JP4039108B2 - Ultra-high molecular weight polybenzoic acid, its production method and its use - Google Patents

Ultra-high molecular weight polybenzoic acid, its production method and its use Download PDF

Info

Publication number
JP4039108B2
JP4039108B2 JP2002126185A JP2002126185A JP4039108B2 JP 4039108 B2 JP4039108 B2 JP 4039108B2 JP 2002126185 A JP2002126185 A JP 2002126185A JP 2002126185 A JP2002126185 A JP 2002126185A JP 4039108 B2 JP4039108 B2 JP 4039108B2
Authority
JP
Japan
Prior art keywords
molecular weight
ultrahigh molecular
polybenzoic acid
formula
polybenzoic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002126185A
Other languages
Japanese (ja)
Other versions
JP2003313275A (en
Inventor
徹 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2002126185A priority Critical patent/JP4039108B2/en
Publication of JP2003313275A publication Critical patent/JP2003313275A/en
Application granted granted Critical
Publication of JP4039108B2 publication Critical patent/JP4039108B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【0001】
【発明の属する技術分野】
本発明は、超高分子量ポリ安息香酸に関し、詳しくは、平均重合度が2000を超える超高分子量ポリ安息香酸、その中間体、それらの製造方法及びその用途に関するものである。
【0002】
【従来の技術、発明が解決しようとする課題】
従来より、ポリ安息香酸は、脱炭酸工程を経るポリパラフェニレンの製造中間体として知られ、ジハロ安息香酸メチルをゼロ価遷移金属錯体の共存下に重合させてポリ安息香酸メチルを製造した後、これを加水分解することにより製造することも知られ、またこのものの平均重合度は100程度であることも知られている(例えば、特開平6−87950号公報)。
しかしながら、この方法によって得られたポリ安息香酸は、例えば燃料電池等の高分子電解質膜として用いた場合、製膜性、機械的強度等に難点があり、この点を改良したポリ安息香酸の出現が望まれていた。
【0003】
【課題を解決するための手段】
本発明者は、上記難点の改良されたポリ安息香酸を提供すべく、その製造方法について鋭意検討を重ねた結果、ジハロ安息香酸メチルに代えて、アルキル部分の炭素数が3以上であるという特定のジハロ安息香酸アルキルを用いてこれを重合させることにより、超高分子量の対応するポリ安息香酸アルキルが得られることを見出すとともに、このポリ安息香酸アルキルの加水分解物である超高分子量のすなわち平均重合度の極めて高い超高分子量ポリ安息香酸が、製膜性、得られた膜の強度等に優れ、燃料電池等の高分子電解質膜として有用であることを見出し、さらに種々の検討を加え、本発明を完成した。
【0004】
すなわち本発明は、▲1▼ 式(3)

Figure 0004039108
(式中、nは2000を超える数を、Mは水素原子またはアルカリ金属を表す。)
で示される超高分子量ポリ安息香酸又はその塩、
▲2▼ 式(2)
Figure 0004039108
(式中、Rは炭素数3〜12のアルキル基を表し、nは前記の意味を有す。)で示される超高分子量ポリ安息香酸エステルを加水分解することを特徴とする▲1▼の超高分子量ポリ安息香酸又はその塩の製造方法、及び
▲3▼ その高分子電解質膜等としての用途を提供するものである。
【0005】
また本発明は、 の超高分子量ポリ安息香酸又はその塩の中間体である上記式(2)で示される超高分子量ポリ安息香酸エステル及び
ゼロ価遷移金属錯体を、式(1)
Figure 0004039108
(式中、Rは前記の意味を有し、Xは塩素、臭素またはヨウ素原子を表す。)で示されるジハロゲノ安息香酸エステルに対して1〜3モル比で共存させ、該ジハロゲノ安息香酸エステルを重合させることを特徴とするの超高分子量ポリ安息香酸エステルの製造方法等を提供するものである。
【0006】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の前記式(3)で示される超高分子量ポリ安息香酸は、例えばゼロ価遷移金属錯体の共存下に、前記式(1)で示されるジハロゲノ安息香酸エステルを重合させて前記式(2)で示される超高分子量ポリ安息香酸エステルを製造し、次いでこれを加水分解することにより製造し得る。
ここで、モノマーであるジハロゲノ安息香酸エステル(1)におけるXは、塩素、臭素またはヨウ素原子を表すが、臭素原子であることが好ましい。
【0007】
またRは炭素数3〜12のアルキル基を表す。かかるアルキル基は、直鎖状、分岐状、環状いずれであっても良いが、分岐状または環状であることが好ましい。Rの具体例としては、例えば、n−プロピル、イソプロピル、n−ブチル、イソブチル、sec−ブチル、t−ブチル、イソアミル、ヘキシル、シクロヘキシル、2,6−ジメチルオクチル、n−デシル、n−ドデシルなどが例示される。
【0008】
ジハロゲノ安息香酸エステル(1)の代表例としては、例えば2,5−ジクロロ安息香酸イソプロピル、2,5−ジクロロ安息香酸イソブチル、2,5−ジクロロ安息香酸イソアミル、2,5−ジクロロ安息香酸n−デシル、2,5−ジブロモ安息香酸イソプロピル、2,5−ジブロモ安息香酸イソブチル、2,5−ジブロモ安息香酸イソアミル、2,5−ジブロモ安息香酸n−デシル、2,5−ジヨード安息香酸イソプロピル、2,5−ジヨード安息香酸イソブチル、2,5−ジヨード安息香酸イソアミル、2,5−ジヨード安息香酸n−デシル、2,4−ジブロモ安息香酸イソプロピル、2,4−ジブロモ安息香酸イソブチル、2,4−ジブロモ安息香酸イソアミル、2,4−ジブロモ安息香酸n−デシル、3,5−ジブロモ安息香酸イソプロピル、3,5−ジブロモ安息香酸イソブチル、3,5−ジブロモ安息香酸イソアミル、3,5−ジブロモ安息香酸n−デシル等が挙げられる。
【0009】
上記のようなジハロゲノ安息香酸類(1)の重合は、ゼロ価遷移金属錯体の共存下に実施されるが、かかるゼロ価遷移金属錯体としては、例えばゼロ価ニッケル錯体、ゼロ価パラジウム錯体等が挙げられる。なかでもゼロ価ニッケル錯体が好ましく使用される。
またゼロ価パラジウム錯体としては、例えばパラジウム(0)テトラキス(トリフェニルホスフィン)等があげられる。
またゼロ価ニッケル錯体としては、例えばニッケル(0)ビス(シクロオクタジエン)、ニッケル(0)(エチレン)ビス(トリフェニルホスフィン)ニッケル(0)テトラキス(トリフェニルホスフィン)等が挙げられる。なかでもニッケル(0)ビス(シクロオクタジエン)が好ましく使用される。
【0010】
重合反応においては、さらに配位子を共存させることが好ましく、かかる配位子としては例えば2,2’−ビピリジル、1,10−フェナントロリン、メチレンビスオキサゾリン、N,N,N’,N’−テトラメチルエチレンジアミン等の含窒素配位子、トリフェニルホスフィン、トリトルイルホスフィン、トリブチルホスフィン、トリフェノキシホスフィン等の第三ホスフィン配位子などが挙げられる。なかでも含窒素配位子が好ましく、2,2’−ビピリジルが特に好ましい。ゼロ価遷移金属錯体は、モノマーであるジハロゲノ安息香酸エステル(1)に対して1〜3モル比で使用される。さらに配位子を共存させる場合は、ゼロ価遷移金属錯体に対して、通常、金属原子基準で0.2〜2モル比程度、好ましくは1〜1.5モル比程度使用される。
【0011】
重合反応は、通常、溶媒存在下に実施される。かかる溶媒としては、例えばベンゼン、トルエン、キシレン、ナフタレンなどの芳香族炭化水素溶媒。ジイソプロピルエーテル、テトラヒドロフラン、1,4−ジオキサン、ジフェニルエーテルなどのエーテル系溶媒。N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなどのアミド系溶媒が挙げられる。これらは2種以上を混合して用いることもできる。 なかでもトルエン、テトラヒドロフラン、N,N−ジメチルホルムアミド、これら2種以上の混合物が好ましく用いられる。
溶媒は、モノマーに対して、通常5〜500重量倍、好ましくは20〜100倍程度使用される。
また重合温度は、通常0〜250℃の範囲であり、好ましくは、20〜100℃程度であり、重合時間は、通常0.5〜24時間程度である。
【0012】
かくして超高分子量ポリ安息香酸エステル(2)が生成するが、これをアルカリまたは酸を用いて加水分解することにより、目的とする前記式(3)で表される超高分子量ポリ安息香酸又はその塩を得ることができる。
ここで、超高分子量ポリ安息香酸又はその塩(3)におけるMは、水素原子またはアルカリ金属を表すが、アルカリ金属としては、例えばリチウム、ナトリウム、カリウム等が挙げられる。Mが水素原子である場合は、高分子電解質膜として好適である。
アルカリまたは酸を用いる加水分解反応は、常法を採用し得る。
【0013】
目的物の反応混合物からの取り出しは、常法が適用できる。例えば、貧溶媒を加えるなどしてポリマーを析出させ、濾別などにより目的物を取り出すことができる。また必要に応じて、更に水洗や、良溶媒と貧溶媒を用いての再沈殿などの通常の精製方法により精製することもできる。超高分子量ポリ安息香酸又はその塩(3)のカチオン交換も常法を用いることが出来る。また、重合度、ポリマーの構造の解析等は、GPC測定、NMR測定などの通常の手段で行うことが出来る。
かくして得られる本発明の超高分子量ポリ安息香酸又はその塩(3)は、燃料電池の電解質として有用である。
【0014】
次に、本発明の超高分子量ポリ安息香酸又はその塩(3)を用いた電解質膜、およびそれを用いた燃料電池について説明する。
電解質膜の製膜方法は、特に制限はないが、溶液状態より製膜する方法(溶液キャスト法)が好ましく使用される。
この際用いられる溶媒としては、電解質の溶解が可能であり、その後に除去し得るものであるならば特に制限はなく、例えばN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド等の非プロトン性極性溶媒、ジクロロメタン、クロロホルム、1,2−ジクロロエタン、クロロベンゼン、ジクロロベンゼン等の塩素系溶媒、メタノール、エタノール、プロパノール等のアルコール系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテル、水などが挙げられる。必要に応じて2種以上の溶媒を用いることもできる。
電解質膜の厚みは特に制限はないが、10〜200μm程度が好ましい。膜厚は電解質の溶液濃度あるいは基板上への塗布厚により制御できる。
【0015】
さらに本発明における電解質膜は、超高分子量ポリ安息香酸又はその塩(3)の他に、リン酸類を含有することもできる。かかるリン酸類としては、例えばオルトリン酸、リン酸モノメチルエステル、リン酸モノエチルエステル、リン酸モノn−プロピルエステル、リン酸モノイソプロピルエステル、リン酸ジメチルエステル、リン酸ジエチルエステル、リン酸ジn−プロピルエステル、リン酸ジイソプロピルエステル等が挙げられる。
リン酸類を含有させる方法としては、例えば、▲1▼超高分子量ポリ安息香酸又はその塩(3)の溶液にリン酸類を添加し、流延した後溶媒を揮発させて成膜する方法、▲2▼前述の方法により製造された膜をリン酸類の溶液に浸漬処理する方法などがあげられる。
【0016】
▲1▼の方法においては、リン酸の添加量を変えることにより、また▲2▼の方法においては、リン酸類溶液の濃度、溶液の温度、リン酸溶液への浸漬時間、又は用いる溶媒を変えることにより、リン酸の膜への導入量をコントロールすることができる。
【0017】
上記のような超高分子量ポリ安息香酸又はその塩(3)からなる電解質膜の両面に、触媒および集電体としての導電性物質を接合することにより、燃料電池を製造することができる。
ここで、触媒としては、水素または酸素との酸化還元反応を活性化できるものであれば特に制限はなく、公知のものを用いることができるが、白金の微粒子を用いることが好ましい。白金の微粒子は活性炭や黒鉛などの粒子状または繊維状のカーボンに担持されて用いることが好ましい。
また集電体としての導電性物質に関しても、公知の材料を用いることができるが、多孔質性のカーボン不織布またはカーボンペーパーが、好ましく、これらを用いることにより、原料ガスを触媒へ効率的に輸送し得る。
【0018】
【実施例】
以下に実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例のみに限定されるものではない。
なお、電解質膜のプロトン伝導度測定は、恒湿槽中80℃、相対湿度90%で、SI1260型高性能インピーダンス・ゲイン/フェースアナライザ(IMPEDANCE/GAIN-PHASE ANALYZER、solartoron社製)及び1287型ポテンショスタット(ELECTROCHEMICAL INTERFACE、solartoron社製)を用いて、交流インピーダンス法で測定した。
【0019】
実施例1
アルゴン雰囲気下、フラスコに、2,5−ジクロロ安息香酸イソプロピル1.81g(7.8mmol)、2,2'−ビピリジル2.85g(18.2mmol)、THF 200mlを入れ、攪拌し、続いて、ニッケル(0)ビス(シクロオクタジエン)5.02g(18.2mmol)を加え、還流下で3時間攪拌した。放冷後、反応溶液を大量のメタノールに注ぐことによりポリマーを析出させ、これを濾別し、粗ポリマーを得た。得られた粗ポリマーをクロロホルムに溶解させ不溶分を濾別し、濾液を酸洗浄、クロロホルム層を濃縮した後、メタノール再沈殿を行い、濾過、減圧乾燥して、超高分子量ポリ安息香酸イソプロピル1.09gを得た。
【0020】
Figure 0004039108
【0021】
実施例2
フラスコに、実施例1で得られたポリ安息香酸イソプロピル0.86g(5.2mmol)、DMF 50mlを入れ攪拌した後、水酸化カリウム0.84gをDMF 80mlに溶解したものを加え、120℃で10時間攪拌した。放冷後、反応溶液を2N−HCl溶液に注ぐことによりポリマーを析出させ、これを濾別し、粗ポリマーを得た。得られた粗ポリマーを水、メタノールで洗浄し、減圧乾燥して、目的とする超高分子量ポリ安息香酸0.59gを得た。
【0022】
Figure 0004039108
【0023】
実施例3
実施例2で得られた超高分子量ポリ安息香酸200mgをDMAcに溶解させ、ガラス板上に塗り広げた。常圧下、80℃で溶媒を乾燥させ、目的とする電解質膜を得た。プロトン伝導度測定をおこなったところ、1.5×10-4S/cmであった。
【0024】
実施例4
実施例2で得られた超高分子量ポリ安息香酸200mgをDMAcに溶解させた後、超高分子量ポリ安息香酸のカルボキシル基とリン酸分子が1:1の割合になるように濃リン酸(濃度:85wt%以上、和光純薬製)を添加してよく混合し、ガラス板上に塗り広げた。常圧下で溶媒を乾燥させ、電解質膜を得た。プロトン伝導度測定をおこなったところ、4.2×10-4S/cmであった。
【0025】
比較例1
(1) 実施例1において、2,5−ジクロロ安息香酸イソプロピルに代えて、2,5−ジクロロ安息香酸メチル1.60g(7.8mmol)を用いる以外は、実施例1に準拠して実施することにより、ポリ安息香酸メチル0.95gを得た。
【0026】
Figure 0004039108
【0027】
(2) 上記ポリ安息香酸メチル550mgを用い、実施例2に準拠して加水分解を行い、ポリ安息香酸340mgを得た。
(3) 上記ポリ安息香酸200mgを用い、実施例3に準拠して電解質膜の作製を試みたが、上記ポリ安息香酸は、膜としての自己支持性が乏しく、ガラスから剥離する時に膜が破断してしまったため、プロトン伝導度測定を行うことはできなかった。
【0028】
【発明の効果】
本発明方法によれば、アルキル部分の炭素数が3以上であるという特定のジハロ安息香酸アルキルを用いることにより、超高分子量安息香酸を製造し得る。
また得られた超高分子量安息香酸は、製膜性、得られた膜の強度等に優れ、燃料電池等の高分子電解質膜として有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrahigh molecular weight polybenzoic acid, and more particularly, to an ultrahigh molecular weight polybenzoic acid having an average degree of polymerization exceeding 2000, an intermediate thereof, a production method thereof, and an application thereof.
[0002]
[Prior art, problems to be solved by the invention]
Conventionally, polybenzoic acid is known as a production intermediate of polyparaphenylene through a decarboxylation step, and after methyl polybenzoate is produced by polymerizing methyl dihalobenzoate in the presence of a zero-valent transition metal complex, It is also known to produce this by hydrolysis, and it is also known that the average degree of polymerization of this is about 100 (for example, JP-A-6-87950).
However, when the polybenzoic acid obtained by this method is used as a polymer electrolyte membrane such as a fuel cell, there are difficulties in film forming property, mechanical strength, etc., and the appearance of polybenzoic acid improved in this respect. Was desired.
[0003]
[Means for Solving the Problems]
As a result of intensive studies on the production method in order to provide the polybenzoic acid improved in the above problems, the present inventor has specified that the carbon number of the alkyl moiety is 3 or more instead of methyl dihalobenzoate. And then polymerizing it with an alkyl dihalobenzoate of the same yields a corresponding ultra-high molecular weight alkyl polybenzoate and an ultra-high molecular weight, ie average, hydrolyzate of this alkyl polybenzoate. Ultra high molecular weight polybenzoic acid with a very high degree of polymerization was found to be excellent in film forming properties, strength of the obtained film, etc., and useful as a polymer electrolyte membrane for fuel cells, etc. The present invention has been completed.
[0004]
That is, the present invention provides (1) Formula (3)
Figure 0004039108
(In the formula, n represents a number exceeding 2000, and M represents a hydrogen atom or an alkali metal.)
An ultrahigh molecular weight polybenzoic acid represented by
(2) Formula (2)
Figure 0004039108
(Wherein R represents an alkyl group having 3 to 12 carbon atoms, and n has the above-mentioned meaning), hydrolyzing an ultrahigh molecular weight polybenzoic acid ester represented by (1) The present invention provides a method for producing ultrahigh molecular weight polybenzoic acid or a salt thereof, and (3) its use as a polymer electrolyte membrane.
[0005]
Further, the present invention provides an ultrahigh molecular weight polybenzoic acid ester represented by the above formula (2) and a zero-valent transition metal complex represented by the formula (1) , which is an intermediate of the ultrahigh molecular weight polybenzoic acid or a salt thereof.
Figure 0004039108
(Wherein R has the above-mentioned meaning and X represents a chlorine, bromine or iodine atom), the dihalogenobenzoate is allowed to coexist in a molar ratio of 1 to 3 to give the dihalogenobenzoate. The present invention provides a method for producing an ultra-high molecular weight polybenzoic acid ester characterized by polymerization.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The ultrahigh molecular weight polybenzoic acid represented by the formula (3) of the present invention is polymerized with the dihalogenobenzoic acid ester represented by the formula (1) in the presence of a zero-valent transition metal complex, for example. ) To produce an ultrahigh molecular weight polybenzoic acid ester, which is then hydrolyzed.
Here, X in the dihalogenobenzoic acid ester (1) which is a monomer represents a chlorine, bromine or iodine atom, and is preferably a bromine atom.
[0007]
R represents an alkyl group having 3 to 12 carbon atoms. Such an alkyl group may be linear, branched or cyclic, but is preferably branched or cyclic. Specific examples of R include, for example, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, t-butyl, isoamyl, hexyl, cyclohexyl, 2,6-dimethyloctyl, n-decyl, n-dodecyl and the like. Is exemplified.
[0008]
Representative examples of the dihalogenobenzoic acid ester (1) include, for example, isopropyl 2,5-dichlorobenzoate, isobutyl 2,5-dichlorobenzoate, isoamyl 2,5-dichlorobenzoate, and n-2,5-dichlorobenzoate. Decyl, isopropyl 2,5-dibromobenzoate, isobutyl 2,5-dibromobenzoate, isoamyl 2,5-dibromobenzoate, n-decyl 2,5-dibromobenzoate, isopropyl 2,5-diiodobenzoate, 2 , 5-Diiodobenzoate, isobutyl 2,5-diiodobenzoate, n-decyl 2,5-diiodobenzoate, isopropyl 2,4-dibromobenzoate, isobutyl 2,4-dibromobenzoate, 2,4- Isoamyl dibromobenzoate, n-decyl 2,4-dibromobenzoate, 3,5-dibromobenzoic acid Propyl, 3,5-dibromo-benzoic acid isobutyl, 3,5-dibromo-benzoic acid isoamyl, 3,5-dibromo-benzoic acid n- decyl and the like.
[0009]
The polymerization of the dihalogenobenzoic acid (1) as described above is carried out in the presence of a zero-valent transition metal complex. Examples of such a zero-valent transition metal complex include a zero-valent nickel complex and a zero-valent palladium complex. It is done. Of these, a zerovalent nickel complex is preferably used.
Examples of the zerovalent palladium complex include palladium (0) tetrakis (triphenylphosphine).
Examples of the zerovalent nickel complex include nickel (0) bis (cyclooctadiene), nickel (0) (ethylene) bis (triphenylphosphine) nickel (0) tetrakis (triphenylphosphine), and the like. Of these, nickel (0) bis (cyclooctadiene) is preferably used.
[0010]
In the polymerization reaction, it is preferable to further coexist a ligand. Examples of such a ligand include 2,2′-bipyridyl, 1,10-phenanthroline, methylenebisoxazoline, N, N, N ′, N′—. Examples thereof include nitrogen-containing ligands such as tetramethylethylenediamine, and third phosphine ligands such as triphenylphosphine, tritoluylphosphine, tributylphosphine, and triphenoxyphosphine. Of these, nitrogen-containing ligands are preferable, and 2,2′-bipyridyl is particularly preferable. The zero-valent transition metal complex is used in a molar ratio of 1 to 3 with respect to the monomer dihalogenobenzoate (1). Further, when a ligand is allowed to coexist, it is usually used in an amount of about 0.2 to 2 molar ratio, preferably about 1 to 1.5 molar ratio, based on the metal atom, with respect to the zero-valent transition metal complex.
[0011]
The polymerization reaction is usually carried out in the presence of a solvent. Examples of such a solvent include aromatic hydrocarbon solvents such as benzene, toluene, xylene, and naphthalene. Ether solvents such as diisopropyl ether, tetrahydrofuran, 1,4-dioxane and diphenyl ether. Examples include amide solvents such as N, N-dimethylformamide and N, N-dimethylacetamide. These may be used in combination of two or more. Of these, toluene, tetrahydrofuran, N, N-dimethylformamide, and a mixture of two or more of these are preferably used.
The solvent is usually used in an amount of 5 to 500 times by weight, preferably about 20 to 100 times the monomer.
The polymerization temperature is usually in the range of 0 to 250 ° C, preferably about 20 to 100 ° C, and the polymerization time is usually about 0.5 to 24 hours.
[0012]
Thus, an ultrahigh molecular weight polybenzoic acid ester (2) is produced. By hydrolyzing this with an alkali or an acid, the desired ultrahigh molecular weight polybenzoic acid represented by the above formula (3) or its A salt can be obtained.
Here, M in the ultrahigh molecular weight polybenzoic acid or its salt (3) represents a hydrogen atom or an alkali metal, and examples of the alkali metal include lithium, sodium, and potassium. When M is a hydrogen atom, it is suitable as a polymer electrolyte membrane.
A conventional method can be adopted for the hydrolysis reaction using an alkali or an acid.
[0013]
A conventional method can be applied to remove the target product from the reaction mixture. For example, the polymer can be precipitated by adding a poor solvent, and the target product can be taken out by filtration. Moreover, it can also refine | purify by normal purification methods, such as washing with water and reprecipitation using a good solvent and a poor solvent, as needed. A conventional method can also be used for cation exchange of ultrahigh molecular weight polybenzoic acid or a salt thereof (3). Moreover, analysis of a polymerization degree, a polymer structure, etc. can be performed by normal means, such as GPC measurement and NMR measurement.
The ultrahigh molecular weight polybenzoic acid or salt (3) of the present invention thus obtained is useful as an electrolyte for fuel cells.
[0014]
Next, an electrolyte membrane using the ultrahigh molecular weight polybenzoic acid or its salt (3) of the present invention and a fuel cell using the same will be described.
The method for forming the electrolyte membrane is not particularly limited, but a method of forming a membrane from a solution state (solution casting method) is preferably used.
The solvent used in this case is not particularly limited as long as it can dissolve the electrolyte and can be removed thereafter. For example, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl- Aprotic polar solvents such as 2-pyrrolidone and dimethyl sulfoxide, chlorinated solvents such as dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene and dichlorobenzene, alcoholic solvents such as methanol, ethanol and propanol, ethylene glycol monomethyl ether, Examples thereof include alkylene glycol monoalkyl ethers such as ethylene glycol monoethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether, and water. If necessary, two or more kinds of solvents can be used.
The thickness of the electrolyte membrane is not particularly limited, but is preferably about 10 to 200 μm. The film thickness can be controlled by the electrolyte solution concentration or the coating thickness on the substrate.
[0015]
Furthermore, the electrolyte membrane in the present invention can contain phosphoric acids in addition to the ultrahigh molecular weight polybenzoic acid or its salt (3). Examples of such phosphoric acids include orthophosphoric acid, phosphoric acid monomethyl ester, phosphoric acid monoethyl ester, phosphoric acid mono n-propyl ester, phosphoric acid monoisopropyl ester, phosphoric acid dimethyl ester, phosphoric acid diethyl ester, and phosphoric acid di n- Examples thereof include propyl ester and diisopropyl phosphate.
Examples of the method of containing phosphoric acid include (1) a method of adding phosphoric acid to a solution of ultrahigh molecular weight polybenzoic acid or a salt thereof (3), casting it, volatilizing the solvent, and forming a film, (2) A method of immersing the film produced by the above-described method in a phosphoric acid solution is exemplified.
[0016]
In the method (1), the amount of phosphoric acid added is changed. In the method (2), the concentration of the phosphoric acid solution, the temperature of the solution, the immersion time in the phosphoric acid solution, or the solvent used is changed. Thus, the amount of phosphoric acid introduced into the film can be controlled.
[0017]
A fuel cell can be produced by bonding a catalyst and a conductive material as a current collector to both surfaces of an electrolyte membrane composed of the ultrahigh molecular weight polybenzoic acid or salt (3) as described above.
Here, the catalyst is not particularly limited as long as it can activate the oxidation-reduction reaction with hydrogen or oxygen, and a known catalyst can be used, but platinum fine particles are preferably used. Platinum fine particles are preferably used by being supported on particulate or fibrous carbon such as activated carbon or graphite.
As for the conductive material as the current collector, known materials can be used, but porous carbon non-woven fabric or carbon paper is preferable, and by using these, the source gas is efficiently transported to the catalyst. Can do.
[0018]
【Example】
EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited only to these examples.
The proton conductivity of the electrolyte membrane was measured at 80 ° C in a humidity chamber and 90% relative humidity. It measured by the alternating current impedance method using the stat (ELECTROCHEMICAL INTERFACE, solartoron company make).
[0019]
Example 1
Under an argon atmosphere, a flask was charged with 1.81 g (7.8 mmol) of isopropyl 2,5-dichlorobenzoate, 2.85 g (18.2 mmol) of 2,2′-bipyridyl and 200 ml of THF, followed by stirring, followed by nickel (0) Bis (cyclooctadiene) 5.02 g (18.2 mmol) was added, and the mixture was stirred under reflux for 3 hours. After allowing to cool, the reaction solution was poured into a large amount of methanol to precipitate a polymer, which was filtered off to obtain a crude polymer. The obtained crude polymer was dissolved in chloroform, insoluble matter was filtered off, the filtrate was washed with acid, the chloroform layer was concentrated, methanol reprecipitated, filtered and dried under reduced pressure, and ultrahigh molecular weight isopropyl polybenzoate 1.09 g was obtained.
[0020]
Figure 0004039108
[0021]
Example 2
To the flask, 0.86 g (5.2 mmol) of the isopropyl polybenzoate obtained in Example 1 and 50 ml of DMF were added and stirred, and then 0.84 g of potassium hydroxide dissolved in 80 ml of DMF was added and stirred at 120 ° C. for 10 hours. did. After allowing to cool, the reaction solution was poured into a 2N-HCl solution to precipitate a polymer, which was filtered off to obtain a crude polymer. The obtained crude polymer was washed with water and methanol, and dried under reduced pressure to obtain 0.59 g of the desired ultrahigh molecular weight polybenzoic acid.
[0022]
Figure 0004039108
[0023]
Example 3
200 mg of ultra high molecular weight polybenzoic acid obtained in Example 2 was dissolved in DMAc and spread on a glass plate. The solvent was dried at 80 ° C. under normal pressure to obtain the target electrolyte membrane. When proton conductivity was measured, it was 1.5 × 10 −4 S / cm.
[0024]
Example 4
After 200 mg of the ultrahigh molecular weight polybenzoic acid obtained in Example 2 was dissolved in DMAc, concentrated phosphoric acid (concentration) was adjusted so that the carboxyl group of the ultrahigh molecular weight polybenzoic acid and the phosphoric acid molecule had a ratio of 1: 1. : 85 wt% or more, manufactured by Wako Pure Chemical Industries, Ltd.) and mixed well, and spread on a glass plate. The solvent was dried under normal pressure to obtain an electrolyte membrane. When proton conductivity was measured, it was 4.2 × 10 −4 S / cm.
[0025]
Comparative Example 1
(1) By carrying out according to Example 1 except that instead of isopropyl 2,5-dichlorobenzoate in Example 1, 1.60 g (7.8 mmol) of methyl 2,5-dichlorobenzoate is used. 0.95 g of polymethylbenzoate was obtained.
[0026]
Figure 0004039108
[0027]
(2) Hydrolysis was carried out according to Example 2 using 550 mg of the above polymethylbenzoate to obtain 340 mg of polybenzoic acid.
(3) An attempt was made to produce an electrolyte membrane in accordance with Example 3 using 200 mg of the above polybenzoic acid. However, the polybenzoic acid has poor self-supporting properties as a membrane, and the membrane breaks when peeled from the glass. As a result, proton conductivity could not be measured.
[0028]
【The invention's effect】
According to the method of the present invention, ultrahigh molecular weight benzoic acid can be produced by using a specific alkyl dihalobenzoate having an alkyl moiety having 3 or more carbon atoms.
Further, the obtained ultrahigh molecular weight benzoic acid is excellent in film forming property, strength of the obtained film and the like, and is useful as a polymer electrolyte membrane for fuel cells and the like.

Claims (12)

式(3)
Figure 0004039108
(式中、nは2000を超える数を、Mは水素原子またはアルカリ金属を表す。)で示される超高分子量ポリ安息香酸又はその塩。
Formula (3)
Figure 0004039108
(Wherein n represents a number exceeding 2000 and M represents a hydrogen atom or an alkali metal) or an ultrahigh molecular weight polybenzoic acid or a salt thereof.
式(2)
Figure 0004039108
(式中、Rは炭素数3〜12のアルキル基を表し、nは前記の意味を有す。)で示される超高分子量ポリ安息香酸エステルを加水分解することを特徴とする請求項1記載の超高分子量ポリ安息香酸又はその塩の製造方法。
Formula (2)
Figure 0004039108
The ultrahigh molecular weight polybenzoic acid ester represented by (wherein R represents an alkyl group having 3 to 12 carbon atoms, and n has the above-mentioned meaning). A process for producing an ultrahigh molecular weight polybenzoic acid or a salt thereof.
ゼロ価ニッケル錯体を、式(1)
Figure 0004039108
(式中、Rは前記の意味を有し、Xは塩素、臭素またはヨウ素原子を表す。)で示されるジハロゲノ安息香酸エステルに対して1〜3モル比で共存させ、該ジハロゲノ安息香酸エステルを重合させて、上記式(2)で示される超高分子量ポリ安息香酸エステルを得、ついでこれを加水分解することを特徴とする請求項1記載の超高分子量ポリ安息香酸又はその塩の製造方法。
A zerovalent nickel complex is represented by the formula (1)
Figure 0004039108
(Wherein R has the above-mentioned meaning and X represents a chlorine, bromine or iodine atom), the dihalogenobenzoate is allowed to coexist in a molar ratio of 1 to 3 to give the dihalogenobenzoate. 2. The method for producing an ultrahigh molecular weight polybenzoic acid or a salt thereof according to claim 1, wherein the ultrahigh molecular weight polybenzoic acid ester represented by the formula (2) is obtained by polymerization and then hydrolyzed. .
ゼロ価ニッケル錯体が、ニッケル ( ) ビス ( シクロオクタジエン ) であることを特徴とする請求項3記載の製造方法 The production method according to claim 3, wherein the zero-valent nickel complex is nickel ( 0 ) bis ( cyclooctadiene ) . 配位子として、2,2 ' −ビピリジルを共存させる請求項3〜4いずれかに記載の製造方法 As a ligand, 2,2 '- The process according to any one claims 3-4 coexist bipyridyl. 下記式(2)で示される超高分子量ポリ安息香酸エステル。
Figure 0004039108
(式中、Rは炭素数3〜12のアルキル基を表し、nは 2000 を超える数を有す。)
Ultra high molecular weight polybenzoic acid ester represented by the following formula (2).
Figure 0004039108
(In the formula, R represents an alkyl group having 3 to 12 carbon atoms, and n has a number exceeding 2000. )
ゼロ価ニッケル錯体を、下記式(1)で示されるジハロゲノ安息香酸エステルに対して1〜3モル比で共存させ、該ジハロゲノ安息香酸エステルを重合することを特徴とする請求項7記載の超高分子量ポリ安息香酸エステルの製造方法。
Figure 0004039108
(式中、Rは炭素数3〜12のアルキル基を有し、Xは塩素、臭素またはヨウ素原子を表す。)
The ultra-high nickel complex according to claim 7, wherein the zero-valent nickel complex is allowed to coexist with the dihalogenobenzoate represented by the following formula (1) in a molar ratio of 1 to 3 to polymerize the dihalogenobenzoate. Method for producing molecular weight polybenzoic acid ester.
Figure 0004039108
(In the formula, R has an alkyl group having 3 to 12 carbon atoms, and X represents a chlorine, bromine or iodine atom.)
ゼロ価ニッケル錯体が、ニッケル ( ) ビス ( シクロオクタジエン ) であることを特徴とする請求項7記載の製造方法 The method according to claim 7, wherein the zerovalent nickel complex is nickel ( 0 ) bis ( cyclooctadiene ) . 配位子として、2,2 ' −ビピリジルを共存させる請求項7〜8いずれかに記載の製造方法 As a ligand, 2,2 '- The process according to any one claims 7-8 coexist bipyridyl. 請求項1記載の超高分子量ポリ安息香酸又はその塩からなることを特徴とする電解質膜 An electrolyte membrane comprising the ultrahigh molecular weight polybenzoic acid or a salt thereof according to claim 1 . さらにリン酸類を含有してなることを特徴とする請求項10記載の電解質膜 Furthermore, phosphoric acid is contained, The electrolyte membrane of Claim 10 characterized by the above-mentioned . 請求項10または11に記載の電解質膜を用いてなる燃料電池 A fuel cell using the electrolyte membrane according to claim 10 or 11 .
JP2002126185A 2002-04-26 2002-04-26 Ultra-high molecular weight polybenzoic acid, its production method and its use Expired - Fee Related JP4039108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002126185A JP4039108B2 (en) 2002-04-26 2002-04-26 Ultra-high molecular weight polybenzoic acid, its production method and its use

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002126185A JP4039108B2 (en) 2002-04-26 2002-04-26 Ultra-high molecular weight polybenzoic acid, its production method and its use

Publications (2)

Publication Number Publication Date
JP2003313275A JP2003313275A (en) 2003-11-06
JP4039108B2 true JP4039108B2 (en) 2008-01-30

Family

ID=29540677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002126185A Expired - Fee Related JP4039108B2 (en) 2002-04-26 2002-04-26 Ultra-high molecular weight polybenzoic acid, its production method and its use

Country Status (1)

Country Link
JP (1) JP4039108B2 (en)

Also Published As

Publication number Publication date
JP2003313275A (en) 2003-11-06

Similar Documents

Publication Publication Date Title
WO2005075535A1 (en) Method for producing polymer compound
JP6653434B2 (en) Method for producing anion exchange resin, method for producing electrolyte membrane for fuel cell, method for producing binder for forming electrode catalyst layer, method for producing battery electrode catalyst layer, and method for producing fuel cell
JP2005534787A (en) POLYPHENYLENE TYPE POLYMER, METHOD FOR PREPARING THE SAME, MEMBRANE, AND FUEL CELL DEVICE INCLUDING THE MEMBRANE
JP2005133081A (en) Sulfonated polymer having nitrile-type hydrophobic block and solid polymer electrolyte
JP4051955B2 (en) Process for producing polyphenylene sulfonic acids
WO2008029937A1 (en) Polymer, polyelectrolyte, and fuel cell employing the same
JP2017014423A (en) Cation-exchange resin, and cation-exchange membrane and fuel battery electrolyte membrane using same
JP5701903B2 (en) Polyarylene polymer and preparation method
JP2012001715A (en) Polyarylene-based block copolymer, production method thereof, and polymer electrolyte
JP4985041B2 (en) Aromatic sulfonate esters and sulfonated polyarylene polymers
JP4039108B2 (en) Ultra-high molecular weight polybenzoic acid, its production method and its use
JP2010031231A (en) New aromatic compound and polyarylene-based copolymer having nitrogen-containing aromatic ring
US20120296065A1 (en) Polyarylene ionomers membranes
JP2009108319A (en) Polymer having oxocarbon group, and use thereof
WO2010061963A1 (en) Polymer, polymer electrolyte, fuel cell, and process for producing polymer electrolyte membrane
JP4997852B2 (en) Sulfonated polyarylene polymer
JP2008088420A (en) Polymer, polymer electrolyte and fuel cell using it
KR20190026132A (en) Anion-exchange membrane based on polyether ether ketone copolymer and manufacturing method thereof
WO2006048942A1 (en) Sulfonated polymer comprising nitrile-type hydrophobic block and solid polymer electrolyte
JP2018073651A (en) Method for manufacturing polymer electrolyte for fuel cell
WO2011049211A1 (en) Polyarylene copolymer having, in side chain thereof, aromatic ring containing phosphonate group
KR20220094370A (en) Poly(terphenylene) double hydroxide anion exchange membrane and manufacturing method thereof
JP5512488B2 (en) Membrane-electrode structure for polymer electrolyte fuel cell
US20120302725A1 (en) Polyarylene ionomers
JP2005220193A (en) Polymer composition and proton conducting membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070406

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071016

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121116

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees