JP4041894B2 - Method of orbiting a spare satellite into a multi-orbital satellite system - Google Patents
Method of orbiting a spare satellite into a multi-orbital satellite system Download PDFInfo
- Publication number
- JP4041894B2 JP4041894B2 JP2003385726A JP2003385726A JP4041894B2 JP 4041894 B2 JP4041894 B2 JP 4041894B2 JP 2003385726 A JP2003385726 A JP 2003385726A JP 2003385726 A JP2003385726 A JP 2003385726A JP 4041894 B2 JP4041894 B2 JP 4041894B2
- Authority
- JP
- Japan
- Prior art keywords
- orbit
- satellite
- operational
- spare
- altitude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 41
- 230000007704 transition Effects 0.000 claims description 117
- 238000006243 chemical reaction Methods 0.000 claims description 44
- 230000001174 ascending effect Effects 0.000 claims description 12
- 230000001133 acceleration Effects 0.000 claims description 9
- 238000012966 insertion method Methods 0.000 claims description 7
- 230000009466 transformation Effects 0.000 claims description 4
- 238000000926 separation method Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 22
- 238000002347 injection Methods 0.000 description 17
- 239000007924 injection Substances 0.000 description 17
- 239000000446 fuel Substances 0.000 description 15
- 238000003780 insertion Methods 0.000 description 11
- 230000037431 insertion Effects 0.000 description 11
- 230000008859 change Effects 0.000 description 8
- 238000011084 recovery Methods 0.000 description 4
- 230000003068 static effect Effects 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 206010035148 Plague Diseases 0.000 description 1
- 241000607479 Yersinia pestis Species 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000003380 propellant Substances 0.000 description 1
Landscapes
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Radio Relay Systems (AREA)
Description
この発明は、複数の衛星を用いるシステムにおいて、その複数の衛星のいずれかに置き換え可能な予備衛星を予備衛星用の待機軌道上に配置し、上記のシステムの衛星が故障した場合に、その故障した衛星を予備衛星で置き換えて、短期間でシステムを復旧させるための複数軌道面衛星システムの予備衛星配置と軌道投入方法に関している。 In a system using a plurality of satellites, a spare satellite that can be replaced with one of the plurality of satellites is placed on a standby orbit for the spare satellite, and the failure of the satellite of the above system fails. The present invention relates to a spare satellite arrangement and an orbit insertion method of a multi-orbital plane satellite system for replacing a satellite with a spare satellite and restoring the system in a short period of time.
予備衛星を予備衛星用の待機軌道に配置しておき、衛星システムに故障した衛星が発生したときには、故障した衛星を予備衛星で置き換えることによって、衛星システムの復旧を短期間で行なう方法が提案されている。このための予備衛星用の待機軌道として求められる要件は、上記の置き換えを短期間で終了できること、と、衛星軌道を変更するための燃料の消費が少なくてすむことである。 A method has been proposed in which a spare satellite is placed in a standby orbit for a spare satellite, and when a failed satellite occurs in the satellite system, the failed satellite is replaced with a spare satellite to restore the satellite system in a short period of time. ing. The requirements for a standby orbit for a spare satellite for this purpose are that the above replacement can be completed in a short period of time, and that the consumption of fuel for changing the satellite orbit is reduced.
複数の軌道面からの角度が等しい静止軌道上、または、運用軌道の近地点(ぺリジ点)と同じ高度の傾斜角0の円軌道上に予備衛星を配置し、運用中の衛星故障時には軌道面変換を行って、故障衛星と同じ運用軌道に投入する方法が特許文献1に開示されている。この方法は、静止軌道高度(約36,000km)またはそれに近い高い軌道を用いることに特徴があり、傾斜角0の予備衛星軌道に投入するだけで多くの燃料が必要である。この軌道からさらに大角度の軌道面変換を行うため、再度大量の燃料が必要で、運用軌道に投入可能な衛星は相当小さいものに限られる。 Reserve satellites are placed on a geostationary orbit with the same angle from multiple orbital planes, or on a circular orbit with a tilt angle of 0 that is the same as the near point (periphery point) of the operational orbit. Patent Document 1 discloses a method of performing conversion and putting it in the same operation orbit as that of a failed satellite. This method is characterized by using a geosynchronous orbital altitude (about 36,000 km) or a high orbit close to it, and it requires a lot of fuel just by putting it in a spare satellite orbit with a tilt angle of zero. To change the orbital plane at a larger angle from this orbit, a large amount of fuel is required again, and the number of satellites that can be put into operation orbit is limited to a very small one.
また、運用軌道と傾斜角の等しいLEOパーキング軌道(低高度軌道)に予備衛星を配置し、運用中の衛星が故障した場合には、地球による軌道の摂動を利用して予備衛星の軌道面が故障した衛星の軌道直と一致するまで待ち、その段階で遠地点、近地点を順次引き上げて故障衛星と同じ運用軌道に投入する方法が特許文献2に開示されている。この方法は、軌道面変換が不要なため、燃料は非常に少なくて済むという利点があるが、復旧までに長期間を要し、最大3ケ月程度かかるという欠点がある。 In addition, if a spare satellite is placed in a LEO parking orbit (low altitude orbit) with the same inclination angle as the operational orbit, and the satellite in operation fails, the orbital plane of the spare satellite will be changed using perturbation of the orbit by the earth. Patent Document 2 discloses a method of waiting until it coincides with the orbit of the failed satellite, and at that stage, sequentially raising the far point and near point into the same operation orbit as the failed satellite. This method has the advantage that it requires very little fuel because it does not require orbital plane conversion, but has the disadvantage that it takes a long time to recover and takes up to about three months.
上記の様に、予備衛星を予備衛星用の待機軌道に配置しておき、衛星システムに故障した衛星が発生したときには、故障した衛星を予備衛星で置き換えるこれまでの方法では、多量の燃料が必要であり、また、衛星の置き換えに長期間を要する、という問題があった。 As described above, a spare satellite is placed in a standby orbit for a spare satellite, and when a failed satellite occurs in the satellite system, the conventional method of replacing the failed satellite with the spare satellite requires a large amount of fuel. In addition, there is a problem that it takes a long time to replace the satellite.
本発明においては、特許文献1の方法における燃料の大量消費の問題を解決するため、特許文献1の方法に比べて予備衛星の待機軌道は低軌道であり、運用軌道投入時に遠地点高度を引き上げ、速度の小さい遷移楕円軌道の遠地点で軌道面変換を行う点で異っている。 In the present invention, in order to solve the problem of mass consumption of fuel in the method of Patent Document 1, the standby orbit of the standby satellite is lower than that of the method of Patent Document 1, and the far-point altitude is raised when the operation orbit is put in, The difference is that orbital plane transformation is performed at the far point of the transition elliptical orbit with a low velocity.
また、特許文献2の方法における問題である長い復旧時間を大幅に短縮するため、特許文献2の方法とは異なって、予備衛星軌道面と運用軌道面の交点において軌道面変換を行う方法とし、このため、摂動による軌道面変化を待つ必要が無く、数日で復旧ができる様になった。 Further, in order to significantly reduce the long recovery time that is a problem in the method of Patent Document 2, unlike the method of Patent Document 2, a method of performing orbital plane conversion at the intersection of the spare satellite orbital plane and the operational orbital plane, For this reason, there is no need to wait for a change in the orbital plane due to perturbation, and it is possible to recover within a few days.
また、本発明は、燃料消費を極力少なく投入する方法を提案している。従来の技術例では、予備衛星軌道から楕円の運用軌道への投入方法が明確になっていなかった。さらに、本発明では、一旦、高高度の遷移軌道に投入した後で軌道面変換を行う方法で、燃料消費をさらに低減するとともに、楕円軌道に適した投入方法を提案している。 In addition, the present invention proposes a method for reducing fuel consumption as much as possible. In the conventional technology example, the method of putting the standby satellite orbit into the elliptical operation orbit has not been clarified. Furthermore, the present invention proposes an injection method suitable for an elliptical orbit while further reducing fuel consumption by a method in which the orbital plane is changed after the injection to a high altitude transition orbit.
この発明の、複数軌道面衛星システムの予備衛星配置と軌道投入方法を用いることにより、予備衛星の軌道変換に用いる燃料を、従来の場合にくらべて減らすことができる。また、予備衛星軌道から、運用軌道に投入してトラブルの発生した衛星を予備衛星で置き換えることにより衛星システムを復旧させるために要する時間を、従来の場合に比べて短縮することができる。また、予備衛星のための軌道として用いることができる軌道の自由度を、従来のものに比べて拡大することができる。 By using the spare satellite arrangement and orbit insertion method of the multi-orbital plane satellite system of the present invention, the fuel used for orbit conversion of the spare satellite can be reduced as compared with the conventional case. In addition, the time required to restore the satellite system by replacing the troubled satellite in the operational orbit from the spare satellite orbit can be shortened compared to the conventional case. Further, the degree of freedom of the orbit that can be used as the orbit for the spare satellite can be expanded as compared with the conventional one.
衛星システムのひとつの運用軌道にあって、例えば故障により置き換えることが必要な衛星を、ひとつの予備衛星で置き換える場合に必要な燃料消費については、以下の事項が成り立つことを確認することができる。 It can be confirmed that the following matters hold about the fuel consumption required when replacing a satellite in one operational orbit of the satellite system that needs to be replaced due to a failure, for example, with one spare satellite.
1)まず、赤道上(軌道傾斜角0)の低高度軌道に予備衛星を配置することにより、全ての運用軌道面との成す角が近似的に等しくなり、任意の一定の前記の角について、運用軌道と上記の予備衛星の待機軌道との関係において、最悪ケースでの軌道面変換に必要な増速量(燃料)を最小化できる。 1) First, by arranging a spare satellite in a low altitude orbit on the equator (orbit inclination angle 0), the angles formed with all the operational orbital planes are approximately equal, and for any given said angle, In the relationship between the operation orbit and the standby orbit of the spare satellite, the speed increase amount (fuel) required for the orbital plane conversion in the worst case can be minimized.
2)また、近地点が低い長楕円軌道である遷移軌道の遠地点においては、衛星の速度が小さくなり、軌道面変換に必要な増速量は少なくて済む。 2) Further, at the far point of the transition orbit where the near point is a low elliptical orbit, the speed of the satellite becomes small, and the amount of acceleration required for the orbital plane conversion is small.
3)また、予備衛星は、低高度軌道上を半周するごとに運用軌道の昇交点または降交点の直下を通過するため、約1時間ごとに遷移軌道投入の機会があり、速やかに復旧のための軌道投入に着手できる。 3) Since the spare satellite passes through the ascending or descending point of the operation orbit every halfway around the low altitude orbit, there is an opportunity to enter the transition orbit approximately every hour, so that it can be restored quickly. Can be launched.
4)また、平均近点離角を合わせるために中間軌道を利用すると、本発明としては比較的長期間を要するが、この場合でさえ、2〜3日程度で故障衛星と同じ軌道に投入可能であり、置き換えを短期間でおこなうことができる。 4) In addition, if an intermediate orbit is used to adjust the average near point separation angle, the present invention requires a relatively long time, but even in this case, it can be put into the same orbit as the failed satellite in about 2-3 days. Therefore, replacement can be performed in a short period of time.
5)一般に、ロケットで衛星を低軌道に打ち上げる場合、真東に打ち上げるのが効率的で、標準的な打上げシーケンスはこれに基づいている。この場合、衛星の軌道傾斜角は、打上げ地点の緯度とほぼ近似的に等しくなる。概略軌道傾斜角0の低軌道に打ち上げるためには、打上げ場所や使える口ケツトが極めて限定される。従来の方法では、円軌道への衛星の投入は、遷移軌道の遠地点高度を運用軌道の高度と近似的に等しくし、遷移軌道の遠地点で軌道面変換を行うとともに近地点高度を同一高度まで引き上げるような制御を行うことによって可能であるが、軌道の近地点引数が指定された楕円の運用軌道に衛星を投入する場合には、このような軌道変更では、衛星の投入は不十分である。しかし、運用軌道の遠地点または近地点を通る円軌道にいったん投入し、その後、任意の位置で減速または増速制御を行うことにより、いかなる近地点引数を持つ楕円軌道へも、衛星の投入が可能である。 5) Generally, when launching a satellite into a low orbit with a rocket, it is efficient to launch it to the east, and the standard launch sequence is based on this. In this case, the orbital inclination angle of the satellite is approximately equal to the latitude of the launch point. In order to launch to a low orbit with an approximate orbital inclination angle 0, the launch location and usable mouth bucket are extremely limited. In the conventional method, when a satellite is inserted into a circular orbit, the far point altitude of the transition orbit is approximately equal to the altitude of the operation orbit, the trajectory is changed at the far point of the transition orbit, and the near point altitude is raised to the same altitude. However, when a satellite is introduced into an elliptical operation orbit in which an orbital near-point argument is specified, such an orbital change is insufficient. However, it is possible to launch a satellite into an elliptical orbit with any near-point argument by once throwing it into a circular orbit passing through a far point or near point of the operation orbit and then performing deceleration or acceleration control at an arbitrary position. .
6)また、遷移軌道の遠地点において、従来のように軌道面変換と近地点引き上げの増速を行うのみならず、半径方向の速度成分をも与えるような3次元速度制御を行うことにより、運用軌道への直接投入が可能になる。このように直接投入することは、これらを別々に実施するよりも効率的であり、必要な制御量(燃料)を減らすことができる。また、直接投入を行うことから、復旧に要する時間も短縮可能である。 6) Further, at the far point of the transition orbit, not only the acceleration of the orbital plane conversion and the near point lifting as in the conventional method but also the three-dimensional velocity control that gives the velocity component in the radial direction, Can be directly input to Direct injection in this way is more efficient than implementing these separately, and the required control amount (fuel) can be reduced. In addition, since the charging is performed directly, the time required for recovery can be shortened.
7)また、遷移軌道の遠地点を運用軌道よりもさらに高い高度までいったん引き上げることにより、遠地点での衛星の運動速度はさらに小さくなり、軌道面変換に要する制御量は大幅に減少する。高高度まで引き上げるためと、引き上げた遠地点を運用軌道の高度まで戻すために追加の制御が必要になるが、軌道面制御のための制御量節約の方が大きいため、合計としての制御量は少なくて済む。一方で、高い高度まで引き上げることにより、復旧に要する時間は長くなるが、それでも5日〜10日程度で復旧可能であり、従来技術と比較して大幅に短い。 7) Also, once the far point of the transition orbit is raised to a higher altitude than the operational orbit, the speed of movement of the satellite at the far point is further reduced, and the amount of control required for orbital plane conversion is greatly reduced. Additional control is required to raise to a high altitude and to return the raised far point to the altitude of the operating orbit, but the amount of control for the track surface control is greater, so the total control amount is less. I'll do it. On the other hand, the time required for recovery is increased by raising the altitude to a high altitude, but it can still be recovered in about 5 to 10 days, which is significantly shorter than the conventional technology.
8)予備衛星の待機軌道として、軌道傾斜角0の軌道を選択した場合には、一般に、軌道面変換での変換角度は、運用軌道の軌道傾斜角に等しい。しかしながら、0でない軌道傾斜角をもつ予備衛星軌道を選択すると、最悪の場合には、運用軌道の軌道傾斜角と予備衛星軌道の軌道傾斜角を加算した角度の軌道面変換が必要になる。軌道面変換角度が大きいほど、上記の本発明のように高高度の遠地点をもつ遷移軌道を使用すると、軌道変換のための燃料の節約効果は大きくなる。 8) When the orbit having the orbit inclination angle 0 is selected as the standby orbit of the spare satellite, generally, the conversion angle in the orbital plane conversion is equal to the orbit inclination angle of the operation orbit. However, when a spare satellite orbit having a non-zero orbit inclination angle is selected, in the worst case, an orbital plane conversion of an angle obtained by adding the orbit inclination angle of the operational orbit and the orbit inclination angle of the standby satellite orbit is necessary. The greater the orbital plane conversion angle, the greater the fuel saving effect for orbit conversion when using a transition orbit having a high altitude far point as in the present invention.
9)上記の方法での軌道面変換後に、予備衛星を楕円軌道に投入する場合には、上に示した方法で運用軌道の遠地点または近地点を通る円軌道にいったん投入し、その後、任意の位置で減速または増速制御を行うことにより、いかなる近地点引数を持つ楕円軌道へも投入が可能である。 9) When the spare satellite is inserted into the elliptical orbit after the orbital plane conversion by the above method, it is once inserted into the circular orbit passing the far or near point of the operation orbit by the method shown above, and then the arbitrary position By performing deceleration or acceleration control with, it is possible to enter an elliptical orbit with any near-point argument.
10)運用面内遷移軌道から運用軌道に投入する際に、一旦、運用面内遷移軌道の近地点において運用軌道と交差するようにしておき、そこで減速と同時に半径方向の速度成分をも与えるような2次元速度制御を行うことにより、運用軌道への直接投入が可能である。この方法は、これらを別々に実施するよりも効率的であり、必要な制御量(燃料)を減らすことができる。また、直接投入を行うことから、復旧に要する時間も短縮可能である。 10) When entering the operation trajectory from the operation in-plane transition trajectory, once it crosses the operation trajectory at a point near the operation in-plane transition trajectory, the speed component in the radial direction is given simultaneously with deceleration. By performing two-dimensional speed control, it is possible to directly enter the operation track. This method is more efficient than performing these separately and can reduce the amount of control (fuel) required. In addition, since the charging is performed directly, the time required for recovery can be shortened.
11)さらに、運用面内遷移軌道と運用軌道の交点位置を最適化するように運用面内遷移軌道の近地点高度をとり、交点において減速と同時に半径方向の速度成分をも与えるような2次元速度制御を行えば、前記の方法よりも制御量が少なくなる場合があり、この場合は、燃料をさらに節約できる。 11) Further, a two-dimensional velocity that takes a near-point altitude of the transitional trajectory in the operational plane so as to optimize the intersection position of the operational trajectory and the operational trajectory, and gives a speed component in the radial direction simultaneously with deceleration at the intersection. If the control is performed, the control amount may be smaller than that in the above method, and in this case, fuel can be further saved.
12)また、一旦、運用面内遷移軌道を運用軌道に外接させ、接点において減速して運用軌道に投入すれば、さらに制御量が少なくなる場合がある。この場合は単なる減速制御であるため、制御自体も容易である。 12) Further, once the operation in-plane transition trajectory is circumscribed to the operation trajectory and decelerated at the contact point to enter the operation trajectory, the control amount may be further reduced. In this case, since the deceleration control is simple, the control itself is easy.
13)上記のいずれかの方法で軌道投入を行う場合、故障衛星と同じ形の軌道に投入することはできても、軌道上での位相(平均近点離角)は必ずしも一致しない。最短期間のシーケンスで衛星を投入した場合、投人後に位相調整の制御が必要となる。この制御を、遠地点での制御を2分割し、1回目の制御で中間軌道に投入し、故障衛星が制御点に達するまでの時間と中間軌道の周期を一致させれば、中間軌道を1周した段階で、位相を合わせることが可能である。たとえば図15のような位置に故障衛星があるときに、予備衛星が遷移軌道の遠地点に達していた場合、ここで直接投入すると、全く異なる位相で投入されてしまい、故障衛星の代替ができなくなる。しかし、遠地点での制御を2回に分けて、例えば、1回目の制御で中間軌道に投入する。故障衛星が制御点に達するまでの時間と中間軌道の周期を一致させれば、中間軌道を1周した段階で位相が合う。次に、2回目の制御を実施して運用軌道に投入すればよい。同一点で同一方向に制御するため、分割しても合計の制御量は変化しない。 13) When orbiting is performed by any of the above methods, the phase (average near-point separation angle) on the orbit does not necessarily match even though the orbit can be placed in the same shape as the failed satellite. When a satellite is introduced in a sequence of the shortest period, it is necessary to control phase adjustment after throwing. If this control is divided into two at the far point, the control is put into the intermediate orbit by the first control, and if the time until the faulty satellite reaches the control point and the period of the intermediate orbit coincide, At this stage, it is possible to adjust the phase. For example, when there is a failed satellite at a position as shown in FIG. 15, if the spare satellite has reached the far point of the transition orbit, if it is directly introduced here, it will be introduced at a completely different phase, making it impossible to replace the failed satellite. . However, the control at the far point is divided into two times, for example, the first control is put into the intermediate orbit. If the time required for the faulty satellite to reach the control point and the period of the intermediate orbit match, the phases are matched at the stage where the intermediate orbit has made one round. Next, the second control may be performed and put into the operation orbit. Since the control is performed in the same direction at the same point, the total control amount does not change even when divided.
上記の事項が成り立つことから、本発明の第1の要件は、例えば、故障の発生や耐用年数の超過により、複数の運用軌道をもった衛星システムのひとつの運用軌道にある衛星のひとつあるいは複数を、ひとつの予備衛星で置き換えて、置き換える前の機能に類似の機能を発揮させようとする場合に、予備衛星を低い高度に配置しておき、換言すれば、運用軌道の近地点高度よりも小さい遠地点高度をもった予備衛星軌道に予備衛星を配置しておき、前記の運用軌道にある複数の衛星の機能が発揮できるように再配置するための複数軌道面衛星システムへの予備衛星の軌道投入方法で、
前記の予備衛星が前記の運用軌道の昇交点または降交点の直下を横切る時間帯に、上記の予備衛星を、
進行方向に増速して、遠地点高度が運用軌道の近地点と遠地点の間の高度となる第1の遷移軌道に引き上げ、
次に、上記の第1の遷移軌道のほぼ遠地点において、軌道面変換と近地点引き上げの制御とを行なって運用軌道面に投入し、
上記の運用軌道面内での制御を行なって上記の運用軌道に投入することである。ここで、衛星の操作は、衛星内部からの指令により自動的に行なっても良いし、地上からの指令で行なっても良い。
Since the above matters hold, the first requirement of the present invention is that, for example, one or a plurality of satellites in one operation orbit of a satellite system having a plurality of operation orbits due to occurrence of a failure or exceeding the service life. Is replaced with a single spare satellite, and the spare satellite is placed at a low altitude, in other words, smaller than the near-point altitude of the operational orbit Preliminary satellites are placed in a spare satellite orbit with a far-point altitude, and the spare satellites are put into the orbital plane satellite system for relocation so that the functions of the multiple satellites in the operational orbit can be performed. In the way
In the time zone when the spare satellite crosses the ascending or descending point of the operational orbit, the spare satellite is
Accelerating in the direction of travel, the far point altitude is raised to the first transition orbit where the altitude is between the near and far points of the operational orbit,
Next, at almost the far point of the first transition orbit described above, the orbital plane conversion and the control for raising the near point are performed and the operation orbital plane is thrown in,
This is to perform control in the above-described operation track plane and to put it in the operation track. Here, the operation of the satellite may be performed automatically by a command from the inside of the satellite, or may be performed by a command from the ground.
また、本発明の第2の要件は、予め1機以上の予備衛星をロケットで真東に打ち上げ軌道傾斜角がその打ち上げ地点の緯度に近似的に等しく高度2,000km以下の低高度軌道である予備衛星軌道に配置しておくものであり、複数の運用軌道をもった衛星システムのひとつの運用軌道にある衛星のひとつあるいは複数を、上記の衛星軌道にあるひとつの予備衛星で置き換えて、置き換える前の機能に類似の機能を発揮させようとする場合に、予備衛星を上記の様に低い高度に配置しておき、前記の運用軌道にある複数の衛星の機能が発揮できるように再配置するための複数軌道面衛星システムへの予備衛星の軌道投入方法で、
前記の予備衛星が前記の運用軌道面を横切る時間帯に、上記の予備衛星を、
進行方向に増速して、遠地点高度が運用軌道の近地点と遠地点の間の高度となる第1の遷移軌道に引き上げて、
上記の第1の遷移軌道の遠地点近傍で軌道面変換と近地点引き上げとの両方の制御を行って運用軌道面に投入し、
上記の運用軌道面内での制御を行なって上記の運用軌道に投入することである。
The second requirement of the present invention is a low altitude orbit with an orbital inclination angle approximately equal to the latitude of the launching point, with one or more spare satellites launched in advance to the east by a rocket. Replaced by replacing one or more of the satellites in one operational orbit of a satellite system with multiple operational orbits with one spare satellite in the above satellite orbit. When trying to perform a function similar to the previous function, reserve satellites should be placed at a low altitude as described above, and relocated so that the functions of multiple satellites in the operational orbit can be performed. In order to put a spare satellite into the multi-orbital plane satellite system,
In the time zone when the spare satellite crosses the operational orbital plane, the spare satellite is
Increase the speed in the direction of travel, raise the far point altitude to the first transition orbit where the altitude is between the near and far points of the operational trajectory,
In the vicinity of the far point of the first transition orbit, the control of both the orbital surface conversion and the near point raising is performed and the operation orbital surface is injected.
This is to perform control in the above-described operation track plane and to put it in the operation track.
また、本発明の第3の要件は、複数の異なる運用軌道面にあるそれぞれの運用軌道に各々1機以上の衛星を配置し、予め1機以上の予備衛星を軌道傾斜角が概略0あるいはその打ち上げ地点の緯度に近似的に等しく高度2,000km以下の低高度軌道である予備衛星軌道に配置して運用する衛星システムにおいて、上記の衛星システムのひとつの運用軌道にある衛星を、ひとつの予備衛星で置き換える場合について、
前記の予備衛星が前記の運用軌道面を横切る時間帯に、上記の予備衛星を、
進行方向に増速して、その遠地点高度が運用軌道のほぼ遠地点の高度となる第1の遷移軌道に引き上げて、
上記の第1の遷移軌道の遠地点で軌道面変換と近地点引き上げとの両方の制御を行って前記近地点の高度が第1の遷移軌道の遠地点の高度にほぼ等しい円軌道である第2の遷移軌道に投入し、
上記の運用軌道の遠地点の近傍点において進行方向と逆方向の加速を行って減速してその近地点高度を運用軌道の近地点高度に近似的に等しくなるようにすることにより、上記の予備衛星を上記の運用軌道に投入することである。
Further, the third requirement of the present invention is that one or more satellites are arranged in each operational orbit on a plurality of different operational orbital planes, and one or more spare satellites have an orbital inclination angle of approximately 0 or its In a satellite system that is placed and operated in a standby satellite orbit, which is a low altitude orbit with an altitude of 2,000 km or less, approximately equal to the latitude of the launch site, a satellite in one operational orbit of the above satellite system When replacing with satellite,
In the time zone when the spare satellite crosses the operational orbital plane, the spare satellite is
Accelerate in the direction of travel, raise the far point altitude to the first transition orbit where the altitude of the operating trajectory is almost the far point,
A second transition orbit in which the altitude at the near point is substantially equal to the altitude at the far point of the first transition orbit by controlling both the trajectory change and the near point raising at the far point of the first transition orbit. To
By accelerating in the direction opposite to the traveling direction at a point near the far point of the operational orbit and decelerating so that the near point altitude is approximately equal to the near point altitude of the operational orbit, the spare satellite is It is to be put into the operation trajectory.
また、本発明の第4の要件は、複数の異なる運用軌道面にあるそれぞれの運用軌道に各々1機以上の衛星を配置し、予め1機以上の予備衛星を軌道傾斜角が概略0あるいはその打ち上げ地点の緯度に近似的に等しく高度2,000km以下の低高度軌道である予備衛星軌道に配置して運用する衛星システムにおいて、上記の衛星システムのひとつの運用軌道にある衛星を、ひとつの予備衛星で置き換える場合について、
前記の予備衛星が前記の運用軌道面を横切る時間帯に、上記の予備衛星を、
進行方向に増速して、その遠地点高度が運用軌道の近地点の高度にほぼ等しくなる第1の遷移軌道に引き上げて、
上記の第1の遷移軌道の遠地点近傍で、軌道面変換と近地点引き上げとの両方の制御を行って、前記近地点の高度が第1の遷移軌道の遠地点の高度にほぼ等しい円軌道である第2の遷移軌道に投入し、
上記の運用軌道の近地点の近傍点において進行方向に増速を行って、その遠地点高度を運用軌道の遠地点高度に近似的に等しくなるようにすることにより、上記の予備衛星を上記の運用軌道に投入することである。
Further, the fourth requirement of the present invention is that one or more satellites are arranged in each operational orbit on a plurality of different operational orbital planes, and one or more spare satellites have an orbital inclination angle of approximately 0 or the same. In a satellite system that is placed and operated in a standby satellite orbit that is a low altitude orbit with an altitude of 2,000 km or less, which is approximately equal to the latitude of the launch site, a satellite in one of the above operating orbits is used as one standby orbit. When replacing with satellite,
In the time zone when the spare satellite crosses the operational orbital plane, the spare satellite is
Increasing the speed in the direction of travel, raising the far-point altitude to the first transition trajectory where the altitude at the near point of the operational trajectory is approximately equal,
In the vicinity of the far point of the first transition trajectory, both the trajectory plane conversion and the near point pull-up are controlled, and the second is a circular orbit in which the altitude at the near point is substantially equal to the far point of the first transition trajectory. Into the transition orbit of
The preliminary satellite is changed to the operational orbit by increasing the speed in the traveling direction at a point near the operational orbit's near point so that the far point altitude is approximately equal to the far point altitude of the operational orbit. It is to input.
また、本発明の第5の要件は、予め1機以上の予備衛星を軌道傾斜角が概略0で高度2,000km以下の低高度軌道である予備衛星軌道に配置して運用する衛星システムにおいて、上記の衛星システムのひとつの運用軌道にある衛星を、ひとつの予備衛星で置き換えて、置き換える前の機能に類似の機能を発揮させようとする場合に、予備衛星を上記の様に低い高度に配置しておき、前記の運用軌道にある複数の衛星の機能が発揮できるように再配置するための複数軌道面衛星システムへの予備衛星の軌道投入方法についてのものであるが、
前記の予備衛星が前記の運用軌道の昇交点または降交点の高度の直下を横切る時間帯に、上記の予備衛星を、
進行方向に増速して、遠地点高度がほぼ上記の運用軌道の昇交点または降交点となり、その遠地点近傍において、運用軌道と交差する第1の遷移軌道に引き上げ、
第1の遷移軌道の遠地点近傍において、軌道面変換と軌道面内の速度成分の調整とを行うことにより、上記の予備衛星を上記の運用軌道に投入することである。
The fifth requirement of the present invention is that in a satellite system in which one or more spare satellites are arranged and operated in advance in a low-altitude orbit having an orbital inclination angle of approximately 0 and an altitude of 2,000 km or less, When a satellite in one operational orbit of the above satellite system is replaced with a single spare satellite and the same function as the previous function is to be performed, the spare satellite is placed at a low altitude as described above. Aside from the method of orbiting a spare satellite into a multi-orbital plane satellite system for relocation so that the functions of a plurality of satellites in the operational orbit can be exhibited,
In the time zone when the spare satellite crosses directly below the ascending or descending altitude of the operational orbit, the spare satellite is
Accelerating in the direction of travel, the far point altitude is almost the rising or descending point of the above operating trajectory, and is raised near the far point to the first transition trajectory crossing the operating trajectory,
In the vicinity of the far point of the first transition orbit, orbital plane conversion and adjustment of the velocity component in the orbital plane are performed to put the spare satellite into the operational orbit.
また、本発明の第6の要件は、第2の要件と同様に、予め1機以上の予備衛星を軌道傾斜角がその打ち上げ地点の緯度に近似的に等しく高度2,000km以下の低高度軌道である予備衛星軌道に配置して運用する衛星システムにおいて、上記の衛星システムのひとつの運用軌道にある衛星を、ひとつの予備衛星で置き換える場合のものであり、
前記の予備衛星が前記の運用軌道面を横切る時間帯に、上記の予備衛星を、
進行方向に増速して、遠地点高度が上記の運用軌道と上記の予備衛星の軌道面との交点の高度にほぼ等しくなり、その遠地点において運用軌道と交差する第1の遷移軌道に引き上げて、
上記の予備衛星の軌道面と運用軌道との交点の高度を遠地点の高度とほぼ等しくなるようにし、その遠地点において運用軌道と交差する遷移軌道に引き上げて、
前記の遠地点で軌道面変換と同時に軌道面内の速度成分の調整をおこなうことにより、上記の予備衛星を上記の運用軌道に投入することである。
As in the second requirement, the sixth requirement of the present invention is that a low altitude orbit with one or more spare satellites in advance having an orbital inclination angle approximately equal to the latitude of the launch point and an altitude of 2,000 km or less. In a satellite system that is arranged and operated in a spare satellite orbit, the satellite in one operational orbit of the above satellite system is replaced with one spare satellite,
In the time zone when the spare satellite crosses the operational orbital plane, the spare satellite is
Speeding up in the direction of travel, the far-point altitude is almost equal to the altitude of the intersection of the operational orbit and the orbital plane of the spare satellite, and is raised to the first transition orbit intersecting the operational orbit at the far-point,
Make the altitude of the intersection between the orbital plane of the spare satellite and the operational orbit approximately equal to the altitude at the far point, and raise it to a transition orbit that intersects the operational orbit at that far point.
The preliminary satellite is put into the operational orbit by adjusting the velocity component in the orbital plane simultaneously with the orbital plane conversion at the far point.
また、本発明の第7の要件は、第2の要件と同様に、予め1機以上の予備衛星を軌道傾斜角が概略0で高度2,000km以下の低高度軌道である予備衛星軌道に配置しておくものであり、複数の運用軌道をもった衛星システムのひとつの運用軌道にある衛星のひとつあるいは複数を、上記の衛星軌道にあるひとつの予備衛星で置き換えて、置き換える前の機能に類似の機能を発揮させようとする場合に、予備衛星を上記の様に低い高度に配置しておき、前記の運用軌道にある複数の衛星の機能が発揮できるように再配置するための複数軌道面衛星システムへの予備衛星の軌道投入方法についてのものであるが、
一旦、予備衛星の1機が上記の運用軌道のほぼ昇交点または降交点の直下を横切る時間帯に、上記の予備衛星を進行方向に増速して、上記の運用軌道の遠地点高度よりも高い遠地点高度をもつ第1の遷移軌道に再配置し、
上記の遷移軌道の遠地点近傍で、軌道面変換と近地点引き上げの制御を行って、上記の運用軌道面内の第2の遷移軌道に投入し、
その後、第2の遷移軌道の遠地点を引き下げる減速操作、あるいは軌道面内制御を行って、上記の予備衛星を運用軌道に投入することである。
The seventh requirement of the present invention is that, similarly to the second requirement, one or more spare satellites are previously placed in a spare satellite orbit which is a low altitude orbit with an orbital inclination angle of approximately 0 and an altitude of 2,000 km or less. Similar to the function before replacing one or more satellites in one operational orbit of a satellite system with multiple operational orbits with one spare satellite in the above satellite orbit. Multiple orbital planes for rearranging spare satellites so that the functions of multiple satellites in the operational orbit can be performed, as described above, when spare satellites are placed at a low altitude as described above. It is about the method of orbiting a spare satellite into the satellite system.
Once the spare satellite is accelerated in the direction of travel, it is higher than the far-point altitude of the operational orbit in the time zone when one of the operational satellites crosses the ascending or descending point of the operating orbit approximately Relocate to the first transition orbit with far-point altitude,
In the vicinity of the far point of the above-mentioned transition orbit, control of the orbital plane conversion and the raising of the near point is performed, and the second transition orbit in the operational orbital plane is input,
Thereafter, a deceleration operation for lowering the far point of the second transition orbit, or in-orbit control, is performed, and the spare satellite is put into the operation orbit.
また、本発明の第8の要件は、予め1機以上の予備衛星をロケットで真東に打ち上げ軌道傾斜角が打ち上げ地点の緯度に近似的に等しく高度2,000km以下の低高度軌道である予備衛星軌道に配置しておくものであり、複数の運用軌道をもった衛星システムのひとつの運用軌道にある衛星のひとつあるいは複数を、上記の衛星軌道にあるひとつの予備衛星で置き換えて、置き換える前の機能に類似の機能を発揮させようとする場合に、予備衛星を上記の様に低い高度に配置しておき、前記の運用軌道にある複数の衛星の機能が発揮できるように再配置するための複数軌道面衛星システムへの予備衛星の軌道投入方法についてのものであるが、
予備衛星の1機が上記の運用軌道面を横切る時刻近くに、前記の予備衛星を、進行方向に増速して上記の運用軌道の遠地点高度よりも高い遠地点高度をもつ第1の遷移軌道に再配置し、
上記の第1の遷移軌道の遠地点近傍で、軌道面変換と近地点引き上げの制御を行って、上記の運用軌道面内の第2の遷移軌道に投入し、
その後、第2の遷移軌道の遠地点を引き下げる減速操作、あるいは軌道面内制御を行って、上記の予備衛星を運用軌道に投入することである。
Further, the eighth requirement of the present invention is that one or more spare satellites are launched to the east by a rocket in advance and the orbit inclination angle is approximately equal to the latitude of the launch point and is a low altitude orbit with an altitude of 2,000 km or less. Before replacing a satellite system with one or more satellites with multiple operational orbits, replacing one or more satellites in one operational orbit with one spare satellite in the satellite orbit described above. In order to perform a function similar to the function of, in order to rearrange the spare satellites so that the functions of a plurality of satellites in the operational orbit can be performed at a low altitude as described above. Is a method of orbiting a spare satellite into the multiple orbital plane satellite system,
Near the time when one of the spare satellites crosses the operational orbit plane, the spare satellite is accelerated in the traveling direction to become a first transition orbit having a far point altitude higher than the far point altitude of the operational orbit. Rearrange and
In the vicinity of the far point of the first transition orbit, the control of the orbital plane conversion and the raising of the near point is performed, and the second transition orbit in the operational orbital plane is input,
Thereafter, a deceleration operation for lowering the far point of the second transition orbit, or in-orbit control, is performed, and the spare satellite is put into the operation orbit.
また、本発明の第9の要件は、予め1機以上の予備衛星を軌道傾斜角が概略0、あるいは打ち上げ地点の緯度に近似的に等しく、高度2,000km以下の低高度軌道である予備衛星軌道に配置しておくものであり、複数の運用軌道をもった衛星システムのひとつの運用軌道にある衛星のひとつあるいは複数を、上記の衛星軌道にあるひとつの予備衛星で置き換えて、置き換える前の機能に類似の機能を発揮させようとする場合に、予備衛星を上記の様に低い高度に配置しておき、前記の運用軌道にある複数の衛星の機能が発揮できるように再配置するための複数軌道面衛星システムへの予備衛星の軌道投入方法についてのものであるが、
まず、予備衛星の1機が上記の運用軌道面を横切る時点近傍で、前記の予備衛星を進行方向に増速して上記の運用軌道の遠地点高度よりも高い遠地点高度をもつ第1の遷移軌道に再配置し、
次に、上記の第1の遷移軌道の遠地点近傍で、軌道面変換と近地点引き上げの制御を行って、上記の運用軌道面内の第2の遷移軌道に投入する際の近地点高度を運用軌道の遠地点高度とし、
次に、第2の遷移軌道の遠地点高度を運用軌道の遠地点高度まで引き下げて円軌道である第3の遷移軌道に投入し、
その後、第3の遷移軌道上の衛星が運用軌道の遠地点に最近接する地点に達したときに、その衛星の進行方向と逆方向の加速を行って減速することにより第3の遷移軌道の近地点を引き下げ、上記の予備衛星を運用軌道に投入することである。
The ninth requirement of the present invention is that a reserve satellite having a low altitude orbit having an orbital inclination angle of approximately 0 or approximately equal to the launch point latitude and an altitude of 2,000 km or less. The satellite system with multiple operational orbits is placed in orbit, and one or more of the satellites in one operational orbit is replaced with one spare satellite in the satellite orbit before the replacement. When trying to demonstrate a function similar to the function, reserve satellites should be placed at a low altitude as described above and relocated so that the functions of multiple satellites in the operational orbit can be performed. Although it is about the method of orbital injection of the spare satellite to the multiple orbital plane satellite system,
First, a first transition orbit having a far point altitude higher than the far point altitude of the operational orbit by accelerating the spare satellite in the traveling direction in the vicinity of the time when one of the spare satellites crosses the operational orbital plane. Rearrange to
Next, in the vicinity of the far point of the first transition orbit, the control of the orbital plane conversion and the raising of the near point is performed, and the near point altitude when entering the second transition orbit in the operational orbital plane is determined as the operating orbit. The far-point altitude,
Next, the far-point altitude of the second transition orbit is lowered to the far-point altitude of the operational trajectory and inserted into the third transition orbit, which is a circular orbit,
After that, when the satellite on the third transition orbit reaches the point closest to the far point of the operation orbit, the satellite is accelerated in the direction opposite to the traveling direction of the satellite and decelerated, so that the near point of the third transition orbit is determined. Down and put the above spare satellite into operation orbit.
また、本発明の第10の要件は、第9の要件と同様に、予め1機以上の予備衛星を軌道傾斜角が概略0、あるいは打ち上げ地点の緯度に近似的に等しく、高度2,000km以下の低高度軌道である予備衛星軌道に配置しておくものであり、複数の運用軌道をもった衛星システムのひとつの運用軌道にある衛星のひとつあるいは複数を、上記の衛星軌道にあるひとつの予備衛星で置き換えて、置き換える前の機能に類似の機能を発揮させようとする場合に、予備衛星を上記の様に低い高度に配置しておき、前記の運用軌道にある複数の衛星の機能が発揮できるように再配置するための複数軌道面衛星システムへの予備衛星の軌道投入方法についてのものであるが、
まず、予備衛星の1機が上記の運用軌道面を横切る時点近傍で、前記の予備衛星を進行方向に増速して上記の運用軌道の遠地点高度よりも高い遠地点高度をもつ第1の遷移軌道に再配置し、
上記の第1の遷移軌道の遠地点で、軌道面変換と近地点高度が運用軌道の近地点高度に近似的に等しくなる近地点引き上げの制御とを行って、上記の予備衛星を上記の運用軌道面内の第2の遷移軌道に投入し、
次に遠地点高度の引き下げを行なって、円軌道である第3の遷移軌道に投入し、
その後、運用軌道の近地点に最近接する地点にほぼ達したときに、進行方向に増速してその遠地点を引き上げ、上記の予備衛星を運用軌道に投入するものである。
Further, as in the ninth requirement, the tenth requirement of the present invention is that one or more spare satellites in advance have an orbital inclination angle of approximately 0, or approximately equal to the launch latitude, and an altitude of 2,000 km or less. Is placed in a spare satellite orbit, which is a low-altitude orbit, and one or more of the satellites in one operational orbit of a satellite system having multiple operational orbits is replaced with one spare orbit in the above satellite orbit. When replacing a satellite with a function similar to the function before the replacement, reserve satellites are placed at a low altitude as described above, and the functions of multiple satellites in the above-mentioned operational orbit are exhibited. It is about the method of orbiting a spare satellite into a multi-orbital plane satellite system for relocation as possible,
First, a first transition orbit having a far point altitude higher than the far point altitude of the operational orbit by accelerating the spare satellite in the traveling direction in the vicinity of the time when one of the spare satellites crosses the operational orbital plane. Rearrange to
At the far point of the first transition orbit, the orbital plane conversion and the control of raising the near point so that the near point altitude is approximately equal to the near point altitude of the operating orbit are performed, and the spare satellite is moved within the operating orbital plane. Into the second transition orbit,
Next, the far-point altitude is lowered to enter the third transition orbit, which is a circular orbit,
After that, when the point closest to the near point of the operation orbit is almost reached, the speed is increased in the traveling direction to raise the far point, and the spare satellite is put into the operation orbit.
また、本発明の第11の要件は、軌道傾斜角が概略0で高度2,000km以下の低高度軌道である予備衛星軌道に予め1機以上の予備衛星を配置して運用する衛星システムにおいて、上記の衛星システムのひとつの運用軌道にある衛星を、ひとつの予備衛星で置き換える場合についてのものであり、
運用軌道の近地点高度よりも小さい遠地点高度をもった予備衛星軌道に配置した予備衛星を、前記の運用軌道にある衛星の機能が発揮できるように再配置する方法で、
予備衛星の1機が上記の運用軌道の昇交点または降交点の直下を横切る時間帯に、上記の予備衛星を進行方向に増速して、上記の運用軌道の遠地点高度よりも高い遠地点高度をもつ第1の遷移軌道に再配置し、
上記の遷移軌道の遠地点で、軌道面変換と近地点高度が上記の運用軌道の昇交点あるいは降交点の高度に近似的に等しくまたその近地点で上記の運用軌道と交差する軌道となる近地点引き上げの制御とを行って、上記の運用軌道面内の第2の遷移軌道に投入し、
第2の遷移軌道の近地点で、軌道面変換を行い、同時に軌道面内の速度成分の調整して、前記の予備衛星を加速して運用軌道に投入することである。
The eleventh requirement of the present invention is a satellite system in which one or more spare satellites are arranged and operated in advance in a spare satellite orbit which is a low altitude orbit with an orbital inclination angle of approximately 0 and an altitude of 2,000 km or less. When replacing a satellite in one operational orbit of the above satellite system with one spare satellite,
A method of relocating a spare satellite arranged in a spare satellite orbit having a far point altitude smaller than the near point altitude of the operational orbit so that the function of the satellite in the operational orbit can be exhibited,
During the time zone when one of the spare satellites crosses the ascending or descending point of the above-mentioned operational orbit, the above-mentioned spare satellite is accelerated in the direction of travel, and the far point altitude higher than the far point altitude of the above operational orbit is Rearrange to the first transition orbit with
Control of raising the near point at the far point of the above-mentioned transition orbit, where the orbital plane transformation and the near point altitude are approximately equal to the altitude at the rising or descending point of the above operating trajectory and the trajectory intersects with the above operating track at that near point. To enter the second transition orbit in the above-mentioned operation orbital plane,
The orbital plane conversion is performed at the near point of the second transition orbit, and the speed component in the orbital plane is adjusted at the same time to accelerate the spare satellite and put it into the operational orbit.
また、本発明の第12の要件は、第8に要件と同様に、予め1機以上の予備衛星を軌道傾斜角が打ち上げ地点の緯度に近似的に等しく高度2,000km以下の低高度軌道である予備衛星軌道に配置しておくものであり、複数の運用軌道をもった衛星システムのひとつの運用軌道にある衛星のひとつあるいは複数を、上記の衛星軌道にあるひとつの予備衛星で置き換えて、置き換える前の機能に類似の機能を発揮させようとする場合に、予備衛星を上記の様に低い高度に配置しておき、前記の運用軌道にある複数の衛星の機能が発揮できるように再配置するための複数軌道面衛星システムへの予備衛星の軌道投入方法についてのものであるが、
まず、予備衛星の1機が上記の運用軌道面を横切る時点近傍で、前記の予備衛星を進行方向に増速して上記の運用軌道の遠地点高度よりも高い遠地点高度をもつ第1の遷移軌道に再配置し、
次に、上記の第1の遷移軌道の遠地点近傍で加速して、軌道面変換と予備衛星の軌道面と上記の運用軌道との交点の高度が概略近地点高度となる近地点引き上げの制御を行って、運用軌道面内のほぼ近地点において運用軌道と交差するような第2の遷移軌道に投入し、
上記の第2の遷移軌道の近地点での速度成分を調整して、
第2の遷移軌道面内の上記の予備衛星を運用軌道に投入することである。
The twelfth requirement of the present invention is that, similarly to the eighth requirement, one or more spare satellites are preliminarily placed in a low altitude orbit with an orbital inclination angle approximately equal to the launch latitude and an altitude of 2,000 km or less. It is to be placed in a spare satellite orbit, and replace one or more satellites in one operational orbit of a satellite system with multiple operational orbits with one spare satellite in the above satellite orbit, When trying to perform a function similar to the function before replacement, reserve satellites should be placed at a low altitude as described above, and relocated so that the functions of multiple satellites in the operational orbit can be performed. Is about the method of orbiting a spare satellite into a multi-orbital plane satellite system,
First, a first transition orbit having a far point altitude higher than the far point altitude of the operational orbit by accelerating the spare satellite in the traveling direction in the vicinity of the time when one of the spare satellites crosses the operational orbital plane. Rearrange to
Next, acceleration is performed in the vicinity of the far point of the first transition orbit, and control of raising the near point is performed so that the altitude of the intersection between the orbital plane conversion and the orbital plane of the spare satellite and the operational orbit becomes the approximate near point altitude. , Put in the second transition orbit that intersects the operation orbit at almost the near point in the operation orbit plane,
Adjust the velocity component at the near point of the second transition trajectory,
The above-mentioned backup satellite in the second transition orbital plane is put into the operation orbit.
また、本発明の第13の要件は、第9の要件と同様に、予め1機以上の予備衛星を軌道傾斜角が概略0、あるいは打ち上げ地点の緯度に近似的に等しく、高度2,000km以下の低高度軌道である予備衛星軌道に配置しておくものであり、複数の運用軌道をもった衛星システムのひとつの運用軌道にある衛星のひとつあるいは複数を、上記の衛星軌道にあるひとつの予備衛星で置き換えて、置き換える前の機能に類似の機能を発揮させようとする場合に、予備衛星を上記の様に低い高度に配置しておき、前記の運用軌道にある複数の衛星の機能が発揮できるように再配置するための複数軌道面衛星システムへの予備衛星の軌道投入方法についてのものであるが、
まず、予備衛星の1機が上記の運用軌道面を横切る時点近傍で、前記の予備衛星を進行方向に増速して上記の運用軌道の遠地点高度よりも高い遠地点高度をもつ第1の遷移軌道に再配置し、
次に、上記の第1の遷移軌道の遠地点近傍で、軌道面変換と近地点引き上げの制御を行って、上記の運用軌道面内で運用軌道と2点の交点をもつ第2の遷移軌道に投入し、
その後、前記の2点の交点のいずれかを通過する際に軌道面内の速度成分を調整して、上記の予備衛星を運用軌道に投入することである。
Further, the thirteenth requirement of the present invention is that, similarly to the ninth requirement, one or more spare satellites have an orbital inclination angle of approximately 0 or approximately equal to the launch latitude and an altitude of 2,000 km or less. Is placed in a spare satellite orbit, which is a low-altitude orbit, and one or more of the satellites in one operational orbit of a satellite system having multiple operational orbits is replaced with one spare orbit in the above satellite orbit. When replacing a satellite with a function similar to the function before the replacement, reserve satellites are placed at a low altitude as described above, and the functions of multiple satellites in the above-mentioned operational orbit are exhibited. It is about the method of orbiting a spare satellite into a multi-orbital plane satellite system for relocation as possible,
First, a first transition orbit having a far point altitude higher than the far point altitude of the operational orbit by accelerating the spare satellite in the traveling direction in the vicinity of the time when one of the spare satellites crosses the operational orbital plane. Rearrange to
Next, in the vicinity of the far point of the first transition orbit, control of the orbital plane conversion and the raising of the near point is performed, and the second transition orbit having the intersection of the operational trajectory and the two points in the operational trajectory plane is input. And
Thereafter, the speed component in the orbital plane is adjusted when passing through one of the intersections of the two points, and the spare satellite is put into the operational orbit.
また、本発明の第14の要件は、第9の要件と同様に、予め1機以上の予備衛星を軌道傾斜角が概略0、あるいは打ち上げ地点の緯度に近似的に等しく、高度2,000km以下の低高度軌道である予備衛星軌道に配置しておくものであり、複数の運用軌道をもった衛星システムのひとつの運用軌道にある衛星のひとつあるいは複数を、上記の衛星軌道にあるひとつの予備衛星で置き換えて、置き換える前の機能に類似の機能を発揮させようとする場合に、予備衛星を上記の様に低い高度に配置しておき、前記の運用軌道にある複数の衛星の機能が発揮できるように再配置するための複数軌道面衛星システムへの予備衛星の軌道投入方法についてのものであるが、
まず、予備衛星の1機が上記の運用軌道面を横切る時点近傍で、前記の予備衛星を進行方向に増速して上記の運用軌道の遠地点高度よりも高い遠地点高度をもつ第1の遷移軌道に再配置し、
次に、上記の第1の遷移軌道の遠地点近傍で、軌道面変換と近地点引き上げの制御を行って、上記の運用軌道面内で運用軌道に概略外接する第2の遷移軌道に投入し、
その外接点付近を通過する際に進行方向と逆方向の加速を行って減速することにより、上記の予備衛星を運用軌道に投入することである。
As in the ninth requirement, the fourteenth requirement of the present invention is that one or more spare satellites have an orbital inclination angle of approximately 0 or approximately equal to the launch point latitude, and an altitude of 2,000 km or less. Is placed in a spare satellite orbit, which is a low-altitude orbit, and one or more of the satellites in one operational orbit of a satellite system having multiple operational orbits is replaced with one spare orbit in the above satellite orbit. When replacing a satellite with a function similar to the function before the replacement, reserve satellites are placed at a low altitude as described above, and the functions of multiple satellites in the above-mentioned operational orbit are exhibited. It is about the method of orbiting a spare satellite into a multi-orbital plane satellite system for relocation as possible,
First, a first transition orbit having a far point altitude higher than the far point altitude of the operational orbit by accelerating the spare satellite in the traveling direction in the vicinity of the time when one of the spare satellites crosses the operational orbital plane. Rearrange to
Next, in the vicinity of the far point of the first transition orbit, control of the orbital plane conversion and the raising of the near point is performed, and the second transition orbit is substantially circumscribed by the operating orbit in the operating orbital plane.
When passing through the vicinity of the outer contact, acceleration is performed in the direction opposite to the traveling direction and the vehicle is decelerated, so that the spare satellite is put into the operation orbit.
また、本発明の第15の要件は、第1ないし第14の要件のいずれかの特徴をもった複数軌道面衛星システムへの予備衛星の軌道投入方法で、
運用軌道にある衛星と同一にするために、遷移軌道間の軌道変換制御あるいは遷移軌道から運用軌道に投入する制御を、2回以上の制御操作に分割して実施することである。
The fifteenth requirement of the present invention is a method of orbiting a spare satellite into a multi-orbital plane satellite system having any one of the first to fourteenth features.
In order to make it the same as the satellite in the operation orbit, the orbit conversion control between the transition orbits or the control to enter the operation orbit from the transition orbit is divided into two or more control operations.
以下に、この発明の実施の形態を図面に基づいて詳細に説明する。以下の説明では、具体的な数値を挙げるが、これらは、説明のためのものであって、この値に限定すべき理由は無く、他の条件でも、請求項にかかわる要件を満たすことができることは明らかである。また、運用軌道の衛星を、予備衛星で置き換えるに当たっては、予め、置き換えられるべき衛星を運用軌道から移動させておくことが望ましい。 Embodiments of the present invention will be described below in detail with reference to the drawings. In the following description, specific numerical values will be given, but these are for explanation, there is no reason to limit to this value, and other requirements can satisfy the requirements of the claims. Is clear. In addition, when replacing a satellite in operation orbit with a spare satellite, it is desirable to move the satellite to be replaced from the operation orbit in advance.
静止衛星は、赤道上にあって地球の自転と同じ周期で公転する衛星であるが、準天頂衛星は、地球の自転と同じ周期で公転する衛星であるが、赤道に対して傾いた軌道面上にある衛星である。このような準天頂衛星を、地上のサービスエリアから見た位置は、刻々と変化し、見通しの利かない位置にある時間帯が発生するので、複数の準天頂衛星を用いて衛星システムが構成される。また、このような衛星システムの軌道面は、複数である。 A geostationary satellite is a satellite that is on the equator and revolves at the same cycle as the Earth's rotation, while a quasi-zenith satellite is a satellite that revolves at the same cycle as the Earth's rotation, but the orbital plane tilted with respect to the equator. The satellite above. The position of such a quasi-zenith satellite as viewed from the service area on the ground changes every moment, and a time zone occurs where the line of sight cannot be seen. Therefore, a satellite system is configured using a plurality of quasi-zenith satellites. The In addition, the satellite system has a plurality of orbital surfaces.
以下の説明において、より具体的な比較を行なうため、以下の衛星システムに属する衛星に故障が発生し、この衛星を、予備軌道にある予備衛星で置き換える場合を説明する。また、以下では、便宜上、衛星システムには、予備衛星が含まれないものとして説明するが、実際の運用においては、衛星システムには、予備衛星を備えており、運用軌道にあって、例えば故障した衛星を予備衛星で置き換えるものである。 In the following description, in order to make a more specific comparison, a case will be described in which a failure occurs in a satellite belonging to the following satellite system, and this satellite is replaced with a spare satellite in a spare orbit. In the following description, for the sake of convenience, the satellite system is described as not including a spare satellite. However, in actual operation, the satellite system includes a spare satellite and is in an operational orbit, for example, a failure. It is intended to replace the satellite with a spare satellite.
まず、準天頂衛星システムの運用軌道にある衛星を予備衛星で置き換える場合について、それぞれの配置と軌道投入を以下に説明する。 First, regarding the case where a satellite in the operational orbit of the quasi-zenith satellite system is replaced with a spare satellite, the respective arrangement and orbit insertion will be described below.
また、ロケットで初期投入されるパーキング軌道は、高度185kmの円軌道であるとする。また、準天頂衛星の軌道パラメータを以下のとおりとする。 In addition, it is assumed that the parking orbit initially introduced by the rocket is a circular orbit having an altitude of 185 km. The orbit parameters of the quasi-zenith satellite are as follows.
また、上記のパーキング軌道を経て予備衛星軌道に投入された衛星で、上記の準天頂衛星システムの運用軌道にある衛星を置き換えるものとし、比較のために、パーキング軌道からの増速(減速)量の合計として評価(単位はm/s)する。 In addition, a satellite that has entered the backup satellite orbit via the parking orbit described above will replace the satellite in the operational orbit of the quasi-zenith satellite system, and the amount of acceleration (deceleration) from the parking orbit for comparison. (The unit is m / s).
例えば、特許文献1に記載の方法では、以下の制御が必要である。 For example, in the method described in Patent Document 1, the following control is necessary.
(1)静止軌道待機の場合 (ベストケースとして赤道上からの打上げを仮定)
遷移軌道投入 2,459
静止軌道投入 1,479
静止軌道投入まで 計3,938m/s
面内調整 8
軌道面変換 2,388
軌道変更制御 2,396m/s
合計制御量 6,334m/s
(1) In case of stationary orbit waiting (assuming launch from the equator as the best case)
Transition orbit injection 2,459
Static orbit insertion 1,479
3,938m / s total until the geostationary orbit
In-plane adjustment 8
Track plane conversion 2,388
Orbit change control 2,396m / s
Total control amount 6,334m / s
(2)静止軌道待機の場合 (北緯28.5度からの打上げを仮定)
遷移軌道投入 2,459
静止軌道投入 1,837
静止軌道投入まで 計4,296m/s
面内調整 8
軌道面変換 2,388
軌道変更制御 2,396m/s
合計制御量 6,692m/s
(2) Static orbit standby (assuming launch from 28.5 degrees north latitude)
Transition orbit injection 2,459
Static orbit insertion 1,837
4,296m / s total until the geostationary orbit
In-plane adjustment 8
Track plane conversion 2,388
Orbit change control 2,396m / s
Total control amount 6,692m / s
(3)ペリジ高度軌道待機の場合 (ペストケースとして赤道上からの打上げを仮定)
遷移軌道投入 2,384
静止軌道投入 1,481
静止軌道投入まで 計3,865m/s
軌道面変換 2,479
遠地点上げ 157
軌道変更制御 2,636m/s
合計制御量 6,501m/s
(3) Perigi altitude orbit standby (assuming launch from the equator as a plague case)
Transition orbit injection 2,384
Static orbit injection 1,481
3,865m / s total until the geostationary orbit
Orbital surface conversion 2,479
Raise distance 157
Trajectory change control 2,636m / s
Total control amount 6,501m / s
以上の結果から、特許文献1の方法では、少なくとも6、334m/sの制御が必要であることが分かる。 From the above results, it can be seen that at least 6,334 m / s control is required in the method of Patent Document 1.
以下の実施例では、予備衛星を待機させる軌道を、高度1,000kmの円軌道と仮定している。 In the following embodiment, it is assumed that the orbit for waiting the standby satellite is a circular orbit with an altitude of 1,000 km.
図1、図3は、それぞれ本発明の第1、第3の要件を備えた場合の1例を示す模式図である。これらの第1、第3の要件を満たす実施例として、次の例をあげることができる。この場合の予備衛星軌道からの増速(減速)量の合計として評価(単位はm/s)は、以下のようになる。
口ケツトで予備衛星軌道投入 443
遠地点高度を39,960kmに引き上げ 2,304
軌道面を45度変換し、
高度39,960kmの円軌道に投入 2,142
準天頂軌道遠地点位置で減速し、準天頂軌道に投入 149
合計制御量 5,038m/s
FIG. 1 and FIG. 3 are schematic views showing an example when the first and third requirements of the present invention are provided, respectively. The following examples can be given as examples that satisfy these first and third requirements. In this case, the evaluation (unit: m / s) as the total acceleration (deceleration) amount from the spare satellite orbit is as follows.
Preliminary satellite orbit insertion with mouth socket 443
Raise far-field altitude to 39,960 km 2,304
Convert the raceway surface by 45 degrees,
Thrown into a circular orbit at an altitude of 39,960 km 2,142
Decelerate at the far quasi-zenith orbit and enter the quasi-zenith orbit 149
Total control amount 5,038m / s
また、図4は、本発明の第4の要件を備えた場合の1例を示す模式図である。第1、第4の要件を満たす実施例として、次の例をあげることができる。
口ケットで予備衛星軌道投入 443
遠地点高度を31,612kmに引き上げ 2,162
軌道面を45度変換し、高度31,612kmの
円軌道に投入 2,333
準天頂軌道近地点位置で加速し、準天頂軌道に投入 157
合計制御量 5,095m/s
FIG. 4 is a schematic diagram showing an example when the fourth requirement of the present invention is provided. The following examples can be given as examples that satisfy the first and fourth requirements.
Preliminary satellite orbits in the mouth 443
Raise far-field altitude to 31,612 km 2,162
The track surface is converted 45 degrees, and the altitude is 31,612 km.
Throw in a circular orbit 2,333
Accelerate near the quasi-zenith orbit and place it in the quasi-zenith orbit 157
Total control amount 5,095m / s
また、図5は、本発明の第5の要件を備えた場合の1例を示す模式図である。第1、第5の要件を満たす実施例として、次の例をあげることができる。
ロケットで予備衛星軌道投入 443
遠地点高度を35,373kmに引き上げ 2,232
(準天偵軌道の昇交点高度:35,373km)
軌道面を45度変換し、直接準天頂軌道に投入 2,260
(3次元速度制御)
合計制御量 4,935m/s
FIG. 5 is a schematic diagram showing an example when the fifth requirement of the present invention is provided. The following examples can be given as examples that satisfy the first and fifth requirements.
Preliminary satellite orbit injection with rocket 443
Raise far-point altitude to 35,373 km 2,232
(Ascending intersection altitude of quasi-tentacle orbit: 35,373 km)
Transforms the orbital plane by 45 degrees and directly enters the quasi-zenith orbit 2,260
(3D speed control)
Total control amount 4,935m / s
また、図2は、本発明の第2の要件を備えた場合の1例を示す模式図である。
第2、第3の要件を満たす実施例として、次の例をあげることができる。これは、軌道面の関係が最悪の場合に相当する。
口ケツトで予備衛星軌道投入 443
(軌道傾斜角28,5度)
遠地点高度を39,960kmに引き上げ 2,304
軌道面を73.5度変換し、
高度39,960kmの円軌道に投入 2,899
準天頂軌道遠地点位置で減速し、準天頂軌道に投入 149
合計制御量 5,795m/s
FIG. 2 is a schematic diagram showing an example when the second requirement of the present invention is provided.
The following examples can be given as examples that satisfy the second and third requirements. This corresponds to the worst case of the relationship between the raceway surfaces.
Preliminary satellite orbit insertion with mouth socket 443
(Orbital inclination angle 28, 5 degrees)
Raise far-field altitude to 39,960 km 2,304
Convert the raceway surface to 73.5 degrees,
Thrown into a circular orbit at an altitude of 39,960 km 2,899
Decelerate at the far quasi-zenith orbit and enter the quasi-zenith orbit 149
Total control amount 5,795m / s
次に、第2、第4の要件の要件を満たす実施例として、次の例をあげることができる。これも軌道面の関係が最悪の場合に相当する。
ロケットで予備衛星軌道投入 443
(軌道傾斜角28.5度)
遠地点高度を31、612kmに引き上げ 2,162
軌道面を73.5度変換し、
高度31,612kmの円軌道に投入 3,241
準天頂軌道近地点位置で加速し、準天頂軌道に投入 157
合計制御量 6,003m/s
Next, the following example can be given as an example that satisfies the requirements of the second and fourth requirements. This also corresponds to the worst case of the relationship between the raceway surfaces.
Preliminary satellite orbit injection with rocket 443
(Orbital inclination angle 28.5 degrees)
Raise far-point altitude to 31,612 km 2,162
Convert the raceway surface to 73.5 degrees,
Thrown into a circular orbit at an altitude of 31,612 km 3,241
Accelerate near the quasi-zenith orbit and place it in the quasi-zenith orbit 157
Total control amount 6,003 m / s
また、図5は、本発明の第6の要件を備えた場合の1例を示す模式図でもある。
第2、第6の要件の要件を満たす実施例として、次の例をあげることができる。これも軌道面の関係が最悪の場合に相当する。
ロケットで予備衛星軌道投入 443
(軌道傾斜角28,5度)
遠地点高度を35,373kmに引き上げ 2,232
(準天偵軌道との交点高度:35,373km)
軌道面を73.5度変換し、直接準天頂軌道に投入 3,088
(3次元速度制御)
合計制御量 5,763m/s
FIG. 5 is also a schematic diagram showing an example when the sixth requirement of the present invention is provided.
The following examples can be given as examples that satisfy the requirements of the second and sixth requirements. This also corresponds to the worst case of the relationship between the raceway surfaces.
Preliminary satellite orbit injection with rocket 443
(Orbital inclination angle 28, 5 degrees)
Raise far-point altitude to 35,373 km 2,232
(Intersection altitude with quasi-tentacle orbit: 35,373 km)
Transform the orbital plane to 73.5 degrees and put it directly into the quasi-zenith orbit 3,088
(3D speed control)
Total control amount 5,763m / s
また、図6、図8は、それぞれ本発明の第7、第9の要件を備えた場合の1例を示す模式図である。これらの第7、第9の要件を満たす実施例として、次の例をあげることができる。
ロケットで予備衛星軌道投入 443
遠地点高度を100,000kmに引き上げ 2,702
軌道面を45度変換し、
近地点高度39,960kmに引き上げ 1,128
遠地点を引き下げ、高度39,960klnの円軌道に投入 529
準天頂軌道遠地点位置で減速し、準天頂軌道に投入 149
合計制御量 4,951m/s
この合計制御量の結果は、上記の、第1、第3の要件を備えた場合の値に比べて、−87m/s、となっていることが分かる。
FIGS. 6 and 8 are schematic views showing an example in the case where the seventh and ninth requirements of the present invention are provided, respectively. The following example can be given as an example satisfying these seventh and ninth requirements.
Preliminary satellite orbit injection with rocket 443
Raise far-point altitude to 100,000 km 2,702
Convert the raceway surface by 45 degrees,
Raised to near altitude 39,960km 1,128
Lower the far point and put it into a circular orbit at an altitude of 39,960 kln 529
Decelerate at the far quasi-zenith orbit and enter the quasi-zenith orbit 149
Total control amount 4,951m / s
It can be seen that the result of the total control amount is -87 m / s, compared to the value obtained when the first and third requirements are satisfied.
また、図9は、第10の要件を備えた場合の1例を示す模式図である。第7、第10の要件を満たす実施例として、次の例をあげることができる。
(7)、(10)の実施例
口ケツトで予備衛星軌道投入 443
遠地点高度をI00,000kmに引き上げ 2,702
軌道面を45度変換し、
近地点高度31,612kmに引き上げ 1,036
遠地点を引き下げ、高度31,612kmの円軌道に投入 693
準天頂軌道近地点位置で加速し、準天頂軌道に投入 157
合計制御量 5,031m/s
この合計制御量の結果は、上記の、第1、第4の要件を備えた場合の値に比べて、−64m/s、となっていることが分かる。
FIG. 9 is a schematic diagram showing an example when the tenth requirement is provided. The following examples can be given as examples satisfying the seventh and tenth requirements.
(7), preliminary satellite orbit injection with the embodiment mouth socket of (10) 443
Raise far-field altitude to I00,000 km 2,702
Convert the raceway surface by 45 degrees,
Raised to near altitude 31,612km 1,036
Pull down the far point and put it into a circular orbit at an altitude of 31,612 km 693
Accelerate near the quasi-zenith orbit and place it in the quasi-zenith orbit 157
Total control amount 5,031m / s
It can be seen that the result of the total control amount is −64 m / s compared to the value in the case where the first and fourth requirements are provided.
また、図10は、第11の要件を備えた場合の1例を示す模式図である。第7、第11の要件を満たす実施例として、次の例をあげることができる。
ロケットで予備衛星軌道投入 443
遠地点高度を100,000kmに引き上げ 2,702
軌道面を45度変換し、
近地点高度35,373kmに引き上げ 1,080
(準天頂軌道の昇交点高度:35,373km)
近地点(準天頂軌道との交点)で準天頂軌道に直接投入 685
(2次元速度制御)
合計制御量 4,910m/s
この合計制御量の結果は、上記の、第1、第5の要件を備えた場合の値に比べて、−25m/s、となっていることが分かる。
FIG. 10 is a schematic diagram showing an example when the eleventh requirement is provided. The following examples can be given as examples that satisfy the seventh and eleventh requirements.
Preliminary satellite orbit injection with rocket 443
Raise far-point altitude to 100,000 km 2,702
Convert the raceway surface by 45 degrees,
Raised to near altitude 35,373 km 1,080
(Altitude of ascending intersection of quasi-zenith orbit: 35,373 km)
Direct injection into the quasi-zenith orbit at the near point (intersection with the quasi-zenith orbit) 685
(2D speed control)
Total control amount 4,910m / s
It can be seen that the result of the total control amount is −25 m / s as compared with the value when the first and fifth requirements are satisfied.
また、図12は、第14の要件を備えた場合の1例を示す模式図である。第7、第14の要件を満たす実施例として、次の例をあげることができる。
口ケツトで予備衛星軌道投入 443
遠地点高度を100,000kmに引き上げ 2,702
軌道面を45度変換し、外接軌道に投入 1,087
軌道の接点で減速し、準天頂軌道に直接投入 617
合計制御量 4,849m/s
この合計制御量の結果は、上記の、第7、第11の要件を備えた場合の値に比べて、−61m/s、となっていることが分かる。
FIG. 12 is a schematic diagram showing an example when the fourteenth requirement is provided. The following examples can be given as examples that satisfy the seventh and fourteenth requirements.
Preliminary satellite orbit insertion with mouth socket 443
Raise far-point altitude to 100,000 km 2,702
Convert the raceway surface by 45 degrees and put it into the circumscribed track 1,087
Decelerate at the contact point of the orbit and directly enter the quasi-zenith orbit 617
Total control amount 4,849m / s
It can be seen that the result of this total control amount is -61 m / s compared to the value when the seventh and eleventh requirements are satisfied.
また、図7は、第8の要件を備えた場合の1例を示す模式図である。第7、第9の要件を満たす実施例として、次の例をあげることができる。この場合も、軌道面の関係が最悪の場合である。
口ケットで予備衛星軌道投入 443
(軌道傾斜角28,5度)
遠地点高度を100,000kmに引き上げ 2,702
軌道面を73.5度変換し近地点高度
39,960kmに引き上げ 1,471
遠地点を引き下げ、高度39,960kmの円軌道に投入 529
準天頂軌道遠地点位置で減速し、準天頂軌道に投入 149
合計制御量 5,294m/s
この合計制御量の結果は、上記の、第2、第3の要件を備えた場合の値に比べて、−501m/s、となっていることが分かる。
FIG. 7 is a schematic diagram showing an example when the eighth requirement is provided. The following examples can be given as examples satisfying the seventh and ninth requirements. This is also the worst case of the relationship between the raceway surfaces.
Preliminary satellite orbits in the mouth 443
(Orbital inclination angle 28, 5 degrees)
Raise far-point altitude to 100,000 km 2,702
Altitude of near point by converting the raceway surface to 73.5 degrees
Raised to 39,960 km 1,471
Lower the far point and put it in a circular orbit at an altitude of 39,960 km 529
Decelerate at the far quasi-zenith orbit and enter the quasi-zenith orbit 149
Total control amount 5,294m / s
It can be seen that the result of the total control amount is -501 m / s, compared to the value when the second and third requirements are satisfied.
また、図12は、第14の要件を備えた場合の1例を示す模式図である。第8、第12の要件を満たす実施例として、次の例をあげることができる。この場合も、軌道面の関係が最悪の場合である。
口ケツトで予備衛星軌道投入 443
(軌道傾斜角28.5度)
遠地点高度を100,000kmに引き上げ 2,702
軌道面を73.5度変換し近地点高度
35,373kmに引き上げ 1,422
(準天頂軌道との交点高度:35,373km)
近地点(準天頂軌道との交点)で準天頂軌道に直接投入 685
(2次元速度制御)
合計制御量 5,252m/s
この合計制御量の結果は、上記の、第2、第6の要件を備えた場合の値に比べて、−511m/s、となっていることが分かる。
FIG. 12 is a schematic diagram showing an example when the fourteenth requirement is provided. The following examples can be given as examples that satisfy the eighth and twelfth requirements. This is also the worst case of the relationship between the raceway surfaces.
Preliminary satellite orbit insertion with mouth socket 443
(Orbital inclination angle 28.5 degrees)
Raise far-point altitude to 100,000 km 2,702
Altitude of near point by converting the raceway surface to 73.5 degrees
Raised to 35,373 km 1,422
(Intersection altitude with quasi-zenith orbit: 35,373 km)
Direct injection into the quasi-zenith orbit at the near point (intersection with the quasi-zenith orbit) 685
(2D speed control)
Total control amount 5,252m / s
It can be seen that the result of the total control amount is −511 m / s compared to the value when the second and sixth requirements are satisfied.
次に、第8、第12の要件を満たす他の実施例として、次の例をあげることができる。この場合も、軌道面の関係が最悪の場合である。
口ケツトで予備衛星軌道投入 443
(軌道傾斜角28.5度)
遠地点高度を300,000kmに引き上げ 2,922
軌道面を73,5度変換し近地点高度35,373kmに引き上げ
(準天頂軌道との交点高度:35,373km) 543
近地点(準天頂軌道との交点)で準天頂軌道に直接投入 1,055
(2次元速度制御)
合計制御量 4,963m/s
この合計制御量の結果は、上記の、第2、第6の要件を備えた場合の値に比べて、−800m/s、となっていることが分かる。
Next, as another embodiment satisfying the eighth and twelfth requirements, the following example can be given. This is also the worst case of the relationship between the raceway surfaces.
Preliminary satellite orbit insertion with mouth socket 443
(Orbital inclination angle 28.5 degrees)
Raise far-field altitude to 300,000 km 2,922
Transform the orbital plane by 73,5 degrees and raise it to a near altitude of 35,373 km (intersection altitude with quasi-zenith orbit: 35,373 km) 543
Direct injection into the quasi-zenith orbit at a near point (intersection with the quasi-zenith orbit) 1,055
(2D speed control)
Total control amount 4,963 m / s
It can be seen that the result of the total control amount is −800 m / s as compared with the value obtained when the second and sixth requirements are satisfied.
次に、第8、第14の要件を満たす実施例として、次の例をあげることができる。この場合も、軌道面の関係が最悪の場合である。
(8)、(14)の実施例1 (軌道面の関係が最悪のケース)
ロケツトで予備衛星軌道投入 443
(軌道傾斜角28.5度)
遠地点高度を100,000kmに引き上げ 2,702
軌道面を73.5度変換し、外接軌道に投入 1,430
軌道の接点で減速し、準天頂軌道に直接投入 617
合計制御量 5,192m/s
この合計制御量の結果は、上記の、第8、第12の要件を備えた場合の値に比べて、−60m/s、となっていることが分かる。
Next, the following examples can be given as examples that satisfy the eighth and fourteenth requirements. This is also the worst case of the relationship between the raceway surfaces.
(8), Example 14 of (14) (The worst case for the relationship between the raceway surfaces)
Preliminary satellite orbit insertion with rocket 443
(Orbital inclination angle 28.5 degrees)
Raise far-point altitude to 100,000 km 2,702
The raceway surface is converted 73.5 degrees and put into the circumscribed raceway 1,430
Decelerate at the contact point of the orbit and directly enter the quasi-zenith orbit 617
Total control amount 5,192m / s
It can be seen that the result of the total control amount is −60 m / s compared to the value when the eighth and twelfth requirements are satisfied.
次に、第8、第14の要件を満たす他の実施例として、次の例をあげることができる。この場合も、軌道面の関係が最悪の場合である。
口ケツトで予備衛星軌道投入 443
(軌道傾斜角28.5度)
遠地点高度を300,000kmに引き上げ 2,922
軌道面を73,5度変換し、外接軌道に投入 545
軌道の接点で減速し、準天頂軌道に直接投入 1,011
合計制御量 4,921m/s
この合計制御量の結果は、上記の、第8、第12の要件を備えた場合の値に比べて、−42m/s、となっていることが分かる。
Next, the following example can be given as another embodiment that satisfies the eighth and fourteenth requirements. This is also the worst case of the relationship between the raceway surfaces.
Preliminary satellite orbit insertion with mouth socket 443
(Orbital inclination angle 28.5 degrees)
Raise far-field altitude to 300,000 km 2,922
Convert the raceway surface by 73.5 degrees and put it into the circumscribed raceway 545
Decelerate at the contact point of the orbit and directly enter the quasi-zenith orbit 1,011
Total control amount 4,921m / s
It can be seen that the result of the total control amount is -42 m / s, compared to the value obtained when the eighth and twelfth requirements are satisfied.
上記したように、本発明により合計制御量を減少させることができ、衛星に搭載すべき推薬の重量を減らすことができる。例えば、合計制御量を4,900m/s程度に削減すれば、先例の静止軌道待機に比べて、衛星の実効的な軌道投入重量を50%程度増加させることができるので、本発明の工業的価値は十分に大きいといえる。 As described above, the total control amount can be reduced by the present invention, and the weight of the propellant to be mounted on the satellite can be reduced. For example, if the total control amount is reduced to about 4,900 m / s, the effective orbit insertion weight of the satellite can be increased by about 50% as compared with the conventional stationary orbit standby. The value is great enough.
本発明は、準天頂衛星に適用することができるが、準天頂衛星に限らず、GPSのように複数の軌道面に複数の衛星を配置することによって構成される中高度軌道衛星システムや長楕円軌道衛星システムに利用でき、そのシステムの衛星が故障した場合に、その故障した衛星を予備衛星で置き換えて、短期間でシステムを復旧させることができる。 The present invention can be applied to a quasi-zenith satellite, but is not limited to a quasi-zenith satellite, and a medium-altitude orbit satellite system configured by arranging a plurality of satellites on a plurality of orbital surfaces such as a GPS or a long ellipse. It can be used for an orbital satellite system, and when a satellite in the system fails, the failed satellite can be replaced with a spare satellite and the system can be restored in a short period of time.
1 運用軌道
1p 運用軌道面
2 予備衛星軌道
2p 予備衛星軌道面
3 第1の遷移軌道
3f 第1の遷移軌道の遠地点
4 第2の遷移軌道
DESCRIPTION OF SYMBOLS 1 Operational orbit 1p Operational orbital surface 2 Spare satellite orbit 2p Preliminary satellite orbital surface 3 First transition orbit 3f Far point of first transition orbit 4 Second transition orbit
Claims (15)
上記の予備衛星軌道2の属する予備衛星軌道面2pと、上記の運用軌道1の属する運用軌道面1pと、が有意の角度をもって交わるとき、
前記の予備衛星はパーキング軌道を経て前記の予備衛星軌道2に投入し、
前記の予備衛星が前記の運用軌道1の昇交点または降交点の直下近傍を横切る時間帯に、上記の予備衛星を、進行方向に増速して、遠地点高度が運用軌道1の近地点と遠地点の間の高度となる第1の遷移軌道3に引き上げ、
次に、上記の第1の遷移軌道3の遠地点において、軌道面変換と近地点引き上げの制御とを同時に行なって運用軌道面1pに投入し、
上記の運用軌道面内での制御を行なって上記の運用軌道1に投入することを特徴とする複数軌道面衛星システムへの予備衛星の軌道投入方法。 One or more satellites are arranged in each of the operational orbits on a plurality of different operational orbital planes of the quasi-zenith satellite system, and the angles formed by all the operational orbital planes in advance are approximated by one or more spare satellites. In a satellite system that is operated by placing it in a standby satellite orbit 2 that is a low altitude orbit with an orbital inclination angle of approximately 0 and an altitude of 2,000 km or less, a satellite in one operational orbit 1 of the above satellite system is used. When replacing with one spare satellite ,
When the spare satellite orbit plane 2p to which the spare satellite orbit 2 belongs and the operational orbit plane 1p to which the operational orbit 1 belongs intersect at a significant angle,
The spare satellite enters the spare satellite orbit 2 through a parking orbit,
During the time zone when the spare satellite crosses the ascending or descending point of the operational orbit 1, the spare satellite is accelerated in the traveling direction so that the far point altitude is between the near and far points of the operational orbit 1. Pull up to the first transition orbit 3 which is the altitude between,
Next, at the far point of the first transition orbit 3 described above, the orbital plane conversion and the control of raising the near point are performed at the same time and put into the operation orbital plane 1p.
A method for orbiting a spare satellite into a multi-orbital plane satellite system, wherein control is performed within the operational orbital plane and the operation orbit 1 is entered.
上記の予備衛星軌道2の属する予備衛星軌道面2pと、上記の運用軌道1の属する運用軌道面1pと、が有意の角度をもって交わるとき、
前記の予備衛星はパーキング軌道を経て前記の予備衛星軌道2に投入し、
前記の予備衛星が前記の運用軌道1の面1pを横切る時間帯に、上記の予備衛星を、進行方向に増速して、遠地点高度が運用軌道1の近地点と遠地点の間の高度となる第1の遷移軌道3に引き上げて、
上記の第1の遷移軌道3の遠地点で軌道面変換と近地点引き上げとの両方の制御を同時に行って運用軌道面1pに投入し、
上記の運用軌道面内での制御を行なって上記の運用軌道1に投入することを特徴とする複数軌道面衛星システムへの予備衛星の軌道投入方法。 Place one or more satellites in each operational orbit on different operational orbital planes of the quasi-zenith satellite system , launch one or more spare satellites in the east in advance with a rocket, and the orbit inclination angle In a satellite system that is arranged and operated in a standby satellite orbit 2 that is a low altitude orbit having an altitude of 2,000 km or less that is approximately equal to the latitude of the point, a satellite in one operational orbit 1 of the above satellite system is When replacing with a spare satellite ,
When the spare satellite orbit plane 2p to which the spare satellite orbit 2 belongs and the operational orbit plane 1p to which the operational orbit 1 belongs intersect at a significant angle,
The spare satellite enters the spare satellite orbit 2 through a parking orbit,
During the time zone when the spare satellite crosses the surface 1p of the operational orbit 1, the spare satellite is accelerated in the traveling direction so that the far point altitude becomes the altitude between the near point and the far point of the operational orbit 1. To 1 transition orbit 3
At the far point of the first transition orbit 3, the control of both the orbital plane conversion and the near point raising is performed at the same time and put into the operation orbital plane 1p.
A method for orbiting a spare satellite into a multi-orbital plane satellite system, wherein control is performed within the operational orbital plane and the operation orbit 1 is entered.
上記の予備衛星軌道2の属する予備衛星軌道面2pと、上記の運用軌道1の属する運用軌道面1pと、が有意の角度をもって交わるとき、
前記の予備衛星はパーキング軌道を経て前記の予備衛星軌道2に投入し、
前記の予備衛星が前記の運用軌道1の面1pを横切る時間帯に、上記の予備衛星を、進行方向に増速して、その遠地点高度が運用軌道1の遠地点の高度となる第1の遷移軌道3に引き上げて、
上記の第1の遷移軌道3の遠地点で軌道面変換と近地点引き上げとの両方の制御を同時に行って前記近地点の高度が第1の遷移軌道3の遠地点の高度に等しい円軌道である第2の遷移軌道4に投入し、
上記の運用軌道1の遠地点の近傍点において進行方向と逆方向の加速を行って減速してその近地点高度を運用軌道1の近地点高度に近似的に等しくなるようにすることにより、上記の予備衛星を上記の運用軌道1に投入することを特徴とする複数軌道面衛星システムへの予備衛星の軌道投入方法。 One or more satellites are arranged in each of the operational orbits on a plurality of different operational orbital planes of the quasi-zenith satellite system, and the angles formed by all the operational orbital planes in advance are approximated by one or more spare satellites. A satellite operated with a rocket launching a rocket with an orbital inclination angle of approximately 0 or just east, which is equal to the latitude of the launch point, and placed in a backup satellite orbit which is a low altitude orbit with an altitude of 2,000 km or less. In the system, a satellite in one operational orbit 1 of the above satellite system is replaced with one spare satellite ,
When the spare satellite orbit plane 2p to which the spare satellite orbit 2 belongs and the operational orbit plane 1p to which the operational orbit 1 belongs intersect at a significant angle,
The spare satellite enters the spare satellite orbit 2 through a parking orbit,
In the time zone when the spare satellite crosses the surface 1p of the operational orbit 1, the spare satellite is accelerated in the traveling direction so that the far-point altitude becomes the altitude of the far point of the operational orbit 1 Pull it up to orbit 3,
A second trajectory in which the altitude at the near point is equal to the altitude at the far point of the first transition trajectory 3 by simultaneously controlling both the trajectory plane conversion and the near point pull-up at the far point of the first transition trajectory 3. Into transition orbit 4,
By performing acceleration in the direction opposite to the traveling direction at a point near the far point of the operational orbit 1 and decelerating so that the near point altitude is approximately equal to the near point altitude of the operational orbit 1, Is put into the operational orbit 1 described above, and a method for orbiting a spare satellite into a multi-orbital plane satellite system is provided.
上記の予備衛星軌道2の属する予備衛星軌道面2pと、上記の運用軌道1の属する運用軌道面1pと、が有意の角度をもって交わるとき、
前記の予備衛星はパーキング軌道を経て前記の予備衛星軌道2に投入し、
前記の予備衛星が前記の運用軌道1の面1pを横切る時間帯に、上記の予備衛星を、進行方向に増速して、その遠地点高度が運用軌道1の近地点の高度となる第1の遷移軌道3に引き上げて、
上記の第1の遷移軌道3の遠地点で、軌道面変換と近地点引き上げとの両方の制御を行って、前記近地点の高度が第1の遷移軌道3の遠地点の高度に等しい円軌道である第2の遷移軌道4に投入し、
上記の運用軌道の近地点の近傍点において進行方向に増速を行って、その遠地点高度を運用軌道1の遠地点高度に近似的に等しくなるようにすることにより、上記の予備衛星を上記の運用軌道1に投入することを特徴とする複数軌道面衛星システムへの予備衛星の軌道投入方法。 One or more satellites are arranged in each of the operational orbits on a plurality of different operational orbital planes of the quasi-zenith satellite system, and the angles formed by all the operational orbital planes in advance are approximated by one or more spare satellites. The orbital inclination angle is set to approximately 0 or just east with a rocket, and it is placed and operated in the standby satellite orbit 2 which is a low altitude orbit with an altitude of 2,000 km or less approximately equal to the latitude of the launch point. In a satellite system, a satellite in one operational orbit 1 of the above satellite system is replaced with one spare satellite ,
When the spare satellite orbit plane 2p to which the spare satellite orbit 2 belongs and the operational orbit plane 1p to which the operational orbit 1 belongs intersect at a significant angle,
The spare satellite enters the spare satellite orbit 2 through a parking orbit,
During the time zone when the spare satellite crosses the surface 1p of the operational orbit 1, the spare satellite is accelerated in the traveling direction, and the far-point altitude becomes the altitude of the near point of the operational orbit 1 Pull it up to orbit 3,
A second trajectory in which the altitude at the near point is equal to the altitude at the far point of the first transition trajectory 3 is obtained by controlling both the orbital plane conversion and the near point raising at the far point of the first transition trajectory 3. Into the transition orbit 4 of
By speeding up in the traveling direction at a point in the vicinity of the near point of the operational orbit, the far point altitude is made approximately equal to the far point altitude of the operational orbit 1 so that the spare satellite is A method of orbiting a spare satellite into a multi-orbital satellite system, wherein
上記の予備衛星軌道2の属する予備衛星軌道面2pと、上記の運用軌道1の属する運用軌道面1pと、が有意の角度をもって交わるとき、
前記の予備衛星はパーキング軌道を経て前記の予備衛星軌道2に投入し、
前記の予備衛星が前記の運用軌道1の昇交点または降交点の高度の直下を横切る時間帯に、上記の予備衛星を、進行方向に増速して、遠地点高度が上記の運用軌道1の昇交点または降交点となり、その遠地点において、運用軌道と交差する第1の遷移軌道3に引き上げ、
第1の遷移軌道3の遠地点において、軌道面変換と軌道面内の速度成分の調整とを3次元速度制御でおこなうことにより、上記の予備衛星を上記の運用軌道1に直接投入することを特徴とする複数軌道面衛星システムへの予備衛星の軌道投入方法。 One or more satellites are arranged in each of the operational orbits on a plurality of different operational orbital planes of the quasi-zenith satellite system, and the angles formed by all the operational orbital planes in advance are approximated by one or more spare satellites. In a satellite system that is operated by placing it in a standby satellite orbit 2 that is a low altitude orbit with an orbital inclination angle of approximately 0 and an altitude of 2,000 km or less, a satellite in one operational orbit 1 of the above satellite system is used. When replacing with one spare satellite ,
When the spare satellite orbit plane 2p to which the spare satellite orbit 2 belongs and the operational orbit plane 1p to which the operational orbit 1 belongs intersect at a significant angle,
The spare satellite enters the spare satellite orbit 2 through a parking orbit,
In the time zone in which the spare satellite crosses the ascending or descending altitude of the operational orbit 1, the spare satellite is accelerated in the traveling direction so that the far-point altitude rises in the operational orbit 1. It becomes an intersection or descending intersection, and at that far point, it is raised to the first transition orbit 3 that intersects the operation orbit,
The spare satellite is directly introduced into the operational orbit 1 by performing three-dimensional velocity control at the far point of the first transition orbit 3 by changing the orbital plane and adjusting the velocity component in the orbital plane. The orbital method of the backup satellite to the multi-orbital plane satellite system.
上記の予備衛星軌道2の属する予備衛星軌道面2pと、上記の運用軌道1の属する運用軌道面1pと、が有意の角度をもって交わるとき、
前記の予備衛星はパーキング軌道を経て前記の予備衛星軌道2に投入し、
前記の予備衛星が前記の運用軌道1の面1pを横切る時間帯に、上記の予備衛星を、進行方向に増速して、遠地点高度が上記の運用軌道1と上記の予備衛星の軌道面との交点の高度になり、その遠地点において運用軌道1と交差する第1の遷移軌道3に引き上げて、
上記の予備衛星の軌道面2pと運用軌道1との交点の高度を遠地点の高度とし、その遠地点において運用軌道1と交差する遷移軌道3に引き上げて、
前記の遠地点で軌道面変換と同時に軌道面内の速度成分の調整を3次元速度制御でおこなうことにより、上記の予備衛星を上記の運用軌道1に直接投入することを特徴とする複数軌道面衛星システムへの予備衛星の軌道投入方法。 Place one or more satellites in each operational orbit on different operational orbital planes of the quasi-zenith satellite system , launch one or more spare satellites in the east in advance with a rocket, and the orbit inclination angle In a satellite system that is arranged and operated in a standby satellite orbit 2 that is a low altitude orbit having an altitude of 2,000 km or less that is approximately equal to the latitude of the point, a satellite in one operational orbit 1 of the above satellite system is When replacing with a spare satellite ,
When the spare satellite orbit plane 2p to which the spare satellite orbit 2 belongs and the operational orbit plane 1p to which the operational orbit 1 belongs intersect at a significant angle,
The spare satellite enters the spare satellite orbit 2 through a parking orbit,
During the time zone when the spare satellite crosses the surface 1p of the operational orbit 1, the spare satellite is accelerated in the traveling direction so that the far-point altitude is higher than the operational orbit 1 and the orbital plane of the spare satellite. At the height of the intersection of the
The altitude of the intersection between the orbital plane 2p of the spare satellite and the operational orbit 1 is set as the altitude at the far point, and the transitional orbit 3 intersecting the operational orbit 1 at the far point is raised.
A multiple orbital plane satellite characterized in that the spare satellite is directly introduced into the operational orbit 1 by adjusting the velocity component in the orbital plane by three-dimensional velocity control at the same time as the orbital plane conversion at the far point. How to put orbit of a spare satellite into the system.
上記の予備衛星軌道2の属する予備衛星軌道面2pと、上記の運用軌道1の属する運用軌道面1pと、が有意の角度をもって交わるとき、
前記の予備衛星はパーキング軌道を経て前記の予備衛星軌道2に投入し、
前記の予備衛星が上記の運用軌道1の昇交点または降交点の直下を横切る時間帯に、上記の予備衛星を進行方向に増速して、いったん上記の運用軌道1の遠地点高度よりもさらに高い遠地点高度をもつ第1の遷移軌道3に再配置し、
上記の遷移軌道の遠地点で、軌道面変換と近地点引き上げの制御を同時に行って、上記の運用軌道1の面1p内の第2の遷移軌道4に投入し、
その後、第2の遷移軌道4の遠地点を引き下げる減速操作、あるいは軌道面内制御を行って、上記の予備衛星を運用軌道1に投入することを特徴とする複数軌道面衛星システムへの予備衛星の軌道投入方法。 One or more satellites are arranged in each of the operational orbits on a plurality of different operational orbital planes of the quasi-zenith satellite system, and the angles formed by all the operational orbital planes in advance are approximated by one or more spare satellites. In a satellite system that is operated by placing it in a standby satellite orbit 2 that is a low altitude orbit with an orbital inclination angle of approximately 0 and an altitude of 2,000 km or less, a satellite in one operational orbit 1 of the above satellite system is used. When replacing with one spare satellite ,
When the spare satellite orbit plane 2p to which the spare satellite orbit 2 belongs and the operational orbit plane 1p to which the operational orbit 1 belongs intersect at a significant angle,
The spare satellite enters the spare satellite orbit 2 through a parking orbit,
The time zone in which said spare satellite crosses directly under the ascending node or descending node of the operational track 1, and accelerated the above spare satellite in the traveling direction, once higher than the altitude apogee of the operational track 1 Relocating to the first transition trajectory 3 with a far point altitude,
At the far point of the transition trajectory, the trajectory plane conversion and the control of raising the near point are simultaneously performed, and the second transition trajectory 4 in the surface 1p of the operational trajectory 1 is input,
Thereafter, a deceleration operation for lowering the far point of the second transition orbit 4 or in-orbit control is performed, and the above-mentioned reserve satellite is put into the operation orbit 1. Orbit insertion method.
上記の予備衛星軌道2の属する予備衛星軌道面2pと、上記の運用軌道1の属する運用軌道面1pと、が有意の角度をもって交わるとき、
前記の予備衛星はパーキング軌道を経て前記の予備衛星軌道2に投入し、
前記の予備衛星が上記の運用軌道面1を横切る時間帯に、前記の予備衛星を、進行方向に増速していったん上記の運用軌道1の遠地点高度よりもさらに高い遠地点高度をもつ第1の遷移軌道3に再配置し、
上記の第1の遷移軌道3の遠地点で、軌道面変換と近地点引き上げの制御を同時に行って、上記の運用軌道1の面1p内の第2の遷移軌道4に投入し、
その後、第2の遷移軌道4の遠地点を引き下げる減速操作、あるいは軌道面内制御を行って、上記の予備衛星を運用軌道1に投入することを特徴とする複数軌道面衛星システムへの予備衛星の軌道投入方法。 Place one or more satellites in each of the operational orbits on the different operational orbital planes of the quasi-zenith satellite system , launch them with a rocket to the east, and orbital tilt angle is approximately equal to the launch latitude. In a satellite system in which one or more spare satellites are arranged and operated in advance on a spare satellite orbit 2 which is a low altitude orbit of 2,000 km or less, a satellite in one operational orbit 1 of the above satellite system is replaced with one spare satellite. When replacing with satellites ,
When the spare satellite orbit plane 2p to which the spare satellite orbit 2 belongs and the operational orbit plane 1p to which the operational orbit 1 belongs intersect at a significant angle,
The spare satellite enters the spare satellite orbit 2 through a parking orbit,
The time zone in which said spare satellite crosses the operational raceway surface 1 above the pre satellite traveling direction accelerated and once said operation of track 1 apogee first with a high degree higher apogee altitude than Rearrange to transition orbit 3,
At the far point of the first transition orbit 3, the control of the orbital plane conversion and the near point raising is performed at the same time , and the second transition orbit 4 in the surface 1p of the operational orbit 1 is introduced,
Thereafter, a deceleration operation for lowering the far point of the second transition orbit 4 or in-orbit control is performed, and the above-mentioned reserve satellite is put into the operation orbit 1. Orbit insertion method.
上記の予備衛星軌道2の属する予備衛星軌道面2pと、上記の運用軌道1の属する運用軌道面1pと、が有意の角度をもって交わるとき、
前記の予備衛星はパーキング軌道を経て前記の予備衛星軌道2に投入し、
前記の予備衛星が上記の運用軌道面を横切る時間帯に、前記の予備衛星を、進行方向に増速していったん上記の運用軌道の遠地点高度よりもさらに高い遠地点高度をもつ第1の遷移軌道に再配置し、
上記の第1の遷移軌道の遠地点で、軌道面変換と近地点引き上げの制御を同時に行って、上記の運用軌道面内の第2の遷移軌道に投入する際の近地点高度を運用軌道の遠地点高度とし、第2の遷移軌道の遠地点高度を運用軌道の遠地点高度まで引き下げて円軌道である第3の遷移軌道に投入し、その後、第3の遷移軌道上の衛星が運用軌道の遠地点に最近接する地点に達したときに、その衛星の進行方向と逆方向の加速を行って減速することにより第3の遷移軌道の近地点を引き下げ、上記の予備衛星を運用軌道に投入することを特徴とする複数軌道面衛星システムへの予備衛星の軌道投入方法。 One or more satellites are arranged in each operational orbital plane in different operational orbital planes of the quasi-zenith satellite system, and the orbital inclination angle is such that the angles formed by all the operational orbital planes are approximately equal. A satellite that is launched with a rocket at 0 or just east, and is operated by placing one or more spare satellites in advance in a spare satellite orbit that is a low altitude orbit with an altitude of 2,000 km or less, which is approximately equal to the latitude of the launch point In the system, when a satellite in one operational orbit of the above satellite system is replaced with one spare satellite ,
When the spare satellite orbit plane 2p to which the spare satellite orbit 2 belongs and the operational orbit plane 1p to which the operational orbit 1 belongs intersect at a significant angle,
The spare satellite enters the spare satellite orbit 2 through a parking orbit,
The time zone spare satellite crosses the operational raceways above, the preliminary satellite, the first transfer orbit with apogee higher apogee altitude than advanced once said operational orbit and accelerated in the traveling direction Rearrange to
At the far point of the first transition orbit, the control of the orbital plane conversion and the raising of the near point is performed at the same time, and the near point altitude at the time of entering the second transition orbit in the operational orbital plane is set as the far point altitude of the operating orbit. , The far point altitude of the second transition orbit is lowered to the far point altitude of the operational trajectory and inserted into the third transition orbit which is a circular orbit, and then the satellite on the third transition orbit is closest to the far point of the operational orbit A plurality of orbits characterized by lowering the near point of the third transition orbit by decelerating by accelerating in the direction opposite to the traveling direction of the satellite when reaching the operational orbit A method of orbiting a spare satellite into an area satellite system.
上記の予備衛星軌道2の属する予備衛星軌道面2pと、上記の運用軌道1の属する運用軌道面1pと、が有意の角度をもって交わるとき、
前記の予備衛星はパーキング軌道を経て前記の予備衛星軌道2に投入し、
前記の予備衛星が上記の運用軌道面を横切る時間帯に、前記の予備衛星を、進行方向に増速していったん上記の運用軌道の遠地点高度よりもさらに高い遠地点高度をもつ第1の遷移軌道に再配置し、
上記の第1の遷移軌道の遠地点で、軌道面変換と近地点高度が運用軌道の近地点高度に近似的に等しくなる近地点引き上げの制御とを同時に行って、上記の予備衛星を上記の運用軌道面内の第2の遷移軌道に投入し、
次に遠地点高度の引き下げを行なって、近似的に円軌道である第3の遷移軌道に投入し、
その後、運用軌道の近地点に最近接する地点に達したときに、進行方向に増速してその遠地点を引き上げ、上記の予備衛星を運用軌道に投入することを特徴とする複数軌道面衛星システムへの予備衛星の軌道投入方法。 One or more satellites are arranged in each operational orbital plane in different operational orbital planes of the quasi-zenith satellite system, and the orbital inclination angle is such that the angles formed by all the operational orbital planes are approximately equal. A satellite that is launched with a rocket at 0 or just east, and is operated by placing one or more spare satellites in advance in a spare satellite orbit that is a low altitude orbit with an altitude of 2,000 km or less, which is approximately equal to the latitude of the launch point In the system, when a satellite in one operational orbit of the above satellite system is replaced with one spare satellite ,
When the spare satellite orbit plane 2p to which the spare satellite orbit 2 belongs and the operational orbit plane 1p to which the operational orbit 1 belongs intersect at a significant angle,
The spare satellite enters the spare satellite orbit 2 through a parking orbit,
The time zone spare satellite crosses the operational raceways above, the preliminary satellite, the first transfer orbit with apogee higher apogee altitude than advanced once said operational orbit and accelerated in the traveling direction Rearrange to
At the far point of the first transition trajectory, the orbital plane conversion and the control of raising the near point where the near point altitude is approximately equal to the near point altitude of the operating trajectory are simultaneously performed, and the spare satellite is moved within the operating orbital plane. Into the second transition orbit of
Next, the far-point altitude is lowered to enter the third transition orbit, which is approximately a circular orbit,
After that, when a point closest to the near point of the operational orbit is reached, the speed is increased in the traveling direction, the far point is raised, and the spare satellite is put into the operational orbit. Orbit insertion method of spare satellite.
上記の予備衛星軌道2の属する予備衛星軌道面2pと、上記の運用軌道1の属する運用軌道面1pと、が有意の角度をもって交わるとき、
前記の予備衛星はパーキング軌道を経て前記の予備衛星軌道2に投入し、
前記の予備衛星が上記の運用軌道1の昇交点または降交点の直下を横切る時間帯に、上記の予備衛星を進行方向に増速して、いったん上記の運用軌道1の遠地点高度よりもさらに高い遠地点高度をもつ第1の遷移軌道3に再配置し、
上記の遷移軌道3の遠地点で、軌道面変換と近地点高度が上記の運用軌道1の昇交点あるいは降交点の高度に近似的に等しくまたその近地点で上記の運用軌道1と交差する軌道となる近地点引き上げの制御とを同時に行って、上記の運用軌道面内1pの第2の遷移軌道に投入し、
第2の遷移軌道3の近地点で、軌道面変換を行い、同時に2次元速度制御で軌道面内の速度成分を調整して、前記の予備衛星を運用軌道に投入することを特徴とする複数軌道面衛星システムへの予備衛星の軌道投入方法。 One or more satellites are arranged in each operational orbital plane in different operational orbital planes of the quasi-zenith satellite system, and the orbital inclination angle is such that the angles formed by all the operational orbital planes are approximately equal. In a satellite system in which one or more spare satellites are arranged and operated in advance in a spare satellite orbit 2 which is a low altitude orbit at an altitude of 2,000 km or less at 0, a satellite in one operational orbit 1 of the above satellite system is When replacing with one spare satellite ,
When the spare satellite orbit plane 2p to which the spare satellite orbit 2 belongs and the operational orbit plane 1p to which the operational orbit 1 belongs intersect at a significant angle,
The spare satellite enters the spare satellite orbit 2 through a parking orbit,
The time zone in which said spare satellite crosses directly under the ascending node or descending node of the operational track 1, and accelerated the above spare satellite in the traveling direction, once higher than the altitude apogee of the operational track 1 Relocating to the first transition trajectory 3 with a far point altitude,
At a far point of the transition trajectory 3, the trajectory plane transformation and the near point altitude are approximately equal to the ascending or descending altitude of the operational trajectory 1 and become a trajectory that intersects the operational trajectory 1 at the near point. Simultaneously with the pulling up control, the second transition orbit of 1p in the above-mentioned operation orbit plane is inserted,
A plurality of orbits characterized in that orbital plane transformation is performed near the second transition orbit 3 and at the same time the velocity component in the orbital plane is adjusted by two-dimensional velocity control and the spare satellite is put into an operational orbit. A method of orbiting a spare satellite into an area satellite system.
上記の予備衛星軌道2の属する予備衛星軌道面2pと、上記の運用軌道1の属する運用軌道面1pと、が有意の角度をもって交わるとき、
前記の予備衛星はパーキング軌道を経て前記の予備衛星軌道2に投入し、
前記の予備衛星が上記の運用軌道1の面1pを横切る時間帯に、前記の予備衛星を、進行方向に増速していったん上記の運用軌道1の遠地点高度よりもさらに高い遠地点高度をもつ第1の遷移軌道3に再配置し、
上記の第1の遷移軌道3の遠地点で加速して、軌道面変換と予備衛星の軌道面と上記の運用軌道1との交点の高度が近地点高度となる近地点引き上げの制御を同時に行って、運用軌道面内の近地点において運用軌道1と交差するような第2の遷移軌道4に投入し、
上記の第2の遷移軌道4の近地点での速度成分を2次元速度制御で調整して、
第2の遷移軌道面内の上記の予備衛星を運用軌道1に投入することを特徴とする複数軌道面衛星システムへの予備衛星の軌道投入方法。 Place one or more satellites in each of the operational orbits on the different operational orbital planes of the quasi-zenith satellite system , launch them with a rocket to the east, and orbital tilt angle is approximately equal to the launch latitude. In a satellite system in which one or more spare satellites are arranged and operated in advance on a spare satellite orbit 2 which is a low altitude orbit of 2,000 km or less, a satellite in one operational orbit 1 of the above satellite system is replaced with one spare satellite. When replacing with satellites ,
When the spare satellite orbit plane 2p to which the spare satellite orbit 2 belongs and the operational orbit plane 1p to which the operational orbit 1 belongs intersect at a significant angle,
The spare satellite enters the spare satellite orbit 2 through a parking orbit,
The time zone in which said spare satellite across the face 1p of the operational track 1, the preliminary satellite, first with advanced once increased speed in the traveling direction higher than the altitude apogee of the operational track 1 apogee Rearranged in 1 transition trajectory 3,
Accelerate at the far point of the first transition orbit 3 above, and simultaneously control the orbital plane conversion and the raising of the near point where the altitude of the intersection between the orbital surface of the spare satellite and the above orbital 1 becomes the near point altitude. The second transition track 4 that intersects the operation track 1 at a near point in the track surface is inserted,
Adjust the velocity component at the near point of the second transition orbit 4 by the two-dimensional velocity control ,
A method for orbiting a spare satellite into a multi-orbital plane satellite system, wherein the above-mentioned spare satellite in the second transition orbit plane is thrown into an operational orbit 1.
上記の予備衛星軌道2の属する予備衛星軌道面2pと、上記の運用軌道1の属する運用軌道面1pと、が有意の角度をもって交わるとき、
前記の予備衛星はパーキング軌道を経て前記の予備衛星軌道2に投入し、
前記の予備衛星が上記の運用軌道1の面1pを横切る時間帯に、前記の予備衛星を、進行方向に増速していったん上記の運用軌道1の遠地点高度よりもさらに高い遠地点高度をもつ第1の遷移軌道3に再配置し、
上記の第1の遷移軌道3の遠地点で、軌道面変換と近地点引き上げの制御を同時に行って、上記の運用軌道面内で運用軌道1と2点の交点をもつ第2の遷移軌道4に投入し、
その後、前記の2点の交点のいずれかを通過する際に軌道面内の速度成分を調整して、上記の予備衛星を運用軌道1に投入することを特徴とする複数軌道面衛星システムへの予備衛星の軌道投入方法。 One or more satellites are arranged in each operational orbital plane in different operational orbital planes of the quasi-zenith satellite system, and the orbital inclination angle is such that the angles formed by all the operational orbital planes are approximately equal. Launched with a rocket at 0 or just east, one or more spare satellites are pre-arranged and operated in reserve satellite orbit 2, which is a low altitude orbit approximately equal to the latitude of the launch point and altitude of 2,000 km or less In a satellite system, a satellite in one operational orbit 1 of the above satellite system is replaced with one spare satellite ,
When the spare satellite orbit plane 2p to which the spare satellite orbit 2 belongs and the operational orbit plane 1p to which the operational orbit 1 belongs intersect at a significant angle,
The spare satellite enters the spare satellite orbit 2 through a parking orbit,
The time zone in which said spare satellite across the face 1p of the operational track 1, the preliminary satellite, first with advanced once increased speed in the traveling direction higher than the altitude apogee of the operational track 1 apogee Rearranged in 1 transition trajectory 3,
At the far point of the first transition orbit 3, the control of the orbital plane conversion and the near point raising is performed at the same time , and the second transition orbit 4 having the intersection of the operational trajectory 1 and the two points in the operational trajectory plane is input. And
After that, the velocity component in the orbital plane is adjusted when passing through one of the intersections of the two points, and the spare satellite is put into the operational orbit 1. Orbit insertion method of spare satellite.
上記の予備衛星軌道2の属する予備衛星軌道面2pと、上記の運用軌道1の属する運用軌道面1pと、が有意の角度をもって交わるとき、
前記の予備衛星はパーキング軌道を経て前記の予備衛星軌道2に投入し、
前記の予備衛星が上記の運用軌道1の面1pを横切る時間帯に、前記の予備衛星を、進行方向に増速していったん上記の運用軌道1の遠地点高度よりもさらに高い遠地点高度をもつ第1の遷移軌道3に再配置し、
上記の第1の遷移軌道3の遠地点で、軌道面変換と近地点引き上げの制御を同時に行って、上記の運用軌道面内で運用軌道に概略外接する第2の遷移軌道4に投入し、
その外接点近傍を通過する際に進行方向と逆方向の加速を行って減速することにより、上記の予備衛星を運用軌道1に投入することを特徴とする複数軌道面衛星システムへの予備衛星の軌道投入方法。 One or more satellites are arranged in each operational orbital plane in different operational orbital planes of the quasi-zenith satellite system, and the orbital inclination angle is such that the angles formed by all the operational orbital planes are approximately equal. Launched with a rocket at 0 or just east, one or more spare satellites are pre-arranged and operated in reserve satellite orbit 2, which is a low altitude orbit approximately equal to the latitude of the launch point and altitude of 2,000 km or less In a satellite system, a satellite in one operational orbit 1 of the above satellite system is replaced with one spare satellite ,
When the spare satellite orbit plane 2p to which the spare satellite orbit 2 belongs and the operational orbit plane 1p to which the operational orbit 1 belongs intersect at a significant angle,
The spare satellite enters the spare satellite orbit 2 through a parking orbit,
The time zone in which said spare satellite across the face 1p of the operational track 1, the preliminary satellite, first with advanced once increased speed in the traveling direction higher than the altitude apogee of the operational track 1 apogee Rearranged in 1 transition trajectory 3,
At the far point of the first transition trajectory 3, the trajectory plane conversion and the control of raising the near point are performed at the same time , and the second transition trajectory 4 that is generally circumscribed by the operating trajectory in the operating trajectory plane is input.
When the satellite passes through the vicinity of the outer contact, it accelerates in the direction opposite to the traveling direction and decelerates, thereby introducing the spare satellite into the operational orbit 1. Orbit insertion method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003385726A JP4041894B2 (en) | 2003-11-14 | 2003-11-14 | Method of orbiting a spare satellite into a multi-orbital satellite system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003385726A JP4041894B2 (en) | 2003-11-14 | 2003-11-14 | Method of orbiting a spare satellite into a multi-orbital satellite system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2005145251A JP2005145251A (en) | 2005-06-09 |
JP4041894B2 true JP4041894B2 (en) | 2008-02-06 |
Family
ID=34693692
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003385726A Expired - Lifetime JP4041894B2 (en) | 2003-11-14 | 2003-11-14 | Method of orbiting a spare satellite into a multi-orbital satellite system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4041894B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3020348B1 (en) * | 2014-04-24 | 2016-05-13 | Snecma | METHOD FOR DEPLOYING A CONSTELLATION OF SATELLITES |
-
2003
- 2003-11-14 JP JP2003385726A patent/JP4041894B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2005145251A (en) | 2005-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106275506B (en) | Method and apparatus for position maintenance of satellites | |
CN105620792A (en) | Method for controlling attitude and orbit of satellite by adopting obliquely-arranged thrusters | |
JP7023389B2 (en) | Surveillance controllers, satellites and surveillance systems | |
WO2014115753A1 (en) | Method for controlling orbital plane of artificial satellite | |
KR20170002286A (en) | Efficient stationkeeping design for mixed fuel systems | |
CN103662090A (en) | Intelligent power dropping track online planning method | |
JP2024045593A (en) | Collision avoidance method and ground facility | |
CN106697332A (en) | Integrated electric propulsion satellite platform position holding electric thruster redundant configuration method | |
CN114970180A (en) | On-orbit optimization method for spacecraft fly-by-flight observation | |
CN112987767A (en) | Integrated boosting and core-level carrier rocket attitude control method | |
JP4041894B2 (en) | Method of orbiting a spare satellite into a multi-orbital satellite system | |
Defendini et al. | Low cost CMG-based AOCS designs | |
EP0467671A2 (en) | Retry/recovery method in rendezvous manoeuvre | |
Mahajan et al. | End-to-End Performance Optimization of a Crewed Lunar Landing Mission Staged from a Near Rectilinear Halo Orbit | |
US20230056948A1 (en) | Satellite constellation forming system, satellite constellation forming method, ground facility, and business device | |
JP7241990B1 (en) | Satellite constellation maintenance method, satellite constellation, rocket launch method, ground equipment, command transmission method, and command transmission program | |
WO2021166876A1 (en) | Artificial satellite, propellant management method, ground equipment, and management business device | |
JP2023018220A (en) | Rocket launching method, rocket launching control device, orbit injection method, satellite constellation maintenance method, debris removal method, rocket recovery method, recovery type rocket, rocket launch facility, rocket reuse system, rocket, satellite constellation, and ground segment | |
RU2207306C1 (en) | Method of injection of spacecraft into geostationary orbit by means of low-thrust engines | |
JP2002308198A (en) | Satellite navigation system and method for placing satellite into orbit | |
CN118463723A (en) | Electromagnetic separation system and separation method | |
CN106184818A (en) | Geostationary satellite Actuator failure operating mode lower railway position keeping method | |
JP2005014909A (en) | Satellite orbit system | |
Miller, Jr | RTLS abort mode elimination using the Space Shuttle-Liquid Flyback Booster launch system | |
CN115571375A (en) | Satellite electric propulsion system and angular momentum unloading method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060410 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061128 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070129 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070918 |
|
R155 | Notification before disposition of declining of application |
Free format text: JAPANESE INTERMEDIATE CODE: R155 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4041894 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |