JP4039663B2 - Damping device - Google Patents

Damping device Download PDF

Info

Publication number
JP4039663B2
JP4039663B2 JP2002248533A JP2002248533A JP4039663B2 JP 4039663 B2 JP4039663 B2 JP 4039663B2 JP 2002248533 A JP2002248533 A JP 2002248533A JP 2002248533 A JP2002248533 A JP 2002248533A JP 4039663 B2 JP4039663 B2 JP 4039663B2
Authority
JP
Japan
Prior art keywords
damping
rotational motion
viscous
screw
damping device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002248533A
Other languages
Japanese (ja)
Other versions
JP2004084845A (en
Inventor
保 波多
英二 黒田
孟 中村
修巳 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sankyo Oilless Industries Inc
Sumitomo Mitsui Construction Co Ltd
Original Assignee
Sankyo Oilless Industries Inc
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sankyo Oilless Industries Inc, Sumitomo Mitsui Construction Co Ltd filed Critical Sankyo Oilless Industries Inc
Priority to JP2002248533A priority Critical patent/JP4039663B2/en
Publication of JP2004084845A publication Critical patent/JP2004084845A/en
Application granted granted Critical
Publication of JP4039663B2 publication Critical patent/JP4039663B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地震等の振動エネルギーを吸収する減衰装置に関し、詳しくは、地震、衝撃等の際に建築構造物等、二つの対象物間の相対変位に伴って発生する運動エネルギーを、熱エネルギーに変換して減衰させる装置に関する。
【0002】
【従来の技術】
地震時のエネルギー等を減衰させる装置として、粘性体の熱エネルギーに変換し、且つ、相対変位部分の増幅機能を有して減衰させる、例えば、特開平10−184757号、特開平10−184786号公報に開示されている減衰装置が知られている。
【0003】
これらの装置は、運動エネルギーの殆どを粘性体の熱エネルギーに変換するため、該粘性体がエネルギーを吸収し、発熱し、且つ、膨張する。この膨張に伴い前記粘性体を密封している筒体において、その内部圧力が上昇し、密封用に用いられるシール部材を損傷させる。
【0004】
【発明が解決しようとする課題】
この課題の解決手段として、特開2000−274474号公報に開示されているものが知られている。しかし、粘性体そのものは、熱が全て外部に放熱されず、それに伴い該粘性体の粘度が低下し、その結果、減衰装置の減衰能力を低下させる。また、外気温、太陽による輻射熱などの外部環境温度によっても粘性体の温度が変化し、同様の結果となる。
【0005】
上記減衰装置は、運動エネルギーを吸収した粘性体の膨張に対しては解決策が提案されているが、発熱等によって起こる当該粘性体の温度上昇による粘度低下と、それによる装置の減衰能力の低下による減衰能力のばらつきの課題は解決されていない。かかる粘性体の温度上昇を減少させる手段としては、粘性体の容量を多くし、単位体積当たりの負担を小さくするか、粘性体を冷却し放熱させる等の手段があるが、結果として、装置を大きく複雑にするなどの課題がある。本発明に係る減衰装置はこのような課題を解決するために提案されたものである。
【0006】
【課題を解決するための手段】
上記課題を解決するための本発明に係る減衰装置の要旨は、直線運動する直線運動手段と、該直線運動手段の直線運動を回転運動に変換する回転運動変換手段と、該回転運動変換手段によって回転され粘性体の粘性抵抗により運動エネルギーを減衰させる粘性減衰手段と、前記各手段を支持する装置本体とからなる減衰装置において、前記回転運動変換手段におけるねじ部の滑り面に、前記減衰装置における全体減衰力の一部を当該回転運動変換手段で負担可能にして、且つ、安定した潤滑性を示すように、自己潤滑機能を有する固体潤滑材が前記滑り面の約15%以上で約25%未満で均一に埋設されていることである。
【0007】
粘性減衰手段と回転運動変換手段とは、前記回転運動変換手段で発生する熱が前記粘性減衰手段へ熱的悪影響を与えないよう別体に構成されるとともに、連結部を介して連結されていることを含むものである。
【0008】
本発明に係る減衰装置によれば、粘性体が吸収する運動エネルギーの絶対量を減少させ、その減少分を他の減衰手段に代替えさせることができるものである。これにより、粘性体の温度上昇が軽減されて、該粘性体の粘度の低下が防止されるようになる。
【0009】
【発明の実施の形態】
次に、本発明に係る減衰装置1について、図面を参照して説明する。図1に示すように、減衰装置1は、外部からの外力により装置本体2に対して相対的に直線運動する直線運動手段であるねじ付き入力軸3と、該直線運動手段の直線運動をねじ対偶によって回転運動に変換する回転運動変換手段である回転変換体4と、該回転運動変換手段によって回転され粘性体5の粘性抵抗により運動エネルギーを減衰させる粘性減衰手段である内筒チューブ(回転体ともいう)6と、前記各手段を支持する、固定外筒2a及び支持体2bからなる装置本体2とで構成されている。
【0010】
前記入力軸3の外周部に設けられているねじ部3aは、3条の台形ねじ、または、左右等しい山の角度を持つ3条ねじに形成されている。これに螺合する回転変換体4の内壁に刻設されたねじ部4aも同様に形成されている。
【0011】
前記入力軸3に外部からの地震エネルギーにより、装置本体2との間に相対変位が生じると、前記ネジ部3a,4aにより回転変換体4が、回転しない入力軸3に対してその軸心廻りに回転し、該回転変換体4によって連結部4bを介して別体に同方向に回転される前記内筒チューブ6が、図1に示すように、前記回転変換体4とは別体にして当該回転変換体4で発生する熱が熱的悪影響を与えないように設けられており、該内筒チューブ6と装置本体2の一部である固定外筒2aとの間に注入され密封されている粘性体5による粘性抵抗を受ける。それにより、前記内筒チューブ6の回転運動を止める力が発生し、その抵抗力が回転変換体4を介して前記ねじ部3a,4aの摺接面に伝達され、該摺接面に摩擦力が生じて増幅され、この装置全体の主減衰力となる。
【0012】
次に、前記減衰装置1の減衰力について、関係式を設定して説明する。
減衰こま(減衰作用する部分の全体、入力軸3,回転変換体4、内筒チューブ6、その他のスラスト軸受部7等の減衰部分の合計)の全軸方向の減衰力 :P
粘性体5の軸方向減衰力 :Qn
ねじ部の軸方向減衰力 :Qs
スラスト軸受部7の軸方向減衰力 :Qb
とすると、P=Qn+Qs+Qb … 式(1)
であらわされる。
【0013】
前記粘性体5の軸方向減衰力Qnは、
粘性体5の減衰力 :Qd
粘性体部速度増幅比 :S
とすると、
Qn=Qd×S … 式(2)
前記粘性体部速度増幅比Sは、
内筒チューブ6外径の直径 :D
ねじ部のリード :L
円周率 :π
とすると、S=D・π/Lとなる。
【0014】
前記ねじ部の軸方向減衰力Qsは、
ねじの有効径 :Ds 、 ねじの摩擦係数 :μ1 、
ねじ部速度増副比:S1(=Ds・π/L) 、
とすると、Qs=P・μ1・S1 式(3)
となる。
【0015】
前記スラスト軸受部7の軸方向減衰力Qbは、
スラスト軸受部7の摩擦係数 :μ2
スラスト軸受部速度増副比 :S2(=Db・π/L)
とすると、Qb=P・μ2・S2 式(4)
ただし、前記スラスト軸受部7の速度増副比S2は、スラスト軸受7の回転直径:Dbとして、S2=Db・π/Lである。
【0016】
ここで、前記式(1)に前記式(2),(3),(4)を代入し、Qnの関数に整理すると、
P=Qn/(1−μ1・S1−μ2・S2) 式(5)となる。
この式(5)に示すように、減衰こまの軸方向減衰力Pは、粘性体5の減衰力を一定にした場合、ねじの摩擦係数と速度増幅比との積を大きくとるか、スラスト軸受部7の摩擦係数と速度増幅比との積を大きくとることにより、大きな軸方向減衰力Pを得ることができる。
【0017】
また、同じねじ及びスラスト軸受を使用し、全軸方向減衰力Pを等しくするとすれば、粘性体5の減衰力を小さくすることができる。
【0018】
【実施例】
本発明に係る減衰装置1と、従来の公知の減衰装置との比較例を示す。
前記公知の減衰装置は、ボールねじを使用した装置であり、
全軸方向減衰力P :50,000kg・f
ボールねじの摩擦係数 :0.005
ねじ部の速度増副比 :4.0
スラスト軸受部の摩擦係数 :0.005
スラスト軸受部の速度増副比 :10.1
とする。
【0019】
前記式(5)により、軸方向減衰力Qnを求めると、
Qn=46,475kg・fとなって、全軸方向減衰力Pの約9割以上を粘性体が負担している。
【0020】
これに対して、本発明の減衰装置1では、ボールねじを使用しないで、滑りねじに置き換えているので、粘性体5の負担は、滑りねじの摩擦係数を0.104として、上記と同様に全軸方向減衰力P=50,000kg・fとしてQnを求めると、
Qn=26,650kg・fとなる。これは、全軸方向減衰力Pのおおよそ半分程度となる。これによって、粘性体5においては、公知の減衰装置の略半分程度の減衰力で良いことになって負担が減少する。従って、熱によって粘性体5が膨張し、その膨張による圧力の上昇及び温度上昇が、本発明の減衰装置1では軽減されるものである。
【0021】
前記減衰装置1においては、回転運動変換手段である入力軸3と回転変換体4との、ねじ部の摺接面に伝達された抵抗力が、ねじ部摩擦によってねじ部軸方向減衰力を発生させる。その大きさは、摩擦、および、ねじ部速度増幅比の大きさに比例し、ねじ部速度増幅比は、ねじリードの大きさに反比例する。従って、滑りねじが回転運動変換手段として有効に機能するためには、適切なねじ部速度増幅比が選択される必要がある。また、ねじ部にて発生させる減衰力は、摺接面で熱エネルギーに変換され、金属製の入力軸3と回転変換体4との温度を上昇させ且つ熱膨張させる。その結果、入力軸3と回転変換体4との熱膨張率の差により、ねじのバックラッシュを減少させ、極端な場合は焼き付け等の原因となるため、その点からも負担させる減衰力の大きさを制限する必要がある。そこで、実用的に減衰装置1の各諸元より、ねじ摩擦の軸方向減衰力を、全軸方向減衰力Pの約25%〜60%の範囲に設定するものである。
【0022】
かかる減衰装置1のねじ部3a,4aの要件を考慮すると、前記式(5)より、分母が0以下とはならないので、
1>(μ1・S1+μ2・S2) … 式(6) となる。
よって、ねじ部の摩擦係数 μ1:0.104、ねじの速度増副比S1:4.0、スラスト軸受部7の摩擦係数μ2:0.005、スラスト軸受部速度増副比S2:10.1とすると、1>0.416+0.0505=0.471となり、上記式(6)を満足する。ここで、粘性体減衰力の比率を考えた場合、
0.65〜0.48>(μ1・S1+μ2・S2) … 式(7)となり、この実施例では、0.471なので、式(7)も満足する。
【0023】
よって、前記式(6),(7)でみるように、摩擦係数と速度増幅比とは任意であっても、前記条件を満足すれば良く、機器の設計において自由度を持たせることができる。本発明の減衰装置1では、回転変換体4が容易に回転し、かつ、摩擦減衰力の適正範囲から、ねじ部の速度増幅比S1は、2.1〜5.1の範囲に設定する。
【0024】
スラスト軸受部7の摩擦係数μ2と、スラスト軸受部速度増副比S2については、ここに滑りスラスト軸受を適用した場合、一般的な材料である、鉄と銅合金との摩擦係数は、概ね、0.15とすると、μ2・S2の積のみで1を越えてしまい、回転不能となる。よって、スラスト軸受部7は、非常に摩擦係数の小さい軸受けである必要がある。
【0025】
また、ねじ部においては、減衰装置の設置環境により水平から垂直まで任意の角度で取り付けられ、その取付における隙間や自重や装置の微小な隙間等によって、僅かな撓み等が発生するが、その状態でも、滑らかに作動するねじ条件として、3条ねじとする。この3条ねじによって、軸直角断面でねじ面の3面同時接触支持による軸直進の安定性と、台形ねじによる求心性とを組み合わせることにより、軸減衰力による軸の曲がり防止性能を向上させている。
【0026】
また、前記3条ねじの採用により、1条ねじに比較して、接触面積が大きくなり、ねじの有効長さを短くすることが可能で、加工容易更に、精度向上にもなる。台形ねじとして、30度台形ねじや、29度台形ねじの他、60度のねじ山の角度を持つ特殊台形ねじ、メートルねじ、更に、ねじ山に等しい角度を持つねじ山形状を使用しても同様の作用・効果を得ることができる。
【0027】
前記ねじ部3a,4aの軸方向には、適量の隙間を有しなければならない。ねじ部のねじ面は、軸減衰力により摩擦を受けて、熱エネルギーに変換され発熱する。ねじ部3a,4a及び回転変換体4の材料は、合金鋼と高力黄銅を使用しており、双方の熱膨張率の差により、ねじのピッチ方向については、雄ねじと雌ねじとのピッチ隙間が狭くなるので、適切なバックラッシュを維持する必要がある。
【0028】
かかる場合に、熱膨張を回避するには、バックラッシュの量を大きくすることで解消されるが、その場合には作動時の衝撃が大きくなってしまうので、減衰装置の損傷を防ぐため、バックラッシュは少ない方がよい。そこで、図2に示すように、有効径公差方式を採用するものである。例えば、直径60mm、P14のねじについては、軸方向バックラッシュが、0.11〜0.16mmとなる公差を適用する。なお、既知のJIS規格の公差方式により、軸方向バックラッシュを計算すると、0.048〜0.362mmとなり、非常に公差幅は広くなって送りねじ等の特殊用途には適用外となっている。
【0029】
前記ねじ部3a,4aには、自己潤滑機能を有する部材を採用している。減衰装置1は建物の梁の部材として、壁の中に組み込まれて使用されることがあることから、長期間、メンテナンスを必要としないことが求められる。そこで、ねじ部4aに、固体潤滑材8を埋設した回転変換体4を採用している。前記固体潤滑材8は、図3乃至図4に示すように、ねじの滑り面の約15%以上で約25%未満で均一に配設する。これにより、安定した潤滑性を示すものである。
【0030】
【発明の効果】
上記説明したように、本発明に係る減衰装置は、直線運動する直線運動手段と、該直線運動手段の直線運動を回転運動に変換する回転運動変換手段と、該回転運動変換手段によって回転され粘性体の粘性抵抗により運動エネルギーを減衰させる粘性減衰手段と、前記各手段を支持する装置本体とからなる減衰装置において、前記回転運動変換手段におけるねじ部の滑り面に、前記減衰装置における全体減衰力の一部を当該回転運動変換手段で負担可能にして、且つ、安定した潤滑性を示すように、自己潤滑機能を有する固体潤滑材が前記滑り面の約15%以上で約25%未満で均一に埋設されているので、ねじ部での摩擦を減衰力に有効活用させることで、粘性体による粘性減衰手段の負担を軽減させて、当該粘性減衰手段の減衰能力の低下を防止し、減衰装置全体の減衰性能を安定させると言う優れた効果を奏するものである。
【0031】
また、前記回転運動変換手段は、ねじ対偶のねじ部であり、滑りねじのねじ部に固体潤滑材を埋設して自己潤滑機能を有するので、長期間のメンテナンスが不要となり安定した潤滑性が得られるとともに、減衰装置の品質向上となる。前記粘性減衰手段と回転運動変換手段とは、前記粘性減衰手段が前記回転運動変換手段で生じる熱によって熱的悪影響を受けないように連結部を介して別体にして連結されているので、粘性体の温度上昇が軽減されてその粘度の低下が防止される。
【図面の簡単な説明】
【図1】本発明に係る減衰装置1の概略構成を示す断面図である。
【図2】同本発明に係る減衰装置1におけるねじ部の、バックラッシュ用の交差を比較する説明図(A),(B)である。
【図3】同本発明に係る減衰装置1におけるねじ部の、固体潤滑材を配設した様子を示す断面図(A)と、平面図(B)とである。
【図4】同本発明に係る減衰装置1におけるねじ部4aに、固体潤滑材8を配設した様子を示す断面図(A)と、平面図(B)とである。
【符号の説明】
1 減衰装置、 2 装置本体、
3 ねじ付き入力軸、 3a ねじ部、
4 回転変換体、 4a ねじ部、
4b 連結部、
5 粘性体、 6 内筒チューブ(回転体)、
7 スラスト軸受部、 8 固体潤滑材。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a damping device that absorbs vibration energy such as an earthquake, and more specifically, kinetic energy generated in association with relative displacement between two objects such as a building structure in the event of an earthquake, impact, etc. is expressed as thermal energy. The present invention relates to an apparatus for converting to attenuating.
[0002]
[Prior art]
As an apparatus for attenuating energy at the time of an earthquake, it is converted into thermal energy of a viscous body and attenuated with an amplifying function of a relative displacement portion, for example, Japanese Patent Laid-Open Nos. 10-184757 and 10-184786. Attenuating devices disclosed in the publication are known.
[0003]
Since these devices convert most of the kinetic energy into the thermal energy of the viscous body, the viscous body absorbs energy, generates heat, and expands. In the cylinder that seals the viscous body with the expansion, the internal pressure rises and damages the sealing member used for sealing.
[0004]
[Problems to be solved by the invention]
As means for solving this problem, one disclosed in JP 2000-274474 A is known. However, the viscous body itself does not release all the heat to the outside, and accordingly, the viscosity of the viscous body decreases, and as a result, the attenuation capability of the attenuation device decreases. In addition, the temperature of the viscous body changes depending on the external environment temperature such as the outside air temperature and radiant heat from the sun, and the same result is obtained.
[0005]
For the above damping device, a solution has been proposed for the expansion of a viscous body that has absorbed kinetic energy. However, the viscosity decreases due to the temperature rise of the viscous body caused by heat generation, etc., and the damping capacity of the device decreases accordingly. The problem of variation in damping capacity due to the above has not been solved. As means for reducing the temperature rise of such a viscous body, there are means such as increasing the capacity of the viscous body and reducing the load per unit volume or cooling the viscous body to dissipate heat. There are issues such as making it large and complex. The attenuation device according to the present invention has been proposed in order to solve such problems.
[0006]
[Means for Solving the Problems]
The gist of the damping device according to the present invention for solving the above-mentioned problems is that linear motion means that linearly moves, rotational motion conversion means that converts linear motion of the linear motion means into rotational motion, and rotational motion conversion means. In the damping device comprising a viscous damping means that attenuates the kinetic energy by the viscous resistance of the rotating viscous body and a device main body that supports each of the means, the sliding surface of the screw portion in the rotational motion converting means is arranged on the sliding surface of the damping device. A solid lubricant having a self-lubricating function is about 15% or more of the sliding surface and about 25% so that a part of the total damping force can be borne by the rotational motion converting means and shows a stable lubricity. It is that it is buried uniformly in less than.
[0007]
The viscous damping means and the rotational motion converting means are configured separately so that the heat generated by the rotational motion converting means does not adversely affect the viscous damping means, and are connected via a connecting portion. Including things.
[0008]
According to the damping device of the present invention, the absolute amount of kinetic energy absorbed by the viscous material can be reduced, and the reduced amount can be replaced by another damping means. Thereby, the temperature rise of a viscous body is reduced and the fall of the viscosity of this viscous body comes to be prevented.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Next, the attenuation device 1 according to the present invention will be described with reference to the drawings. As shown in FIG. 1, the damping device 1 includes a screwed input shaft 3 that is a linear motion means that linearly moves relative to the apparatus body 2 by an external force from the outside, and a linear motion of the linear motion means. A rotary converter 4 that is a rotary motion converter that converts rotational motion by an even number, and an inner tube (rotary body) that is a viscous damping means that is rotated by the rotary motion converter and attenuates kinetic energy by the viscous resistance of the viscous body 5. 6) and an apparatus main body 2 composed of a fixed outer cylinder 2a and a support body 2b for supporting the above-described means.
[0010]
The screw portion 3a provided on the outer peripheral portion of the input shaft 3 is formed as a three-thread trapezoidal screw or a three-thread screw having equal left and right crest angles. The threaded portion 4a carved on the inner wall of the rotation converter 4 that is screwed to this is also formed in the same manner.
[0011]
When relative displacement occurs between the input shaft 3 and the apparatus main body 2 due to seismic energy from the outside, the rotation conversion body 4 is rotated around the axis of the input shaft 3 that does not rotate by the screw portions 3a and 4a. The inner tube 6 that is rotated in the same direction by the rotation conversion body 4 via the connecting portion 4b is separated from the rotation conversion body 4 as shown in FIG. The heat generated in the rotation converter 4 is provided so as not to adversely affect the heat, and is injected and sealed between the inner tube 6 and the fixed outer tube 2a which is a part of the apparatus body 2. Viscous resistance due to the viscous body 5 is received. As a result, a force for stopping the rotational movement of the inner tube 6 is generated, and the resistance force is transmitted to the sliding contact surfaces of the screw portions 3a and 4a via the rotation converter 4, and the frictional force is applied to the sliding contact surfaces. Is generated and amplified, and becomes the main damping force of the entire apparatus.
[0012]
Next, the damping force of the damping device 1 will be described by setting a relational expression.
Attenuation force in all axial directions of the damping top (the total of the damping part, the total of the damping part of the input shaft 3, the rotation converter 4, the inner tube 6, the other thrust bearing part 7, etc.): P
Axial damping force of viscous body 5: Qn
Axial damping force of screw part: Qs
Axial damping force of thrust bearing 7: Qb
Then, P = Qn + Qs + Qb (1)
It is expressed.
[0013]
The axial damping force Qn of the viscous body 5 is
Damping force of viscous body 5: Qd
Viscous part speed amplification ratio: S
Then,
Qn = Qd × S (2)
The viscous part speed amplification ratio S is:
Inner tube 6 outer diameter: D
Thread lead: L
Pi ratio: π
Then, S = D · π / L.
[0014]
The axial damping force Qs of the threaded portion is
Effective diameter of screw: Ds, Friction coefficient of screw: μ1,
Thread part speed increasing sub-ratio: S1 (= Ds · π / L)
Then, Qs = P · μ1 · S1 (3)
It becomes.
[0015]
The axial damping force Qb of the thrust bearing portion 7 is
Friction coefficient of thrust bearing 7: μ2
Thrust bearing speed increase sub-ratio: S2 (= Db · π / L)
Then, Qb = P · μ 2 · S 2 (4)
However, the speed increasing sub-ratio S2 of the thrust bearing portion 7 is S2 = Db · π / L as the rotational diameter Db of the thrust bearing 7.
[0016]
Here, when the formulas (2), (3), and (4) are substituted into the formula (1) and arranged into a function of Qn,
P = Qn / (1−μ1 · S1−μ2 · S2) Equation (5) is obtained.
As shown in the equation (5), the axial damping force P of the damping top is obtained by increasing the product of the friction coefficient of the screw and the speed amplification ratio when the damping force of the viscous body 5 is constant, or a thrust bearing. A large axial damping force P can be obtained by increasing the product of the friction coefficient of the portion 7 and the speed amplification ratio.
[0017]
Further, if the same screw and thrust bearing are used and the total axial damping force P is made equal, the damping force of the viscous body 5 can be reduced.
[0018]
【Example】
A comparative example of the damping device 1 according to the present invention and a conventional known damping device is shown.
The known damping device is a device using a ball screw,
Total axial damping force P: 50,000 kg · f
Friction coefficient of ball screw: 0.005
Speed increase sub-ratio of screw part: 4.0
Friction coefficient of thrust bearing: 0.005
Thrust bearing speed increase sub-ratio: 10.1
And
[0019]
When the axial damping force Qn is obtained by the above equation (5),
Qn = 46,475 kg · f, and the viscous material bears about 90% or more of the total axial damping force P.
[0020]
On the other hand, in the damping device 1 of the present invention, since the ball screw is not used and replaced with a sliding screw, the load on the viscous body 5 is the same as described above, with the friction coefficient of the sliding screw being 0.104. When Qn is calculated with the total axial damping force P = 50,000 kg · f,
Qn = 26,650 kg · f. This is about half of the total axial damping force P. As a result, in the viscous body 5, the damping force is about half that of a known damping device, and the burden is reduced. Therefore, the viscous body 5 expands due to heat, and the increase in pressure and temperature due to the expansion are reduced in the damping device 1 of the present invention.
[0021]
In the damping device 1, the resistance force transmitted to the sliding contact surface of the screw portion between the input shaft 3 that is the rotational motion conversion means and the rotation converter 4 generates the screw portion axial damping force by the screw portion friction. Let The size is proportional to the friction and the size of the screw portion speed amplification ratio, and the screw portion speed amplification ratio is inversely proportional to the size of the screw lead. Therefore, in order for the sliding screw to function effectively as the rotational motion converting means, it is necessary to select an appropriate screw portion speed amplification ratio. Further, the damping force generated in the threaded portion is converted into heat energy at the sliding contact surface, and the temperature of the metal input shaft 3 and the rotation converter 4 is increased and thermally expanded. As a result, the difference in the thermal expansion coefficient between the input shaft 3 and the rotation converter 4 reduces the backlash of the screw and, in extreme cases, causes seizure or the like. It is necessary to limit this. Therefore, the axial damping force of screw friction is practically set in the range of about 25% to 60% of the total axial damping force P based on the specifications of the damping device 1.
[0022]
Considering the requirements of the screw parts 3a and 4a of the damping device 1, the denominator cannot be 0 or less from the above equation (5).
1> (μ1 · S1 + μ2 · S2) Equation (6)
Therefore, the friction coefficient μ1 of the screw portion: 0.104, the screw speed increasing sub-ratio S1: 4.0, the friction coefficient μ2 of the thrust bearing portion 7: 0.005, the thrust bearing speed increasing sub-ratio S2: 10.1. Then, 1> 0.416 + 0.0505 = 0.471, which satisfies the above formula (6). Here, when considering the ratio of viscous damping force,
0.65 to 0.48> (μ 1 · S 1 + μ 2 · S 2) Equation (7) is satisfied. In this embodiment, since it is 0.471, Equation (7) is also satisfied.
[0023]
Therefore, as can be seen from the above formulas (6) and (7), even if the friction coefficient and the speed amplification ratio are arbitrary, it is sufficient if the above conditions are satisfied, and a degree of freedom can be given in the design of the device. . In the damping device 1 of the present invention, the rotation converter 4 is easily rotated, and the speed amplification ratio S1 of the thread portion is set in the range of 2.1 to 5.1 from the appropriate range of the frictional damping force.
[0024]
About the friction coefficient μ2 of the thrust bearing portion 7 and the thrust bearing portion speed increasing sub-ratio S2, when a sliding thrust bearing is applied here, the friction coefficient between iron and copper alloy, which is a general material, is approximately If it is 0.15, it exceeds 1 only by the product of μ 2 · S 2, and rotation is impossible. Therefore, the thrust bearing portion 7 needs to be a bearing having a very small friction coefficient.
[0025]
In addition, the threaded portion is attached at an arbitrary angle from horizontal to vertical depending on the installation environment of the attenuation device, and slight bending or the like occurs due to a gap in the attachment, its own weight, or a minute gap in the device. However, as a screw condition that operates smoothly, a triple thread is used. This triple-threaded screw improves the ability to prevent bending of the shaft due to shaft damping force by combining the stability of straight shaft travel by simultaneous contact support of the three thread surfaces with a cross section perpendicular to the shaft and the centripetal force of trapezoidal screws. Yes.
[0026]
Further, the use of the three-thread screw increases the contact area as compared with the single-thread screw, can reduce the effective length of the screw, facilitates processing, and improves accuracy. As trapezoidal screws, in addition to 30-degree trapezoidal screws and 29-degree trapezoidal screws, special trapezoidal screws having a thread angle of 60 degrees, metric screws, and thread shapes having an angle equal to the thread can be used. Similar actions and effects can be obtained.
[0027]
An appropriate amount of gap must be provided in the axial direction of the screw portions 3a and 4a. The thread surface of the thread portion receives friction due to the axial damping force, is converted into heat energy, and generates heat. The material of the screw parts 3a, 4a and the rotation converter 4 is made of alloy steel and high-strength brass. Due to the difference in thermal expansion coefficient between them, the pitch gap between the male screw and the female screw is about the pitch direction of the screw. As it becomes narrower, proper backlash must be maintained.
[0028]
In such a case, to avoid thermal expansion, it can be resolved by increasing the amount of backlash, but in that case, the impact during operation becomes large, so that the backlash is prevented to prevent damage to the damping device. Less rush is better. Therefore, as shown in FIG. 2, an effective diameter tolerance method is adopted. For example, for a screw having a diameter of 60 mm and P14, a tolerance is applied so that the axial backlash is 0.11 to 0.16 mm. When the axial backlash is calculated by a known JIS standard tolerance method, it becomes 0.048 to 0.362 mm, and the tolerance width becomes very wide and is not applicable to special uses such as a lead screw. .
[0029]
A member having a self-lubricating function is employed for the screw portions 3a and 4a. Since the attenuation device 1 is sometimes used as a member of a building beam incorporated in a wall, it is required that maintenance is not required for a long period of time. Therefore, the rotation converter 4 in which the solid lubricant 8 is embedded in the screw portion 4a is employed. As shown in FIGS. 3 to 4, the solid lubricant 8 is uniformly disposed at about 15% or more and less than about 25% of the sliding surface of the screw. Thereby, the stable lubricity is shown.
[0030]
【The invention's effect】
As described above, the damping device according to the present invention includes linear motion means that linearly moves, rotational motion conversion means that converts linear motion of the linear motion means into rotational motion, and viscosity that is rotated by the rotational motion conversion means. In a damping device comprising a viscous damping means for damping kinetic energy by the viscous resistance of the body and a device main body that supports each of the means, an overall damping force in the damping device is applied to the sliding surface of the screw portion in the rotational motion converting means. The solid lubricant having a self-lubricating function is uniform at about 15% or more and less than about 25% of the sliding surface so that a part of the sliding motion can be borne by the rotational motion conversion means and exhibits stable lubricity. because it is embedded in, by the friction with a screw portion is effectively utilized in damping force, thereby reducing the burden of the viscous damping means by viscous body, decrease of the damping capability of the viscous damping means Preventing, in which excellent effects referred to stabilize the damping performance of the entire damping device.
[0031]
Further, the rotational motion converting means is a screw part of a screw pair and has a self-lubricating function by embedding a solid lubricant in the screw part of the sliding screw, so that long-term maintenance is not required and stable lubricity is obtained. In addition, the quality of the attenuation device is improved. The viscosity damping means and the rotational motion converting means are connected separately via a connecting portion so that the viscous damping means is not adversely affected by heat generated by the rotational motion converting means. The temperature rise of the body is reduced and the viscosity is prevented from decreasing.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a schematic configuration of an attenuation device 1 according to the present invention.
FIGS. 2A and 2B are explanatory views (A) and (B) for comparing crossing for backlash of a thread portion in the damping device 1 according to the present invention.
FIG. 3 is a cross-sectional view (A) and a plan view (B) showing a state in which a solid lubricant is disposed in a threaded portion of the damping device 1 according to the present invention.
FIG. 4 is a cross-sectional view (A) and a plan view (B) showing a state in which a solid lubricant 8 is disposed on a thread portion 4a in the damping device 1 according to the present invention.
[Explanation of symbols]
1 damping device, 2 device body,
3 Threaded input shaft, 3a Threaded part,
4 Rotation converter, 4a Screw part,
4b connecting part,
5 viscous body, 6 inner tube (rotating body),
7 Thrust bearing, 8 Solid lubricant.

Claims (2)

直線運動する直線運動手段と、該直線運動手段の直線運動を回転運動に変換する回転運動変換手段と、該回転運動変換手段によって回転され粘性体の粘性抵抗により運動エネルギーを減衰させる粘性減衰手段と、前記各手段を支持する装置本体とからなる減衰装置において、
前記回転運動変換手段におけるねじ部の滑り面に、前記減衰装置における全体減衰力の一部を当該回転運動変換手段で負担可能にして、且つ、安定した潤滑性を示すように、自己潤滑機能を有する固体潤滑材が前記滑り面の約15%以上で約25%未満で均一に埋設されていること、
を特徴とする減衰装置。
Linear motion means that linearly moves, rotational motion conversion means that converts linear motion of the linear motion means into rotational motion, and viscosity damping means that is rotated by the rotational motion conversion means and attenuates kinetic energy due to the viscous resistance of the viscous material; In the damping device comprising the device main body that supports each of the above means,
A self-lubricating function is provided so that a part of the total damping force in the damping device can be borne by the rotational motion converting means on the sliding surface of the screw portion in the rotational motion converting means and stable lubrication is exhibited. Having a solid lubricant uniformly embedded in about 15% or more and less than about 25% of the sliding surface;
Attenuator characterized by.
粘性減衰手段と回転運動変換手段とは、前記回転運動変換手段で発生する熱が前記粘性減衰手段へ熱的悪影響を与えないよう別体に構成されるとともに、連結部を介して連結されていること、
を特徴とする請求項1に記載の減衰装置。
The viscous damping means and the rotational motion converting means are configured separately so that the heat generated by the rotational motion converting means does not adversely affect the viscous damping means, and are connected via a connecting portion. thing,
The attenuation device according to claim 1.
JP2002248533A 2002-08-28 2002-08-28 Damping device Expired - Fee Related JP4039663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002248533A JP4039663B2 (en) 2002-08-28 2002-08-28 Damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002248533A JP4039663B2 (en) 2002-08-28 2002-08-28 Damping device

Publications (2)

Publication Number Publication Date
JP2004084845A JP2004084845A (en) 2004-03-18
JP4039663B2 true JP4039663B2 (en) 2008-01-30

Family

ID=32055887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002248533A Expired - Fee Related JP4039663B2 (en) 2002-08-28 2002-08-28 Damping device

Country Status (1)

Country Link
JP (1) JP4039663B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017251A (en) * 2004-07-02 2006-01-19 Haruo Uehara Damper
JP4772531B2 (en) * 2006-02-23 2011-09-14 三協オイルレス工業株式会社 Damping damper
JP4901443B2 (en) * 2006-12-05 2012-03-21 三協オイルレス工業株式会社 Attenuator
JP4832385B2 (en) * 2007-08-29 2011-12-07 三協オイルレス工業株式会社 Attenuator bearing structure
JP5292236B2 (en) * 2009-09-08 2013-09-18 不二ラテックス株式会社 Damping damper for damping and damping structure of building structure
JP6170425B2 (en) * 2013-12-18 2017-07-26 ニッタ株式会社 Friction damper
MX2015003668A (en) * 2015-03-23 2016-09-22 Gabriel Zavala Casarreal José Energy dissipator with hysteretic horizontal damping behaviour.
DE102018215586B4 (en) * 2018-09-13 2022-03-17 Siemens Energy Global GmbH & Co. KG Shock absorber for a high voltage device

Also Published As

Publication number Publication date
JP2004084845A (en) 2004-03-18

Similar Documents

Publication Publication Date Title
JP4039663B2 (en) Damping device
CN108138894B (en) Rotary inertial mass damper
JP5096551B2 (en) Screw motion mechanism and damping device using the same
US20090080824A1 (en) Bearing having thermal compensating capability
JP2009030811A (en) Gear assembly
EP3577361A1 (en) Sliding bearing pad support
JP4967036B2 (en) Rotational linear motion conversion mechanism and lift device
US11047420B2 (en) Hydrodynamic bearing
US6499573B1 (en) Damping device
JPH0579856B2 (en)
JP4174657B2 (en) Deep groove ball bearing and fan coupling device
JP6297454B2 (en) Seismic isolation damper
JP2012047221A (en) Vibration damper device
JP2012072785A (en) Friction damper
CN112855821B (en) Magnetic force lead screw formula axial eddy current damper
JP2006342853A (en) Vibrational energy absorbing apparatus
US9995280B2 (en) Joint structure and wind power generation device
ITTO20011138A1 (en) SCREW ACTUATOR MODULE.
CN110081074A (en) A kind of grease lubrication ceramic bearing using piezoelectric ceramics inner ring
CN211951205U (en) Many specifications dust proof bearing
JPH03335A (en) Damping device
JP2002195267A (en) Rolling bearing and rolling bearing unit
JP3053796B2 (en) Screw drive
US20070170007A1 (en) Ball screw drive mechanism for an elevator
CN215110357U (en) Screw rod rotation supporting mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070629

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees