JP4038343B2 - Distributed power supply - Google Patents

Distributed power supply

Info

Publication number
JP4038343B2
JP4038343B2 JP2001054341A JP2001054341A JP4038343B2 JP 4038343 B2 JP4038343 B2 JP 4038343B2 JP 2001054341 A JP2001054341 A JP 2001054341A JP 2001054341 A JP2001054341 A JP 2001054341A JP 4038343 B2 JP4038343 B2 JP 4038343B2
Authority
JP
Japan
Prior art keywords
voltage
power supply
distributed power
supply device
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001054341A
Other languages
Japanese (ja)
Other versions
JP2002262464A (en
Inventor
啓宇 川崎
英彦 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2001054341A priority Critical patent/JP4038343B2/en
Publication of JP2002262464A publication Critical patent/JP2002262464A/en
Application granted granted Critical
Publication of JP4038343B2 publication Critical patent/JP4038343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、太陽光発電や燃料電池発電などの発電手段からの発電電力を交流電力に変換し、交流電力系統に系統連系させることにより、交流電力系統に接続された負荷に交流電力を供給するための分散型電源装置に関し、特に単独運転状態を素早く且つ確実に検出して連系点からの切り離し処置を可能にした分散型電源装置に関するものである。
【0002】
【従来の技術】
従来、一般家庭や工場などに交流電力を供給するいわゆる商用電源の配線系統(交流電力系統)においては、遮断器よりも下流側に任意数の分散型電源装置が連系され、交流電力系統に接続された負荷に対して、連系点を介して交流電力を供給するようになっている。
【0003】
この種の交流電力系統においては、変圧器などを含む負荷側の保守点検が必要となるが、このような保守点検は、交流電力系統の上流側に設置された遮断器を開放し、発電所からの電力供給を遮断することにより、いわゆる停電状態にして実施される。
【0004】
このとき、遮断器よりも下流側の系統に連系された分散型電源装置が遮断後も運転を続けている状態(一般に、「単独運転」と呼ばれる)は、作業員が保守点検を行うときに危険なので、保守点検時には単独運転を素早く且つ確実に検出して分散型電源装置の運転を停止させる必要がある。
【0005】
一般に、負荷電力と分散型電源装置からの出力電力との差が大きいときには、単独運転発生時の連系点の電圧値や位相が大きく変化するので、従来の単独運転の検出方法としては、連系点の電圧値や位相の変化を捕捉する受動方式がよく知られている。
【0006】
また、他の単独運転の検出を可能にする方法として、負荷電力と分散型電源装置からの出力電力とが均衡している場合においても、系統分散型電源装置の運転周波数を、連系点の周波数に対して常に微小バイアスを加えた値とし、この微小バイアスが連系点の周波数変化に与える影響度を検出する周波数シフト方式などの能動方式も知られている。
【0007】
しかしながら、上記周波数シフト方式においても、分散型電源装置が力率一定で制御されている場合に、負荷状態によっては、力率一定制御と周波数シフト運転とが干渉しあってしまい、連系点の周波数に対する微小バイアスの影響が出なくなる場合がある。
【0008】
たとえば、交流電力が供給される負荷が容量性負荷である場合には、系統点電圧のゼロクロス点が電流のゼロクロスよりも遅れて発生するので、微小バイアスをプラス方向にシフトし、連系点電圧の周波数よりも高い運転周波数で単独運転状態を検出しようとしても、連系点電圧の周波数(電圧ゼロクロス周期の逆数)が高くならず、単独運転を検出することはできない。
【0009】
そこで、上記のような不具合を解消するための従来方法として、たとえば特開平11−41819号公報に参照されるように、電流目標値の周波数に加えられる微小バイアスの方向をプラスとマイナスとに振る方法も提案されている。
【0010】
しかしながら、上記公報に記載の方法においては、同一フィーダに複数台の分散型電源装置が連系された場合に、分散型電源装置の出力同士が互いに周波数の微小バイアス分をキャンセルし合ってしまい、交流電力系統に停電が発生しても連系点の電圧周波数に周波数シフト分が現れず、単独運転の検出が不可能になるおそれがある。
【0011】
【発明が解決しようとする課題】
従来の分散型電源装置は以上のように、負荷特性の違いによる不具合を回避した方法(特開平11−41819号公報参照)を用いても、同一フィーダに複数台の分散型電源装置が連系された場合には、系統停電発生時に連系点電圧に周波数シフト分が現れず、確実に単独運転を検出することができないという問題点があった。
【0012】
この発明は上記のような問題点を解決するためになされたもので、負荷特性や同一フィーダへの接続台数などに係わらず、単独運転を素早く且つ確実に検出して連系点からの切り離し処置を施すことのできる分散型電源装置を得ることを目的とする。
【0013】
【課題を解決するための手段】
この発明の請求項1に係る分散型電源装置は、連系点を介して交流電力系統と連系され、連系点に接続された負荷に交流電力を供給するための分散型電源装置であって、発電電力を生成する発電手段と、発電電力を交流電力に変換する電力変換手段と、連系点の電圧位相を検出する電圧位相検出手段と、電圧位相に基づいて連系点の電圧周期情報を計測する周期計測手段と、電圧位相および電圧周期情報に基づいて電力変換手段の出力電流目標値を生成する電流基準発生手段と、出力電流目標値に応じて電力変換手段を制御する電流制御手段と、電圧周期情報に基づいて分散型電源装置による単独運転の可能性を検出する単独運転検出手段と、連系点の電圧および電圧位相に基づいて分散型電源装置による単独運転状態を確定し、分散型電源装置の連系状態を禁止するための単独運転確定手段とを備え、電流基準発生手段は、出力電流目標値の電流周期情報を、連系点の電圧周期情報に対して微小バイアスを加えた値に設定し、分散型電源装置が交流電力系統と連系された通常時には、出力電流目標値の電流位相を連系点の電圧位相に合わせてリセットし、単独運転検出手段により単独運転の可能性が検出された後は、電圧位相に合わせた電流位相のリセット処理を中止するものである。
【0014】
また、この発明の請求項2に係る分散型電源装置は、請求項1において、周期計測手段は、連系点の電圧の正期間および負期間を計測し、単独運転検出手段は、正期間と負期間とのずれ量が所定値を超えた場合に、分散型電源装置による単独運転の可能性有りと判断するものである。
【0015】
また、この発明の請求項3に係る分散型電源装置は、請求項1において、周期計測手段は、出力電流目標値の位相がリセットされる直前またはリセットされた直後の連系点の第1の電圧周期情報とそれ以降の第2の電圧周期情報とを計測し、単独運転検出手段は、第1の電圧周期情報と第2の電圧周期情報とのずれ量が所定値を超えた場合に、分散型電源装置による単独運転の可能性有りと判断するものである。
【0016】
また、この発明の請求項4に係る分散型電源装置は、連系点を介して交流電力系統と連系され、連系点に接続された負荷に交流電力を供給するための分散型電源装置であって、発電電力を生成する発電手段と、発電電力を交流電力に変換する電力変換手段と、連系点の電圧位相を検出する電圧位相検出手段と、電圧位相に基づいて連系点の電圧周期情報を計測する周期計測手段と、電圧位相および電圧周期情報に基づいて電力変換手段の出力電流目標値を生成する電流基準発生手段と、出力電流目標値に応じて電力変換手段を制御する電流制御手段と、電圧周期情報に基づいて分散型電源装置による単独運転の可能性を検出する単独運転検出手段と、連系点の電圧および電圧位相に基づいて分散型電源装置による単独運転状態を確定し、分散型電源装置の連系状態を禁止するための単独運転確定手段とを備え、電流基準発生手段は、出力電流目標値の電流周期情報を、連系点の電圧周期情報に対して微小バイアスを加えた値に設定し、分散型電源装置が交流電力系統と連系された通常時には、出力電流目標値の電流位相を連系点の電圧位相に合わせてリセットし、周期計測手段は、連系点の電圧の正期間および負期間を計測し、単独運転検出手段は、正期間と負期間とのずれ量が所定値を超えた場合に、分散型電源装置による単独運転の可能性有りと判断するものである。
【0017】
また、この発明の請求項5に係る分散型電源装置は、請求項4において、出力電流目標値の電流周期情報は、連系点の電圧周期情報に対して一方向に微小バイアスを加えた値に設定されたものである。
【0018】
また、この発明の請求項6に係る分散型電源装置は、連系点を介して交流電力系統と連系され、連系点に接続された負荷に交流電力を供給するための分散型電源装置であって、発電電力を生成する発電手段と、発電電力を交流電力に変換する電力変換手段と、連系点の電圧位相を検出する電圧位相検出手段と、電圧位相に基づいて連系点の電圧周期情報を計測する周期計測手段と、電圧位相および電圧周期情報に基づいて電力変換手段の出力電流目標値を生成する電流基準発生手段と、出力電流目標値に応じて電力変換手段を制御する電流制御手段と、電圧周期情報に基づいて分散型電源装置による単独運転の可能性を検出する単独運転検出手段と、連系点の電圧および電圧位相に基づいて分散型電源装置による単独運転状態を確定し、分散型電源装置の連系状態を禁止するための単独運転確定手段とを備え、電流基準発生手段は、出力電流目標値の電流周期情報を、連系点の電圧周期情報に対して微小バイアスを加えた値に設定し、分散型電源装置が交流電力系統と連系された通常時には、出力電流目標値の電流位相を連系点の電圧位相に合わせてリセットし、周期計測手段は、出力電流目標値の位相がリセットされる直前またはリセットされた直後の連系点の第1の電圧周期情報とそれ以降の第2の電圧周期情報とを計測し、単独運転検出手段は、第1の電圧周期情報と第2の電圧周期情報とのずれ量が所定値を超えた場合に、分散型電源装置による単独運転の可能性有りと判断するものである。
【0019】
また、この発明の請求項7に係る分散型電源装置は、請求項6において、出力電流目標値の電流周期情報は、連系点の電圧周期情報に対して一方向に微小バイアスを加えた値に設定されたものである。
【0020】
【発明の実施の形態】
実施の形態1.
以下、図面を参照しながら、この発明の実施の形態1について詳細に説明する。
【0021】
図1はこの発明の実施の形態1を示すブロック構成図であり、分散型電源装置を交流電力系統に連系した状態を示している。
また、ここでは、代表的に1台の分散型電源装置を示されているが、任意数の分散型電源装置が連系され得る。
【0022】
図1において、1は商用交流電力を出力する交流発電設備、2は交流発電設備1の出力側に挿入された遮断器、3は遮断器2を介して交流発電設備1に接続された変圧器、4は変圧器3の二次側(出力側)に接続された系統負荷であり、これらは交流電力系統5を構成している。
【0023】
交流電力系統5内の系統負荷4は、一般家庭で使用される電気機器などを含んでいる。
6は交流電力系統5の連系点であり、図1中の連系点6よりも交流発電設備1側の回路系統は、交流電力系統5と総称される。
【0024】
7は連系点6に接続された自家負荷、8は分散型電源装置である。
分散型電源装置8は、連系点6を介して交流電力系統5および自家負荷7に接続されている。
【0025】
分散型電源装置8は、太陽電池などの発電手段9と、発電手段9からの発電電力(この場合、直流電力)を交流電力に変換する電力変換手段10と、電力変換手段10の出力側に挿入された連系用開閉手段11と、連系点6の電圧Vから電圧位相φVを検出する電圧位相検出手段12とを備えている。
【0026】
また、分散型電源装置8は、周期計測手段13、電流位相確定手段14、電流周期確定手段15、電流基準確定手段16、電流制御手段17、単独運転検出手段18および単独運転確定手段19を備えている。
【0027】
周期計測手段13は、電圧位相φVから連系点電圧Vの正の半周期と負の半周期および1周期(または周波数)とを電圧周期情報として計測する。
電流位相確定手段14は、電圧位相φVから電流目標値ioの電流位相φiを決定する。
【0028】
電流周期確定手段15は、電流目標値ioの電流周期情報に付加される微小バイアスBを出力する微小バイアス生成手段15aと、周期計測手段13からの電圧周期情報と微小バイアスBとを加算する加算手段15bとを備え、周期計測手段13からの電圧周期情報に微小バイアスBを加えて電流目標値ioの周期(または周波数)を決定する。
【0029】
電流基準確定手段16は、電流位相確定手段14からの電流位相φiと、電流周期確定手段15からの出力信号(電流周期)とに基づいて、電力変換手段10から出力されるべき電流目標値ioを電流基準として決定する。
【0030】
電流位相確定手段14、電流周期確定手段15および電流基準確定手段16は、電圧位相φVおよび電圧周期情報に基づいて電力変換手段10の出力電流目標値ioを生成する電流基準発生手段を構成している。
【0031】
電流制御手段17は、電力変換手段10の出力電流iを検出する変流器17aと、電流目標値ioと出力電流iとの電流偏差(=io−i)を算出する減算器17bと、電流偏差に基づいて電力変換手段10をフィードバック制御する制御部17cとを備え、電流基準確定手段16からの電流目標値ioに基づいて電力変換手段10を制御して出力電流iを調整する。
【0032】
単独運転検出手段18は、周期計測手段13からの電圧周期情報に基づいて、分散型電源装置8による単独運転の可能性を検出し、検出結果を電流位相確定手段14に入力する。
【0033】
単独運転確定手段19は、連系点6の電圧Vと、電流位相検出手段12からの電圧位相φVと、周期計測手段13からの電圧周期情報とに基づいて、分散型電源装置8が単独運転状態であることを確定し、電力変換手段10の停止および連系用開閉手段11の開放を行うための駆動信号を出力する。
【0034】
電流基準発生手段を構成する電流位相確定手段14は、分散型電源装置8が交流電力系統5と連系された通常時には、出力電流目標値ioの電流位相φiを連系点6の電圧位相φVに合わせてリセットし、単独運転検出手段18により単独運転の可能性が検出された後は、電圧位相φVに合わせた電流位相φiのリセット処理(力率一定制御)を中止するようになっている。
【0035】
次に、図1に示したこの発明の実施の形態1による具体的な動作について説明する。
まず、遮断器2が投入されている通常時において、分散型電源装置8内の電力変換機10は、発電手段9の発電電力を交流電力に変換し、連系用開閉手段11を介して自家負荷7に交流電力を供給する。
【0036】
このとき、自家負荷7の容量が発電電力よりも小さい場合には、分散型電源装置8からの過剰な交流電力は、交流電力系統5へと逆潮流される。
また、電力変換手段10からの出力電流iの位相は、力率一定とするために連系点6の電圧位相φVと同期がとられる。
【0037】
すなわち、分散型電源装置8内の電流位相確定手段14は、連系点電圧Vがゼロクロスするときに出力電流iがゼロクロスするように、電流目標値ioの電流位相φiを決定する。
【0038】
また、電流周期確定手段15は、出力電流iの電流周期情報(周期または周波数)として、連系点6の電圧周期(または、周波数fV)に微小バイアスBを加えた周期(または、周波数fio)を決定する。
【0039】
なお、この発明の主旨とは無関係であるが、出力電流iの振幅は、一般的には発電手段9の最大能力を引き出すように、電流基準確定手段16によって決定される。
【0040】
また、前述のように、周波数は周期の逆数として置き換えられるので、以降は周期情報を代表的に周波数として説明する。
【0041】
図2はこの発明の実施の形態1による位相同期関係を示す波形図であり、連系点6から検出される連系点電圧V(二点鎖線参照)と、電力変換手段10を制御する電流目標値io(実線参照)とを関連付けて示している。
【0042】
図2において、横軸は時間t、縦軸は電流目標値io[A]および連系点電圧V[V]であり、目標電流ioおよび連系点電圧Vの時間変化が示されている。
【0043】
連系点電圧V(二点鎖線)は、連系点6から直接検出され、電流目標値io(実線)は、電力変換手段10の出力電流iの目標値として電流基準確定手段16から出力される。
【0044】
電流目標値ioの周波数fioは、連系点電圧Vの周波数fVよりも微小バイアスB分だけ高い(電流目標値ioの周期は連系点電圧Vの周期よりも短い)が、連系点電圧Vのゼロクロス点(図2内の1.0167秒、1.0333秒)に合わせて、1周期毎にリセットされる。
【0045】
また、電力変換手段10からの出力電流iは、電流目標値ioにほぼ追従して流れる。
【0046】
しかし、周知のように、交流電力系統5のインピーダンスは分散型電源装置8の内部インピーダンスよりもかなり小さいので、出力電流iの周波数fioへの微小バイアスB分の影響は、連系点電圧V(二点鎖線)にはほとんど現れない。
【0047】
したがって、単独運転検出手段18に入力される連系点電圧Vの周波数fVや連系点電圧Vの正の半周期および負の半周期には、特段の変化が現れないので、単独運転検出手段18は、単独運転の可能性はなしと判断し、通常の連系状態が継続される。
【0048】
つまり、遮断器2が開放されていない(停電時でない)状態において、分散型電源装置8による単独運転状態を誤検出することはない。
【0049】
次に、遮断器2が開放された(実際に単独運転が発生した)場合の動作について説明する。
遮断器2の開放後(単独運転)においては、遮断器2が開放される前に比べて、連系点6から見た交流電力系統5のインピーダンスが格段に大きくなるので、連系点6の電圧周波数fVへの微小バイアスBの影響は現れ易い。
【0050】
しかし、前述のように、自家負荷7と系統負荷4および変圧器4や配線のインピーダンスとを合成した負荷状態によっては、電圧ゼロクロスと電流ゼロクロスとを合わせる力率一定制御と、上記周波数シフト運転とが干渉しあうので、連系点電圧Vの周波数fVへの微小バイアスBの影響が現れなくなる場合がある。
【0051】
たとえば、運転周波数(図2参照)の微小バイアスBの極性が正の場合には、前述の容量性負荷において上記条件が成立する。
【0052】
しかしながら、上記容量性負荷の場合や逆の誘導性負荷の場合には、周波数に微小バイアスBを加え、各周期毎に電圧のゼロクロスに電流のゼロクロスを揃えるようにリセットをかけているので、過渡現象としてリセット直後の半周期と次の半周期との間に周期差が現れることになる。
【0053】
そこで、この発明による単独運転検出手段18は、上記周期差を利用して、連系点電圧Vの正の期間と負の期間との差が所定値を超えた場合に、単独運転検出の可能性が有ると判断する。
【0054】
なお、負荷状態が純抵抗に近い場合には、電流のゼロクロスリセットによる過渡現象が現れにくくなるが、周波数として微小バイアスB分が現れるので、単独運転検出手段18は、周波数の変化で単独運転の可能性が有ると判断することができる。
【0055】
次に、電圧位相確定手段14は、単独運転検出手段18からの検出結果に応答して、本当に単独運転状態であるか否かを確定するために、電圧のゼロクロスに電流のゼロクロスを揃えるリセット処理を中止する。
【0056】
これにより、連系点電圧Vの周波数fVは、1周期毎にほぼ微小バイアスB分だけ増加していくように変化するので、単独運転確定手段19は、1周期毎の周波数変化を捕捉することにより、単独運転状態にあることを確定し、連系用開閉手段11を開放して分散型電源装置8を連系点6から切り離す。
【0057】
図3はこの発明の実施の形態1による単独運転発生時刻tdからの周波数変化を示す説明図であり、電流目標値ioの周波数fio(実線参照)と、連系点電圧Vの周波数fV(破線参照)との各時間変化を関連付けて示している。
図3において、横軸は時間t[秒]、縦軸は周波数[Hz]を示す。
【0058】
ここでは、時刻td(=7秒)において単独運転が発生した場合を示し、単独運転発生後に、各周波数fioおよびfVは微小バイアスB分ずつ増加している。
【0059】
以上のように、周期情報(周期または周波数)の微小バイアスの方向を一方向(プラス方向のみ)に設定することにより、同一フィーダに複数台の分散型電源装置8を連系しても、各出力同士で周波数シフトの微小バイアスB分がキャンセルされることはなく、単独運転の可能性を迅速に且つ確実に検出することができる。
【0060】
また、連系点電圧Vの正の半周期と負の半周期との差に基づいて単独運転の可能性を検出することにより、負荷状態とは無関係に単独運転の可能性を検出することができる。
【0061】
さらに、電圧のゼロクロスに電流のゼロクロスを揃えるリセット処理(力率一定制御)を中止することにより、図3のように、連系点6の電圧周波数fVを確実に発散させることができる。したがって、単独運転確定手段19において、最終的に単独運転状態か否かを高い信頼性で確定することができる。
【0062】
実施の形態2.
なお、上記実施の形態1では、図2のように、電流目標値ioのゼロクロスリセット処理を1周期毎に行うようにしたが、複数周期毎に行うようにしてもよく、たとえば2周期に1回だけリセット処理を行うようにしてもよい。
【0063】
この場合、周期計測手段13は、電流目標値ioの電流位相φiがリセットされた直後の連系点6の周波数fV1とそれ以降の周波数fV2とを計測し、単独運転検出手段18は、各周波数fV1、fV2のずれ量が所定値を超えた場合に、分散型電源装置8による単独運転の可能性有りと判断する。
【0064】
すなわち、電流位相確定手段14は、2周期毎にリセット処理を行い、周期計測手段13は、リセット直後の1周期と次の1周期に現れる連系点電圧Vの周波数変化の過渡現象による周期差を検出する。
【0065】
このように、複数周期毎に電流周波数fiのゼロクロスリセットを行い、リセット直後の1周期と次の1周期との周波数差(周期差)から単独運転の可能性を検出することにより、連系点電圧Vを検出する電圧検出装置に直流オフセットが発生しても誤動作することがなく、単独運転の可能性を高い信頼性で検出することができる。
【0066】
また、上記実施の形態1では、単独運転の可能性有りと判断された場合に電流目標値ioのリセット処理(力率一定制御)を中止することと、連系点電圧Vの正負期間のずれ量から単独運転の可能性を判断することと、電流目標値ioの周波数fiに一方向(正方向)のみの微小バイアスBを加えることとを組み合わせて説明したが、個別の特徴のみによっても作用効果を奏する。
【0067】
たとえば、連系点電圧Vの正負期間のずれ量から単独運転の可能性を判断することのみによっても、単独運転の可能性を高い信頼性で検出することができる。同様に、上記実施の形態2の特徴のみによっても、単独運転の可能性を高い信頼性で検出することができる。
【0068】
さらに、上記実施の形態1では、周期計測手段13において、電流目標値ioの電流位相φiがリセットされた直後の連系点6の周波数fV1とそれ以降の周波数fV2とを計測したが、電流位相φiがリセットされる直前の連系点6の周波数とそれ以降の周波数fV2とを計測してもよい。
【0069】
【発明の効果】
以上のように、この発明の請求項1によれば、連系点を介して交流電力系統と連系され、連系点に接続された負荷に交流電力を供給するための分散型電源装置であって、発電電力を生成する発電手段と、発電電力を交流電力に変換する電力変換手段と、連系点の電圧位相を検出する電圧位相検出手段と、電圧位相に基づいて連系点の電圧周期情報を計測する周期計測手段と、電圧位相および電圧周期情報に基づいて電力変換手段の出力電流目標値を生成する電流基準発生手段と、出力電流目標値に応じて電力変換手段を制御する電流制御手段と、電圧周期情報に基づいて分散型電源装置による単独運転の可能性を検出する単独運転検出手段と、連系点の電圧および電圧位相に基づいて分散型電源装置による単独運転状態を確定し、分散型電源装置の連系状態を禁止するための単独運転確定手段とを備え、電流基準発生手段は、出力電流目標値の電流周期情報を、連系点の電圧周期情報に対して微小バイアスを加えた値に設定し、分散型電源装置が交流電力系統と連系された通常時には、出力電流目標値の電流位相を連系点の電圧位相に合わせてリセットし、単独運転検出手段により単独運転の可能性が検出された後は、電圧位相に合わせた電流位相のリセット処理を中止するようにしたので、負荷特性や同一フィーダへの接続台数などに係わらず、単独運転を素早く且つ確実に検出して連系点からの切り離し処置を施すことのできる分散型電源装置が得られる効果がある。
【0070】
また、この発明の請求項2によれば、請求項1において、周期計測手段は、連系点の電圧の正期間および負期間を計測し、単独運転検出手段は、正期間と負期間とのずれ量が所定値を超えた場合に、分散型電源装置による単独運転の可能性有りと判断するようにしたので、負荷特性や同一フィーダへの接続台数などに係わらず、単独運転の可能性を高い信頼性で検出することのできる分散型電源装置が得られる効果がある。
【0071】
また、この発明の請求項3によれば、請求項1において、周期計測手段は、出力電流目標値の位相がリセットされる直前またはリセットされた直後の連系点の第1の電圧周期情報とそれ以降の第2の電圧周期情報とを計測し、単独運転検出手段は、第1の電圧周期情報と第2の電圧周期情報とのずれ量が所定値を超えた場合に、分散型電源装置による単独運転の可能性有りと判断するようにしたので、負荷特性や同一フィーダへの接続台数などに係わらず、単独運転の可能性を高い信頼性で検出することのできる分散型電源装置が得られる効果がある。
【0072】
また、この発明の請求項4によれば、連系点を介して交流電力系統と連系され、連系点に接続された負荷に交流電力を供給するための分散型電源装置であって、発電電力を生成する発電手段と、発電電力を交流電力に変換する電力変換手段と、連系点の電圧位相を検出する電圧位相検出手段と、電圧位相に基づいて連系点の電圧周期情報を計測する周期計測手段と、電圧位相および電圧周期情報に基づいて電力変換手段の出力電流目標値を生成する電流基準発生手段と、出力電流目標値に応じて電力変換手段を制御する電流制御手段と、電圧周期情報に基づいて分散型電源装置による単独運転の可能性を検出する単独運転検出手段と、連系点の電圧および電圧位相に基づいて分散型電源装置による単独運転状態を確定し、分散型電源装置の連系状態を禁止するための単独運転確定手段とを備え、電流基準発生手段は、出力電流目標値の電流周期情報を、連系点の電圧周期情報に対して微小バイアスを加えた値に設定し、分散型電源装置が交流電力系統と連系された通常時には、出力電流目標値の電流位相を連系点の電圧位相に合わせてリセットし、周期計測手段は、連系点の電圧の正期間および負期間を計測し、単独運転検出手段は、正期間と負期間とのずれ量が所定値を超えた場合に、分散型電源装置による単独運転の可能性有りと判断するようにしたので、負荷特性や同一フィーダへの接続台数などに係わらず、単独運転の可能性を高い信頼性で検出することのできる分散型電源装置が得られる効果がある。
【0073】
また、この発明の請求項5によれば、請求項4において、出力電流目標値の電流周期情報は、連系点の電圧周期情報に対して一方向に微小バイアスを加えた値に設定されたので、同一フィーダへの接続台数などに係わらず、単独運転の可能性を高い信頼性で検出することのできる分散型電源装置が得られる効果がある。
【0074】
また、この発明の請求項6によれば、連系点を介して交流電力系統と連系され、連系点に接続された負荷に交流電力を供給するための分散型電源装置であって、発電電力を生成する発電手段と、発電電力を交流電力に変換する電力変換手段と、連系点の電圧位相を検出する電圧位相検出手段と、電圧位相に基づいて連系点の電圧周期情報を計測する周期計測手段と、電圧位相および電圧周期情報に基づいて電力変換手段の出力電流目標値を生成する電流基準発生手段と、出力電流目標値に応じて電力変換手段を制御する電流制御手段と、電圧周期情報に基づいて分散型電源装置による単独運転の可能性を検出する単独運転検出手段と、連系点の電圧および電圧位相に基づいて分散型電源装置による単独運転状態を確定し、分散型電源装置の連系状態を禁止するための単独運転確定手段とを備え、電流基準発生手段は、出力電流目標値の電流周期情報を、連系点の電圧周期情報に対して微小バイアスを加えた値に設定し、分散型電源装置が交流電力系統と連系された通常時には、出力電流目標値の電流位相を連系点の電圧位相に合わせてリセットし、周期計測手段は、出力電流目標値の位相がリセットされる直前またはリセットされた直後の連系点の第1の電圧周期情報とそれ以降の第2の電圧周期情報とを計測し、単独運転検出手段は、第1の電圧周期情報と第2の電圧周期情報とのずれ量が所定値を超えた場合に、分散型電源装置による単独運転の可能性有りと判断するようにしたので、負荷特性や同一フィーダへの接続台数などに係わらず、単独運転の可能性を高い信頼性で検出することのできる分散型電源装置が得られる効果がある。
【0075】
また、この発明の請求項7によれば、請求項6において、出力電流目標値の電流周期情報は、連系点の電圧周期情報に対して一方向に微小バイアスを加えた値に設定されたので、同一フィーダへの接続台数などに係わらず、単独運転の可能性を高い信頼性で検出することのできる分散型電源装置が得られる効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1を交流電力系統と関連付けて示すブロック構成図である。
【図2】 この発明の実施の形態1により検出される連系点電圧および制御される電流目標値を示す波形図である。
【図3】 この発明の実施の形態1による連系点電圧および電流目標値の周波数変化を示す説明図である。
【符号の説明】
1 交流発電設備、2 遮断器、4 系統負荷、5 交流電力系統、6 連系点、7 自家負荷、8 分散型電源装置、9 発電手段、10 電力変換手段、11 連系用開閉手段、12 電圧位相検出手段、13 周期計測手段、14 電流位相確定手段、15 電流周期確定手段、15a 微小バイアス生成手段、16 電流基準確定手段、17 電流制御手段、18 単独運転検出手段、19単独運転確定手段、B 微小バイアス、fi 電流目標値の周波数(電流周期情報)、fV 連系点電圧の周波数(電圧周期情報)、io 電流目標値、V 連系点電圧、φi 電流位相、φV 電圧位相。
[0001]
BACKGROUND OF THE INVENTION
The present invention supplies AC power to a load connected to an AC power system by converting the generated power from a power generation means such as solar power generation or fuel cell power generation into AC power and interconnecting the AC power system. More particularly, the present invention relates to a distributed power supply apparatus that can quickly and reliably detect an isolated operation state and can perform a disconnection process from a connection point.
[0002]
[Prior art]
Conventionally, in a so-called commercial power supply wiring system (AC power system) that supplies AC power to ordinary homes and factories, an arbitrary number of distributed power supply devices are connected downstream of the circuit breaker, and the AC power system AC power is supplied to the connected load via a connection point.
[0003]
In this type of AC power system, maintenance on the load side, including transformers, etc. is required. Such maintenance and inspection involves opening the circuit breaker installed upstream of the AC power system and This is performed in a so-called power failure state by cutting off the power supply from the power source.
[0004]
At this time, the state where the distributed power supply unit connected to the system downstream of the circuit breaker continues to operate after being shut off (generally referred to as “single operation”). Therefore, it is necessary to stop the operation of the distributed power supply by detecting the isolated operation quickly and reliably at the time of maintenance and inspection.
[0005]
In general, when the difference between the load power and the output power from the distributed power supply device is large, the voltage value and phase at the interconnection point at the time of isolated operation change greatly. Passive systems that capture changes in the voltage value and phase of a system point are well known.
[0006]
As another method for enabling detection of isolated operation, even when the load power and the output power from the distributed power supply are balanced, the operation frequency of the system distributed power supply is There is also known an active method such as a frequency shift method in which a value obtained by always adding a minute bias to the frequency and detecting the influence of the minute bias on the frequency change at the interconnection point.
[0007]
However, even in the above frequency shift method, when the distributed power supply is controlled at a constant power factor, depending on the load condition, the power factor constant control and the frequency shift operation interfere with each other, and the connection point In some cases, the influence of the minute bias on the frequency does not appear.
[0008]
For example, if the load to which AC power is supplied is a capacitive load, the zero cross point of the grid point voltage occurs later than the zero cross of the current, so the minute bias is shifted in the positive direction and the grid point voltage is Even if an attempt is made to detect an isolated operation state at an operation frequency higher than the frequency, the frequency of the interconnection point voltage (the reciprocal of the voltage zero-cross cycle) does not increase, and an isolated operation cannot be detected.
[0009]
Therefore, as a conventional method for solving the above problems, for example, as referred to in Japanese Patent Application Laid-Open No. 11-41819, the direction of the minute bias applied to the frequency of the current target value is changed between plus and minus. A method has also been proposed.
[0010]
However, in the method described in the above publication, when a plurality of distributed power supply devices are connected to the same feeder, the outputs of the distributed power supply devices cancel each other with a minute frequency bias. Even if a power failure occurs in the AC power system, the frequency shift does not appear in the voltage frequency at the connection point, and it may be impossible to detect an isolated operation.
[0011]
[Problems to be solved by the invention]
As described above, even when a conventional distributed power supply apparatus uses a method (see Japanese Patent Application Laid-Open No. 11-41819) that avoids problems due to differences in load characteristics, a plurality of distributed power supply apparatuses are connected to the same feeder. In such a case, there is a problem that the frequency shift does not appear in the connection point voltage when a system power failure occurs, and the isolated operation cannot be detected reliably.
[0012]
The present invention has been made to solve the above-described problems, and it is possible to quickly and surely detect an isolated operation regardless of load characteristics or the number of units connected to the same feeder, and to perform disconnection from the interconnection point. It is an object of the present invention to obtain a distributed power supply device that can be applied.
[0013]
[Means for Solving the Problems]
A distributed power supply apparatus according to claim 1 of the present invention is a distributed power supply apparatus that is connected to an AC power system via a connection point and supplies AC power to a load connected to the connection point. A power generation means for generating generated power, a power conversion means for converting the generated power into AC power, a voltage phase detection means for detecting a voltage phase at the connection point, and a voltage cycle at the connection point based on the voltage phase. Period measuring means for measuring information, current reference generating means for generating an output current target value of the power conversion means based on the voltage phase and voltage period information, and current control for controlling the power conversion means in accordance with the output current target value And an isolated operation detecting means for detecting the possibility of isolated operation by the distributed power supply based on the voltage cycle information, and the isolated operation state by the distributed power supply is determined based on the voltage and voltage phase of the interconnection point. Distributed power supply An independent operation determining means for prohibiting the connected state of the device, and the current reference generating means is a value obtained by adding a minute bias to the current period information of the output current target value to the voltage period information of the connection point. When the distributed power supply is normally connected to the AC power system, the current phase of the output current target value is reset according to the voltage phase of the connection point, and the possibility of isolated operation is possible by the isolated operation detection means Is detected, the current phase reset process in accordance with the voltage phase is stopped.
[0014]
According to a second aspect of the present invention, in the distributed power supply device according to the first aspect, the period measuring means measures the positive period and the negative period of the voltage at the interconnection point, and the isolated operation detecting means is the positive period. When the amount of deviation from the negative period exceeds a predetermined value, it is determined that there is a possibility of isolated operation by the distributed power supply device.
[0015]
According to a third aspect of the present invention, there is provided the distributed power supply device according to the first aspect, wherein the period measuring means is the first of the interconnection points immediately before or just after the phase of the output current target value is reset. The voltage cycle information and the second voltage cycle information after that are measured, and the isolated operation detecting means, when the deviation amount between the first voltage cycle information and the second voltage cycle information exceeds a predetermined value, It is determined that there is a possibility of isolated operation by the distributed power supply.
[0016]
According to a fourth aspect of the present invention, there is provided a distributed power supply apparatus for supplying AC power to a load connected to an AC power system via a connection point and connected to the connection point. The power generation means for generating the generated power, the power conversion means for converting the generated power into AC power, the voltage phase detection means for detecting the voltage phase of the connection point, and the connection point based on the voltage phase A period measuring means for measuring voltage period information; a current reference generating means for generating an output current target value of the power conversion means based on the voltage phase and voltage period information; and controlling the power conversion means in accordance with the output current target value Current control means, isolated operation detecting means for detecting the possibility of isolated operation by the distributed power supply device based on the voltage cycle information, and isolated operation state by the distributed power supply device based on the voltage and voltage phase of the interconnection point Confirm and distribute An independent operation determining means for prohibiting the interconnection state of the power supply device, and the current reference generating means applies a minute bias to the current period information of the output current target value to the voltage period information of the interconnection point When the distributed power supply is normally connected to the AC power system, the current phase of the output current target value is reset in accordance with the voltage phase of the connection point. Measures the positive and negative periods of the voltage, and the isolated operation detection means determines that there is a possibility of isolated operation by the distributed power supply when the deviation between the positive and negative periods exceeds a predetermined value It is.
[0017]
According to claim 5 of the present invention, in the distributed power supply according to claim 4, the current cycle information of the output current target value is a value obtained by adding a minute bias in one direction to the voltage cycle information of the interconnection point. Is set.
[0018]
According to a sixth aspect of the present invention, there is provided a distributed power supply apparatus for supplying AC power to a load connected to an AC power system via a connection point and connected to the connection point. The power generation means for generating the generated power, the power conversion means for converting the generated power into AC power, the voltage phase detection means for detecting the voltage phase of the connection point, and the connection point based on the voltage phase A period measuring means for measuring voltage period information; a current reference generating means for generating an output current target value of the power conversion means based on the voltage phase and voltage period information; and controlling the power conversion means in accordance with the output current target value Current control means, isolated operation detecting means for detecting the possibility of isolated operation by the distributed power supply device based on the voltage cycle information, and isolated operation state by the distributed power supply device based on the voltage and voltage phase of the interconnection point Confirm and distribute An independent operation determining means for prohibiting the interconnection state of the power supply device, and the current reference generating means applies a minute bias to the current period information of the output current target value to the voltage period information of the interconnection point When the distributed power supply unit is normally connected to the AC power system, the current phase of the output current target value is reset according to the voltage phase of the connection point, and the period measuring means sets the output current target value. The first voltage cycle information at the interconnection point immediately before the phase of the first phase is reset or the second voltage cycle information after that is reset, and the islanding operation detecting means detects the first voltage cycle information. And the second voltage cycle information exceed the predetermined value, it is determined that there is a possibility of independent operation by the distributed power supply device.
[0019]
According to claim 7 of the present invention, in the distributed power supply according to claim 6, the current cycle information of the output current target value is a value obtained by adding a minute bias in one direction to the voltage cycle information of the interconnection point. Is set.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Hereinafter, the first embodiment of the present invention will be described in detail with reference to the drawings.
[0021]
FIG. 1 is a block diagram showing a first embodiment of the present invention, and shows a state where a distributed power supply apparatus is linked to an AC power system.
In addition, here, one distributed power supply device is shown as a representative, but any number of distributed power supply devices can be interconnected.
[0022]
In FIG. 1, 1 is an AC power generation facility that outputs commercial AC power, 2 is a circuit breaker inserted on the output side of the AC power generation facility 1, and 3 is a transformer connected to the AC power generation facility 1 via the circuit breaker 2. Reference numeral 4 denotes a system load connected to the secondary side (output side) of the transformer 3, and these constitute an AC power system 5.
[0023]
The system load 4 in the AC power system 5 includes electrical equipment used in general households.
Reference numeral 6 denotes a connection point of the AC power system 5, and circuit systems closer to the AC power generation equipment 1 than the connection point 6 in FIG. 1 are collectively referred to as an AC power system 5.
[0024]
7 is a private load connected to the interconnection point 6, and 8 is a distributed power supply.
The distributed power supply device 8 is connected to the AC power system 5 and the private load 7 via the interconnection point 6.
[0025]
The distributed power supply 8 includes a power generation unit 9 such as a solar cell, a power conversion unit 10 that converts power generated from the power generation unit 9 (DC power in this case) into AC power, and an output side of the power conversion unit 10. The connected open / close means 11 and the voltage phase detection means 12 for detecting the voltage phase φV from the voltage V at the connection point 6 are provided.
[0026]
The distributed power supply device 8 includes a cycle measuring unit 13, a current phase determining unit 14, a current cycle determining unit 15, a current reference determining unit 16, a current control unit 17, an isolated operation detecting unit 18, and an isolated operation determining unit 19. ing.
[0027]
The cycle measuring means 13 measures the positive half cycle, the negative half cycle and one cycle (or frequency) of the interconnection point voltage V from the voltage phase φV as voltage cycle information.
The current phase determination means 14 determines the current phase φi of the current target value io from the voltage phase φV.
[0028]
The current cycle determining unit 15 outputs a minute bias B added to the current cycle information of the current target value io, and an addition for adding the voltage cycle information from the cycle measuring unit 13 and the minute bias B. Means 15b, and the period (or frequency) of the current target value io is determined by adding a minute bias B to the voltage period information from the period measuring means 13.
[0029]
The current reference determination means 16 is based on the current phase φi from the current phase determination means 14 and the output signal (current cycle) from the current cycle determination means 15, and the current target value io to be output from the power conversion means 10. Is determined as a current reference.
[0030]
The current phase determination unit 14, the current cycle determination unit 15 and the current reference determination unit 16 constitute a current reference generation unit that generates the output current target value io of the power conversion unit 10 based on the voltage phase φV and the voltage cycle information. Yes.
[0031]
The current control means 17 includes a current transformer 17a that detects the output current i of the power conversion means 10, a subtractor 17b that calculates a current deviation (= io−i) between the current target value io and the output current i, And a control unit 17c that feedback-controls the power conversion unit 10 based on the deviation, and controls the power conversion unit 10 based on the current target value io from the current reference determination unit 16 to adjust the output current i.
[0032]
The isolated operation detection means 18 detects the possibility of isolated operation by the distributed power supply device 8 based on the voltage cycle information from the period measurement means 13 and inputs the detection result to the current phase determination means 14.
[0033]
The isolated operation determining means 19 is configured so that the distributed power supply device 8 operates independently based on the voltage V at the interconnection point 6, the voltage phase φV from the current phase detecting means 12, and the voltage period information from the period measuring means 13. The state is determined, and a drive signal for stopping the power conversion means 10 and opening the connection opening / closing means 11 is output.
[0034]
The current phase determination means 14 constituting the current reference generation means converts the current phase φi of the output current target value io to the voltage phase φV of the connection point 6 when the distributed power supply 8 is normally connected to the AC power system 5. The reset processing (power factor constant control) of the current phase φi matched with the voltage phase φV is stopped after the possibility of isolated operation is detected by the isolated operation detection means 18. .
[0035]
Next, a specific operation according to the first embodiment of the present invention shown in FIG. 1 will be described.
First, in a normal time when the circuit breaker 2 is turned on, the power converter 10 in the distributed power supply device 8 converts the power generated by the power generation means 9 into alternating current power, and uses the open / close means 11 for connection to the home. AC power is supplied to the load 7.
[0036]
At this time, when the capacity of the private load 7 is smaller than the generated power, the excess AC power from the distributed power supply device 8 is reversely flowed to the AC power system 5.
Further, the phase of the output current i from the power conversion means 10 is synchronized with the voltage phase φV of the interconnection point 6 in order to make the power factor constant.
[0037]
That is, the current phase determination means 14 in the distributed power supply device 8 determines the current phase φi of the current target value io so that the output current i zero-crosses when the interconnection point voltage V crosses zero.
[0038]
Further, the current cycle determining means 15 uses a cycle (or frequency fio) obtained by adding a minute bias B to the voltage cycle (or frequency fV) of the interconnection point 6 as current cycle information (cycle or frequency) of the output current i. To decide.
[0039]
Although not related to the gist of the present invention, the amplitude of the output current i is generally determined by the current reference determining means 16 so as to bring out the maximum capacity of the power generating means 9.
[0040]
As described above, since the frequency is replaced as the reciprocal of the period, the period information will be described as a representative frequency hereinafter.
[0041]
FIG. 2 is a waveform diagram showing the phase synchronization relationship according to the first embodiment of the present invention. The connection point voltage V (see the two-dot chain line) detected from the connection point 6 and the current for controlling the power conversion means 10 are shown. The target value io (see solid line) is shown in association with it.
[0042]
In FIG. 2, the horizontal axis represents time t, the vertical axis represents the current target value io [A] and the connection point voltage V [V], and the time change of the target current io and the connection point voltage V is shown.
[0043]
The connection point voltage V (two-dot chain line) is directly detected from the connection point 6, and the current target value io (solid line) is output from the current reference determination unit 16 as the target value of the output current i of the power conversion unit 10. The
[0044]
The frequency fio of the current target value io is higher by the minute bias B than the frequency fV of the connection point voltage V (the period of the current target value io is shorter than the period of the connection point voltage V), but the connection point voltage It is reset every cycle in accordance with the zero cross point of V (1.0167 seconds and 1.0333 seconds in FIG. 2).
[0045]
Further, the output current i from the power conversion means 10 flows almost following the target current value io.
[0046]
However, as is well known, since the impedance of the AC power system 5 is considerably smaller than the internal impedance of the distributed power supply device 8, the influence of the minute bias B on the frequency fio of the output current i is affected by the interconnection point voltage V ( Almost no two-dot chain line) appears.
[0047]
Therefore, since no particular change appears in the frequency fV of the interconnection point voltage V input to the isolated operation detection means 18 and the positive half cycle and the negative half cycle of the interconnection point voltage V, the isolated operation detection means. No. 18 determines that there is no possibility of an independent operation, and the normal interconnection state is continued.
[0048]
That is, in the state where the circuit breaker 2 is not opened (not during a power failure), the single operation state by the distributed power supply device 8 is not erroneously detected.
[0049]
Next, an operation when the circuit breaker 2 is opened (actual operation has actually occurred) will be described.
After the circuit breaker 2 is opened (single operation), the impedance of the AC power system 5 viewed from the connection point 6 is significantly higher than before the circuit breaker 2 is opened. The influence of the minute bias B on the voltage frequency fV tends to appear.
[0050]
However, as described above, depending on the load state obtained by combining the private load 7, the system load 4, the transformer 4 and the impedance of the wiring, the power factor constant control for combining the voltage zero cross and the current zero cross, and the frequency shift operation described above. May interfere with each other, so that the influence of the minute bias B on the frequency fV of the interconnection point voltage V may not appear.
[0051]
For example, when the polarity of the minute bias B at the operating frequency (see FIG. 2) is positive, the above condition is satisfied in the above-described capacitive load.
[0052]
However, in the case of the above capacitive load or in the opposite inductive load, a minute bias B is applied to the frequency, and the reset is performed so that the current zero cross is aligned with the voltage zero cross every cycle. As a phenomenon, a period difference appears between the half cycle immediately after the reset and the next half cycle.
[0053]
Therefore, the isolated operation detecting means 18 according to the present invention can detect the isolated operation when the difference between the positive period and the negative period of the interconnection point voltage V exceeds a predetermined value by using the period difference. Judge that there is sex.
[0054]
When the load state is close to a pure resistance, a transient phenomenon due to the zero cross reset of the current is less likely to appear, but since a minute bias B appears as a frequency, the isolated operation detecting means 18 performs the isolated operation by changing the frequency. It can be determined that there is a possibility.
[0055]
Next, in response to the detection result from the isolated operation detecting means 18, the voltage phase determining means 14 performs a reset process for aligning the current zero cross with the voltage zero cross in order to determine whether or not the actual operation is in the isolated state. Cancel.
[0056]
As a result, the frequency fV of the interconnection point voltage V changes so as to increase by almost a minute bias B for each cycle, so that the independent operation determination means 19 captures the frequency change for each cycle. Thus, it is determined that the vehicle is in the single operation state, the connection open / close means 11 is opened, and the distributed power supply device 8 is disconnected from the connection point 6.
[0057]
FIG. 3 is an explanatory diagram showing changes in frequency from the isolated operation occurrence time td according to Embodiment 1 of the present invention. The frequency fio (see the solid line) of the current target value io and the frequency fV of the interconnection point voltage V (broken line) Each time change with reference).
In FIG. 3, the horizontal axis represents time t [seconds], and the vertical axis represents frequency [Hz].
[0058]
Here, a case where an isolated operation occurs at time td (= 7 seconds) is shown, and after the occurrence of the isolated operation, the frequencies fio and fV increase by a minute bias B.
[0059]
As described above, by setting the direction of the minute bias of the period information (period or frequency) to one direction (only in the plus direction), even if a plurality of distributed power supply devices 8 are connected to the same feeder, The minute shift B of the frequency shift is not canceled between outputs, and the possibility of isolated operation can be detected quickly and reliably.
[0060]
Further, by detecting the possibility of isolated operation based on the difference between the positive half cycle and the negative half cycle of the interconnection point voltage V, it is possible to detect the possibility of isolated operation regardless of the load state. it can.
[0061]
Furthermore, by canceling the reset process (power factor constant control) that aligns the zero cross of the current with the zero cross of the voltage, the voltage frequency fV of the interconnection point 6 can be reliably diverged as shown in FIG. Therefore, it is possible to determine with high reliability whether or not the islanding operation determination unit 19 is finally in the islanding operation state.
[0062]
Embodiment 2. FIG.
In the first embodiment, the zero cross reset process of the current target value io is performed every cycle as shown in FIG. 2, but it may be performed every plural cycles, for example, 1 every 2 cycles. The reset process may be performed only once.
[0063]
In this case, the cycle measuring means 13 measures the frequency fV1 of the interconnection point 6 immediately after the current phase φi of the current target value io is reset and the frequency fV2 after that, and the isolated operation detecting means 18 When the amount of deviation between fV1 and fV2 exceeds a predetermined value, it is determined that there is a possibility of isolated operation by the distributed power supply device 8.
[0064]
That is, the current phase determination means 14 performs a reset process every two periods, and the period measurement means 13 determines the period difference due to the transient phenomenon of the frequency change of the connection point voltage V appearing in one period immediately after the reset and the next one period. Is detected.
[0065]
In this way, the zero cross reset of the current frequency fi is performed every plural cycles, and the possibility of isolated operation is detected from the frequency difference (cycle difference) between one cycle immediately after the reset and the next one cycle. Even if a DC offset occurs in the voltage detection device that detects the voltage V, no malfunction occurs, and the possibility of isolated operation can be detected with high reliability.
[0066]
Further, in the first embodiment, when it is determined that there is a possibility of isolated operation, the reset processing (power factor constant control) of the current target value io is stopped, and the difference between the positive and negative periods of the connection point voltage V The combination of determining the possibility of isolated operation from the amount and adding a minute bias B only in one direction (positive direction) to the frequency fi of the current target value io has been described. There is an effect.
[0067]
For example, the possibility of isolated operation can be detected with high reliability only by determining the possibility of isolated operation from the amount of deviation of the connection point voltage V between the positive and negative periods. Similarly, the possibility of isolated operation can be detected with high reliability only by the feature of the second embodiment.
[0068]
Further, in the first embodiment, the period measuring unit 13 measures the frequency fV1 of the interconnection point 6 immediately after the current phase φi of the current target value io is reset and the frequency fV2 after that, but the current phase The frequency of the interconnection point 6 immediately before φi is reset and the subsequent frequency fV2 may be measured.
[0069]
【The invention's effect】
As described above, according to claim 1 of the present invention, there is provided a distributed power supply device for supplying AC power to a load connected to an AC power system via a connection point and connected to the connection point. A power generation means for generating generated power, a power conversion means for converting the generated power into AC power, a voltage phase detection means for detecting a voltage phase at the connection point, and a voltage at the connection point based on the voltage phase. Period measurement means for measuring period information, current reference generation means for generating an output current target value of the power conversion means based on the voltage phase and voltage period information, and current for controlling the power conversion means in accordance with the output current target value Control unit, islanding detection means for detecting the possibility of islanding operation by the distributed power supply device based on the voltage cycle information, and islanding operation state by the distributed power supply device are determined based on the voltage and voltage phase of the interconnection point And distributed power supply An independent operation determining means for prohibiting the connected state of the device, and the current reference generating means is a value obtained by adding a minute bias to the current period information of the output current target value to the voltage period information of the connection point. When the distributed power supply is normally connected to the AC power system, the current phase of the output current target value is reset according to the voltage phase of the connection point, and the possibility of isolated operation is possible by the isolated operation detection means Since the reset process of the current phase in accordance with the voltage phase is stopped after the detection of the fault, independent operation can be detected quickly and reliably regardless of the load characteristics or the number of units connected to the same feeder. There is an effect of obtaining a distributed power supply device that can be separated from the system point.
[0070]
According to a second aspect of the present invention, in the first aspect, the period measuring means measures the positive period and the negative period of the voltage at the connection point, and the isolated operation detecting means is provided with a positive period and a negative period. When the deviation exceeds the specified value, it is judged that there is a possibility of isolated operation by the distributed power supply.Therefore, regardless of load characteristics and the number of units connected to the same feeder, There is an effect that a distributed power supply device that can be detected with high reliability can be obtained.
[0071]
According to a third aspect of the present invention, in the first aspect, the period measuring means includes the first voltage period information of the interconnection point immediately before or after the phase of the output current target value is reset. The subsequent second voltage cycle information is measured, and the isolated operation detecting means is a distributed power supply device when a deviation amount between the first voltage cycle information and the second voltage cycle information exceeds a predetermined value. Therefore, a distributed power supply that can detect the possibility of islanding with high reliability regardless of the load characteristics and the number of units connected to the same feeder is obtained. There is an effect.
[0072]
According to claim 4 of the present invention, there is provided a distributed power supply device for supplying AC power to a load connected to an AC power system via an interconnection point and connected to the interconnection point, Power generation means for generating generated power, power conversion means for converting the generated power into AC power, voltage phase detection means for detecting the voltage phase of the connection point, and voltage cycle information of the connection point based on the voltage phase A period measuring means for measuring, a current reference generating means for generating an output current target value of the power conversion means based on the voltage phase and voltage period information, and a current control means for controlling the power conversion means in accordance with the output current target value Independent operation detection means for detecting the possibility of isolated operation by the distributed power supply device based on the voltage cycle information, and the isolated operation state by the distributed power supply device is determined based on the voltage and voltage phase at the interconnection point, and distributed Type power supply An independent operation confirmation means for prohibiting the state, the current reference generating means sets the current cycle information of the output current target value to a value obtained by adding a minute bias to the voltage cycle information of the interconnection point, When the distributed power supply is normally connected to the AC power system, the current phase of the output current target value is reset in accordance with the voltage phase of the connection point. Since the negative period is measured and the isolated operation detection means determines that there is a possibility of isolated operation by the distributed power supply when the deviation between the positive period and the negative period exceeds a predetermined value, the load Regardless of the characteristics and the number of units connected to the same feeder, there is an effect of obtaining a distributed power supply device that can detect the possibility of isolated operation with high reliability.
[0073]
According to claim 5 of the present invention, in claim 4, the current cycle information of the output current target value is set to a value obtained by adding a minute bias in one direction to the voltage cycle information of the interconnection point. Therefore, there is an effect of obtaining a distributed power supply device that can detect the possibility of isolated operation with high reliability regardless of the number of units connected to the same feeder.
[0074]
According to claim 6 of the present invention, there is provided a distributed power supply device for supplying AC power to a load connected to an AC power system through an interconnection point and connected to the interconnection point, Power generation means for generating generated power, power conversion means for converting the generated power into AC power, voltage phase detection means for detecting the voltage phase of the connection point, and voltage cycle information of the connection point based on the voltage phase A period measuring means for measuring, a current reference generating means for generating an output current target value of the power conversion means based on the voltage phase and voltage period information, and a current control means for controlling the power conversion means in accordance with the output current target value Independent operation detection means for detecting the possibility of isolated operation by the distributed power supply device based on the voltage cycle information, and the isolated operation state by the distributed power supply device is determined based on the voltage and voltage phase at the interconnection point, and distributed Type power supply An independent operation confirmation means for prohibiting the state, the current reference generating means sets the current cycle information of the output current target value to a value obtained by adding a minute bias to the voltage cycle information of the interconnection point, At the normal time when the distributed power supply is connected to the AC power system, the current phase of the output current target value is reset according to the voltage phase of the connection point, and the period measuring means resets the phase of the output current target value. The first voltage cycle information of the interconnection point immediately after resetting or immediately after being reset and the second voltage cycle information after that are measured, and the isolated operation detecting means detects the first voltage cycle information and the second voltage. When the amount of deviation from the cycle information exceeds the specified value, it is judged that there is a possibility of isolated operation by the distributed power supply unit, so independent operation is possible regardless of load characteristics and the number of units connected to the same feeder. With high reliability Distributed power supply has an effect obtained that can be.
[0075]
According to claim 7 of the present invention, in claim 6, the current cycle information of the output current target value is set to a value obtained by adding a minute bias in one direction to the voltage cycle information of the interconnection point. Therefore, there is an effect of obtaining a distributed power supply device that can detect the possibility of isolated operation with high reliability regardless of the number of units connected to the same feeder.
[Brief description of the drawings]
FIG. 1 is a block configuration diagram illustrating Embodiment 1 of the present invention in association with an AC power system.
FIG. 2 is a waveform diagram showing an interconnection point voltage detected by a first embodiment of the present invention and a current target value to be controlled.
FIG. 3 is an explanatory diagram showing changes in frequency of interconnection point voltage and current target value according to Embodiment 1 of the present invention;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 AC power generation equipment, 2 Circuit breaker, 4 system load, 5 AC power system, 6 connection point, 7 Self load, 8 Distributed power supply device, 9 Power generation means, 10 Power conversion means, 11 Opening / closing means for connection system, 12 Voltage phase detection means, 13 period measurement means, 14 current phase determination means, 15 current cycle determination means, 15a minute bias generation means, 16 current reference determination means, 17 current control means, 18 isolated operation detection means, 19 isolated operation determination means , B Minute bias, fi Current target value frequency (current period information), fV interconnection point voltage frequency (voltage period information), io current target value, V interconnection point voltage, φi current phase, φV voltage phase.

Claims (7)

連系点を介して交流電力系統と連系され、前記連系点に接続された負荷に交流電力を供給するための分散型電源装置であって、
発電電力を生成する発電手段と、
前記発電電力を前記交流電力に変換する電力変換手段と、
前記連系点の電圧位相を検出する電圧位相検出手段と、
前記電圧位相に基づいて前記連系点の電圧周期情報を計測する周期計測手段と、
前記電圧位相および前記電圧周期情報に基づいて前記電力変換手段の出力電流目標値を生成する電流基準発生手段と、
前記出力電流目標値に応じて前記電力変換手段を制御する電流制御手段と、
前記電圧周期情報に基づいて前記分散型電源装置による単独運転の可能性を検出する単独運転検出手段と、
前記連系点の電圧および前記電圧位相に基づいて前記分散型電源装置による単独運転状態を確定し、前記分散型電源装置の連系状態を禁止するための単独運転確定手段とを備え、
電流基準発生手段は、
前記出力電流目標値の電流周期情報を、前記連系点の電圧周期情報に対して微小バイアスを加えた値に設定し、
前記分散型電源装置が前記交流電力系統と連系された通常時には、前記出力電流目標値の電流位相を前記連系点の電圧位相に合わせてリセットし、
前記単独運転検出手段により前記単独運転の可能性が検出された後は、前記電圧位相に合わせた前記電流位相のリセット処理を中止することを特徴とする分散型電源装置。
A distributed power supply device that is connected to an AC power system via a connection point and supplies AC power to a load connected to the connection point,
Power generation means for generating generated power;
Power conversion means for converting the generated power into the AC power;
Voltage phase detection means for detecting the voltage phase of the interconnection point;
Period measuring means for measuring voltage period information of the interconnection point based on the voltage phase;
Current reference generating means for generating an output current target value of the power conversion means based on the voltage phase and the voltage cycle information;
Current control means for controlling the power conversion means in accordance with the output current target value;
Islanding detection means for detecting the possibility of islanding by the distributed power supply based on the voltage cycle information;
An isolated operation determining means for determining the isolated operation state by the distributed power supply device based on the voltage of the interconnection point and the voltage phase, and prohibiting the connected state of the distributed power supply device;
The current reference generating means is
Set the current cycle information of the output current target value to a value obtained by adding a minute bias to the voltage cycle information of the interconnection point,
When the distributed power supply device is normally connected to the AC power system, the current phase of the output current target value is reset in accordance with the voltage phase of the connection point,
The distributed power supply apparatus, wherein after the possibility of the isolated operation is detected by the isolated operation detecting means, the reset process of the current phase in accordance with the voltage phase is stopped.
前記周期計測手段は、前記連系点の電圧の正期間および負期間を計測し、
前記単独運転検出手段は、前記正期間と前記負期間とのずれ量が所定値を超えた場合に、前記分散型電源装置による単独運転の可能性有りと判断することを特徴とする請求項1に記載の分散型電源装置。
The period measuring means measures a positive period and a negative period of the voltage at the interconnection point,
2. The isolated operation detecting means determines that there is a possibility of isolated operation by the distributed power supply device when a deviation amount between the positive period and the negative period exceeds a predetermined value. The distributed power supply device according to 1.
前記周期計測手段は、前記出力電流目標値の位相がリセットされる直前またはリセットされた直後の前記連系点の第1の電圧周期情報とそれ以降の第2の電圧周期情報とを計測し、
前記単独運転検出手段は、前記第1の電圧周期情報と前記第2の電圧周期情報とのずれ量が所定値を超えた場合に、前記分散型電源装置による単独運転の可能性有りと判断することを特徴とする請求項1に記載の分散型電源装置。
The period measuring means measures the first voltage period information of the interconnection point immediately after the phase of the output current target value is reset or immediately after the reset, and the second voltage period information after that.
The isolated operation detecting means determines that there is a possibility of isolated operation by the distributed power supply device when the amount of deviation between the first voltage cycle information and the second voltage cycle information exceeds a predetermined value. The distributed power supply device according to claim 1.
連系点を介して交流電力系統と連系され、前記連系点に接続された負荷に交流電力を供給するための分散型電源装置であって、
発電電力を生成する発電手段と、
前記発電電力を前記交流電力に変換する電力変換手段と、
前記連系点の電圧位相を検出する電圧位相検出手段と、
前記電圧位相に基づいて前記連系点の電圧周期情報を計測する周期計測手段と、
前記電圧位相および前記電圧周期情報に基づいて前記電力変換手段の出力電流目標値を生成する電流基準発生手段と、
前記出力電流目標値に応じて前記電力変換手段を制御する電流制御手段と、
前記電圧周期情報に基づいて前記分散型電源装置による単独運転の可能性を検出する単独運転検出手段と、
前記連系点の電圧および前記電圧位相に基づいて前記分散型電源装置による単独運転状態を確定し、前記分散型電源装置の連系状態を禁止するための単独運転確定手段とを備え、
電流基準発生手段は、
前記出力電流目標値の電流周期情報を、前記連系点の電圧周期情報に対して微小バイアスを加えた値に設定し、
前記分散型電源装置が前記交流電力系統と連系された通常時には、前記出力電流目標値の電流位相を前記連系点の電圧位相に合わせてリセットし、
前記周期計測手段は、前記連系点の電圧の正期間および負期間を計測し、
前記単独運転検出手段は、前記正期間と前記負期間とのずれ量が所定値を超えた場合に、前記分散型電源装置による単独運転の可能性有りと判断することを特徴とする分散型電源装置。
A distributed power supply device that is connected to an AC power system via a connection point and supplies AC power to a load connected to the connection point,
Power generation means for generating generated power;
Power conversion means for converting the generated power into the AC power;
Voltage phase detection means for detecting the voltage phase of the interconnection point;
Period measuring means for measuring voltage period information of the interconnection point based on the voltage phase;
Current reference generating means for generating an output current target value of the power conversion means based on the voltage phase and the voltage cycle information;
Current control means for controlling the power conversion means in accordance with the output current target value;
Islanding detection means for detecting the possibility of islanding by the distributed power supply based on the voltage cycle information;
An isolated operation determining means for determining the isolated operation state by the distributed power supply device based on the voltage of the interconnection point and the voltage phase, and prohibiting the connected state of the distributed power supply device;
The current reference generating means is
Set the current cycle information of the output current target value to a value obtained by adding a minute bias to the voltage cycle information of the interconnection point,
When the distributed power supply device is normally connected to the AC power system, the current phase of the output current target value is reset in accordance with the voltage phase of the connection point,
The period measuring means measures a positive period and a negative period of the voltage at the interconnection point,
The isolated operation detecting means determines that there is a possibility of isolated operation by the distributed power supply device when a deviation amount between the positive period and the negative period exceeds a predetermined value. apparatus.
前記出力電流目標値の電流周期情報は、前記連系点の電圧周期情報に対して一方向に微小バイアスを加えた値に設定されたことを特徴とする請求項4に記載の分散型電源装置。5. The distributed power supply device according to claim 4, wherein the current cycle information of the output current target value is set to a value obtained by applying a minute bias in one direction to the voltage cycle information of the interconnection point. . 連系点を介して交流電力系統と連系され、前記連系点に接続された負荷に交流電力を供給するための分散型電源装置であって、
発電電力を生成する発電手段と、
前記発電電力を前記交流電力に変換する電力変換手段と、
前記連系点の電圧位相を検出する電圧位相検出手段と、
前記電圧位相に基づいて前記連系点の電圧周期情報を計測する周期計測手段と、
前記電圧位相および前記電圧周期情報に基づいて前記電力変換手段の出力電流目標値を生成する電流基準発生手段と、
前記出力電流目標値に応じて前記電力変換手段を制御する電流制御手段と、
前記電圧周期情報に基づいて前記分散型電源装置による単独運転の可能性を検出する単独運転検出手段と、
前記連系点の電圧および前記電圧位相に基づいて前記分散型電源装置による単独運転状態を確定し、前記分散型電源装置の連系状態を禁止するための単独運転確定手段とを備え、
電流基準発生手段は、
前記出力電流目標値の電流周期情報を、前記連系点の電圧周期情報に対して微小バイアスを加えた値に設定し、
前記分散型電源装置が前記交流電力系統と連系された通常時には、前記出力電流目標値の電流位相を前記連系点の電圧位相に合わせてリセットし、
前記周期計測手段は、前記出力電流目標値の位相がリセットされる直前またはリセットされた直後の前記連系点の第1の電圧周期情報とそれ以降の第2の電圧周期情報とを計測し、
前記単独運転検出手段は、前記第1の電圧周期情報と前記第2の電圧周期情報とのずれ量が所定値を超えた場合に、前記分散型電源装置による単独運転の可能性有りと判断することを特徴とする分散型電源装置。
A distributed power supply device that is connected to an AC power system via a connection point and supplies AC power to a load connected to the connection point,
Power generation means for generating generated power;
Power conversion means for converting the generated power into the AC power;
Voltage phase detection means for detecting the voltage phase of the interconnection point;
Period measuring means for measuring voltage period information of the interconnection point based on the voltage phase;
Current reference generating means for generating an output current target value of the power conversion means based on the voltage phase and the voltage cycle information;
Current control means for controlling the power conversion means in accordance with the output current target value;
Islanding detection means for detecting the possibility of islanding by the distributed power supply based on the voltage cycle information;
An isolated operation determining means for determining the isolated operation state by the distributed power supply device based on the voltage of the interconnection point and the voltage phase, and prohibiting the connected state of the distributed power supply device;
The current reference generating means is
Set the current cycle information of the output current target value to a value obtained by adding a minute bias to the voltage cycle information of the interconnection point,
When the distributed power supply device is normally connected to the AC power system, the current phase of the output current target value is reset in accordance with the voltage phase of the connection point,
The period measuring means measures the first voltage period information of the interconnection point immediately after the phase of the output current target value is reset or immediately after the reset, and the second voltage period information after that.
The isolated operation detecting means determines that there is a possibility of isolated operation by the distributed power supply device when the amount of deviation between the first voltage cycle information and the second voltage cycle information exceeds a predetermined value. A distributed power supply device.
前記出力電流目標値の電流周期情報は、前記連系点の電圧周期情報に対して一方向に微小バイアスを加えた値に設定されたことを特徴とする請求項6に記載の分散型電源装置。7. The distributed power supply device according to claim 6, wherein the current cycle information of the output current target value is set to a value obtained by applying a minute bias in one direction to the voltage cycle information of the interconnection point. .
JP2001054341A 2001-02-28 2001-02-28 Distributed power supply Expired - Fee Related JP4038343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001054341A JP4038343B2 (en) 2001-02-28 2001-02-28 Distributed power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001054341A JP4038343B2 (en) 2001-02-28 2001-02-28 Distributed power supply

Publications (2)

Publication Number Publication Date
JP2002262464A JP2002262464A (en) 2002-09-13
JP4038343B2 true JP4038343B2 (en) 2008-01-23

Family

ID=18914691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001054341A Expired - Fee Related JP4038343B2 (en) 2001-02-28 2001-02-28 Distributed power supply

Country Status (1)

Country Link
JP (1) JP4038343B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3948487B1 (en) * 2006-01-13 2007-07-25 オムロン株式会社 Isolated operation detection method, distributed power supply isolated operation detection control device, isolated operation detection device, and distributed power supply

Also Published As

Publication number Publication date
JP2002262464A (en) 2002-09-13

Similar Documents

Publication Publication Date Title
US7138728B2 (en) Anti-islanding techniques for distributed power generation
AU2010319848B2 (en) Management techniques for electric power generation equipment
US11791623B2 (en) Fault detection systems and methods for power grid systems
US9467070B2 (en) Decentralized power generation plant having a device and method for detecting an island network
CN1232996C (en) Synchronous open-circuit method for breaker of power generator and its control equipment
MXPA06002826A (en) Power regulator for power inverter.
TWI701890B (en) Uninterruptible power supply device
JP4038343B2 (en) Distributed power supply
JP2018509879A (en) Method and energy generating facility for connecting an energy generating facility to a medium voltage grid
US10027247B2 (en) Inverter, method for operating an inverter and energy supply installation with an inverter
JP2014050292A (en) Distributed power supply system, and autonomous operation control device
WO2020068024A2 (en) The smart circuit breaker for grid connected residential photovoltaic systems
JP2005045859A (en) Abnormality detector of current transformer in distributed power source system
JP6109050B2 (en) Disconnection control device, disconnection control method, and power conditioner
KR101034251B1 (en) System and Method of checking independent operation in Parallel operation of grid-connected PCS
CA3060181C (en) Method for detecting formation of a separate system
JPH08149843A (en) Protector of system interconnection inveter
JP6797073B2 (en) Operation control device and power generation equipment
KR101693949B1 (en) Fault protection system for power converter of fuel cell vehicle
WO2023135968A1 (en) Plant monitoring system and plant monitoring device
JP2633150B2 (en) Method and device for detecting state of reverse charging from private power generation facility to power supply system side
JP3616944B2 (en) Grid interconnection method and grid interconnection apparatus
JP2008079407A (en) Device and method for preventing single operation
JP2006217728A (en) Power facility and its control method
JPH06237532A (en) Reverse-charging detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071105

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131109

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees