JP4040123B2 - Dynamic vibration absorber - Google Patents

Dynamic vibration absorber Download PDF

Info

Publication number
JP4040123B2
JP4040123B2 JP09989096A JP9989096A JP4040123B2 JP 4040123 B2 JP4040123 B2 JP 4040123B2 JP 09989096 A JP09989096 A JP 09989096A JP 9989096 A JP9989096 A JP 9989096A JP 4040123 B2 JP4040123 B2 JP 4040123B2
Authority
JP
Japan
Prior art keywords
movable
magnet
horizontal
rectangular
fixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09989096A
Other languages
Japanese (ja)
Other versions
JPH09287633A (en
Inventor
安彦 相田
博志 丹羽
祐治 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP09989096A priority Critical patent/JP4040123B2/en
Priority to TW085111907A priority patent/TW329464B/en
Priority to US08/720,571 priority patent/US5896961A/en
Priority to KR1019960043690A priority patent/KR100258777B1/en
Priority to DE69617859T priority patent/DE69617859T2/en
Priority to EP96115843A priority patent/EP0767321B1/en
Priority to CN96119952A priority patent/CN1067749C/en
Publication of JPH09287633A publication Critical patent/JPH09287633A/en
Application granted granted Critical
Publication of JP4040123B2 publication Critical patent/JP4040123B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は構造物の制振装置に係り、特に一つの可動重量を用いて2次元方向の振動に対応し、制振効果を得る動吸振器に関する。
【0002】
【従来の技術】
従来の動吸振器は、制振対象構造物の振動方向を特定し、その方向に対して制振効果を発揮するように、付加重量を振動させる構成となっており、制振すべき振動方向が複数の場合、その各方向に対応した個数分、動吸振器を設置する必要があった。
【0003】
以下、従来の動吸振器について図10を用いて説明する。この図10は従来の動吸振器を設置した様子を模式的に示したものである。
制振対象物1の振動方向に対応して、付加重量2をばね要素3と減衰要素4により支持した動吸振器を複数個設置している。
【0004】
このように構成された動吸振器においては、建築構造物等のように、動吸振器の設置スペースが十分に確保する場合には、複数個設置する上では問題はなかった。
【0005】
【発明が解決しようとする課題】
一方、機械構造物のように、動吸振器の設置スペースが限られ、しかも複数方向の制振が必要な場合、付加重量の振動方向が一定している従来構造のままでは機構が複雑で小型化に限界があり、制振効果を得るために適切な配置設定を行うことが困難であった。
【0006】
本発明は係る従来の事情に対処してなされたものであり、その目的は、小型、軽量、簡単な構成であり、なおかつ単体で2次元方向の振動にも追従し、振動を低減できる動吸振器を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の発明においては、可動重量部と、この可動重量部の水平面にバックヨークを介して所定の間隔を有して格子状に縦複数列及び横複数列にわたり各列複数個設けられ垂直方向に磁化した矩形磁石からなり各矩形磁石は縦横で隣接する矩形磁石と異なる磁極となるように配置されてなる可動部磁石と、制振対象物に前記可動部磁石と同一形状であって前記可動部磁石と異なる磁極が対向するようにバックヨークを介して所定の間隔を有して格子状に縦複数列及び横複数列にわたり各列複数個設けられた矩形磁石からなる固定部磁石と、前記可動重量部に設けられた可動部ベアリング受け座と、前記制振対象物に設けられた固定部ベアリング受け座と、この可動部ベアリング受け座と固定部ベアリング受け座とに挟着され前記可動重量部の水平運動を可能にする剛球とを有し、前記矩形磁石の間隔を前記可動部磁石側および固定部磁石側の同一箇所において広げたスペースを設け、このスペースに前記可動部ベアリング受け座と固定部ベアリング受け座とを設けて剛球を挟着したことを特徴とする動吸振器を提供するものである。
また、請求項2記載の発明は、請求項1記載の発明に、前記可動部磁石と固定部磁石との隙間に非接触に介挿された導体板を設けたものである。
【0008】
また、請求項3記載の発明は、請求項1乃至請求項2記載の動吸振器において、矩形磁石に代えて円形磁石を有するものである。
請求項1記載の発明では、可動重量部が静止位置から動いた場合、すなわち、対向している磁石が水平方向にずれた場合に、静止位置にて対向している矩形磁石あるいは円形断面磁石同士は互いに異なる磁極を有するため、吸引力が働く一方、隣接する同一磁極に近づくことにより反発力が働く。これらは、いずれも2次元方向の移動に対して可動重量の移動量を元に戻す復元力として作用する。さらに加えて請求項2記載の発明によれば、対向磁石間に設置した導体板を通過する磁束は、可動重量の移動に伴い、導体板と相対運動することになり、これは導体板に発生する渦電流損による磁気減衰力として作用する。以上により、磁気ばねおよび磁気ダンパとして構成し、これらのばね定数、減衰係数を制振対象物の振動特性に合わせて、動吸振器理論に基づいて調整した上で、制振対象物にこの磁気ばね・磁気ダンパにより可動重量部を支持している動吸振器を設置することにより、制振対象物の振動を低減することができる。特に小型の矩形磁石あるいは請求項3記載の発明による円形断面磁石に分割し多数配列したことから同じ対向面積を有する大型磁石に比べ、可動重量の移動に対し、可動部磁石と固定部磁石のずれ面積量を多くすることができる分、大きな磁気復元力が得られる。
【0010】
本発明では、矩形磁石あるいは円形断面磁石の配列個数が非常に多くなった場合、配列の中間部にも剛球を配置することによって、可動部磁石および固定部磁石全体の面外変形を防ぎ、両者の隙間を全面に亘り一定に保つ。
【0014】
請求項記載の発明では、請求項1乃至記載の動吸振器において、バックヨークを水平板と縦リブを組み合わせたハニカム構造とするものである。本発明では、矩形磁石あるいは円形断面磁石の配列個数が非常に多くなった場合、可動部磁石と一体を成すバックヨークを、水平板と縦リブを組み合わせたハニカム構造により構成することにより、可動部全体の面外変形を防ぎ、固定部との隙間を一定に保ち、剛球の転がりによる可動重量部の水平運動が抵抗なく行える。
【0019】
【発明の実施の形態】
以下に本発明に係る動吸振器の第1の実施の形態図1および図2に基づき説明する。図1は第1の実施の形態を示す縦断面図であり、図2は図1におけるA−A線矢視断面図である。
【0020】
本実施の形態では、動吸振器の可動重量5に、厚さ方向に磁化した可動部矩形磁石6を四辺にて隣接する各矩形磁石と所定の距離を置いて水平面内の縦横に多数配列し、隣接する磁石同士は互いに異なる磁極を持つように構成した上、バックヨーク7を介して固定している。
【0021】
ここで、多数配列した可動部矩形磁石6とバックヨーク7を総称して可動部磁石列8と呼ぶ。これと対向する制振対象物1にも可動部磁石列8と同一形状、同一配置を成す固定部矩形磁石9を多数配列し、静止状態にて対向する可動部矩形磁石6とは互いに異なる磁極を有するように構成した上、バックヨーク10を介して設置している。
【0022】
また、多数配列した固定部矩形磁石9とバックヨーク10を総称して固定部磁石列11と呼ぶ。可動部磁石列8と固定部磁石列11とは上下に一定の隙間12を保って設置されているが、これは可動重量5と制振対象物1に各々固定された受け座13,14を介して複数の剛球15を直接挟み込むことにより確保している。
【0023】
さらに、この隙間12には導体板16を磁石と非接触になるように設置されている。導体板16は支持脚17を介して制振対象物1、可動重量5のいずれかに固定されている。
【0024】
このように構成された、第1の実施の形態においては、可動重量5が静止位置から動いた場合、すなわち対向している可動部矩形磁石6と固定部矩形磁石9が水平方向にずれた場合に、これらは互いに異なる磁極を持つため、吸引力が働く一方、隣接する同一磁極に近づくことにより反発力が働く。これらは、いずれも2次元方向の移動に対して可動重量5の移動量を元に戻す復元力として作用する。さらに、対向磁石間の隙間12に設置した導体板16を通過する磁束は、可動重量5の移動に伴い、導体板16と相対運動することになり、これは導体板16に発生する渦電流損による磁気減衰力として作用する。以上により、磁気ばねおよび磁気ダンパとして作用し、可動重量5を制振対象物1に取り付けることにより、制振対象物1の振動を低減することができる。特に小型の矩形磁石に分割し多数配列したことから同じ対向面積を有する大型磁石に比べ、可動重量5の移動に対し、可動部矩形磁石6と固定部矩形磁石9のずれ面積量を多くすることができる分、大きな磁気復元力が得られる。従って、動吸振器に必要な磁気ばね定数を得るための磁石の物量を少なくできるため、動吸振器をさらに小型化することができる。
【0025】
次に本発明に係る動吸振器の第2の実施の形態ついて図3を用いて説明する。
本実施の形態においては、第1の実施の形態の可動部磁石列8および固定部磁石列11を構成する矩形磁石に代えて、各々可動部円形磁石18および固定部円形磁石19を水平面内の縦横に所定の間隔を保ち多数配列し、隣接する磁石同士は異なる磁極を持つように、また静止状態にて対向する位置にある可動部円形磁石18と固定部円形磁石19は異なる磁極を持つよう構成している。
【0026】
このように構成された本実施の形態においては、磁石が円形であるため、2次元の任意の方向に対して同一の磁気ばね定数が得られるので、たとえば、回転体の振れ回り振動を抑制するのに特に有効である。
【0027】
次に、本発明に係る動吸振器の第3の実施の形態ついて図4および図5を用いて説明する。図4は第3の実施の形態に係る動吸振器の断面図を示し、図5 は図4におけるB−B線矢視断面図である。本実施の形態においては、第1の実施の形態の可動部磁石列8および固定部磁石列11について構成する矩形磁石あるい円形磁石を多数配列している中間部対向する同一場所にて、隣接する磁石間隔を広げることにより中間スペース20を設け、可動部磁石列8および固定部磁石列11を分割し、そのスペースの可動重量5および制振対象物1に、各々中間受け座21,22を設置し、剛球23を挟み込んでいる。
【0028】
このように構成された本実施の形態においては、特に磁石配列個数が多くなり、可動部磁石列8の断面積が大きくなった場合、中間位置にも上下方向の支持部がとれるため、可動重量5を含めた全体としての面外変形が防止できる。従って、対向する磁石間隙間を全面に亘り均一に保てるとともに、剛球23の転がりによる可動重量5の水平運動が抵抗なく行える。
【0029】
本発明に係る動吸振器の第4の実施の形態ついて、図6を用いて説明する。
本実施の形態は、第1の実施の形態における可動部磁石列8および固定部磁石列11について、可動部矩形磁石6と固定部矩形磁石9の水平面内における縦横の配列個数を変えたものである。
【0030】
このように構成された本実施の形態においては、矩形磁石の辺に平行な水平2方向に関して、可動重量5の移動に伴う可動部矩形磁石6と固定部矩形磁石9のずれ面積を任意に調整することができる。従って、制振対象物1が2方向で異なる振動数を持つ場合、異なる振動数に対応して制振効果を発揮することができる。
【0031】
なお、本実施の形態の説明に用いた図6では、可動部矩形磁石6あるいは固定部矩形磁石9のそれぞれ隣接する磁石間距離を変えることなく縦横の配列個数を変えているが、隣接する磁石間距離を縦の配列あるいは横の配列で異なるものとすることによれば、配列個数を変えなくとも本実施の形態と同様に制振対象物1が2方向で異なる振動数を持つ場合に、異なる振動数に対応して制振効果を発揮することが可能である。
【0032】
さらに、図6においては、矩形磁石の縦横の長さの比はほぼ1のものが例示されているため、縦横の配列個数を変えると、全体としては、多くの配列を有する横の辺が長い長方形となっている。しかしながら、矩形磁石の辺の長さの比は必ずしも1である必要はない。例えば、矩形磁石の内、磁石自体の縦横の辺の長さの比が大きなものを使用して縦横の配列を行うことによれば、多くの配列を有する辺が必ずしも長くはならず、その全体の縦横の辺の長短は自由度を増すことになる。
【0033】
本発明に係る動吸振器の第5の実施の形態ついて、図7を用いて説明する。本実施の形態においては、可動部磁石列8を構成するバックヨーク7を可動重量5と一体と考え、磁石が固定されている平板24と上部平板25を縦リブ26を介して結合させ、全体としてハニカム構造を構成し、可動部全体としての面外剛性を確保したものである。
【0034】
このような構成により、対向する磁石間隙間を全面に亘り均一に保てるとともに、剛球の転がりによる可動重量の水平運動が抵抗なく行えるという効果を発揮する。
【0035】
次に、本発明に係る動吸振器の第6の実施の形態図8を用いて説明する。本実施の形態においては、可動部磁石列8の反対側に第1および第2の実施の形態と同様に、第2固定磁石列27および第2可動磁石列28を配置し、第2可動重量29を可動重量5の上で支持している。可動重量5には第2受け座30が、第2可動重量29には第2受け座31が各々設けられ、その第2受け座30,31の間に第2 剛球32が挟着されている。また、第2固定磁石列27および第2可動磁石列28の隙間には第2導体板33が非接触に介挿されている。
【0036】
本実施の形態を説明する図8によれば、可動重量5上にもう一つのみ動吸振器が載置されているが、第2固定磁石列27,第2可動磁石列28,第2可動重量29,第2受け座30,31,第2剛球32,第2導体板33を1ユニットとして、これを複数ユニット重ねて可動重量5に載置してもよい。
【0037】
このように動吸振器の可動重量5を複数段重ねて構成し、複数の自由度を持たせ、各可動重量5同士を配列個数を調整した多数配列磁石を対向配置することにより支持し、振動数を調整することによれば制振対象物1の複数の振動数に対応することができる。
【0038】
最後に、本発明に係る第7の実施の形態図9を用いて説明する。本実施の形態は、可動部矩形磁石6と固定部矩形磁石9の水平面内の周辺部における配列個数を場所により任意に調整することにより、可動部磁石列8および固定部磁石列11の最外周形状を任意に設定するものである。
【0039】
このように構成された本実施の形態においては、動吸振器の外形形状を任意に設定する上で、磁石の配置スペースを小さくすることができる。
なお、本実施の形態において示した配列は、図3を用いて説明した本発明に係る動吸振器の第2の実施の形態における可動部円形磁石18と固定部円形磁石19の配列においても適用可能である。
【0040】
以上、第1の実施の形態から第7の実施の形態においては制振対象物1上に載知される場合について図面を用いて説明したが、制振対象物1が吊り下げられ、動吸振器がその下面に設置される場合においても、可動部矩形磁石6と固定部矩形磁石9の磁力によって可動重量5は落下することなく本発明に係る動吸振器は設置可能である。
【0041】
【発明の効果】
以上説明したように本発明の動吸振器においては、可動重量は2次元方向に対して、磁気復元力により支持されており、1つの可動重量で2次元方向に制振効果が得られる。また、対向磁石間に導体板を配置することで、磁気ダンパとしても併用し、ばね要素と減衰要素がすべての可動重量の下部に収納できる。
さらに、縦複数列及び横複数列にわたり各列複数個設けられた矩形磁石からなる可動部磁石並びに縦複数列及び横複数列にわたり各列複数個設けられた矩形磁石からなる固定部磁石を配置することにより、同じ対向面積を有する大型磁石に比べ、可動重量の移動に対し、可動部磁石と固定部磁石とのずれ面積量を多くすることができる分だけ大きな磁気復元力が得られる。従って、同じ対向面積を有する大型磁石に比べ大きな復元力が得られるため、動吸振器を大幅に小型、軽量化することが可能である。
また、磁石配列個数が多くなり、可動部磁石列の断面積が大きくなった場合、中間位置にも上下方向の支持部がとれるため、可動重量を含めた全体としての面外変形が防止できる。従って、対向する磁石間隙間を全面に亘り均一に保てるとともに、剛球の転がりによる可動重量の水平運動が抵抗なく行うことができる。
【図面の簡単な説明】
【図1】本発明に係る動吸振器の第1の実施の形態を示す縦断面図。
【図2】図1におけるA−A線矢視断面図。
【図3】本発明に係る動吸振器の第2の実施の形態を示す構成図。
【図4】本発明に係る動吸振器の第3の実施の形態を示す縦断面図。
【図5】図4におけるB−B線矢視断面図。
【図6】本発明に係る動吸振器の第4の実施の形態を示す構成図。
【図7】本発明に係る動吸振器の第5の実施の形態を示す縦断面図。
【図8】本発明に係る動吸振器の第6の実施の形態を示す縦断面図。
【図9】本発明に係る動吸振器の第7の実施の形態を示す構成図。
【図10】(a)は動吸振器の従来例を示す立面図、(b)は動吸振器の従来例を示す側面図。
【符号の説明】
1…制振対象物 2…付加重量
3…ばね要素 4…減衰要素
5…可動重量 6…可動部矩形磁石
7…バックヨーク 8…可動部磁石列
9…固定部矩形磁石 10…バックヨーク
11…固定部磁石列 12…隙間
13…受け座 14…受け座
15…剛球 16…導体板
17…支持脚 18…可動部円形磁石
19…固定部円形磁石 20…中間スペース
21…中間受け座 22…中間受け座
23…剛球 24…平板
25…上部平板 26…縦リブ
27…第2固定磁石列 28…第2可動磁石列
29…第2可動重量 30…第2受け座
31…第2受け座 32…第2剛球
33…第2導体板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration damping device for a structure, and more particularly, to a dynamic vibration absorber that uses a single movable weight to deal with vibration in a two-dimensional direction and obtain a vibration damping effect.
[0002]
[Prior art]
The conventional dynamic vibration absorber is configured to vibrate the additional weight so that the vibration direction of the structure to be dampened is specified and the vibration damping effect is exhibited in that direction. When there are a plurality of the vibration absorbers, it is necessary to install the dynamic vibration absorbers in the number corresponding to each direction.
[0003]
Hereinafter, a conventional dynamic vibration absorber will be described with reference to FIG. FIG. 10 schematically shows a state in which a conventional dynamic vibration absorber is installed.
Corresponding to the vibration direction of the vibration control object 1, a plurality of dynamic vibration absorbers are provided in which the additional weight 2 is supported by the spring element 3 and the damping element 4.
[0004]
In the dynamic vibration absorber configured as described above, there is no problem in installing a plurality of dynamic vibration absorbers when the installation space for the dynamic vibration absorber is sufficiently secured as in a building structure or the like.
[0005]
[Problems to be solved by the invention]
On the other hand, when the installation space for dynamic vibration absorbers is limited and mechanical vibration is required in multiple directions, such as a mechanical structure, the mechanism is complicated and compact with the conventional structure where the vibration direction of the additional weight is constant. Therefore, it is difficult to make an appropriate arrangement for obtaining the vibration control effect.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in response to the conventional circumstances, and its purpose is a small, light and simple configuration, and can also follow vibration in a two-dimensional direction by itself and can reduce vibration. Is to provide a vessel.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, there is provided a movable weight portion and a plurality of vertical rows and horizontal rows in a lattice form with a predetermined interval through a back yoke on a horizontal surface of the movable weight portion. a movable portion magnet made are arranged such that the rectangular magnets is different poles each rectangular magnets made of rectangular magnets adjacent to each other in vertical and horizontal magnetized perpendicularly vignetting columns plurality set over, the movable damping object A plurality of rows are provided in a plurality of rows in a plurality of rows and rows in a lattice form with a predetermined interval through a back yoke so that magnetic poles that are the same shape as the portion magnets and face different magnetic poles from the movable portion magnets are opposed to each other. A stationary part magnet made of a rectangular magnet, a movable part bearing receiving seat provided in the movable weight part, a fixed part bearing receiving seat provided in the vibration control object, and the movable part bearing receiving seat and the fixed part bearing. received Bets to be clamped have a the rigid balls to enable horizontal movement of the movable parts, it is provided a space which widens the interval between the rectangular magnets at the same position of the movable portion magnet side and the fixed portion magnet side, this space The dynamic vibration absorber is characterized in that the movable portion bearing receiving seat and the fixed portion bearing receiving seat are provided to sandwich a hard ball .
According to a second aspect of the present invention, in the first aspect of the present invention, a conductive plate interposed in a non-contact manner is provided in the gap between the movable portion magnet and the fixed portion magnet.
[0008]
According to a third aspect of the present invention, in the dynamic vibration absorber according to the first or second aspect, a circular magnet is used instead of the rectangular magnet.
In the first aspect of the invention, when the movable weight part moves from the stationary position, that is, when the opposing magnets are displaced in the horizontal direction, the rectangular magnets or the circular cross-section magnets facing each other at the stationary position are Have magnetic poles different from each other, so that attractive force works, while repulsive force works by approaching the same magnetic pole adjacent to each other. All of these act as a restoring force that restores the moving amount of the movable weight to the movement in the two-dimensional direction. In addition, according to the second aspect of the present invention, the magnetic flux passing through the conductor plate disposed between the opposing magnets moves relative to the conductor plate as the movable weight moves, and this occurs in the conductor plate. Acts as a magnetic damping force due to eddy current loss. As described above, it is configured as a magnetic spring and a magnetic damper, and after adjusting the spring constant and damping coefficient according to the dynamic vibration absorber theory according to the vibration characteristics of the object to be controlled, By installing a dynamic vibration absorber that supports the movable weight portion with a spring / magnetic damper, it is possible to reduce the vibration of the object to be controlled. In particular, since a large number of small rectangular magnets or circular cross-section magnets according to the invention of claim 3 are arranged and arranged, the displacement of the movable part magnet and the fixed part magnet with respect to the movement of the movable weight compared to the large magnet having the same facing area. Since the area amount can be increased, a large magnetic restoring force can be obtained.
[0010]
In the present invention, when the number of arranged rectangular magnets or circular cross-sectional magnets becomes very large, by arranging a rigid sphere in the middle part of the arrangement, it is possible to prevent out-of-plane deformation of the entire movable part magnet and fixed part magnet. The gap is kept constant over the entire surface.
[0014]
According to a fourth aspect of the present invention, in the dynamic vibration absorber according to the first to third aspects, the back yoke has a honeycomb structure in which horizontal plates and vertical ribs are combined. In the present invention, when the number of arranged rectangular magnets or circular cross-section magnets is extremely large, the back yoke integrated with the movable part magnet is configured by a honeycomb structure in which horizontal plates and vertical ribs are combined. Prevents out-of-plane deformation as a whole, keeps the gap with the fixed part constant, and can perform horizontal movement of the movable weight part by rolling hard balls without resistance.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of a dynamic vibration absorber according to the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 is a longitudinal sectional view showing a first embodiment, and FIG. 2 is a sectional view taken along line AA in FIG.
[0020]
In the present embodiment, a plurality of movable portion rectangular magnets 6 magnetized in the thickness direction are arranged on the movable weight 5 of the dynamic vibration absorber vertically and horizontally in a horizontal plane with a predetermined distance from each rectangular magnet adjacent on four sides. Adjacent magnets are configured to have different magnetic poles, and are fixed via a back yoke 7.
[0021]
Here, the movable part rectangular magnets 6 and the back yoke 7 arranged in large numbers are collectively referred to as a movable part magnet row 8. A large number of fixed-portion rectangular magnets 9 having the same shape and the same arrangement as the movable-portion magnet array 8 are also arranged on the vibration-damping object 1 facing this, and the magnetic poles different from the movable-portion rectangular magnet 6 facing in a stationary state are different from each other. And is installed via a back yoke 10.
[0022]
A large number of the fixed portion rectangular magnets 9 and the back yoke 10 are collectively referred to as a fixed portion magnet row 11. The movable portion magnet row 8 and the fixed portion magnet row 11 are installed with a constant gap 12 in the vertical direction. This is because the movable weight 5 and the receiving seats 13 and 14 respectively fixed to the vibration control object 1 are provided. A plurality of hard spheres 15 are directly sandwiched therebetween.
[0023]
Furthermore, the conductor plate 16 is installed in the gap 12 so as not to contact the magnet. The conductor plate 16 is fixed to either the vibration suppression object 1 or the movable weight 5 via the support leg 17.
[0024]
In the first embodiment configured as described above, when the movable weight 5 moves from the stationary position, that is, when the movable portion rectangular magnet 6 and the fixed portion rectangular magnet 9 facing each other shift in the horizontal direction. In addition, since these have different magnetic poles, an attractive force works, while a repulsive force works by approaching the adjacent identical magnetic poles. All of these act as a restoring force for returning the moving amount of the movable weight 5 to the movement in the two-dimensional direction. Further, the magnetic flux passing through the conductor plate 16 installed in the gap 12 between the opposing magnets moves relative to the conductor plate 16 as the movable weight 5 moves, and this is an eddy current loss generated in the conductor plate 16. Acts as a magnetic damping force. As described above, the vibration of the vibration damping object 1 can be reduced by acting as a magnetic spring and a magnetic damper and attaching the movable weight 5 to the vibration damping object 1. In particular, since a large number of small rectangular magnets are divided and arranged, the displacement area amount of the movable portion rectangular magnet 6 and the fixed portion rectangular magnet 9 is increased with respect to the movement of the movable weight 5 as compared with a large magnet having the same facing area. As much as possible, a large magnetic restoring force can be obtained. Therefore, since the quantity of the magnet for obtaining the magnetic spring constant required for the dynamic vibration absorber can be reduced, the dynamic vibration absorber can be further reduced in size.
[0025]
Then with the second embodiment of the dynamic vibration reducer according to the present invention will be described with reference to FIG.
In the present embodiment, instead of the rectangular magnets constituting the movable portion magnet row 8 and the fixed portion magnet row 11 of the first embodiment, the movable portion circular magnet 18 and the fixed portion circular magnet 19 are respectively placed in a horizontal plane. A large number are arranged at predetermined intervals in the vertical and horizontal directions so that adjacent magnets have different magnetic poles, and the movable part circular magnet 18 and the fixed part circular magnet 19 at positions facing each other in a stationary state have different magnetic poles. It is composed.
[0026]
In the present embodiment configured as described above, since the magnet is circular, the same magnetic spring constant can be obtained in any two-dimensional direction. For example, the whirling vibration of the rotating body is suppressed. It is particularly effective.
[0027]
Next, with the third embodiment of the dynamic vibration reducer according to the present invention will be described with reference to FIGS. FIG. 4 shows a cross-sectional view of the dynamic vibration absorber according to the third embodiment, and FIG. 5 is a cross-sectional view taken along line BB in FIG. In the present embodiment, adjacent in the same place facing the middle portion where a large number of rectangular magnets or circular magnets constituting the movable portion magnet row 8 and the fixed portion magnet row 11 of the first embodiment are arranged. An intermediate space 20 is provided by widening the interval between the magnets, the movable part magnet row 8 and the fixed part magnet row 11 are divided, and the intermediate receiving seats 21 and 22 are respectively attached to the movable weight 5 and the vibration control object 1 of the space. It is installed and sandwiches a hard sphere 23.
[0028]
In the present embodiment configured as described above, in particular, when the number of magnets is increased and the cross-sectional area of the movable part magnet row 8 is increased, the support part in the vertical direction can be taken at the intermediate position. As a whole, the out-of-plane deformation including 5 can be prevented. Accordingly, the gap between the opposing magnets can be kept uniform over the entire surface, and the horizontal movement of the movable weight 5 by the rolling of the hard sphere 23 can be performed without resistance.
[0029]
For the fourth embodiment of the dynamic vibration reducer according to the present invention will be described with reference to FIG.
In the present embodiment, the movable portion magnet row 8 and the fixed portion magnet row 11 in the first embodiment are changed in the number of vertical and horizontal arrangements in the horizontal plane of the movable portion rectangular magnet 6 and the fixed portion rectangular magnet 9. is there.
[0030]
In the present embodiment configured as described above, the displacement area between the movable portion rectangular magnet 6 and the fixed portion rectangular magnet 9 accompanying the movement of the movable weight 5 is arbitrarily adjusted in two horizontal directions parallel to the sides of the rectangular magnet. can do. Therefore, when the damping object 1 has different frequencies in the two directions, the damping effect can be exhibited corresponding to the different frequencies.
[0031]
In FIG. 6 used for the description of the present embodiment, the number of vertical and horizontal arrangements is changed without changing the distance between adjacent magnets of the movable portion rectangular magnet 6 or the fixed portion rectangular magnet 9. According to the distance between the vertical arrangement and the horizontal arrangement being different, when the vibration control object 1 has different frequencies in two directions without changing the arrangement number, It is possible to exert a damping effect corresponding to different frequencies.
[0032]
Furthermore, in FIG. 6, the ratio of the vertical and horizontal lengths of the rectangular magnets is exemplified to be approximately 1. Therefore, when the number of vertical and horizontal arrangements is changed, the horizontal sides having many arrangements are long as a whole. It is a rectangle. However, the ratio of the lengths of the sides of the rectangular magnet does not necessarily have to be 1. For example, by performing vertical and horizontal arrangements using rectangular magnets with a large ratio of the lengths of the horizontal and vertical sides of the magnets, the sides having many arrangements do not necessarily become long, and the whole The length of the horizontal and vertical sides increases the degree of freedom.
[0033]
For the fifth embodiment of the dynamic vibration reducer according to the present invention will be described with reference to FIG. In the present embodiment, the back yoke 7 constituting the movable part magnet row 8 is considered to be integral with the movable weight 5, and the flat plate 24 and the upper flat plate 25 to which the magnet is fixed are coupled via the vertical ribs 26, The honeycomb structure is configured to ensure the out-of-plane rigidity of the entire movable part.
[0034]
With such a configuration, the gap between the opposing magnets can be kept uniform over the entire surface, and the horizontal movement of the movable weight due to the rolling of the hard sphere can be performed without resistance.
[0035]
Next, a sixth embodiment of the dynamic vibration absorber according to the present invention will be described with reference to FIG. In the present embodiment, similarly to the first and second embodiments, the second fixed magnet row 27 and the second movable magnet row 28 are arranged on the opposite side of the movable portion magnet row 8 to obtain the second movable weight. 29 is supported on a movable weight 5. A second receiving seat 30 is provided for the movable weight 5, and a second receiving seat 31 is provided for the second movable weight 29, and a second hard ball 32 is sandwiched between the second receiving seats 30, 31. . Further, a second conductor plate 33 is inserted in a non-contact manner in the gap between the second fixed magnet row 27 and the second movable magnet row 28.
[0036]
According to FIG. 8 for explaining the present embodiment, only one dynamic vibration absorber is mounted on the movable weight 5, but the second fixed magnet row 27, the second movable magnet row 28, the second movable magnet. The weight 29, the second receiving seats 30 and 31, the second hard sphere 32, and the second conductor plate 33 may be set as one unit, and a plurality of these units may be stacked and placed on the movable weight 5.
[0037]
In this way, the movable weight 5 of the dynamic vibration absorber is configured by stacking a plurality of stages, having a plurality of degrees of freedom, and supporting each movable weight 5 by arranging a plurality of arranged magnets facing each other and adjusting the number of arranged vibrations. By adjusting the number, it is possible to cope with a plurality of vibration frequencies of the vibration control object 1.
[0038]
Finally, a seventh embodiment according to the present invention will be described with reference to FIG. In the present embodiment, the outermost circumferences of the movable part magnet row 8 and the fixed part magnet row 11 are adjusted by arbitrarily adjusting the number of arrangement of the movable portion rectangular magnet 6 and the fixed portion rectangular magnet 9 in the periphery in the horizontal plane depending on the location. The shape is arbitrarily set.
[0039]
In this Embodiment comprised in this way, when setting the external shape of a dynamic vibration absorber arbitrarily, the arrangement space of a magnet can be made small.
The arrangement shown in the present embodiment is also applicable to the arrangement of the movable part circular magnet 18 and the fixed part circular magnet 19 in the second embodiment of the dynamic vibration absorber according to the present invention described with reference to FIG. Is possible.
[0040]
As described above, in the first to seventh embodiments, the case of being placed on the vibration suppression object 1 has been described with reference to the drawings. However, the vibration suppression object 1 is suspended and the dynamic vibration absorption is performed. Even when the device is installed on the lower surface thereof, the dynamic vibration absorber according to the present invention can be installed without the movable weight 5 falling due to the magnetic force of the movable portion rectangular magnet 6 and the fixed portion rectangular magnet 9.
[0041]
【The invention's effect】
As described above, in the dynamic vibration absorber of the present invention, the movable weight is supported by the magnetic restoring force in the two-dimensional direction, and a vibration damping effect is obtained in the two-dimensional direction with one movable weight. Further, by arranging the conductive plate between the opposed magnets, also used in combination as a magnetic damper, the spring element and the damping element is Ru can be stored at the bottom of every movable weight.
Furthermore, a movable part magnet made up of rectangular magnets provided in a plurality of rows over a plurality of vertical rows and a plurality of horizontal rows and a fixed magnet made up of rectangular magnets provided in a plurality of rows over a plurality of vertical rows and a plurality of horizontal rows are arranged. As a result, compared with a large magnet having the same facing area, a larger magnetic restoring force can be obtained with respect to the movement of the movable weight as much as the displacement area between the movable part magnet and the fixed part magnet can be increased. Therefore, since a large restoring force can be obtained compared with a large magnet having the same facing area, the dynamic vibration absorber can be significantly reduced in size and weight.
Further, when the number of magnets is increased and the cross-sectional area of the movable part magnet array is increased, the vertical support part can be taken at the intermediate position, so that out-of-plane deformation including the movable weight can be prevented. Therefore, the gap between the opposing magnets can be kept uniform over the entire surface, and the horizontal movement of the movable weight by rolling of the hard sphere can be performed without resistance.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a first embodiment of a dynamic vibration absorber according to the present invention.
2 is a cross-sectional view taken along line AA in FIG.
FIG. 3 is a configuration diagram showing a second embodiment of a dynamic vibration absorber according to the present invention.
FIG. 4 is a longitudinal sectional view showing a third embodiment of a dynamic vibration absorber according to the present invention.
5 is a cross-sectional view taken along line BB in FIG.
FIG. 6 is a configuration diagram showing a fourth embodiment of a dynamic vibration absorber according to the present invention.
FIG. 7 is a longitudinal sectional view showing a fifth embodiment of a dynamic vibration absorber according to the present invention.
FIG. 8 is a longitudinal sectional view showing a sixth embodiment of a dynamic vibration absorber according to the present invention.
FIG. 9 is a configuration diagram showing a seventh embodiment of a dynamic vibration absorber according to the present invention.
10A is an elevation view showing a conventional example of a dynamic vibration absorber, and FIG. 10B is a side view showing a conventional example of a dynamic vibration absorber.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Damping object 2 ... Additional weight 3 ... Spring element 4 ... Damping element 5 ... Movable weight 6 ... Movable part rectangular magnet 7 ... Back yoke 8 ... Movable part magnet row 9 ... Fixed part rectangular magnet 10 ... Back yoke 11 ... Fixed part magnet row 12 ... gap 13 ... receiving seat 14 ... receiving seat 15 ... rigid ball 16 ... conductive plate 17 ... support leg 18 ... movable part circular magnet 19 ... fixed part circular magnet 20 ... intermediate space 21 ... intermediate receiving seat 22 ... intermediate Receiving seat 23 ... rigid sphere 24 ... flat plate 25 ... upper flat plate 26 ... vertical rib 27 ... second fixed magnet row 28 ... second movable magnet row 29 ... second movable weight 30 ... second receiving seat 31 ... second receiving seat 32 ... Second hard sphere 33 ... second conductor plate

Claims (4)

可動重量部と、この可動重量部の水平面にバックヨークを介して所定の間隔を有して格子状に縦複数列及び横複数列にわたり各列複数個設けられ垂直方向に磁化した矩形磁石からなり各矩形磁石は縦横で隣接する矩形磁石と異なる磁極となるように配置されてなる可動部磁石と、制振対象物に前記可動部磁石と同一形状であって前記可動部磁石と異なる磁極が対向するようにバックヨークを介して所定の間隔を有して格子状に縦複数列及び横複数列にわたり各列複数個設けられた矩形磁石からなる固定部磁石と、前記可動重量部に設けられた可動部ベアリング受け座と、前記制振対象物に設けられた固定部ベアリング受け座と、この可動部ベアリング受け座と固定部ベアリング受け座とに挟着され前記可動重量部の水平運動を可能にする剛球とを有し、前記矩形磁石の間隔を前記可動部磁石側および固定部磁石側の同一箇所において広げたスペースを設け、このスペースに前記可動部ベアリング受け座と固定部ベアリング受け座とを設けて剛球を挟着したことを特徴とする動吸振器。A movable weight portion, a rectangular magnets magnetized in each column a plurality set vignetting vertically with a predetermined interval through the back yoke in a grid in a horizontal plane of the movable parts over vertical multiple columns and horizontal plurality of rows Each rectangular magnet has a movable part magnet arranged so as to have a different magnetic pole from the adjacent rectangular magnets in the vertical and horizontal directions, and a magnetic pole that is the same shape as the movable part magnet and has a different magnetic pole from the movable part magnet. A fixed magnet composed of a plurality of rectangular magnets arranged in a plurality of vertical rows and horizontal rows in a grid pattern with a predetermined interval through a back yoke so as to face each other; and a fixed portion magnet provided on the movable weight portion. The movable portion bearing seat, the fixed portion bearing seat provided on the object to be controlled, and the movable portion bearing seat and the fixed portion bearing seat can be sandwiched between the movable weight portion and the movable weight portion can be moved horizontally. Hard sphere Have a, the spacing of the rectangular magnets provided a space for spread at the same position of the movable portion magnet side and the fixed portion magnet side, rigid balls provided between the movable portion bearing receiving seat in this space a fixed portion bearing receiving seat A dynamic vibration absorber characterized by sandwiching 可動重量部と、この可動重量部の水平面にバックヨークを介して所定の間隔を有して格子状に縦複数列及び横複数列にわたり各列複数個設けられ垂直方向に磁化した矩形磁石からなり各矩形磁石は縦横で隣接する矩形磁石と異なる磁極となるように配置されてなる可動部磁石と、制振対象物に前記可動部磁石と同一形状であって前記可動部磁石と異なる磁極が対向するようにバックヨークを介して所定の間隔を有して格子状に縦複数列及び横複数列にわたり各列複数個設けられた矩形磁石からなる固定部磁石と、前記可動部磁石と固定部磁石との隙間に非接触に介挿された導体板と、前記可動重量部に設けられた可動部ベアリング受け座と、前記制振対象物に設けられた固定部ベアリング受け座と、この可動部ベアリング受け座と固定部ベアリング受け座とに挟着され前記可動重量部の水平運動を可能にする剛球とを有し、前記矩形磁石の間隔を前記可動部磁石側および固定部磁石側の同一箇所において広げたスペースを設け、このスペースに前記可動部ベアリング受け座と固定部ベアリング受け座とを設けて剛球を挟着したことを特徴とする動吸振器。A movable weight portion, made of a rectangular magnets magnetized in the columns plurality arranged vertically with a predetermined interval through the back yoke in a grid in a horizontal plane of the movable parts over vertical multiple columns and horizontal plurality of rows Each rectangular magnet has a vertical and horizontal movable magnet arranged so as to have a different magnetic pole from the adjacent rectangular magnet, and a magnetic pole that is the same shape as the movable magnet and opposite to the movable magnet is opposed to the vibration control object. As described above, a fixed magnet composed of a plurality of rectangular magnets arranged in a plurality of rows in a plurality of vertical rows and horizontal rows at predetermined intervals via a back yoke, and the movable portion magnet and the fixed portion magnet A conductive plate inserted in a non-contact manner in a gap between the movable portion, a movable portion bearing seat provided in the movable weight portion, a fixed portion bearing seat provided in the vibration control object, and the movable portion bearing. Base and fixed part bear Possess a rigid balls which are sandwiched and ring seat to allow horizontal movement of the movable parts, is provided a space which spread at the same location of distance the movable portion magnet side and the fixed portion magnet side of the rectangular magnet The dynamic vibration absorber is characterized in that the movable portion bearing receiving seat and the fixed portion bearing receiving seat are provided in this space and a rigid ball is sandwiched therebetween . 前記矩形磁石に代えて円形磁石を有することを特徴とする請求項1または2記載の動吸振器。Dynamic vibration absorber of claim 1, wherein it has a circular magnets in place of the rectangular magnets. 前記バックヨークは水平板と縦リブを組み合わせたハニカム構造であることを特徴とする請求項1乃至のいずれかに記載の動吸振器。The dynamic vibration absorber according to any one of claims 1 to 3 , wherein the back yoke has a honeycomb structure in which a horizontal plate and vertical ribs are combined.
JP09989096A 1995-10-02 1996-04-22 Dynamic vibration absorber Expired - Lifetime JP4040123B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP09989096A JP4040123B2 (en) 1996-04-22 1996-04-22 Dynamic vibration absorber
TW085111907A TW329464B (en) 1996-02-22 1996-09-30 Dynamic vibration absorber
US08/720,571 US5896961A (en) 1995-10-02 1996-10-01 Dynamic vibration absorber
DE69617859T DE69617859T2 (en) 1995-10-02 1996-10-02 Dynamic vibration damper
KR1019960043690A KR100258777B1 (en) 1995-10-02 1996-10-02 Dynamic vibration absorber
EP96115843A EP0767321B1 (en) 1995-10-02 1996-10-02 Dynamic vibration absorber
CN96119952A CN1067749C (en) 1995-10-02 1996-10-03 Dynamic vibration absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09989096A JP4040123B2 (en) 1996-04-22 1996-04-22 Dynamic vibration absorber

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005317624A Division JP2006084035A (en) 2005-10-31 2005-10-31 Dynamic vibration absorber

Publications (2)

Publication Number Publication Date
JPH09287633A JPH09287633A (en) 1997-11-04
JP4040123B2 true JP4040123B2 (en) 2008-01-30

Family

ID=14259379

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09989096A Expired - Lifetime JP4040123B2 (en) 1995-10-02 1996-04-22 Dynamic vibration absorber

Country Status (1)

Country Link
JP (1) JP4040123B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202768A (en) * 2010-03-26 2011-10-13 Toshiba Corp Magnetic multiple dynamic vibration absorber

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10220008A1 (en) * 2002-05-03 2003-11-13 Integrated Dynamics Eng Gmbh Magnetic spring device with negative stiffness
CN103380331B (en) * 2011-02-17 2016-03-23 江森自控科技公司 Magnetic attenuator
DE102011077434A1 (en) * 2011-06-10 2012-12-13 Eitzenberger Luftlagertechnik Gmbh Base device for oscillation sensitive component, has air bearing that runs on air bearing surfaces such that movement of component carrier is enabled relative to base unit using eddy current brake
CN103728006A (en) * 2014-01-24 2014-04-16 中国计量科学研究院 Electromagnetic damping device and method with three-dimensional magnetic field
CN105889380B (en) * 2016-06-13 2017-10-31 北京航空航天大学 A kind of current vortex rotates variation rigidity damper
CN106931065A (en) * 2016-09-08 2017-07-07 中国地震局工程力学研究所 Three-dimensional shock isolation pedestal comprising magnet arrangement
CN109914633A (en) * 2019-03-28 2019-06-21 云南震安减震科技股份有限公司 Eddy current damper and eddy current tuned mass damper
CN112922376B (en) * 2021-02-22 2022-04-08 中国长江三峡集团有限公司 Resetting device and method for supporting and monitoring offset of cylinder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011202768A (en) * 2010-03-26 2011-10-13 Toshiba Corp Magnetic multiple dynamic vibration absorber

Also Published As

Publication number Publication date
JPH09287633A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
JP4040123B2 (en) Dynamic vibration absorber
US5445249A (en) Dynamic vibration absorber
KR970021834A (en) Copper reducer
JP5178763B2 (en) Magnetic multiple motion vibration absorber
JP2005061211A (en) Seismic isolator
JP2006084035A (en) Dynamic vibration absorber
JPH1046867A (en) Earthquake-resisting device
JPH11315885A (en) Base isolation device
JPH1130279A (en) Base isolator
JP2799118B2 (en) Dynamic vibration absorber type vibration damping device
JP3349438B2 (en) Seismic isolation device for exhibits
JP4396168B2 (en) Dynamic vibration absorber and dynamic vibration absorber using the same
JP3566764B2 (en) Magnetic levitation cushion
JP3100886B2 (en) Dynamic vibration damping device
JP2742038B2 (en) Piping support structure
JP3818471B2 (en) Rolling guides for seismic isolation using rolling guides and rolling guides
JP3718307B2 (en) Magnetic damper
JPH06249285A (en) Dynamic vibration absorbing type damping device
JP7425699B2 (en) Seismic isolation device
JP4687092B2 (en) Dynamic vibration absorber and dynamic vibration absorber using the same
JPH07119794A (en) Dynamic vibration absorber
JPH1026136A (en) Base isolation device for light load
JPH1068443A (en) Seismic isolator
JPH03272343A (en) Dual type mass damper
JP2002221250A (en) Dynamic vibration-absorbing type damping apparatus

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050414

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051031

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051104

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070918

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

EXPY Cancellation because of completion of term