JP4040970B2 - Mid-infrared photon detector - Google Patents
Mid-infrared photon detector Download PDFInfo
- Publication number
- JP4040970B2 JP4040970B2 JP2002381521A JP2002381521A JP4040970B2 JP 4040970 B2 JP4040970 B2 JP 4040970B2 JP 2002381521 A JP2002381521 A JP 2002381521A JP 2002381521 A JP2002381521 A JP 2002381521A JP 4040970 B2 JP4040970 B2 JP 4040970B2
- Authority
- JP
- Japan
- Prior art keywords
- mid
- quantum well
- photon detector
- infrared
- mesa structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Light Receiving Elements (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、単一光子を検出できるような高感度の中赤外波長領域の光子検出器に関する。中赤外光検出技術は、化学、バイオ、環境、赤外天文学など幅広い応用が期待される。
【0002】
【従来の技術】
従来、広く用いられてきた中赤外光検出用半導体素子は、水銀・カドミウム・テルル系光伝導材料、および量子井戸中のサブバンド間遷移による縦方向伝導を用いた量子井戸赤外光検出器(Quantum Well InfraredPhotodetector;QWIP) である。しかし、水銀・カドミウム・テルル系光伝導材料は、結晶成長やそのプロセスが非常に困難な材料系であり、毒性も強く、検出器が非常に高価になるという難点がある。
【0003】
また量子井戸中のサブバンド間遷移を用いた赤外光検出器(Quantum Well Infrared Photodetector;QWIP) は、GaAs系電子材料で10μm 帯の赤外光を可能にしたという点で、極めて画期的なデバイスである。しかし、選択則のため試料表面への垂直入射光に対して感度を持たないこと、散乱を介した暗電流が大きく高温動作が難しいことなどの欠点がある。そのため実用上重要な77Kでの動作が困難であった。それに対して、電子を3次元的に閉じ込めた量子ドット中のサブバンド間遷移を用いた赤外光検出器(Quantum Dot InfraredPhotodetector;QDIP)は、上記の問題を解決する有効な手段として、近年急速に注目されてきているが、半導体量子井戸構造中のサブバンド間遷移を用いた光検出器では、垂直入射光に対して感度を持たないこと、散乱に支援されたトンネル効果による暗電流が大きいこと、などの問題がある。これに対して、量子井戸赤外光検出器における量子井戸を、インジウムひ素自己組織化量子ドットで置き換えた縦型伝導光検出器も報告されているが、量子ドットの不規則なサイズや配置による電子の散乱効果により、高感度の光検出ができなかった。
【0004】
【発明が解決しようとする課題】
光検出における極限の感度は、単一の光子を検出することである。一般に光電変換過程では、光子1個は電子1個を励起する。この光励起された電子が作る電流は極めて小さいため、これまでは電子増倍管やアバランシェ・フォトダイオードを用いて雪崩増倍を起こさせて、単一光子の検出を行なっていた。しかし、光子エネルギーの小さい中赤外光の波長範囲では、適当な光電変換過程および雪崩増倍を起こす材料を見出すことができず、結局、中赤外光の波長領域の単一光子検出が可能な光子検出器は存在しなかった。
【0005】
本発明は,
(1)シリコンやガリウムひ素など、作製プロセスが確立している標準的な半導体材料により、中赤外光子検出器を作製可能とすること、
(2)アレー化がしやすい構造の光子検出器を作製すること、
(3)従来の中赤外光子検出器に比べて高感度な検出器を実現すること、
を課題としている。
【0006】
【課題を解決するための手段】
本発明の中赤外光子検出器は、サブバンド間遷移により電荷移動が起きるような極微細の半導体量子井戸メサ構造の表面に単一電子トランジスタ構造を積層して容量結合した構成を有し、量子井戸構造に入射された光子により誘起される光励起キャリアの電荷移動を、単一電子トランジスタ構造により高感度に検出できるようにしたものである。
【0007】
【発明の実施の形態】
図1は、本発明の1実施例による中赤外光子検出器の素子断面図である。
【0008】
図1において、1は中赤外光の照射により電子あるいは正孔がサブバンド遷移を起こす量子井戸を含む微細なメサ構造であり、たとえば直径は数百nm 程度の大きさにされる。2はメサ構造1中でサブバンド遷移を起こした電子が緩和する下部電極である。3は下部電極2にコンタクトを取るための金属電極である。4はメサ構造1の量子井戸中の電荷の変化を検出する量子ドットである。この量子ドット4はメサ構造1の表面に積層される単一電子トンネルトランジスタの量子ドット電極となっている。5は単一電子トンネルトランジスタのトンネル障壁層である。6は単一電子トンネルトランジスタのリード電極であり、量子ドット電極4との間で、トンネル効果により電子を伝導する。このリード電極6を用いて単一光子吸収による信号を外部に取り出す。なお、金属電極3とリード電極6の形状(パターン)を適当に設計することにより、中赤外光に対するアンテナ効果をもたせて、上方から入射する中赤外光をメサ構造1の量子井戸部分に効率よく集光し、垂直入射光にも感度を持たせることができる。
【0009】
図2は、図1の量子ドット電極4の部分におけるエネルギーバンド図を示す。
【0010】
図2において、サブバンド間遷移を起こす1の部分は、たとえばガリウムひ素などの量子井戸を用いて作製することができるが、量子井戸構造の代りにインジウムひ素自己組織化量子ドットを用いても同様な効果が得られる。また4の量子ドット電極には、半導体や金属の極微細構造が用いられる。
【0011】
中赤外光が1の量子井戸に入射すると、量子井戸中で基底サブバンドに存在していた電子がサブバンド間遷移により、上位のサブバンドに遷移する。上位サブバンドの波動関数は、2の下部電極部分にも大きな振幅をもっているため、上位サブバンドに遷移した電子は下部電極2に向かって緩和する。したがって、中赤外光が入射することにより、電荷が量子井戸中から下部電極2へ移動し、量子井戸中の電荷が減少する。
【0012】
単一電子トンネルトランジスタの量子ドット電極4の電気化学ポテンシャルは、1の量子井戸と容量結合しているため、量子井戸中の電荷の減少により変化する。このとき、たとえば、下部電極2の電圧により、単一電子トランジスタのコンダクタンスが高い状態にバイアスされていれば、量子ドット4の電気化学ポテンシャルの変化により、コンダクダンスは減少する。中赤外光の入射は、このコンダクタンスの変化として検出される。
【0013】
光検出の波長は、量子井戸構造の設計により制御することが可能であり、数μmから数十μmまでの広い波長範囲で光検出することが可能である。また、標準的な半導体プロセスを用いて、ウェーハー上に作製することができ、アレー化も可能である。
【0014】
【発明の効果】
本発明による中赤外光子検出器は、量子井戸中のザブバンド間遷移による電荷移動を単一電子トンネルトランジスタにより読み出す構成をとることにより検出感度を著しく高めているため、光子エネルギーが小さいために雪崩増倍効果を利用することが困難な中赤外光領域において、単一光子検出を可能にするものである。本発明による中赤外光検出器は、従来の中赤外光領域で動作する中赤外光子検出器に比べて、数桁の感度の向上を期待することができる。
【0015】
また、従来の半導体プロセスを用いて作製することができ、アレー化も容易であるため、比較的低コストで、多様な用途に使用することができる。
【図面の簡単な説明】
【図1】 本発明の1実施例による中赤外光子検出器の素子断面図である。
【図2】 本発明による中赤外光子検出器の量子ドット電極部分におけるエネルギーバンド図である。
【符号の説明】
1:量子井戸を含むメサ構造
2:下部電極
3:金属電極
4:量子ドット/量子ドット電極
5:トンネル障壁層
6:リード電極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-sensitivity mid-infrared wavelength region photon detector capable of detecting a single photon. Mid-infrared light detection technology is expected to have a wide range of applications such as chemistry, biotechnology, environment, and infrared astronomy.
[0002]
[Prior art]
Conventionally, semiconductor devices for detecting mid-infrared light that have been widely used are mercury, cadmium, and tellurium-based photoconductive materials, and quantum well infrared detectors using longitudinal conduction due to intersubband transition in quantum wells. (Quantum Well Infrared Photodetector; QWIP). However, mercury, cadmium and tellurium-based photoconductive materials are material systems in which crystal growth and processes are very difficult, have strong toxicity, and have a drawback that the detector becomes very expensive.
[0003]
In addition, an infrared photodetector (QWIP) using intersubband transition in a quantum well is extremely revolutionary in that it enables infrared light in the 10 μm band with GaAs-based electronic materials. Device. However, there are disadvantages such as lack of sensitivity to vertically incident light on the sample surface due to selection rules, and high dark current due to scattering, which makes it difficult to operate at high temperature. Therefore, operation at 77K, which is important for practical use, was difficult. On the other hand, an infrared photodetector (Quantum Dot Infrared Photodetector; QDIP) using intersubband transition in a quantum dot in which electrons are confined three-dimensionally has recently been rapidly used as an effective means to solve the above problems. However, photodetectors using intersubband transitions in semiconductor quantum well structures have no sensitivity to normal incidence light and large dark current due to scattering-assisted tunneling effects There are problems such as that. On the other hand, vertical conduction photo detectors in which quantum wells in quantum well infrared photodetectors are replaced with indium arsenic self-assembled quantum dots have also been reported, but due to the irregular size and arrangement of quantum dots Highly sensitive light detection could not be performed due to the electron scattering effect.
[0004]
[Problems to be solved by the invention]
The ultimate sensitivity in light detection is to detect a single photon. In general, in a photoelectric conversion process, one photon excites one electron. The current generated by the photoexcited electrons is extremely small, so far, single photons have been detected by causing avalanche multiplication using an electron multiplier or an avalanche photodiode. However, in the mid-infrared wavelength range where the photon energy is small, it is not possible to find a material that causes an appropriate photoelectric conversion process and avalanche multiplication, and eventually single-photon detection in the mid-infrared wavelength region is possible. There was no such photon detector.
[0005]
The present invention
(1) A mid-infrared photon detector can be manufactured using standard semiconductor materials such as silicon and gallium arsenide whose manufacturing process has been established.
(2) Producing a photon detector having a structure that is easily arrayed;
(3) To realize a detector with higher sensitivity than the conventional mid-infrared photon detector,
Is an issue.
[0006]
[Means for Solving the Problems]
The mid-infrared photon detector of the present invention has a configuration in which a single electron transistor structure is stacked and capacitively coupled on the surface of a very fine semiconductor quantum well mesa structure in which charge transfer is caused by intersubband transition, The charge transfer of photoexcited carriers induced by photons incident on the quantum well structure can be detected with high sensitivity by a single electron transistor structure.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an element cross-sectional view of a mid-infrared photon detector according to an embodiment of the present invention.
[0008]
In FIG. 1,
[0009]
FIG. 2 shows an energy band diagram in the portion of the
[0010]
In FIG. 2, the
[0011]
When the mid-infrared light is incident on one quantum well, electrons existing in the base subband in the quantum well transition to an upper subband by intersubband transition. Since the wave function of the upper subband has a large amplitude also in the lower electrode portion of 2, the electrons that have transitioned to the upper subband relax toward the
[0012]
Single electron tunneling electrochemical potential of the
[0013]
The wavelength of light detection can be controlled by designing the quantum well structure, and light can be detected in a wide wavelength range from several μm to several tens of μm. It can also be fabricated on a wafer using standard semiconductor processes and can be arrayed.
[0014]
【The invention's effect】
The mid-infrared photon detector according to the present invention has a configuration in which charge transfer caused by intersubband transition in a quantum well is read out by a single electron tunnel transistor, so that the detection sensitivity is remarkably increased. This makes it possible to detect single photons in the mid-infrared light region where it is difficult to use the multiplication effect. The mid-infrared light detector according to the present invention can be expected to improve the sensitivity by several orders of magnitude as compared with the conventional mid-infrared photon detector operating in the mid-infrared light region.
[0015]
Further, since it can be manufactured using a conventional semiconductor process and is easily arrayed, it can be used for various purposes at a relatively low cost.
[Brief description of the drawings]
FIG. 1 is an element cross-sectional view of a mid-infrared photon detector according to an embodiment of the present invention.
FIG. 2 is an energy band diagram in the quantum dot electrode portion of the mid-infrared photon detector according to the present invention.
[Explanation of symbols]
1: Mesa structure including quantum well 2: Lower electrode 3: Metal electrode 4: Quantum dot / quantum dot electrode 5: Tunnel barrier layer 6: Lead electrode
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002381521A JP4040970B2 (en) | 2002-12-27 | 2002-12-27 | Mid-infrared photon detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002381521A JP4040970B2 (en) | 2002-12-27 | 2002-12-27 | Mid-infrared photon detector |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004214383A JP2004214383A (en) | 2004-07-29 |
JP4040970B2 true JP4040970B2 (en) | 2008-01-30 |
Family
ID=32817416
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002381521A Expired - Fee Related JP4040970B2 (en) | 2002-12-27 | 2002-12-27 | Mid-infrared photon detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4040970B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7705306B2 (en) | 2004-07-09 | 2010-04-27 | Japan Science And Technology Agency | Infrared photodetector |
ES2297972A1 (en) * | 2005-05-30 | 2008-05-01 | Universidad Politecnica De Madrid | Quantum dot intermediate band infrared photodetector |
KR102058605B1 (en) | 2012-12-11 | 2019-12-23 | 삼성전자주식회사 | Photodetector and image sensor including the same |
CN108123003B (en) * | 2017-12-07 | 2019-12-31 | 上海电机学院 | Method for realizing middle and far infrared single photon detection by semiconductor three-quantum dot structure |
-
2002
- 2002-12-27 JP JP2002381521A patent/JP4040970B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004214383A (en) | 2004-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Design strategies for two‐dimensional material photodetectors to enhance device performance | |
Long et al. | Progress, challenges, and opportunities for 2D material based photodetectors | |
Riazimehr et al. | High photocurrent in gated graphene–silicon hybrid photodiodes | |
Miao et al. | Avalanche photodetectors based on two-dimensional layered materials | |
US8053782B2 (en) | Single and few-layer graphene based photodetecting devices | |
Liu et al. | Transparent, broadband, flexible, and bifacial-operable photodetectors containing a large-area graphene–gold oxide heterojunction | |
Ghosh et al. | Recent advances in perovskite/2D materials based hybrid photodetectors | |
US20180102491A1 (en) | Organic photodetectors and production method thereof | |
Wang et al. | Emerging Single‐Photon Detectors Based on Low‐Dimensional Materials | |
US7351997B2 (en) | Single photon receptor | |
Li et al. | High sensitivity ultraviolet detection based on three-dimensional graphene field effect transistors decorated with TiO 2 NPs | |
US20040201009A1 (en) | Infrared photodetector | |
Huang et al. | Interfacial gated graphene photodetector with broadband response | |
Liu et al. | Carbon nanotube-based heterostructures for high-performance photodetectors: Recent progress and future prospects | |
Allen et al. | 66‐4: invited paper: graphene enhanced QD image sensor technology | |
Nasiri et al. | Nanomaterials-based UV photodetectors | |
Wu et al. | A synergetic enhancement of localized surface plasmon resonance and photo-induced effect for graphene/GaAs photodetector | |
Wang et al. | Recent progress of quantum dot infrared photodetectors | |
JP4040970B2 (en) | Mid-infrared photon detector | |
CN113990971A (en) | Photoelectric detector based on quantum dot superlattice and two-dimensional material composition | |
Hasani et al. | Experimental and theoretical analysis of a Visible-Light photodetector based on cadmium sulfide fabricated on interdigitated electrodes | |
JP2022173791A (en) | Electromagnetic wave detector and electromagnetic wave detector assembly | |
Tao et al. | Enhanced photoresponse in interfacial gated graphene phototransistor with ultrathin Al 2 O 3 dielectric | |
Yang et al. | Graphene, transition metal dichalcogenides, and perovskite photodetectors | |
Wu et al. | Van der Waals Gate-Induced Ultrafast Photoresponse in a 2D PdPSe-Based Photodetector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040726 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070412 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070424 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070625 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070807 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071009 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20071106 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071108 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101116 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |