JP4041657B2 - Constant velocity universal joint - Google Patents

Constant velocity universal joint Download PDF

Info

Publication number
JP4041657B2
JP4041657B2 JP2001126166A JP2001126166A JP4041657B2 JP 4041657 B2 JP4041657 B2 JP 4041657B2 JP 2001126166 A JP2001126166 A JP 2001126166A JP 2001126166 A JP2001126166 A JP 2001126166A JP 4041657 B2 JP4041657 B2 JP 4041657B2
Authority
JP
Japan
Prior art keywords
joint member
constant velocity
velocity universal
ball
clearance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001126166A
Other languages
Japanese (ja)
Other versions
JP2002323061A (en
Inventor
正純 小林
和弘 東
亮 中川
勇 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2001126166A priority Critical patent/JP4041657B2/en
Priority to US10/124,732 priority patent/US20030017877A1/en
Priority to FR0205114A priority patent/FR2823815B1/en
Publication of JP2002323061A publication Critical patent/JP2002323061A/en
Priority to US11/191,029 priority patent/US7097567B2/en
Application granted granted Critical
Publication of JP4041657B2 publication Critical patent/JP4041657B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は等速自在継手に関し、詳しくは、自動車や各種産業機械の動力伝達系において使用されるもので、駆動側と従動側の二軸間で作動角度変位のみを許容する固定型等速自在継手に関する。
【0002】
【従来の技術】
例えば、自動車のドライブシャフト等の連結用継手として使用されている固定型等速自在継手(ツェパー型等速自在継手:BJ)は、球面状の内径面に曲線状のトラック溝を軸方向に形成した外側継手部材と、球面状の外径面に曲線状のトラック溝を軸方向に形成した内側継手部材と、外側継手部材のトラック溝とこれに対応する内側継手部材のトラック溝とが協働して形成されるボールトラックに配された複数のトルク伝達ボールと、トルク伝達ボールを保持するポケットを備えた保持器とで構成される。複数のトルク伝達ボールは、保持器に形成されたポケットに収容されて円周方向等間隔に配置されている。
【0003】
外側継手部材のトラック溝の中心は内径面の球面中心に対して、また、内側継手部材のトラック溝の中心は外径面の球面中心に対して、それぞれ、軸方向に等距離だけ反対側にオフセットされている。そのため、外側継手部材のトラック溝とこれに対応する内側継手部材のトラック溝とが協働して形成されるボールトラックは、軸方向の一方に向かって楔状に開いた形状になる。なお、外側継手部材の内径面の球面中心、内側継手部材の外径面の球面中心は、いずれも、トルク伝達ボールの中心を含む継手中心面内にある。
【0004】
この等速自在継手では、外側継手部材と内側継手部材とが角度変位すると、保持器のポケットに収容されたトルク伝達ボールは常にどの作動角においても、その作動角の2等分面内に維持され、継手の等速性が確保される。ここで、作動角とは、外側継手部材の回転軸と内側継手部材の回転軸とがなす角度を意味する。
【0005】
近年、自動車の衝突安全性向上の観点からホイールベースを長くすることがあるが、それに伴って車両回転半径が大きくならないようにするため、固定型等速自在継手の高角化による前輪の操舵角の増大が求められている。この高角化のニーズには、外側継手部材の開口側でのトラック溝形状を軸方向と平行にしたアンダーカットフリータイプの固定型等速自在継手(UJ)で対応している。このタイプの等速自在継手では、外側継手部材及び内側継手部材の両トラック溝はいずれも、アンダーカットがなく、大きな作動角を取り得る構造を有する。
【0006】
【発明が解決しようとする課題】
この種の固定型等速自在継手(BJ,UJ)において、ボールトラックにおけるPCD(ピッチ円径)すきまをどのように定めるかは重要である。
【0007】
すなわち、前記PCDすきまが小さすぎると、トルク伝達ボールをボールトラックに挿入する上でのボール組み込みが困難となり、また、トルク伝達ボールに対する拘束力が大きくなってトルク伝達ボールの円滑な転動が阻害される。そのため、継手回転時、トルク伝達ボールとボールトラックとの接触部分で滑りを伴った転がり運動が生じ、継手内部の温度上昇、それによる寿命低下の一因となる。
【0008】
逆に、前記PCDすきまが大きすぎると、ポケットとトルク伝達ボールとの間で打音が発生したり、継手振動が増大したりするなど、継手性能面(NVH、耐久性)で好ましくない影響が生じる。
【0009】
特に、高負荷時には、トルク伝達ボールとトラック溝との接触楕円がトラック溝からはみ出してしまい、そこから欠けが生じ、フレーキングを引き起こす場合がある。ここで、PCDすきまが小さいと、前記接触楕円のトラック溝からのはみ出し防止に対して有効に作用するが、逆に、前記PCDすきまが大きいと、ボール接触点がPCDすきまにより移動し、接触楕円がトラック溝からはみ出し易くなる。
【0010】
一方、この種の等速自在継手では、6個のトルク伝達ボールを使用するものに対して、それと同等以上の強度、負荷容量及び耐久性を確保しつつ、より一層のコンパクト化、軽量化を実現するため、8個のトルク伝達ボールを備えた等速自在継手がある。この等速自在継手は、6個のトルク伝達ボールを備えた等速自在継手と基本構造が異なっており、PCDすきまの設定値もその構造に適した固有の値が存在すると考えられる。特に、6個のトルク伝達ボールを使用した等速自在継手に対して、8個のトルク伝達ボールを備えた等速自在継手では、ボール径が小さいため、トラック深さが浅く、PCDすきまが耐久性に及ぼす影響が大きい。
【0011】
そこで、本発明は、前記課題に鑑みて提案されたもので、その目的とするところは、8個のトルク伝達ボールを備えた固定型等速自在継手において、高負荷時での耐久性の向上および寿命ばらつきの安定化を実現し得ることにある。
【0012】
【課題を解決するための手段】
前記目的を達成するための技術的手段として、本発明は、球面状の内径面に軸方向に延びる8本の曲線状のトラック溝を形成した外側継手部材と、球面状の外径面に軸方向に延びる8本の曲線状のトラック溝を形成した内側継手部材と、前記外側継手部材のトラック溝とこれに対応する前記内側継手部材のトラック溝とが協働して形成される8本のボールトラックに配された8個のトルク伝達ボールと、そのトルク伝達ボールを保持するポケットを有する保持器とを備えたドライブシャフト用等速自在継手において、前記ボールトラックにおけるPCDすきまを5〜50μmの正すきまとし、前記保持器のポケットとトルク伝達ボールとの間の軸方向すきまを−30〜+10μmとしたことを特徴とする。ここで、「PCDすきま」とは、外側継手部材のトラック溝のピッチ円径と内側継手部材のトラック溝のピッチ円径との差を意味する。
【0013】
本発明では、8個のトルク伝達ボールを備えたドライブシャフト用等速自在継手において、ボールトラックにおけるPCDすきまを5〜50μmの正すきまとしたことにより、高負荷時、トルク伝達ボールとトラック溝との接触楕円がトラック溝からはみ出しにくくなり、欠けやフレーキングの発生を抑制することが容易となる。また、保持器のポケットとトルク伝達ボールとの間の軸方向すきまを−30〜+10μmとしたことにより、6個のトルク伝達ボールを備えた等速自在継手と比べて、トルク伝達ボール1個当りについてポケットに加わる荷重が小さいため、ポケット摩耗量も少ないことから、ポケットによるトルク伝達ボールの拘束力を小さくしてトルク伝達ボールの円滑な転動を確保することができる。つまり、6個のトルク伝達ボールを備えた等速自在継手の場合(軸方向すきまが−50〜−10μm)よりもプラス側にシフトさせ、本発明の軸方向すきまを−30〜+10μm、好ましくは−10〜+10μmの範囲内にすることにより、ポケットにおけるトルク伝達ボールの接触による発熱の低減で継手内部の温度上昇が軽減できる。
【0014】
本発明は、▲1▼前記外側継手部材のトラック溝の中心が内径面の球面中心に対して、前記内側継手部材のトラック溝の中心が外径面の球面中心に対して、それぞれ、軸方向に等距離だけ反対側にオフセットされた固定型等速自在継手(BJ)と、▲2▼前記外側継手部材のトラック溝の中心が内径面の球面中心に対して、前記内側継手部材のトラック溝の中心が外径面の球面中心に対して、それぞれ、軸方向に等距離だけ反対側にオフセットされ、かつ、前記外側継手部材および内側継手部材の各トラック溝に直線状の溝底を有するストレート部が設けられた固定型等速自在継手(UJ)とに適用可能である。
【0017】
また、前記構成において、前記保持器と外側継手部材との間の径方向すきまを20〜100μmとすることが望ましく、さらに、前記保持器と内側継手部材との間の径方向すきまを20〜100μmとすることが望ましい。このようにすれば、保持器と外側継手部材との間、保持器と内側継手部材との間での作動性が良好となり、かつ、保持器と外側継手部材との間、保持器と内側継手部材との間で打音が発生したり、継手振動が増大したりすることを防止できる。
【0018】
【発明の実施の形態】
本発明に係る等速自在継手の実施形態を図1乃至図3を参照しながら以下に詳述する。図2はツェパー型等速自在継手である固定型等速自在継手(BJ)、図3はアンダーカットフリータイプの固定型等速自在継手(UJ)を示し、図2のA−A線に沿う断面と図3のB−B線に沿う断面構造は共通するため、図1で一つの断面図として示す。
【0019】
まず、図2に示す実施形態の等速自在継手(BJ)は、球面状の内径面1aに8本の曲線状のトラック溝1bを軸方向に形成した外側継手部材1と、球面状の外径面2aに8本の曲線状のトラック溝2bを軸方向に形成し、内径面にドライブシャフトの中間軸5の端部とのセレーション嵌合部2cを形成した内側継手部材2と、外側継手部材1のトラック溝1bとこれに対応する内側継手部材2のトラック溝2bとが協働して形成される8本のボールトラックに配された8個のトルク伝達ボール3と、トルク伝達ボール3を保持する保持器4とで構成される。8個のトルク伝達ボール3は、保持器4に形成されたポケット4cに収容されて円周方向等間隔に配置されている。
【0020】
外側継手部材1のトラック溝1bの中心O1は内径面1aの球面中心に対して、また、内側継手部材2のトラック溝2bの中心O2は外径面2aの球面中心に対して、それぞれ、軸方向に等距離Fだけ反対側(同図に示す例では、中心O1は継手の開口側、中心O2は継手の奥部側)にオフセットされている。そのため、外側継手部材1のトラック溝1bとこれに対応する内側継手部材2のトラック溝2bとが協働して形成されるボールトラックは、軸方向の一方(同図に示す例では継手の開口側)に向かって楔状に開いた形状になる。
【0021】
保持器4の外径面4aの球面中心、および、保持器4の外径面4aの案内面となる外側継手部材1の内径面1aの球面中心は、いずれも、トルク伝達ボール3の中心O3を含む継手中心面O内にある。また、保持器4の内径面4bの球面中心、および、保持器4の内径面4bの案内面となる内側継手部材2の外径面2aの球面中心は、いずれも、継手中心面O内にある。従って、外側継手部材1のトラック溝1bの中心O1のオフセット量Fは、中心O1と継手中心面Oとの間の軸方向距離、内側継手部材2のトラック溝2bの中心O2のオフセット量Fは、中心O2と継手中心面Oとの間の軸方向距離になり、両者は等しい。
【0022】
次に、図3に示す実施形態の等速自在継手(UJ)が、前述した図2に示す実施形態の等速自在継手(BJ)と異なる点は、外側継手部材1のトラック溝1bおよび内側継手部材2のトラック溝2bにそれぞれ直線状の溝底を有するストレート部U1,U2を設けた点のみであり、前述した実施形態の説明と重複する説明は省略する。この実施形態の等速自在継手(UJ)は、外側継手部材1のトラック溝1bおよび内側継手部材2のトラック溝2bにそれぞれストレート部U1,U2を設けたことにより、図2に示す実施形態の等速自在継手(BJ)に比べて最大作動角を大きくすることができる。
【0023】
これら図2および図3の等速自在継手では、外側継手部材1と内側継手部材2とが角度変位すると、保持器4のポケット4cに収容されたトルク伝達ボール3は常にどの作動角においても、その作動角の2等分面内に維持され、継手の等速性が確保される。
【0024】
前述した構成を具備した図2のツェパー型等速自在継手(BJ)と図3のアンダーカットフリータイプの等速自在継手(UJ)において、図1に示すように前記ボールトラックにおけるPCDすきま、つまり、外側継手部材1のトラック溝1bのピッチ円径PCDOUTと内側継手部材2のトラック溝2bのピッチ円径PCDINとの差を5〜50μmとする。このPCDすきまが5μmよりも小さくなると、トルク伝達ボール3の組み込み性や作動性が悪化する虞があり、逆に、50μmよりも大きくなると、トルク伝達ボール3とトラック溝1b,2bとの接触楕円がトラック溝1b,2bからはみ出し易くなって耐久性の向上を図ることが困難となる。
【0025】
また、図2および図3に示すように前記保持器4のポケット4cとトルク伝達ボール3との間の軸方向すきま、つまり、ポケット4cの軸方向寸法DPとトルク伝達ボール3の直径DBとの差を−30〜+10μm、好ましくは−10〜+10μmの範囲内とする。保持器4のポケット4cとトルク伝達ボール3との間の締代(負隙間)が−30μmより小さくなって過大となると、トルク伝達ボール3を拘束する力が大きくなり、トルク伝達ボール3の円滑な転動が阻害される。そのため、継手回転時、トルク伝達ボール3とトラック溝1b,2bとの接触部で滑りを伴った転がり運動が生じ、継手内部の温度上昇、それによる寿命低下の一因となる。逆に、保持器4のポケット4cとトルク伝達ボール3との間の遊び(正隙間)が+10μmより大きくなって過大であると、ポケット4cとトルク伝達ボール3との間で打音が発生したり、継手振動が増大したりするなど、継手性能に好ましくない影響が生じる。
【0026】
さらに、前記保持器4と外側継手部材1との間の径方向すきま、つまり、外側継手部材1の内径DOと保持器4の外径DK1との差を20〜100μmとし、前記保持器4と内側継手部材2との間の径方向すきま、つまり、保持器4の内径DK2と内側継手部材2の外径DIとの差を20〜100μmとする。これら径方向すきまが20μmよりも小さくなると、保持器4と外側継手部材1との間、保持器4と内側継手部材2との間での作動性が悪化し、逆に、径方向すきまが100μmよりも大きくなると、保持器4と外側継手部材1との間、保持器4と内側継手部材2との間で打音が発生したり、継手振動が増大したりする。
【0027】
【実施例】
図2に示す実施形態の等速自在継手、つまり、8個のトルク伝達ボールを備えたツェパー型等速自在継手(BJ)に関して、PCDすきまについての高負荷耐久試験の結果を図4に示す。この試験は、負荷トルクT=726N・m、回転数N=230rpm、作動角θ=6degの試験条件で試験継手を運転し、不具合が発生する運転時間を測定することにより行った。なお、この高負荷耐久試験は2つの試験継手A,Bについて行った。
【0028】
図4に示す結果から、PCDすきまが30,50μmの等速自在継手では、安定した耐久性を確保することができるのに対して、PCDすきまが70,100μmの等速自在継手では、スペックをクリアすることができても、寿命にばらつきがあり、また、PCDすきまが120μmの等速自在継手では、スペックをクリアすることが限界であり、さらに、PCDすきまが130μmの等速自在継手では、スペックをクリアすることが困難である。
【0029】
次に、前記ツェパー型等速自在継手(BJ)に関して、保持器のポケットにおける軸方向すきまについての耐久試験の結果を図5に示す。この試験は、負荷トルクT=186N・m、回転数N=1700rpm、作動角θ=6degの試験条件で試験継手を運転し、不具合が発生する運転時間を測定することにより行った。なお、この耐久試験は2つの試験継手A,Bについて行った。
【0030】
図5に示す結果から、軸方向すきまが−20,−30μmの等速自在継手では、安定した耐久性を確保することができるのに対して、軸方向すきまが−45μmの等速自在継手では、耐久性が低下し、寿命にばらつきがあった。
【0031】
【発明の効果】
本発明によれば、ボールトラックにおけるPCDすきまを5〜50μmの正すきまとしたことにより、8個のトルク伝達ボールを備えた等速自在継手のようにボール径が小さいため、トラック深さが浅くても、高負荷時、トルク伝達ボールとトラック溝との接触楕円がトラック溝からはみ出しにくくなり、欠けやフレーキングの発生を抑制することが容易となり、また、保持器のポケットとトルク伝達ボールとの間の軸方向すきまを−30〜+10μmとしたことにより、6個のトルク伝達ボールを備えた等速自在継手と比べて、トルク伝達ボール1個当りについてポケットに加わる荷重が小さいため、ポケット摩耗量も少ないことから、ポケットによるトルク伝達ボールの拘束力を小さくしてトルク伝達ボールの円滑な転動を確保することができ、ポケットにおけるトルク伝達ボールの接触による発熱の低減で継手内部の温度上昇が軽減できることから、等速自在継手の耐久性の向上および寿命ばらつきの安定化が図れる。
【図面の簡単な説明】
【図1】本発明に係る等速自在継手の実施形態で、図2のA−A線または図3のB−B線に沿う断面図である。
【図2】本発明の実施形態で、ツェパー型等速自在継手(BJ)に適用した例示を示す縦断面図である。
【図3】本発明の他の実施形態で、アンダーカットフリータイプの等速自在継手(UJ)に適用した例示を示す縦断面図である。
【図4】PCDすきまについての高負荷耐久試験の結果を示す図である。
【図5】保持器のポケットにおける軸方向すきまについての耐久試験の結果を示す図である。
【符号の説明】
1 外側継手部材
1a 外側継手部材の内径面
1b 外側継手部材のトラック溝
2 内側継手部材
2a 内側継手部材の外径面
2b 内側継手部材のトラック溝
3 トルク伝達ボール
4 保持器
4c ポケット
PCDOUT−PCDIN ボールトラックにおけるPCDすきま
P−DB 軸方向すきま
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a constant velocity universal joint, and more particularly, is used in a power transmission system of automobiles and various industrial machines, and is a fixed type constant velocity universal that allows only operating angular displacement between two axes of a driving side and a driven side. Related to fittings.
[0002]
[Prior art]
For example, fixed type constant velocity universal joints (Zeper type constant velocity universal joints: BJ) used as coupling joints for automobile drive shafts, etc., have curved track grooves in the axial direction on the spherical inner surface. The outer joint member, the inner joint member in which a curved track groove is formed on the spherical outer diameter surface in the axial direction, the track groove of the outer joint member, and the track groove of the corresponding inner joint member cooperate with each other. A plurality of torque transmission balls disposed on a ball track formed in this manner, and a cage having a pocket for holding the torque transmission balls. The plurality of torque transmission balls are accommodated in pockets formed in the cage and arranged at equal intervals in the circumferential direction.
[0003]
The center of the track groove of the outer joint member is opposite to the spherical center of the inner surface, and the center of the track groove of the inner joint member is opposite to the spherical center of the outer surface by an equal distance in the axial direction. It is offset. Therefore, the ball track formed by the cooperation of the track groove of the outer joint member and the corresponding track groove of the inner joint member has a shape opened in a wedge shape toward one side in the axial direction. The spherical center of the inner surface of the outer joint member and the spherical center of the outer surface of the inner joint member are both within the joint center plane including the center of the torque transmitting ball.
[0004]
In this constant velocity universal joint, when the outer joint member and the inner joint member are angularly displaced, the torque transmitting ball accommodated in the cage pocket is always maintained within the bisector of the operating angle at any operating angle. Thus, the constant velocity of the joint is ensured. Here, the operating angle means an angle formed by the rotating shaft of the outer joint member and the rotating shaft of the inner joint member.
[0005]
In recent years, the wheelbase may be lengthened from the viewpoint of improving the collision safety of automobiles, but in order to prevent the turning radius of the vehicle from increasing accordingly, the steering angle of the front wheels is increased by increasing the angle of the fixed type constant velocity universal joint. There is a need for an increase. To meet this need for higher angles, an undercut-free type fixed constant velocity universal joint (UJ) is used in which the shape of the track groove on the opening side of the outer joint member is parallel to the axial direction. In this type of constant velocity universal joint, both the track grooves of the outer joint member and the inner joint member have no undercut and have a structure capable of taking a large operating angle.
[0006]
[Problems to be solved by the invention]
In this type of fixed constant velocity universal joint (BJ, UJ), it is important how to determine the PCD (pitch circle diameter) clearance in the ball track.
[0007]
That is, if the PCD clearance is too small, it becomes difficult to incorporate the ball when inserting the torque transmission ball into the ball track, and the restraint force on the torque transmission ball is increased, which hinders smooth rolling of the torque transmission ball. Is done. Therefore, when the joint rotates, a rolling motion accompanied by slip occurs at the contact portion between the torque transmitting ball and the ball track, which increases the temperature inside the joint and thereby contributes to a decrease in life.
[0008]
On the other hand, if the PCD clearance is too large, there is an undesirable effect on the joint performance (NVH, durability), for example, a hitting sound is generated between the pocket and the torque transmission ball or the joint vibration is increased. Arise.
[0009]
In particular, when the load is high, the contact ellipse between the torque transmitting ball and the track groove protrudes from the track groove, and there are cases in which chipping occurs to cause flaking. Here, if the PCD clearance is small, it effectively works to prevent the contact ellipse from protruding from the track groove. Conversely, if the PCD clearance is large, the ball contact point moves due to the PCD clearance, and the contact ellipse moves. However, it is easy to protrude from the track groove.
[0010]
On the other hand, with this type of constant velocity universal joint, compared to the one using six torque transmission balls, it is possible to further reduce the size and weight while ensuring the same level of strength, load capacity and durability. To achieve this, there is a constant velocity universal joint with eight torque transmission balls. This constant velocity universal joint is different in basic structure from the constant velocity universal joint having six torque transmission balls, and it is considered that there is a unique value suitable for the structure of the setting value of the PCD clearance. In particular, the constant velocity universal joint with 8 torque transmission balls, compared to the 6 constant velocity universal joint using 6 torque transmission balls, has a small track diameter and a short PCD clearance, and has a durable PCD clearance. Great effect on sex.
[0011]
Accordingly, the present invention has been proposed in view of the above-mentioned problems, and its object is to improve durability at high loads in a fixed type constant velocity universal joint including eight torque transmission balls. In addition, it is possible to stabilize the variation in life.
[0012]
[Means for Solving the Problems]
As technical means for achieving the above object, the present invention provides an outer joint member in which eight curved track grooves extending in the axial direction are formed on a spherical inner surface, and a shaft on a spherical outer surface. The inner joint member formed with eight curved track grooves extending in the direction, the track groove of the outer joint member and the corresponding track groove of the inner joint member formed in cooperation with each other. In a constant velocity universal joint for a drive shaft provided with eight torque transmission balls arranged on a ball track and a cage having a pocket for holding the torque transmission ball, the PCD clearance in the ball track is 5 to 50 μm. The axial clearance between the pocket of the cage and the torque transmission ball is set to −30 to +10 μm . Here, the “PCD clearance” means a difference between the pitch circle diameter of the track groove of the outer joint member and the pitch circle diameter of the track groove of the inner joint member.
[0013]
In the present invention, in the constant velocity universal joint for drive shafts having eight torque transmission balls, the PCD clearance in the ball track is set to a positive clearance of 5 to 50 μm. contact ellipse is less likely to protrude from the track groove of that Do easy to suppress the occurrence of chipping and flaking. Further, since the axial clearance between the cage pocket and the torque transmission ball is set to -30 to +10 μm, the torque transmission ball per one torque transmission ball compared with the constant velocity universal joint having six torque transmission balls. Since the load applied to the pocket is small and the amount of wear on the pocket is small, the restraint force of the torque transmission ball by the pocket can be reduced to ensure smooth rolling of the torque transmission ball. That is, in the case of a constant velocity universal joint having six torque transmission balls (shift in the axial direction is −50 to −10 μm), it is shifted to the plus side, and the axial clearance of the present invention is −30 to +10 μm, preferably By making it within the range of −10 to +10 μm, the temperature rise inside the joint can be reduced by reducing the heat generated by the contact of the torque transmitting ball in the pocket.
[0014]
In the present invention, (1) the center of the track groove of the outer joint member is in the axial direction with respect to the spherical center of the inner surface and the center of the track groove of the inner joint member is in the axial direction. A fixed type constant velocity universal joint (BJ) that is offset to the opposite side by an equal distance; and (2) the track groove of the inner joint member with respect to the spherical center of the inner surface of the outer joint member. The center of the straight is offset to the opposite side by an equal distance in the axial direction with respect to the spherical center of the outer diameter surface, and each track groove of the outer joint member and the inner joint member has a straight groove bottom It is applicable to a fixed type constant velocity universal joint (UJ) provided with a portion.
[0017]
Moreover, in the said structure, it is desirable for the radial clearance between the said holder | retainer and an outer joint member to be 20-100 micrometers, Furthermore, the radial clearance between the said retainer and an inner joint member is 20-100 micrometers. Is desirable. In this way, the operability between the cage and the outer joint member and between the cage and the inner joint member is improved, and between the cage and the outer joint member, the cage and the inner joint. It is possible to prevent a hitting sound from occurring between the members and an increase in joint vibration.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a constant velocity universal joint according to the present invention will be described in detail below with reference to FIGS. 1 to 3. 2 shows a fixed type constant velocity universal joint (BJ) which is a Zepper type constant velocity universal joint, and FIG. 3 shows an undercut free type fixed type constant velocity universal joint (UJ), which is taken along the line AA in FIG. Since the cross-section and the cross-sectional structure taken along line BB in FIG. 3 are common, FIG.
[0019]
First, the constant velocity universal joint (BJ) of the embodiment shown in FIG. 2 includes an outer joint member 1 in which eight curved track grooves 1b are formed in an axial direction on a spherical inner surface 1a, and a spherical outer surface. An inner joint member 2 in which eight curved track grooves 2b are formed in the axial direction on the radial surface 2a, and a serration fitting portion 2c with the end of the intermediate shaft 5 of the drive shaft is formed on the inner radial surface; Eight torque transmission balls 3 arranged on eight ball tracks formed by cooperation of the track groove 1b of the member 1 and the track groove 2b of the inner joint member 2 corresponding thereto, and the torque transmission ball 3 It is comprised with the holder | retainer 4 which hold | maintains. The eight torque transmission balls 3 are accommodated in pockets 4c formed in the cage 4 and arranged at equal intervals in the circumferential direction.
[0020]
Against the spherical centers of O 1 of the outer joint member 1 of the track grooves 1b are inner surface 1a, also, the center O 2 of the inner joint member 2 of the track grooves 2b with respect to the spherical center of the outer surface 2a, respectively In the axial direction, the distance is offset to the opposite side (in the example shown in the figure, the center O 1 is the opening side of the joint and the center O 2 is the back side of the joint). For this reason, the ball track formed by the cooperation of the track groove 1b of the outer joint member 1 and the corresponding track groove 2b of the inner joint member 2 has one axial direction (in the example shown in FIG. (Open side).
[0021]
The spherical center of the outer diameter surface 4 a of the cage 4 and the spherical center of the inner diameter surface 1 a of the outer joint member 1 that serves as a guide surface for the outer diameter surface 4 a of the cage 4 are both the center O of the torque transmission ball 3. 3 in the joint center plane O. Further, the spherical center of the inner diameter surface 4b of the cage 4 and the spherical center of the outer diameter surface 2a of the inner joint member 2 that serves as a guide surface for the inner diameter surface 4b of the cage 4 are both within the joint center plane O. is there. Therefore, the offset F of the center O 1 of the outer joint member 1 of the track grooves 1b, the center O 1 and the axial distance between the joint center plane O, offset of the center O 2 of the inner joint member 2 of the track grooves 2b The quantity F is the axial distance between the center O 2 and the joint center plane O and they are equal.
[0022]
Next, the constant velocity universal joint (UJ) of the embodiment shown in FIG. 3 is different from the constant velocity universal joint (BJ) of the embodiment shown in FIG. 2 described above in that the track groove 1b and the inner side of the outer joint member 1 are different. Only the straight portions U1 and U2 each having a linear groove bottom are provided in the track groove 2b of the joint member 2, and the description overlapping the description of the above-described embodiment is omitted. The constant velocity universal joint (UJ) of this embodiment is provided with straight portions U1, U2 in the track groove 1b of the outer joint member 1 and the track groove 2b of the inner joint member 2, respectively. The maximum operating angle can be increased as compared with the constant velocity universal joint (BJ).
[0023]
In the constant velocity universal joints of FIGS. 2 and 3, when the outer joint member 1 and the inner joint member 2 are angularly displaced, the torque transmitting ball 3 accommodated in the pocket 4c of the cage 4 is always at any operating angle. The operating angle is maintained within the bisecting plane, and the constant velocity of the joint is ensured.
[0024]
In the Zepper type constant velocity universal joint (BJ) of FIG. 2 and the undercut free type constant velocity universal joint (UJ) having the above-described configuration, as shown in FIG. 1, the PCD clearance in the ball track, that is, The difference between the pitch circle diameter PCD OUT of the track groove 1b of the outer joint member 1 and the pitch circle diameter PCD IN of the track groove 2b of the inner joint member 2 is 5 to 50 μm. If the PCD clearance is smaller than 5 μm, the assembling property and the operability of the torque transmitting ball 3 may be deteriorated. Conversely, if the PCD clearance is larger than 50 μm, the contact ellipse between the torque transmitting ball 3 and the track grooves 1b and 2b is likely to be deteriorated. However, it becomes easy to protrude from the track grooves 1b and 2b, and it becomes difficult to improve durability.
[0025]
2 and 3, the axial clearance between the pocket 4c of the retainer 4 and the torque transmission ball 3, that is, the axial dimension D P of the pocket 4c and the diameter D B of the torque transmission ball 3 are used. Is within the range of −30 to +10 μm, preferably −10 to +10 μm. When the tightening allowance (negative gap) between the pocket 4c of the cage 4 and the torque transmission ball 3 becomes excessively smaller than −30 μm, the force that restrains the torque transmission ball 3 is increased, and the torque transmission ball 3 is smooth. Rolling is inhibited. Therefore, when the joint rotates, a rolling motion accompanied by slip occurs at the contact portion between the torque transmission ball 3 and the track grooves 1b and 2b, which causes a rise in temperature inside the joint and thereby a decrease in life. On the other hand, if the play (normal gap) between the pocket 4c of the cage 4 and the torque transmission ball 3 is larger than +10 μm and excessive, a hitting sound is generated between the pocket 4c and the torque transmission ball 3. Adverse effects on the joint performance, such as increased joint vibration.
[0026]
Further, the radial clearance between the cage 4 and the outer joint member 1, that is, the difference between the inner diameter D O of the outer joint member 1 and the outer diameter D K1 of the cage 4 is set to 20 to 100 μm. 4 and radial clearance between the inner joint member 2, i.e., the difference between the inner diameter D K2 of the cage 4 and the outer diameter D I of the inner joint member 2, 20 to 100 [mu] m. When these radial clearances are smaller than 20 μm, the operability between the cage 4 and the outer joint member 1 and between the cage 4 and the inner joint member 2 is deteriorated, and conversely, the radial clearance is 100 μm. If it becomes larger than this, a hitting sound is generated between the cage 4 and the outer joint member 1, and between the cage 4 and the inner joint member 2, and joint vibration increases.
[0027]
【Example】
FIG. 4 shows the results of a high load endurance test on the PCD clearance for the constant velocity universal joint of the embodiment shown in FIG. 2, that is, the Zepper type constant velocity universal joint (BJ) having eight torque transmission balls. This test was performed by operating the test joint under the test conditions of load torque T = 726 N · m, rotation speed N = 230 rpm, and operating angle θ = 6 deg, and measuring the operation time when the malfunction occurred. The high load endurance test was conducted on two test joints A and B.
[0028]
From the results shown in FIG. 4, a constant velocity universal joint with a PCD clearance of 30 and 50 μm can ensure stable durability, while a constant velocity universal joint with a PCD clearance of 70 and 100 μm can achieve the specifications. Even if it can be cleared, there is a variation in life, and in the constant velocity universal joint with a PCD clearance of 120 μm, it is the limit to clear the specification, and furthermore, in the constant velocity universal joint with a PCD clearance of 130 μm, It is difficult to clear the specifications.
[0029]
Next, FIG. 5 shows the results of an endurance test on the axial clearance in the cage pocket for the Zepper type constant velocity universal joint (BJ). This test was performed by operating the test joint under the test conditions of load torque T = 186 N · m, rotation speed N = 1700 rpm, operating angle θ = 6 deg, and measuring the operation time when the malfunction occurred. This durability test was conducted on two test joints A and B.
[0030]
From the results shown in FIG. 5, the constant velocity universal joint with the axial clearance of −20 and −30 μm can secure stable durability, whereas the constant velocity universal joint with the axial clearance of −45 μm Durability was reduced and lifespan varied.
[0031]
【The invention's effect】
According to the present invention, since the PCD clearance in the ball track is set to a positive clearance of 5 to 50 μm , the ball diameter is small as in the constant velocity universal joint including eight torque transmission balls, so that the track depth is small. even during high load, the contact ellipse between the torque transmitting ball and the track groove hardly protrudes from the track groove, it becomes easy to suppress the occurrence of chipping or flaking, and the pockets and the torque transmitting balls of the cage Since the axial clearance between -30 and +10 μm is smaller than the constant velocity universal joint with six torque transmission balls, the load applied to the pocket per torque transmission ball is small. Because the amount is small, the torque transmission ball's restraining force by the pocket is reduced to ensure smooth rolling of the torque transmission ball. Can, because it can reduce the temperature rise inside the joint in the reduction of heat generation due to contact of the torque transmitting balls in the pockets, the stabilization of improved and unevenness in life durability of the constant velocity universal joint can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view taken along the line AA in FIG. 2 or the line BB in FIG. 3 in the embodiment of the constant velocity universal joint according to the present invention.
FIG. 2 is a longitudinal sectional view showing an example applied to a Zepper type constant velocity universal joint (BJ) in the embodiment of the present invention.
FIG. 3 is a longitudinal sectional view showing an example applied to an undercut free type constant velocity universal joint (UJ) in another embodiment of the present invention.
FIG. 4 is a diagram showing the results of a high load endurance test for a PCD clearance.
FIG. 5 is a diagram showing a result of an endurance test on an axial clearance in a pocket of a cage.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Outer joint member 1a Outer joint member inner diameter surface 1b Outer joint member track groove 2 Inner joint member 2a Inner joint member outer diameter surface 2b Inner joint member track groove 3 Torque transmission ball 4 Cage 4c Pocket PCD OUT -PCD PCD clearance D P -D B- axis clearance in IN ball track

Claims (4)

球面状の内径面に軸方向に延びる8本の曲線状のトラック溝を形成した外側継手部材と、球面状の外径面に軸方向に延びる8本の曲線状のトラック溝を形成した内側継手部材と、前記外側継手部材のトラック溝とこれに対応する前記内側継手部材のトラック溝とが協働して形成される8本のボールトラックに配された8個のトルク伝達ボールと、そのトルク伝達ボールを保持するポケットを有する保持器とを備え、前記外側継手部材のトラック溝の中心が内径面の球面中心に対して、前記内側継手部材のトラック溝の中心が外径面の球面中心に対して、それぞれ、軸方向に等距離だけ反対側にオフセットされたドライブシャフト用等速自在継手であって、
前記ボールトラックにおけるPCDすきまを5〜50μmの正すきまとし、前記保持器のポケットとトルク伝達ボールとの間の軸方向すきまを−30〜+10μmとしたことを特徴とする等速自在継手。
An outer joint member in which eight curved track grooves extending in the axial direction are formed on the spherical inner diameter surface, and an inner joint in which eight curved track grooves extending in the axial direction are formed on the spherical outer diameter surface Member, eight torque transmission balls arranged on eight ball tracks formed by cooperation of the track groove of the outer joint member and the corresponding track groove of the inner joint member, and the torque thereof A cage having a pocket for holding a transmission ball, and the center of the track groove of the outer joint member is centered on the spherical surface of the inner diameter surface, and the center of the track groove of the inner joint member is centered on the spherical surface of the outer diameter surface. On the other hand, each is a constant velocity universal joint for a drive shaft offset to the opposite side by an equal distance in the axial direction,
A constant velocity universal joint characterized in that a PCD clearance in the ball track is a positive clearance of 5 to 50 μm and an axial clearance between a pocket of the cage and a torque transmitting ball is −30 to +10 μm .
球面状の内径面に軸方向に延びる8本の曲線状のトラック溝を形成した外側継手部材と、球面状の外径面に軸方向に延びる8本の曲線状のトラック溝を形成した内側継手部材と、前記外側継手部材のトラック溝とこれに対応する前記内側継手部材のトラック溝とが協働して形成される8本のボールトラックに配された8個のトルク伝達ボールと、そのトルク伝達ボールを保持するポケットを有する保持器とを備え、前記外側継手部材のトラック溝の中心が内径面の球面中心に対して、前記内側継手部材のトラック溝の中心が外径面の球面中心に対して、それぞれ、軸方向に等距離だけ反対側にオフセットされ、かつ、前記外側継手部材および内側継手部材の各トラック溝に直線状の溝底を有するストレート部が設けられたドライブシャフト用等速自在継手であって、
前記ボールトラックにおけるPCDすきまを5〜50μmの正すきまとし、前記保持器のポケットとトルク伝達ボールとの間の軸方向すきまを−30〜+10μmとしたことを特徴とする等速自在継手。
An outer joint member in which eight curved track grooves extending in the axial direction are formed on the spherical inner diameter surface, and an inner joint in which eight curved track grooves extending in the axial direction are formed on the spherical outer diameter surface Member, eight torque transmission balls arranged on eight ball tracks formed by cooperation of the track groove of the outer joint member and the corresponding track groove of the inner joint member, and the torque thereof A cage having a pocket for holding a transmission ball, and the center of the track groove of the outer joint member is centered on the spherical surface of the inner diameter surface, and the center of the track groove of the inner joint member is centered on the spherical surface of the outer diameter surface. in contrast, respectively, it is offset by the opposite side an equal distance in the axial direction, and, for the outer joint member and the drive shaft straight portion is provided with a straight groove bottom on each track grooves of the inner joint member A constant velocity joint,
A constant velocity universal joint characterized in that a PCD clearance in the ball track is a positive clearance of 5 to 50 μm and an axial clearance between a pocket of the cage and a torque transmitting ball is −30 to +10 μm .
前記保持器と外側継手部材との間の径方向すきまを20〜100μmとしたことを特徴とする請求項1又は2に記載の等速自在継手。The constant velocity universal joint according to claim 1 or 2, characterized in that the radial clearance between the cage and the outer joint member and 20 to 100 [mu] m. 前記保持器と内側継手部材との間の径方向すきまを20〜100μmとしたことを特徴とする請求項1乃至のいずれかに記載の等速自在継手。The constant velocity universal joint according to any one of claims 1 to 3 , wherein a radial clearance between the cage and the inner joint member is 20 to 100 µm.
JP2001126166A 2001-04-24 2001-04-24 Constant velocity universal joint Expired - Lifetime JP4041657B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2001126166A JP4041657B2 (en) 2001-04-24 2001-04-24 Constant velocity universal joint
US10/124,732 US20030017877A1 (en) 2001-04-24 2002-04-18 Constant velocity universal joint
FR0205114A FR2823815B1 (en) 2001-04-24 2002-04-24 HOMOCINETIC UNIVERSAL JOINT
US11/191,029 US7097567B2 (en) 2001-04-24 2005-07-28 Constant velocity universal joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001126166A JP4041657B2 (en) 2001-04-24 2001-04-24 Constant velocity universal joint

Publications (2)

Publication Number Publication Date
JP2002323061A JP2002323061A (en) 2002-11-08
JP4041657B2 true JP4041657B2 (en) 2008-01-30

Family

ID=18975249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001126166A Expired - Lifetime JP4041657B2 (en) 2001-04-24 2001-04-24 Constant velocity universal joint

Country Status (1)

Country Link
JP (1) JP4041657B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9291207B2 (en) 2011-08-22 2016-03-22 Ntn Corporation Constant velocity universal joint and method for producing same

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7211002B2 (en) * 2002-11-14 2007-05-01 Gkn Driveline North America, Inc. High angle constant velocity joint
JP2005188620A (en) 2003-12-25 2005-07-14 Ntn Corp Stationary type constant velocity universal joint
DE602005025450D1 (en) 2004-01-15 2011-02-03 Honda Motor Co Ltd HOMOKINETIC JOINT
JP4880902B2 (en) * 2005-01-11 2012-02-22 本田技研工業株式会社 Constant velocity joint
JP2005337290A (en) * 2004-05-24 2005-12-08 Ntn Corp Drive shaft for all terrain vehicle
JP2005337291A (en) * 2004-05-24 2005-12-08 Ntn Corp Drive shaft for all terrain vehicle
BRPI0713497A2 (en) * 2006-06-23 2012-01-24 Ntn Toyo Bearing Co Ltd universal constant speed joint, drive shaft using universal constant speed joint, and drive wheel bearing unit
JP2008002624A (en) * 2006-06-23 2008-01-10 Ntn Corp Constant velocity universal joint, drive shaft using it, and bearing unit for drive wheel
JP2008002625A (en) * 2006-06-23 2008-01-10 Ntn Corp Constant velocity universal joint, drive shaft using it, and bearing unit for drive wheel
JP2008020036A (en) * 2006-07-14 2008-01-31 Ntn Corp Constant velocity universal joint
EP2119931B1 (en) 2007-02-14 2018-03-21 NTN Corporation Fixed type constant velocity universal joint
JP5340548B2 (en) * 2007-02-14 2013-11-13 Ntn株式会社 Fixed constant velocity universal joint
JP2008196635A (en) * 2007-02-14 2008-08-28 Ntn Corp Fixed type constant velocity universal joint
JP2010014474A (en) * 2008-07-02 2010-01-21 Ntn Corp Detection method for detecting state of occurrence of contact fatigue damage on fixed type constant velocity universal joint
JP2010014473A (en) * 2008-07-02 2010-01-21 Ntn Corp Detection method of detecting temporal change generated when contact fatigue damage is generated
EP2609343B1 (en) * 2010-08-23 2017-05-10 Hyundaiwia Corporation Fixed type constant velocity joint
JP5133395B2 (en) * 2010-12-21 2013-01-30 Ntn株式会社 Drive shaft for saddle riding type vehicle for running on rough terrain and method for manufacturing undercut-free type constant velocity universal joint used therefor
JP6125186B2 (en) 2012-10-12 2017-05-10 Ntn株式会社 Fixed constant velocity universal joint
JP7188124B2 (en) * 2019-01-23 2022-12-13 株式会社ジェイテクト constant velocity universal joint

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9291207B2 (en) 2011-08-22 2016-03-22 Ntn Corporation Constant velocity universal joint and method for producing same

Also Published As

Publication number Publication date
JP2002323061A (en) 2002-11-08

Similar Documents

Publication Publication Date Title
JP4041657B2 (en) Constant velocity universal joint
EP1209372B1 (en) Constant velocity joint
US7097567B2 (en) Constant velocity universal joint
US6299543B1 (en) Plunging type constant velocity joint
US8545337B2 (en) Fixed uniform-motion universal joint
JP3859264B2 (en) Fixed constant velocity universal joint for automobiles
JP4041641B2 (en) Fixed type constant velocity universal joint
US8079914B2 (en) Plunging constant velocity universal joint
EP2908020B1 (en) Fixed-type constant-velocity universal joint
US8342971B2 (en) Fixed type constant velocity universal joint
EP3067582B1 (en) Stationary constant velocity universal joint
JPH09317784A (en) Fixed type constant velocity universal joint
US8182352B2 (en) Constant velocity universal joint
EP4394200A1 (en) Plunging type constant velocity universal joint
JP2020169718A (en) Fixed type constant velocity universal joint
EP3015729B1 (en) Fixed-type constant velocity universal joint
JP2002130317A (en) Constant velocity universal joint and propeller shaft using thereof
JP5106968B2 (en) Fixed constant velocity universal joint
JP2009250351A (en) Constant velocity universal joint
KR19980701893A (en) Constant velocity joint
JP2007107568A (en) Fixed constant velocity universal joint
JP2008267407A (en) Fixed type constant velocity universal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071018

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4041657

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term