、図5及び図6と同一要素には同一符号を付してある。
【0048】
図8において、この半導体スイッチ回路32”,33”は、4つのトランジスタQ2,Q2′,Q3,Q3′でブリッジ回路を構成している。トランジスタQ2とQ3′の互いのコレクタ接続点とトランジスタQ3とQ2′の互いのエミッタ接続点との間にダイオードDと電磁リレー20A(又は20B)の直列回路を接続する。また、この直列回路に、抵抗とフォトカプラPCの直列回路を並列接続する。
【0049】
トランジスタQ2とQ2′がONして図中矢印の向きに電流が流れる時、電磁リレーが励磁され、トランジスタQ3とQ3′がONして図中の矢印と逆向きに電流が流れる時、フォトカプラPCの投光素子がONして受光素子から出力が発生する。従って、トランジスタQ2,Q2′がリレー通電用半導体スイッチの機能を有し、トランジスタQ3,Q3′がリレー短絡用半導体スイッチの機能を有する。そして、トランジスタQ2,Q2′とトランジスタQ3,Q3′は互いに相補の関係でON/OFFする。このトランジスタQ2,Q2′,Q3,Q3′をON/OFF動作させるスイッチング回路40としては、本実施形態では図5の一点鎖線で囲んだ回路を用いるが、図6の一点鎖線で囲んだ回路を用いることも可能である。
【0050】
尚、ダイオードDが短絡しても図の可動絶縁板21が図の矢印方向と反対に移動するか或いは移動できず動作接点は閉じない構成としている。
この半導体スイッチ回路32”,33”では、図5に示すパルス波形の入力信号が入力すると、入力信号のON期間ではトランジスタQ2,Q2′がONし、トランジスタQ3,Q3′がOFFし、電磁リレーは励磁される。入力信号のOFF期間ではトランジスタQ2,Q2′がOFFし、トランジスタQ3,Q3′はONし、電磁リレーは非励磁となり、この時、フォトカプラPCに電流が流れて受光素子から出力が発生する。この動作が、入力信号のON/OFFに同期して繰り返される。
【0051】
かかる構成の半導体スイッチ回路32”,33”が正常に動作する場合、フォトカプラPCの受光側には交流信号が生成される。リレー通電用のトランジスタQ2,Q2′のいずれか一方にON側故障を生じると、リレー短絡用のトランジスタQ3,Q3′が正常であれば、ヒューズFが溶断する(尚、この時フォトカプラPCには交流信号が発生しない)。リレー短絡用のトランジスタQ3,Q3′のいずれか一方にOFF側故障を生じると、フォトカプラPCは通電されず交流信号が発生しない。従って、この半導体スイッチ回路32”,33”の回路故障は、フォトカプラPCの出力を監視することで確実に検出できる。
【0052】
【発明の効果】
以上説明したように請求項1の発明によれば、オフ・ディレー回路やオン・ディレー回路が不要となり、負荷駆動回路の構成を簡素化できる。
【0053】
また、電磁リレーの動作接点がOFF状態にない時には電磁リレーの駆動信号は発生しないので、高い安全性を有する。
【0054】
更に、トランス結合を用いてリレー駆動信号を生成しているので、フェールセーフな構成となり、高い安全性を有する。
請求項2〜4の発明によれば、電磁リレーにより2重系構成とし、且つトランス結合に代えて半導体スイッチ回路を用いたので、安全性を確保でき、且つ、負荷駆動回路の小型化を図ることができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態の回路構成図
【図2】同上実施形態の電磁リレーの接点構造を示す図
【図3】図2の電磁リレーのON/OFF特性図
【図4】本発明の第2実施形態の回路構成図
【図5】図4の半導体スイッチ回路の構成図
【図6】半導体スイッチ回路の別の構成図
【図7】図6の入力信号と倍電圧整流回路の出力電圧の関係を示す図
【図8】半導体スイッチ回路の更に別の構成図
【図9】従来の負荷駆動回路の一例を示す回路構成図
【図10】図9のリレー動作接点動作のタイムチャート
【図11】従来の負荷駆動回路の別の例を示す回路構成図
【図12】図11のリレー動作接点動作のタイムチャート
【符号の説明】
10,30 リレー制御回路
11 自己保持回路
12 リレー駆動回路
20,20A,20B 電磁リレー
31 出力制御回路
32,32′,32”,33,33′,33” 半導体スイッチ回路
a1,a2,a1A,a2A,a1B,a2B 動作接点
b1,b2,b1A,b2A,b1B,b2B 復帰接点
[0001]
BACKGROUND OF THE INVENTION
The present invention provides a load constituted by connecting in series a normal cut-off switch that directly turns ON / OFF a load current supplied to a load and an emergency cut-off switch that forcibly cuts off the load current when the normal cut-off switch is ON. The present invention relates to a drive circuit.
[0002]
[Prior art]
  For example, when driving and controlling machine moving parts,WorkIn view of the safety of the user, etc., the ability to be stopped when it should be stopped is regarded as important and a redundant configuration is adopted. For example, when the energization of the machine movable part is controlled, two switches are interposed in series with the energization circuit, and even if an ON failure occurs in one switch, the energization path can be forcibly cut off by the other switch. A load driving circuit using such a series double system configuration is known, for example, from International Publication WO98 / 10452.
[0003]
  Figure9Shows an example of a conventional load driving circuit having such a series double system configuration.
  Figure9In FIG. 2, the operation contacts (turned ON during excitation) 2a and 3a of the electromagnetic relays 2 and 3 are interposed in series in the energization circuit 1 of the load (not shown). As the electromagnetic relays 2 and 3, forcible operation type electromagnetic relays having return contacts 2b and 3b in which ON / OFF operations are complementary to each other are used. When the load drive signal is input, the relay control circuit 4 outputs an output (an AC signal) on condition that the return contacts 2b and 3b are ON (referred to as back check by confirming that the operation contacts 2a and 3a are OFF). And a sequence circuit 5 having a self-holding function for self-holding the output and an on-delay function for turning on / off the output of the self-holding circuit. A relay drive circuit 6 including an AC amplifier 6A, a transformer 6B, a rectifier circuit 6C, and an off-delay circuit 6D that directly receives a self-holding output as a 1 system is provided to drive the electromagnetic relay 2 and an on-delay as a 2 system. A semiconductor switch circuit 7 that receives the output and drives the electromagnetic relay 3 is provided.
[0004]
Therefore, at the start of load energization, the first system operation contact 2a is turned on and then the second system operation contact 3a is turned on. At the end of load energization, the second system operation contact 3a is turned off and then the first system operation is performed. The contact 2a is turned off.
[0005]
  The relationship between the load drive signal IN, the ON / OFF operation of the operation contacts 2a and 3a, and the load current I is shown in FIG.10become that way.
  In other words, the 1 system operating contact 2a does not cut off the load current directly,forThe two-system operating contact 3a has a function of a cutoff switch, and has a function of a normal cutoff switch that directly controls the cutoff / energization of the load current. In this circuit, whether the semiconductor switch OFF function is normal can be confirmed by intermittently turning off the semiconductor switch in a time period that does not affect the load operation during load energization.
[0006]
  In addition, as another conventional example,11As shown in FIG. 4, the common cut-off switch side is constituted by a parallel double system by a parallel circuit of two operating contacts 3a and 3a ', and the electromagnetic relays 3 and 3' are driven by the semiconductor switch circuits 7 and 7 ', respectively. And figure12As shown in the time chart, the two electromagnetic relays 3 and 3 'are alternately turned on and off during the load energization. In the drawing, 3b 'indicates a return contact of the electromagnetic relay 3'.
[0007]
  In this circuit, the normal confirmation of the OFF function of the electromagnetic relay on the side of the normal cut-off switch can be confirmed by repeating the ON / OFF operation of the return contact of each electromagnetic relay while the load is energized. The figure9The same parts as those in FIG.
[0008]
[Problems to be solved by the invention]
However, the above-described conventional load driving circuit requires a fail-safe off-delay circuit or on-delay circuit to guarantee the operation sequence of the first and second systems, and the configuration of the relay control circuit is complicated. . In addition, since the transformer coupling is used for driving the electromagnetic relay, there is a problem that the circuit becomes large when the output is large.
[0009]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a load driving circuit that can be simplified and downsized in circuit configuration and that has high reliability.
[0010]
[Means for Solving the Problems]
  For this reason, in claim 1 of the present invention, the load power supply circuit is provided with a normal cut-off switch and an emergency cut-off switch in series, and the emergency cut-off switch and the normal cut-off switch are turned on in this order when a load drive signal is input. In a load drive circuit configured to drive and supply power to the load, and to stop the power supply of the load by driving OFF in the order of the normal cut-off switch and the emergency cut-off switch when the load drive signal is stopped. 1 operation contact and 2nd operation contactA first return contact that performs ON / OFF operation in a complementary relationship with the first operation contact, and a second return contact that performs ON / OFF operation in a complementary relationship with the second operation contact,An electromagnetic relay having a configuration in which a distance between the movable contact and the fixed contact of the first operation contact is shorter than a distance between the movable contact and the fixed contact of the second operation contact is provided, and the first operation contact of the electromagnetic relay is used as the emergency cutoff switch. And the second operating contact as the normal cut-off switch,Provided with the condition that both the first and second return contacts are ON, relay control means for outputting a relay drive signal in response to the input of the load drive signal is provided, and the relay control means is connected to the first trigger terminal. A self-holding circuit for inputting a trigger signal when both the second return contact and the second return contact are ON, inputting the load drive signal to a hold terminal to generate an output, and holding the trigger signal by the output; A relay drive circuit for generating the relay drive signal via a transformer coupling based on an outputThe configuration.
[0011]
  In such a configuration,negativeWhen the load driving signal is input, the electromagnetic relay is excited. In this case, the first operation contact with a short distance between the movable contact and the fixed contact is turned on first, and then the second operation contact is turned on. When the load drive signal is stopped and the electromagnetic relay is de-energized, the second operation contact is turned off first, and then the first operation contact is turned off.Further, when both the first and second return contacts of the electromagnetic relay are ON, that is, when the OFF function of the first and second operation contacts is normal, the electromagnetic relay is excited by the input of the load drive signal. It becomes like this. Furthermore, since the electromagnetic relay is driven using an AC signal by transformer coupling, a fail-safe relay driving circuit is obtained.
[0015]
  In the invention of claim 2, the load power supply circuit is provided with a normal cut-off switch and an emergency cut-off switch in series, and when the load drive signal is input, the emergency cut-off switch and the normal cut-off switch are turned on in this order to load In the load drive circuit configured to stop the power supply of the load by driving OFF in the order of the normal cut-off switch and the emergency cut-off switch when the load drive signal is stopped, A second operating contact; a first return contact that operates ON / OFF in a complementary relationship with the first operating contact; and a second return contact that performs ON / OFF operation in a complementary relationship with the second operating contact; A plurality of electromagnetic relays having a configuration in which the distance between the movable contact and the fixed contact of the first operating contact is shorter than the distance between the movable contact and the fixed contact of the second operating contact are provided, and each first operating contact of these electromagnetic relays is cut off for emergency use. The The relay drive signal is output by the input of the load drive signal on the condition that each of the second operation contacts is the normal cutoff switch and both the first and second return contacts are ON. Relay control means,The relay control meansTheA self-holding circuit that receives a trigger signal when the first and second return contacts are both turned on to the trigger terminal, generates an output when the load drive signal is input to the hold terminal, and self-holds the trigger signal with the output. And a plurality of semiconductor switch circuits that are provided for each of the plurality of electromagnetic relays and output a relay drive signal to each corresponding electromagnetic relay based on the output of the self-holding circuit.
[0016]
In such a configuration, the load energization control becomes a multi-system configuration, and the function of interrupting the energization of the load is not lost unless an ON failure occurs in all the semiconductor switch circuits.
[0017]
  Claim3Then, each of the semiconductor switch circuits is connected in series with the electromagnetic relay, and is turned on / off by turning on / off of a pulse signal input based on the output of the self-holding circuit, thereby energizing / cutting off the current to the load electromagnetic relay. A relay energizing semiconductor switch for controlling the relay, and a relay short-circuiting semiconductor switch that is connected in parallel to the electromagnetic relay and that is turned ON / OFF by the ON / OFF of the pulse signal to short-circuit both ends of the electromagnetic relay. When the semiconductor switch for energization is in an ON failure, the energization path of the electromagnetic relay is interrupted due to the occurrence of an overcurrent, and a failure detection function is provided that generates a failure detection output when a circuit failure occurs.
[0018]
In such a configuration, when the relay energizing semiconductor switch fails, an overcurrent flows when the relay short-circuiting semiconductor switch is turned on, and the energizing path of the relay is interrupted. Further, when a circuit failure occurs, the failure detection function can detect the failure.
[0019]
  Claim4Then, each said semiconductor switch circuit is provided with two each of the said semiconductor switches for relay energization and the semiconductor switch for relay short circuit, the series circuit of each semiconductor switch for one relay energization and relay short circuit, and for the other relay energization And a series circuit of each semiconductor switch for relay short circuit are connected in parallel between the power supply terminal and the ground terminal to form a bridge circuit, and the semiconductor switches of each series circuit are connected to each other to interpose an electromagnetic relay. In addition, a photocoupler for detecting a circuit failure is provided in parallel with the electromagnetic relay.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a load driving circuit of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram of a first embodiment of a load driving circuit according to the present invention.
[0021]
In FIG. 1, the load drive circuit of this embodiment outputs a relay drive signal when a load drive signal IN is input on condition that two return contacts b1 and b2 of an electromagnetic relay 20 to be described later are both in an ON state. A relay control circuit 10 is provided as a relay control means.
[0022]
  The relay control circuit 10 includes the return contactb1, b2When both are ON, the operation confirmation contacts a1 and a2 OFF confirmation signal (power supply voltage VCC) Is input to the trigger terminal T as a trigger signal, and when the load drive signal IN is input to the hold terminal H, an AC output is generated, and this AC output is fed back to the trigger terminal T to self-hold the trigger signal. 11 and a relay drive circuit 12 that outputs a relay drive signal that excites the electromagnetic relay 20 via a transformer coupling based on the AC output of the self-holding circuit 11. As the self-holding circuit, a fail-safe circuit known in International Publication WO94 / 23303, International Publication WO94 / 23496, etc. using a fail-safe AND operation oscillator can be used.
[0023]
  The relay drive circuit 12 amplifies the AC output of the self-holding circuit 11.circuit12A and AC amplification input to the primary sidecircuitA transformer 12B that transmits the amplified output of 12A to the secondary side, and a rectifier circuit 12C that rectifies the AC output of the transformer 12B and outputs a relay drive signal to the electromagnetic relay 20 are provided.
[0024]
Two operation contacts a1 and a2 of the electromagnetic relay 20 are configured to be interposed in series in a load power supply circuit 14 for supplying power to a load (not shown).
In FIG. 2, the contact structure of the electromagnetic relay 20 of this embodiment is shown.
[0025]
In FIG. 2, the electromagnetic relay 20 of this embodiment is turned on / off in a complementary relationship with the two first and second operation contacts a1 and a2 and the first and second operation contacts a1 and a2, respectively. First and second return contacts b1 and b2 that perform an OFF operation are provided.
[0026]
The first and second operation contacts a1 and a2 include movable contacts a11 and a21 and fixed contacts a12 and a22, respectively. The first and second return contacts b1 and b2 are movable contacts b11 and a11, respectively. b21 and fixed contacts b12 and b22.
[0027]
The movable contacts a11, a21, b11, b21 move in the right direction in the figure (in the direction of the arrow in the figure) when excited, and move in the direction opposite to the arrow direction due to, for example, the elastic return force of the spring during non-excitation. The movable insulating plate 21 that returns to the original position is fixed as shown in the figure via a flexible support member. The fixed contacts a12, a22, b12, b22 are fixed to the fixed insulating plate 22 facing the movable insulating plate 21 through a flexible support member as shown in the figure. The return force of the movable insulating plate 21 may be set to a force that can secure the separation distance x1 of the first operating contact a1 even if the second operating contact a2 is welded.
[0028]
The distance x1 between the movable contact a11 and the fixed contact a12 of the first operating contact a1 and the distance x2 between the movable contact a21 and the fixed contact a22 of the second operating contact a2 are shorter than the distance x2 (x1 <x2). Is set.
[0029]
Therefore, as shown in FIG. 3, in the electromagnetic relay 20 of the present embodiment, the second operation contact a2 is turned on after the first operation contact a1 is turned on as the electromagnetic force is increased at the time of excitation, and at the time of non-excitation. Conversely, the first operation contact a1 is turned off after the second operation contact a2 is turned off as the electromagnetic force decreases. Here, the first operation contact a1 has a function of an emergency cut-off switch for interrupting the load power supply circuit 14 in an emergency, and the second operation contact a2 is used for interrupting the current of the load power supply circuit 14 at a normal time. It has a function of a cutoff switch.
[0030]
  Next, the operation of the circuit of the first embodiment will be described.
  If the first and second operation contacts a1 and a2 of the electromagnetic relay 20 are normally in the OFF state at the start of power supply to the load, the first and second return contacts b1 and b2 are in the ON state and the power supply voltage VCCIs input to the trigger terminal T of the self-holding circuit 11 of the relay control circuit 10. In this state, when the load drive signal IN is input to the hold terminal H, an AC output is generated from the self-holding circuit 11, and the AC amplification of the relay drive circuit 6 is performed.Circuit 12A,Trance12BAnd rectifier circuit12CThus, the electromagnetic relay 20 is excited. As a result, the first operation contact a1 is turned on, and then the second operation contact a2 is turned on, the load power supply circuit 14 is closed and power is supplied to the load. When the first operation contact a1 is turned on, the return contact b1 is turned off, but the self-holding function of the self-holding circuit 11 continues the output of the self-holding circuit 11 and energization of the load continues.
[0031]
When the load drive signal IN stops, the output of the self-holding circuit 11 stops and the electromagnetic relay 20 is de-excited. As a result, the second operation contact a2 is turned off first to stop the power feeding of the load, and then the first operation contact a1 is turned off. If the first and second operation contacts a1 and a2 are normally turned off, the first and second return contacts b1 and b2 are turned on, and the OFF confirmation signals of the first and second operation contacts a1 and a2 are self-holding circuit 11. To the next trigger power supply operation.
[0032]
When a welding failure occurs in the second operation contact a2, the first operation contact a1 is turned off by stopping the load drive signal IN, and the power supply to the load can be stopped. In the next power feeding operation, the second return contact b2 is not turned ON and a relay OFF confirmation signal is not generated, so that no relay drive signal is generated from the relay control circuit 10 and power is not supplied to the load.
[0033]
According to this configuration, it is not necessary to use an off-delay circuit, an on-delay circuit, or the like as in the prior art, and the configuration of the relay control circuit can be simplified. Moreover, since it is set as the structure which drives the electromagnetic relay 20 using an alternating current signal by a transformer coupling, it becomes fail safe signal processing and safety | security does not fall.
[0034]
FIG. 4 is a configuration diagram of the second embodiment of the present invention.
In FIG. 4, the load drive circuit according to the present embodiment is configured such that the operation contacts a1A, a2A and a1B, a2B of the two electromagnetic relays 20A, 20B having the structure described in the first embodiment are connected to the load power supply circuit 14 in series. Disguise. The return contacts b1A, b2A and b1B, b2B of the electromagnetic relays 20A, 20B are also connected to the power supply voltage VCCThe terminal and the trigger terminal T of the self-holding circuit 31 of the relay control circuit 30 are connected in series. The relay control circuit 30 of the present embodiment includes a semiconductor switch that drives the electromagnetic relay 20A by the output of the output control circuit 31 having the self-holding circuit shown in FIG. 1 and the output control circuit 31 based on the output of the self-holding circuit. The circuit 32 and the semiconductor switch circuit 33 that drives the electromagnetic relay 20B based on the output of the output control circuit 31 are also provided.
[0035]
FIG. 5 shows an example of the semiconductor switch circuits 32 and 33. The semiconductor switch circuits 32 and 33 have the same configuration.
In FIG. 5, the power supply voltage VCCA fuse F, resistors R1, R2, and an NPN transistor Q1 are sequentially connected in series between the terminal and the GND terminal. A series circuit of a PNP transistor Q2 and an NPN transistor Q3 is connected in parallel to the series circuit of the resistors R1, R2 and the NPN transistor Q1. The intermediate point between the resistors R1 and R2 is connected to the base of the transistor Q2, and the collector terminal of the transistor Q1 is connected to the base of the transistor Q3. A capacitor C is connected between the collector terminals of the transistors Q2 and Q3 via a resistor. In parallel with the transistor Q3, the electromagnetic relay 20A is connected in the semiconductor switch circuit 32, and the electromagnetic relay 20B is connected in the semiconductor switch circuit 33. Here, the transistor Q2 has a function of a relay energizing semiconductor switch, and the transistor Q3 has a function of a relay short-circuiting semiconductor switch.
[0036]
In the semiconductor switch circuits 32 and 33, when an input signal having a pulse waveform as shown in FIG. 5 is input to the base of the transistor Q1, the transistor Q1 is turned on, the transistor Q2 is turned on, and the transistor Q3 is turned off. The relay is energized. When the input signal changes from ON to OFF, the transistor Q1 is turned OFF, the transistor Q2 is turned OFF, the transistor Q3 is turned ON, and the electromagnetic relay is de-energized. The OFF time of the input signal is set sufficiently short so that the operation contacts a1A, a2A and a1B, a2B of the electromagnetic relays 20A, 20B can be maintained in the ON state.
[0037]
According to the semiconductor switch circuits 32 and 33, when a short circuit (ON side) failure occurs in the transistor Q2, the transistor Q3 is turned on when the input signal is turned off, the power supply voltage terminal and the GND terminal are short-circuited, and an overcurrent is generated. By flowing, the fuse F is blown, and the output of the semiconductor switch circuit is stopped. Even if the fuse F is not blown, an AC signal is generated at the point V1 in FIG. 5 when the transistor Q2 is short-circuited. Therefore, by rectifying the AC signal via the AC coupling by the capacitor C and extracting the output, the transistor It is possible to detect a short-circuit fault in Q2. The capacitor C serves as a circuit failure detection function. When a disconnection (OFF side) failure occurs in the transistor Q2, the charging time constant of the failure detection capacitor C becomes longer, and the amplitude of the AC output signal decreases.
[0038]
Next, the operation will be described.
When the electromagnetic relays 20A and 20B are normal, an input signal having a pulse waveform intermittently turned off as shown in FIG. 5 is generated from the output control circuit 31 based on the output of the self-holding circuit by the input of the load drive signal IN. . By this input signal, a relay drive signal is generated from each of the semiconductor switch circuits 32 and 33, and each of the electromagnetic relays 20A and 20B is driven. In this case, the first operation contacts a 1A and a 1B of the electromagnetic relays 20A and 20B are turned on, and then the second operation contacts a 2A and a 2B are turned on and a load current flows through the load power supply circuit 14. When the load drive signal IN stops, the second operation contacts a 2A and a 2B are turned OFF to stop the power feeding of the load, and then the first operation contacts a 1A and a 1B are turned OFF.
[0039]
According to such a configuration, even when an output ON failure (failure in which output continues to occur) occurs in either one of the semiconductor switch circuits 32 and 33, if the load drive signal IN stops, the normal-side semiconductor switch circuit As a result, the electromagnetic relay is driven to stop feeding the load. That is, the two electromagnetic relays 20A and 20B constitute a series double system to form a redundant configuration. As a result, safety can be ensured even if a semiconductor switch circuit is used without using transformer coupling, and the load drive circuit can be easily downsized.
[0040]
However, in the configuration of the semiconductor switch circuit of FIG. 5, when a short circuit failure occurs in the transistor Q1, the ON state of the transistor Q2 and the OFF state of the transistor Q3 continue regardless of the presence or absence of an input signal, and the relay drive signal blocking ability Is lost and the electromagnetic relay continues to be excited. Therefore, when the short circuit failure of the transistor Q1 occurs in both the semiconductor switch circuits 32 and 33, it becomes impossible to cut off the power supply of the load.
[0041]
FIG. 6 shows another configuration example of the semiconductor switch circuit. In addition, the same code | symbol is attached | subjected to the same element as FIG.
In FIG. 6, a voltage doubler rectifier circuit including capacitors C1 and C2 and diodes D1 and D2 is provided between the resistor R3 and the collector of the transistor Q1 and the base of the transistor Q2, and the output terminal V2 of the voltage doubler rectifier circuit is provided. (A connection point between the diode D2 and the capacitor C2) is connected to the base of the transistor Q2. In the transistor Q2, the voltage at the output terminal V2 is the power supply voltage V.CCWhen it is larger, it is turned off and the power supply voltage VCCTurns on when: Also, resistors R4 and R5 that divide the output voltage of the output terminal V2 are provided, and this voltage dividing point is connected to the base of the transistor Q3. The resistors R4 and R5 have an output voltage at the output terminal V2 of the power supply voltage V.CCWhen it is higher, the transistor Q3 is turned on and the power supply voltage VCCThe resistance value is set so that the transistor Q3 is turned off at the following times. The electromagnetic relays 20A and 20B are connected in parallel to the transistor Q2 and connected in series to the transistor Q3. Accordingly, in the semiconductor switch circuits 32 'and 33', the transistor Q2 has a function of a relay short-circuiting semiconductor switch, and the transistor Q3 has a function of a relay energizing semiconductor switch.
[0042]
As shown in FIG. 6, the semiconductor switch circuits 32 'and 33' use a high-frequency signal that is intermittently turned OFF as an input signal. The relationship between this input signal and the output voltage at the output terminal V2 is shown in FIG.
[0043]
In such a configuration, during the period when the high-frequency signal is ON, the power supply voltage VCCA higher voltage doubled rectified output is generated at the output terminal V2. At this time, the transistor Q2 is turned off, the transistor Q3 is turned on, and the electromagnetic relays 20A and 20B are excited. During the period when the high frequency signal is OFF, the voltage at the output terminal V2 is the power supply voltage VCCIn the following, the transistor Q2 is turned on, the transistor Q3 is turned off, and the electromagnetic relays 20A and 20B are de-excited.
[0044]
According to the configuration of the semiconductor switch circuits 32 'and 33', when a short circuit (ON side) failure occurs in the transistor Q1, the power supply voltage V is applied to the output terminal V2.CCHigher potentials cannot be generated. Accordingly, the transistor Q3 is not turned on and the electromagnetic relays 20A and 20B are de-energized, so that a relay drive signal continues to be generated due to a short circuit (ON side) failure in the transistor Q1 as in the semiconductor switch circuits 32 and 33 in FIG. The problem can be solved.
[0045]
In the circuit configuration of FIG. 6, when a disconnection (OFF side) failure occurs in the transistor Q2, the charge charged in the circuit failure detection capacitor C is discharged via the electromagnetic relays 20A and 20B. Therefore, the amplitude of the AC output signal decreases.
[0046]
By the way, the configuration of the semiconductor switch circuit of FIG. 5 and FIG. 6 includes a relay energizing semiconductor switch (transistor Q2 in FIG. 5, transistor Q3 in FIG. 6) and a relay shorting semiconductor switch (transistor Q3 in FIG. 5, transistor in FIG. Q2) is provided, and when a short circuit failure occurs in the relay energization semiconductor switch, the fuse F is blown by turning on the relay short circuit semiconductor switch, and the electromagnetic relay is de-energized. The disconnection (OFF side) failure of the relay short-circuiting semiconductor switch means the loss of this function, and the short-circuiting (ON side) failure of the relay energizing semiconductor switch in the situation where the OFF-side failure has occurred in the relay short-circuiting semiconductor switch. If this occurs, the electromagnetic relay continues to be excited and the power supply to the load cannot be stopped. For this reason, detection of an OFF-side failure of the relay short-circuit semiconductor switch is extremely important.
[0047]
FIG. 8 shows a configuration example of a semiconductor switch circuit that further reliably detects the OFF-side failure of the relay short-circuiting semiconductor switch. The same elements as those in FIGS. 5 and 6 are denoted by the same reference numerals.
[0048]
In FIG. 8, the semiconductor switch circuits 32 "and 33" constitute a bridge circuit with four transistors Q2, Q2 ', Q3 and Q3'. A series circuit of a diode D and an electromagnetic relay 20A (or 20B) is connected between the collector connection point of the transistors Q2 and Q3 'and the emitter connection point of the transistors Q3 and Q2'. In addition, a series circuit of a resistor and a photocoupler PC is connected in parallel to this series circuit.
[0049]
When transistors Q2 and Q2 'are turned on and current flows in the direction of the arrow in the figure, the electromagnetic relay is energized, and when transistors Q3 and Q3' are turned on and current flows in the direction opposite to the arrow in the figure, a photocoupler The light projecting element of the PC is turned on and an output is generated from the light receiving element. Therefore, the transistors Q2 and Q2 'have a function of a relay energizing semiconductor switch, and the transistors Q3 and Q3' have a function of a relay short-circuiting semiconductor switch. Transistors Q2, Q2 'and transistors Q3, Q3' are turned ON / OFF in a complementary relationship. As the switching circuit 40 for turning on / off the transistors Q2, Q2 ', Q3, and Q3', the circuit surrounded by the one-dot chain line in FIG. 5 is used in this embodiment, but the circuit surrounded by the one-dot chain line in FIG. It is also possible to use it.
[0050]
  Even if the diode D is short-circuited,2The movable insulating plate 21 is shown in the figure.2It is configured to move in the direction opposite to the arrow direction of FIG.
  In the semiconductor switch circuits 32 ″ and 33 ″, when the input signal having the pulse waveform shown in FIG. 5 is input, the transistors Q2 and Q2 ′ are turned on and the transistors Q3 and Q3 ′ are turned off during the ON period of the input signal. Is excited. During the OFF period of the input signal, the transistors Q2 and Q2 'are turned off, the transistors Q3 and Q3' are turned on, and the electromagnetic relay is de-energized. At this time, a current flows through the photocoupler PC and an output is generated from the light receiving element. This operation is repeated in synchronization with ON / OFF of the input signal.
[0051]
When the semiconductor switch circuits 32 ″ and 33 ″ having such a configuration operate normally, an AC signal is generated on the light receiving side of the photocoupler PC. If an ON-side failure occurs in one of the relay energizing transistors Q2 and Q2 ', if the relay short-circuiting transistors Q3 and Q3' are normal, the fuse F is blown (at this time, the photocoupler PC is disconnected). Does not generate an AC signal). If an OFF-side failure occurs in one of the relay short-circuit transistors Q3 and Q3 ', the photocoupler PC is not energized and no AC signal is generated. Therefore, the circuit failure of the semiconductor switch circuits 32 ″ and 33 ″ can be reliably detected by monitoring the output of the photocoupler PC.
[0052]
【The invention's effect】
As described above, according to the first aspect of the present invention, the off-delay circuit and the on-delay circuit are not required, and the configuration of the load driving circuit can be simplified.
[0053]
  AlsoSince the electromagnetic relay drive signal is not generated when the operation contact of the electromagnetic relay is not in the OFF state, the safety is high.
[0054]
  Furthermore, since the relay drive signal is generated by using the transformer coupling, the fail-safe configuration is achieved and the safety is high.
  Claim2-4According to the invention, since the electromagnetic relay has a double system configuration and the semiconductor switch circuit is used instead of the transformer coupling, safety can be ensured and the load driving circuit can be downsized.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram of a first embodiment of the present invention.
FIG. 2 is a view showing a contact structure of the electromagnetic relay according to the embodiment.
3 is an ON / OFF characteristic diagram of the electromagnetic relay of FIG.
FIG. 4 is a circuit configuration diagram of a second embodiment of the present invention.
5 is a configuration diagram of the semiconductor switch circuit of FIG. 4;
FIG. 6 is another configuration diagram of the semiconductor switch circuit.
7 is a diagram showing the relationship between the input signal of FIG. 6 and the output voltage of the voltage doubler rectifier circuit.
FIG. 8 is still another configuration diagram of the semiconductor switch circuit.
FIG. 9 is a circuit configuration diagram showing an example of a conventional load driving circuit.
10 is a time chart of the relay operation contact operation of FIG. 9;
FIG. 11 is a circuit configuration diagram showing another example of a conventional load driving circuit.
12 is a time chart of the relay operation contact operation of FIG.
[Explanation of symbols]
10, 30 Relay control circuit
11 Self-holding circuit
12 Relay drive circuit
20, 20A, 20B Electromagnetic relay
31 Output control circuit
32, 32 ', 32 ", 33, 33', 33" Semiconductor switch circuit
a1, a2, a1A, a2A, a1B, a2B
b1, b2, b1A, b2A, b1B, b2B Return contact

Claims (4)

負荷給電回路に、常用遮断スイッチと非常用遮断スイッチを直列に介装し、負荷駆動信号の入力で、非常用遮断スイッチ、常用遮断スイッチの順でON駆動して負荷に給電し、前記負荷駆動信号の停止で、常用遮断スイッチ、非常用遮断スイッチの順でOFF駆動して負荷の給電を停止する構成の負荷駆動回路において、
励磁時にそれぞれONする第1動作接点と第2動作接点と、前記第1動作接点と相補の関係でON/OFF動作する第1復帰接点と、前記第2動作接点と相補の関係でON/OFF動作する第2復帰接点とを備え、第1動作接点の可動接点と固定接点間距離が第2動作接点の可動接点と固定接点間距離より短い構成の電磁リレーを設け、該電磁リレーの前記第1動作接点を前記非常用遮断スイッチとし、前記第2動作接点を前記常用遮断スイッチとすると共に、前記第1及び第2復帰接点が共にONしていることを条件に、前記負荷駆動信号の入力でリレー駆動信号を出力するリレー制御手段を備え、前記リレー制御手段を、トリガ端子に前記第1及び第2復帰接点が共にONした時にトリガ信号が入力し、ホールド端子に前記負荷駆動信号が入力して出力を発生し当該出力でトリガ信号を自己保持する自己保持回路と、該自己保持回路の出力に基づいてトランス結合を介して前記リレー駆動信号を発生するリレー駆動回路とを備える構成としたことを特徴とする負荷駆動回路。
In the load power supply circuit, a normal cut-off switch and an emergency cut-off switch are connected in series. When the load drive signal is input, the emergency cut-off switch and the normal cut-off switch are turned on in this order to supply power to the load. In the load driving circuit configured to stop the power supply of the load by driving OFF in the order of the emergency cutoff switch and the emergency cutoff switch by stopping the signal,
A first operating contact and a second operating contact that are turned on at the time of excitation, a first return contact that operates ON / OFF in a complementary relationship with the first operating contact, and an ON / OFF in a complementary relationship with the second operating contact. and a second return contacts for operation, the distance between the movable contact and the fixed contact of the first operation contacts provided an electromagnetic relay of shorter configuration than the distance between the movable contact and the fixed contact of the second operating contact, wherein the said electromagnetic relay second The load drive signal is input on condition that one operation contact is the emergency cut-off switch, the second operation contact is the normal cut-off switch, and both the first and second return contacts are ON. And a relay control means for outputting a relay drive signal at the time when the first and second return contacts are both turned on at the trigger terminal, and the load drive signal at the hold terminal. A self-holding circuit for self-holding the trigger signal input to generate an output in the output, the configuration and a relay driving circuit for generating the relay drive signal via transformer coupling on the basis of the output of said self hold circuit A load driving circuit characterized by that.
負荷給電回路に、常用遮断スイッチと非常用遮断スイッチを直列に介装し、負荷駆動信号の入力で、非常用遮断スイッチ、常用遮断スイッチの順でON駆動して負荷に給電し、前記負荷駆動信号の停止で、常用遮断スイッチ、非常用遮断スイッチの順でOFF駆動して負荷の給電を停止する構成の負荷駆動回路において、
励磁時にそれぞれONする第1動作接点と第2動作接点と、前記第1動作接点と相補の関係でON/OFF動作する第1復帰接点と、前記第2動作接点と相補の関係でON/OFF動作する第2復帰接点とを備え、第1動作接点の可動接点と固定接点間距離が第2動作接点の可動接点と固定接点間距離より短い構成の電磁リレーを複数個設け、これら電磁リレーの各第1動作接点を前記非常用遮断スイッチとし、各第2動作接点を前記常用遮断スイッチとすると共に、前記第1及び第2復帰接点が共にONしていることを条件に、前記負荷駆動信号の入力でリレー駆動信号を出力するリレー制御手段を備え、前記リレー制御手段、トリガ端子に前記第1及び第2復帰接点が共にONした時にトリガ信号が入力し、ホールド端子に前記負荷駆動信号が入力して出力を発生し当該出力でトリガ信号を自己保持する自己保持回路と、前記複数個の電磁リレー毎に設けられ、前記自己保持回路の出力に基づいて対応する各電磁リレーにリレー駆動信号をそれぞれ出力する複数個の半導体スイッチ回路とを備える構成としたことを特徴とする負荷駆動回路。
In the load power supply circuit, a normal cut-off switch and an emergency cut-off switch are connected in series. When the load drive signal is input, the emergency cut-off switch and the normal cut-off switch are turned on in this order to supply power to the load. In the load driving circuit configured to stop the power supply of the load by driving OFF in the order of the emergency cutoff switch and the emergency cutoff switch by stopping the signal,
A first operating contact and a second operating contact that are turned on at the time of excitation, a first return contact that operates ON / OFF in a complementary relationship with the first operating contact, and an ON / OFF in a complementary relationship with the second operating contact. A plurality of electromagnetic relays having a configuration in which the distance between the movable contact of the first operation contact and the fixed contact is shorter than the distance between the movable contact of the second operation contact and the fixed contact. The load drive signal is provided on the condition that each first operation contact is the emergency cut-off switch, each second operation contact is the normal cut-off switch, and both the first and second return contacts are ON. a relay control means for outputting a relay driving signal at the input of the relay control unit, a trigger signal is input when said first and second return contacts are both turned oN trigger pin, driving the load to the hold terminal A self-holding circuit that generates an output when a signal is input and self-holds a trigger signal by the output, and a relay to each electromagnetic relay corresponding to each of the plurality of electromagnetic relays based on the output of the self-holding circuit A load drive circuit comprising a plurality of semiconductor switch circuits each outputting a drive signal.
前記各半導体スイッチ回路は、前記電磁リレーと直列接続され前記自己保持回路の出力に基づいて入力するパルス信号のON/OFFによりON/OFF動作して負荷電磁リレーへの電流の通電/遮断を制御するリレー通電用半導体スイッチと、電磁リレーに対して並列接続し前記パルス信号のON/OFFによりON/OFF動作して電磁リレーの両端を短絡するリレー短絡用半導体スイッチとを備え、前記リレー通電用半導体スイッチがON故障した時に過電流の発生で電磁リレーの通電経路が遮断されると共に、回路故障時に故障検出出力を発生する故障検出機能を有する構成である請求項に記載の負荷駆動回路。Each of the semiconductor switch circuits is connected in series with the electromagnetic relay and is turned on / off by turning on / off a pulse signal input based on the output of the self-holding circuit to control current supply / cutoff to the load electromagnetic relay. A relay energizing semiconductor switch, and a relay short-circuiting semiconductor switch that is connected in parallel to the electromagnetic relay and short-circuits both ends of the electromagnetic relay by the ON / OFF operation of the pulse signal. 3. The load drive circuit according to claim 2 , wherein the load drive circuit has a failure detection function for interrupting the energization path of the electromagnetic relay due to the occurrence of an overcurrent when the semiconductor switch is in an ON failure, and generating a failure detection output in the event of a circuit failure. 前記各半導体スイッチ回路は、前記リレー通電用半導体スイッチ及びリレー短絡用半導体スイッチをそれぞれ2個備え、一方のリレー通電用及びリレー短絡用の各半導体スイッチの直列回路と、他方のリレー通電用及びリレー短絡用の各半導体スイッチの直列回路とを、電源端子と接地端子との間に互いに並列接続してブリッジ回路を構成し、各直列回路の半導体スイッチ間を接続して電磁リレーを介装し、該電磁リレーに並列接続して回路故障検出用のフォトカプラを設ける構成とした請求項に記載の負荷駆動回路。Each of the semiconductor switch circuits has two semiconductor switches for relay energization and two semiconductor switches for relay short-circuiting, one series of semiconductor switches for relay energization and one for relay short-circuit, and the other for relay energization and relay A series circuit of each semiconductor switch for short-circuiting is connected in parallel between the power supply terminal and the ground terminal to form a bridge circuit, and between the semiconductor switches of each series circuit is connected with an electromagnetic relay, 4. The load drive circuit according to claim 3 , wherein a photocoupler for detecting a circuit failure is provided in parallel with the electromagnetic relay.
JP35175198A 1998-12-10 1998-12-10 Load drive circuit Expired - Fee Related JP4043626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35175198A JP4043626B2 (en) 1998-12-10 1998-12-10 Load drive circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35175198A JP4043626B2 (en) 1998-12-10 1998-12-10 Load drive circuit

Publications (2)

Publication Number Publication Date
JP2000173383A JP2000173383A (en) 2000-06-23
JP4043626B2 true JP4043626B2 (en) 2008-02-06

Family

ID=18419361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35175198A Expired - Fee Related JP4043626B2 (en) 1998-12-10 1998-12-10 Load drive circuit

Country Status (1)

Country Link
JP (1) JP4043626B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647203B1 (en) * 2005-06-10 2006-11-23 타이코에이엠피 주식회사 Switch assembly and load driving apparatus included the assembly
JP2015159637A (en) * 2014-02-21 2015-09-03 国立研究開発法人宇宙航空研究開発機構 power controller
JP6772011B2 (en) * 2016-09-26 2020-10-21 三洋電機株式会社 Power system
CN107659140B (en) * 2017-09-19 2024-04-02 浙江杭可仪器有限公司 Delay isolation output device and spike eliminating method thereof
CN111600585A (en) * 2020-04-17 2020-08-28 青岛鼎信通讯股份有限公司 Bypass switch with power down holding function

Also Published As

Publication number Publication date
JP2000173383A (en) 2000-06-23

Similar Documents

Publication Publication Date Title
US8339761B2 (en) Relay failure detecting device
JP4740504B2 (en) Safety switching device and system
JP4063328B2 (en) Load drive circuit
JP4355058B2 (en) Power supply
US6608403B2 (en) Power supply system with AC redundant power sources and DC redundant power supplies
US6639816B2 (en) Power supply system with AC redundant power sources and safety device
JPS60223445A (en) Monitor of load driving switch circuit
JP3730253B2 (en) Load drive circuit
JP4043626B2 (en) Load drive circuit
JP4613200B2 (en) Method for operating a supply unit for a drive circuit and a supply unit for a drive circuit
KR20010043925A (en) Device for safely disconnecting an electrical load with especially high inductivity from an electrical dc-voltage supply
KR102376575B1 (en) Brake drive control circuit and its fault detection method
EP0763842B1 (en) Solenoid relay driving circuit
JPH01127978A (en) Proximity switch
WO1996000955A1 (en) Monitor apparatus of alarm apparatus
JP3402927B2 (en) Traffic light controller
US20230358807A1 (en) Safety switching apparatus, in particular for the monitored switching on of an electrical and/or electronic load
JP2518400B2 (en) Fault monitoring device for operating circuits
JP3597629B2 (en) Operation signal generation circuit
JPH079328Y2 (en) Circuit breaker trip detection circuit
JP2703140B2 (en) Shiya breaker operation control circuit
JPH04304128A (en) Load drive circuit
JPS61210821A (en) Monitoring circuit for trip output circuit
JPS63315368A (en) Control circuit for railway point
JPH01276830A (en) Erroneous switching relieving system for signal switching device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071114

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees