JP4037107B2 - Gas compressor - Google Patents

Gas compressor Download PDF

Info

Publication number
JP4037107B2
JP4037107B2 JP2002003623A JP2002003623A JP4037107B2 JP 4037107 B2 JP4037107 B2 JP 4037107B2 JP 2002003623 A JP2002003623 A JP 2002003623A JP 2002003623 A JP2002003623 A JP 2002003623A JP 4037107 B2 JP4037107 B2 JP 4037107B2
Authority
JP
Japan
Prior art keywords
oil
lubricating oil
compressor
oil level
discharge chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002003623A
Other languages
Japanese (ja)
Other versions
JP2003206861A (en
Inventor
毅 野中
Original Assignee
カルソニックコンプレッサー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カルソニックコンプレッサー株式会社 filed Critical カルソニックコンプレッサー株式会社
Priority to JP2002003623A priority Critical patent/JP4037107B2/en
Publication of JP2003206861A publication Critical patent/JP2003206861A/en
Application granted granted Critical
Publication of JP4037107B2 publication Critical patent/JP4037107B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、カーエアコン、GHP等の冷媒ガス圧縮に使用される気体圧縮機に関する。
【0002】
【従来の技術】
図5に従来の気体圧縮機を示す。冷媒ガスを圧縮する気体圧縮機は、システムの配管から吸気室1に吸気口1aから冷媒ガスを導入し、圧縮機本体2の機械的運動、例えば、図5のようなロータリベーン型の場合には、ロータ3の回転によって、吸気室1から冷媒ガスを吸入して圧縮し、吐出室4に圧縮冷媒ガスを吐出して一時貯留し、吐出口4aから配管に戻すようになっている。
【0003】
圧縮機本体2は、ロータ3が回転し、ロータ3に放射状にセットされて摺動するベーンにより仕切られてロータ3の周囲に形成される圧縮室が収縮することにより、冷媒ガスを吸入圧縮するものであるから、ロータ3、ベーン等の摺動部の潤滑、圧縮室の気密性維持等が必要であり、そのために、潤滑油が使用される。
【0004】
気体圧縮機は、冷媒ガスの出入り口1a、4aを除いて密封されているから、潤滑油は、吐出室4の下部に形成された油溜まり5に貯留しておいて、潤滑油供給路6を経由して、圧縮機本体2の軸受2aやその他の摺動部2b、2c等に供給され、摺動部を潤滑し、シールする。
【0005】
使用後の潤滑油は、圧縮機本体2内で圧縮冷媒ガスに混入して吐出室4に吐出される。圧縮冷媒ガスの吐出室4への出口には、サイクロン型の油分離器7が設けてあって、この油分離器7により、潤滑油は圧縮冷媒ガスから分離され油溜まり5に落下して回収され、再使用される。
【0006】
ところで、吐出室4へ勢いよく吐出される冷媒ガス流は、吐出室4内でも噴流となり油溜まり5の潤滑油表面に衝突して表面を荒らしながら潤滑油を巻き込み、この潤滑油が混入した冷媒ガスが吐出口4aからシステムの配管に流出して、潤滑油が配管に紛れ込むおそれがある。
【0007】
そこで、従来は、圧縮冷媒ガスの噴流が流れる吐出室4内に、網状あるいは板状の障害物を設置して噴流を和らげる構造が種々発明されている。しかし、このようにしても、なお、圧縮冷媒ガスの噴流が油溜まり5の潤滑油表面に達して潤滑油表面を荒らし、圧縮冷媒ガスが潤滑油を巻き込むことがあった。
【0008】
システムの配管に潤滑油が混入すると、その分の潤滑油が不足気味になるから、その不足分を見込んで潤滑油を予め多く気体圧縮機に封入しておく必要があり、また、システムOCRが高くなって、カーエアコン等の熱交換能力の低下を招くという問題があった。
【0009】
【発明が解決しようとする課題】
この発明は、上述の問題点を解決し、油溜まりの潤滑油が圧縮冷媒ガスに巻き込まれてシステムの配管に流出する量を減少させた気体圧縮機を提供するものである。
【0010】
【課題を解決するための手段】
上述の課題を解決するために、この発明の気体圧縮機は、機械的運動により圧縮機外部からの冷媒ガスを吸入圧縮する圧縮機本体と、この圧縮機本体から吐出される圧縮冷媒ガスを一時貯留してから圧縮機外部へ戻す吐出室と、この吐出室の下部に形成され、潤滑油を貯留する油溜まりと、この油溜まりに貯留された潤滑油を上記圧縮機本体の機械的運動により摺動する摺動部に供給する潤滑油供給路と、上記油溜まりに貯留された潤滑油の表面に浮かべて、油溜まりに貯留された潤滑油と吐出室に一時貯留された圧縮冷媒ガスとを仕切るとともに、網状になっている油面安定材とを具備する。
【0011】
また、上記気体圧縮機において、油面安定材の昇降を案内するガイドを吐出室内に設けると、油面安定材が吐出室内の圧縮冷媒ガス噴流からそれた位置に移動してしまったり、油分離器等の障害物に引っ掛かってしまうことがない。
【0012】
油面安定材を網状とすれば、網の隙間を通っても潤滑油が回収される。
【0013】
油面安定材に浮力を付与するフロートを設けたり、油面安定材自体を中空構造にすれば、油面安定材の材料に、金属、ガラス繊維等の耐久性、耐油性の高い材料を使用することができる。
【0014】
【発明の実施の形態】
この発明の実施の形態を、以下、図1〜図4を参照して説明する。
【0015】
図1は、この発明の一実施の形態を示す縦断面図である。図1において、従来の技術で説明した事項および部分については、図5と同一の符号を付して、その詳細な説明を省略する。
【0016】
図1において、10は、この発明の特徴となる油面安定材である。この油面安定材10は、ポリエチレン、発泡ポリエチレン、発泡ポリプロピレン、発泡ウレタン、発泡ポリスチレン等の耐油性耐冷媒性合成樹脂等、潤滑油よりも比重の小さい材料を網状に形成したもので、油溜まり5に貯留された潤滑油の表面に浮かべられ、油溜まり5に貯留された潤滑油と吐出室4に一時貯留された圧縮冷媒ガスとを仕切っている。
【0017】
圧縮機運転中は、運転停止時よりも、潤滑油がより多く圧縮機本体2に供給されている状態になるから、油溜まり5の潤滑油面11が下がり、運転を停止すると潤滑油面11が上がるのであるが、油面安定材10は油面の昇降に従って上下して、常に油溜まり5の潤滑油と吐出室4の圧縮冷媒ガスとを仕切っている。
【0018】
圧縮機運転により圧縮機本体2から吐出される圧縮冷媒ガスは、油分離器7を通過する際、その金網に衝突して混入している潤滑油を分離され、吐出室4に噴流となって吐出される。分離された潤滑油の油滴は、互いに吸着し合ってより大きい油滴となって圧縮冷媒ガス中を沈降し、油溜まり5に落ちて再び潤滑油として使用される。油面安定材10上に落下した油滴も噴流ガスに押し流されて凝集し油溜まり5内の潤滑油に速やかに合流する。このとき、油面安定材10が網状であったり、ポーラスであって細かい隙間があると、この隙間は潤滑油で濡れているから、隙間からも油面安定材10下側の潤滑油に合流し、油面安定材10上の油滴はより速やかに噴流から隔離回収される。
【0019】
一方、圧縮冷媒の噴流ガスは、油面安定材10に当たるだけとなるから、油溜まり5の潤滑油面に衝突することがなく、油面は平静に保たれ、圧縮冷媒の噴流ガスに巻き込まれ混入して圧縮機外部のシステム配管に流出する量が少なくなる。なお、噴流は油面に対して主として斜めに当たるから、噴流が、隙間を通して油面安定材10下の潤滑油を巻き込むおそれはほとんどない。
【0020】
油溜まり5の潤滑油が圧縮冷媒の噴流ガスに巻き込まれ混入して圧縮機外部のシステム配管に流出する量が少なくなることにより、システムのOCRが低下して熱交換能力低下を防ぎ、また、潤滑油が圧縮機本体2の潤滑に集中して有効に使用される。
【0021】
図2は、この発明の他の実施の形態を示す縦断面図である。図2において、図1および図5で説明した事項および部分については、同一の符号を付して、その詳細な説明を省略する。
【0022】
図2において、12は、この発明の特徴となる油面安定材である。この油面安定材12は、図1の実施の形態と同様の材料を使用し、同様の形状に形成して、その中心部にはガイド孔13aが貫通されたハブ13が設けられている。
【0023】
14は、吐出室4内に上下を吐出室4の壁に固定されて設けられた棒状のガイドである。そして、上記油面安定材12のガイド孔13aは、ガイド14に充分な隙間を持って挿通されていて、油面安定材12は、ガイド14に案内されて潤滑油面11の昇降に従って上下に昇降するようになっている。
【0024】
すなわち、油面安定材12は、油溜まり5に貯留された潤滑油の表面11に浮かべられ、ガイド14に案内されて油面の上下動に従って昇降しながら、油溜まり5に貯留された潤滑油と吐出室4に一時貯留された圧縮冷媒ガスとを仕切っている。油面安定材12は、ガイド14に拘束されて水平面内にはあまり移動できず、油面が上昇したときに、油分離器7の下側の壁に引っ掛かって油中に潜ってしまったり、油面が下降したときに、噴流が直接当たらない隅に逃げてしまったりすることがなく、常に圧縮冷媒ガスの噴流が当たる潤滑油油面をカバーして圧縮冷媒ガス噴流と油溜まりの潤滑油表面とを確実に仕切っている。
【0025】
図3は、この発明の他の実施の形態を示す縦断面図である。図3において、図1、図2および図5で説明した事項および部分については、同一の符号を付して、その詳細な説明を省略する。
【0026】
図3において、15は、この発明の特徴となる油面安定材である。この油面安定材15は、ポリエチレン等の合成樹脂よりも耐久性のある鉄、アルミニウム、黄銅等の金属、ガラス繊維、ニトリルゴム、クロロプレンゴム、天然ゴム等の耐油性材料からなり、網状である。油面安定材15の中心部にはガイド孔13aが貫通されたハブ13が設けられている。また、外周部には、油面安定材15に浮力を付与するフロート16が設けられている。フロート16は、中空構造のものでも、あるいは、中実で比重の小さい耐油性合成樹脂等で構成してもよい。このフロート16により、比重が冷媒ガスが溶解している潤滑油(気体圧縮機の高圧下で冷媒ガスが潤滑油に溶け込んでいる)の比重よりも大きくて、油面安定材15単体では浮上できない場合でも、油面安定材として使用することができる。
【0027】
図4は、この発明の参考例を示す縦断面図である。図4において、図1、図3および図5で説明した事項および部分については、同一の符号を付して、その詳細な説明を省略する。
【0028】
図4において、17は、この発明の参考例の特徴となる油面安定材である。この油面安定材17は、中空構造になっていて、全体がフロートの役割を果たす。油面安定材17の中心部には、ガイド孔17aが設けられ、このガイド孔17aは、ガイド14に充分な隙間を持って挿通されていて、油面安定材17は、ガイド14に案内されて潤滑油面11の昇降に従って上下に昇降するようになっている。
【0029】
上述の図3の実施の形態においても、また、図4の参考例においても、油面安定材15または17が、油溜まり5に貯留された潤滑油の表面11に浮かべられ、ガイド14に案内されて油面の上下動に従って昇降しながら、油溜まり5に貯留された潤滑油と吐出室4に一時貯留された圧縮冷媒ガスとを仕切っている。油面安定材15または17は、ガイド14に拘束されて水平面内にはあまり移動できず、油面が上昇したときに、油分離器7の下側の壁に引っ掛かって油中に潜ってしまったり、油面が下降したときに、噴流が直接当たらない隅に逃げてしまったりすることがなく、常に圧縮冷媒ガスの噴流が当たる潤滑油油面をカバーして圧縮冷媒ガス噴流と油溜まりの潤滑油表面とを確実に仕切っている。
【0030】
この発明における油面安定材の昇降を案内するガイドとしては、上述の実施の形態の棒状のガイドの他、吐出室壁面に設けた溝状ガイド、突条ガイド等でもよい。また、油面安定材の平面形状は、油面安定材昇降範囲内での吐出室断面形状になるべく沿わせ、かつ、圧縮冷媒ガス噴流が当たる油面を覆う範囲とすることが好ましい。
【0031】
【発明の効果】
以上詳細に説明したように、この発明は、油溜まりに貯留された潤滑油の表面に油面安定材を浮かべて、油溜まりに貯留された潤滑油と吐出室に一時貯留された圧縮冷媒ガスとを仕切るようにしたから、油溜まりの潤滑油が吐出室内の圧縮冷媒ガス噴流に巻き込まれて圧縮冷媒ガスとともに圧縮機外部のシステム配管へ流出する量を減らすことができ、これにより、システムOCRが低下して熱交換能力低下を防止でき、また、潤滑用の潤滑油が気体圧縮機内で有効に使用されるようになって、多量の潤滑油を気体圧縮機に封入しなくても、潤滑不良を起こすこともなくなる。
【0032】
更に、上記気体圧縮機において、油面安定材の昇降を案内するガイドを吐出室に設ければ、油面安定材が常に適正位置に維持されて、圧縮冷媒ガス噴流と油溜まりの潤滑油表面とが油面安定材により確実に仕切られる。
【図面の簡単な説明】
【図1】この発明の一実施の形態を示す縦断面図。
【図2】この発明の他の実施の形態を示す縦断面図。
【図3】この発明の他の実施の形態を示す縦断面図。
【図4】 この発明の参考例を示す縦断面図。
【図5】従来の気体圧縮機を示す縦断面図。
【符号の説明】
1 吸気室
2 圧縮機本体
4 吐出室
5 油溜まり
6 潤滑油供給路
7 油分離器
10 油面安定材
11 潤滑油面
12 油面安定材
13 ハブ
14 ガイド
15 油面安定材
16 フロート
17 油面安定材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas compressor used for refrigerant gas compression, such as a car air conditioner and GHP.
[0002]
[Prior art]
FIG. 5 shows a conventional gas compressor. The gas compressor that compresses the refrigerant gas introduces the refrigerant gas from the intake port 1a into the intake chamber 1 from the piping of the system, and mechanical movement of the compressor body 2, for example, in the case of a rotary vane type as shown in FIG. With the rotation of the rotor 3, the refrigerant gas is sucked from the intake chamber 1 and compressed, the compressed refrigerant gas is discharged into the discharge chamber 4 and temporarily stored, and returned from the discharge port 4a to the pipe.
[0003]
The compressor main body 2 sucks and compresses the refrigerant gas when the rotor 3 rotates and the compression chamber formed around the rotor 3 is contracted by a vane which is radially set and slides on the rotor 3. Therefore, it is necessary to lubricate the sliding parts such as the rotor 3 and the vanes and to maintain the airtightness of the compression chamber. For this purpose, lubricating oil is used.
[0004]
Since the gas compressor is sealed except for the refrigerant gas outlets 1a and 4a, the lubricating oil is stored in an oil reservoir 5 formed in the lower portion of the discharge chamber 4, and the lubricating oil supply passage 6 is passed through. Via, it is supplied to the bearing 2a of the compressor body 2 and other sliding portions 2b, 2c, etc., and the sliding portions are lubricated and sealed.
[0005]
The used lubricating oil is mixed into the compressed refrigerant gas in the compressor body 2 and discharged into the discharge chamber 4. A cyclone type oil separator 7 is provided at the outlet of the compressed refrigerant gas to the discharge chamber 4. The oil separator 7 separates the lubricating oil from the compressed refrigerant gas and falls into the oil reservoir 5 for recovery. And reused.
[0006]
By the way, the refrigerant gas flow vigorously discharged into the discharge chamber 4 becomes a jet flow in the discharge chamber 4 and collides with the lubricating oil surface of the oil reservoir 5 to entrain the lubricating oil while roughening the surface, and the refrigerant mixed with this lubricating oil. There is a possibility that the gas flows out from the discharge port 4a to the piping of the system and the lubricating oil is mixed into the piping.
[0007]
In view of this, various structures have been invented in the past in which a mesh-like or plate-like obstacle is installed in the discharge chamber 4 through which a jet of compressed refrigerant gas flows to soften the jet. However, even in this case, the jet of the compressed refrigerant gas may reach the lubricating oil surface of the oil reservoir 5 to roughen the lubricating oil surface, and the compressed refrigerant gas may entrain the lubricating oil.
[0008]
When lubricating oil is mixed into the system piping, the corresponding amount of lubricating oil becomes insufficient, so it is necessary to enclose a large amount of lubricating oil in advance in the gas compressor in anticipation of the shortage, and the system OCR There is a problem that the heat exchange capacity of car air conditioners and the like is lowered due to the increase.
[0009]
[Problems to be solved by the invention]
The present invention solves the above-described problems and provides a gas compressor in which the amount of lubricating oil in an oil reservoir is caught in a compressed refrigerant gas and flows out into the piping of the system is reduced.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, a gas compressor according to the present invention temporarily stores a compressor main body that sucks and compresses a refrigerant gas from outside the compressor by mechanical motion, and a compressed refrigerant gas discharged from the compressor main body. A discharge chamber that is stored and then returned to the outside of the compressor, an oil reservoir that is formed in the lower portion of the discharge chamber and stores the lubricating oil, and the lubricating oil stored in the oil reservoir by mechanical movement of the compressor body. A lubricating oil supply path that supplies a sliding portion that slides, a lubricating oil that is stored in the oil reservoir, and a compressed refrigerant gas that is temporarily stored in the discharge chamber, floating on the surface of the lubricating oil stored in the oil reservoir. And an oil level stabilizer having a net shape .
[0011]
Further, in the gas compressor, if a guide for raising and lowering the oil level stabilizer is provided in the discharge chamber, the oil level stabilizer may move to a position away from the compressed refrigerant gas jet in the discharge chamber, or oil separation may occur. It will not get caught in obstacles such as vessels.
[0012]
If the oil level stabilizer is made into a net-like shape, the lubricating oil is recovered even through the mesh gap.
[0013]
If the oil level stabilizer is provided with a float that provides buoyancy, or if the oil level stabilizer itself has a hollow structure, a material with high durability and oil resistance, such as metal and glass fiber, is used as the material for the oil level stabilizer. can do.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS.
[0015]
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention. In FIG. 1, items and parts described in the prior art are denoted by the same reference numerals as those in FIG. 5, and detailed description thereof is omitted.
[0016]
In FIG. 1, 10 is an oil level stabilizer which is a feature of the present invention. The oil level stabilizing member 10 are polyethylene, foamed polyethylene, foamed polypropylene, foamed urethane, etc. oil resistance refrigerant resistance synthetic resin such as polystyrene foam, obtained by forming a material having a small specific gravity reticulated than the lubricating oil, the oil reservoir Floating on the surface of the lubricating oil stored in 5, the lubricating oil stored in the oil reservoir 5 and the compressed refrigerant gas temporarily stored in the discharge chamber 4 are partitioned.
[0017]
During operation of the compressor, more lubricant is supplied to the compressor body 2 than when the operation is stopped. Therefore, the lubricant surface 11 of the oil sump 5 is lowered, and when the operation is stopped, the lubricant surface 11 is stopped. However, the oil level stabilizer 10 moves up and down as the oil level rises and lowers, and always partitions the lubricating oil in the oil reservoir 5 from the compressed refrigerant gas in the discharge chamber 4.
[0018]
When the compressed refrigerant gas discharged from the compressor main body 2 through the compressor operation passes through the oil separator 7, the lubricating oil which collides with the wire mesh and is mixed is separated and becomes a jet flow in the discharge chamber 4. Discharged. The separated oil droplets of the lubricating oil adsorb to each other to form larger oil droplets, settle in the compressed refrigerant gas, fall into the oil reservoir 5 and are used again as the lubricating oil. The oil droplets that have fallen on the oil level stabilizer 10 are also swept away by the jet gas and agglomerate to quickly join the lubricating oil in the oil reservoir 5. At this time, if the oil level stabilizer 10 is net-like or porous, and there is a fine gap, the gap is wet with the lubricating oil, so it joins the lubricating oil below the oil level stabilizer 10 also from the gap. The oil droplets on the oil level stabilizer 10 are more quickly isolated and recovered from the jet.
[0019]
On the other hand, since the jet gas of the compressed refrigerant only hits the oil level stabilizer 10, it does not collide with the lubricating oil surface of the oil reservoir 5, and the oil level is kept calm and is caught in the jet gas of the compressed refrigerant. The amount mixed and flowing out to the system piping outside the compressor is reduced. Since the jet mainly hits the oil surface obliquely, there is almost no possibility that the jet will entrain the lubricating oil under the oil level stabilizer 10 through the gap.
[0020]
By reducing the amount of lubricating oil in the oil sump 5 entrained and mixed in the jet gas of the compressed refrigerant and flowing out into the system piping outside the compressor, the OCR of the system is reduced to prevent the heat exchange capacity from being lowered, Lubricating oil concentrates on the lubrication of the compressor body 2 and is used effectively.
[0021]
FIG. 2 is a longitudinal sectional view showing another embodiment of the present invention. 2, the items and parts described in FIGS. 1 and 5 are denoted by the same reference numerals, and detailed description thereof is omitted.
[0022]
In FIG. 2, 12 is an oil level stabilizer which is a feature of the present invention. The oil level stabilizer 12 is made of the same material as that of the embodiment shown in FIG. 1, is formed in the same shape, and a hub 13 through which a guide hole 13a passes is provided at the center.
[0023]
Reference numeral 14 denotes a bar-shaped guide provided in the discharge chamber 4 with the upper and lower sides fixed to the wall of the discharge chamber 4. The guide hole 13a of the oil level stabilizer 12 is inserted into the guide 14 with a sufficient gap. The oil level stabilizer 12 is guided by the guide 14 and moves up and down as the lubricating oil level 11 moves up and down. It is designed to go up and down.
[0024]
That is, the oil level stabilizer 12 is floated on the surface 11 of the lubricating oil stored in the oil reservoir 5, guided by the guide 14, and moved up and down according to the vertical movement of the oil surface, while being stored in the oil reservoir 5. And the compressed refrigerant gas temporarily stored in the discharge chamber 4. The oil level stabilizer 12 is restrained by the guide 14 and cannot move so much in the horizontal plane, and when the oil level rises, the oil level stabilizer 12 is caught in the lower wall of the oil separator 7 and submerged in the oil. When the oil level descends, it does not escape to the corner where the jet does not directly hit, and always covers the lubricating oil surface to which the compressed refrigerant gas jet hits, and the compressed refrigerant gas jet and the oil in the reservoir The surface is securely separated.
[0025]
FIG. 3 is a longitudinal sectional view showing another embodiment of the present invention. In FIG. 3, the same reference numerals are given to the items and portions described in FIG. 1, FIG. 2, and FIG. 5, and detailed descriptions thereof are omitted.
[0026]
In FIG. 3, 15 is an oil level stabilizer which is a feature of the present invention. The oil level stabilizer 15 is made of an oil resistant material such as iron, aluminum, brass or the like, glass fiber, nitrile rubber, chloroprene rubber, natural rubber, etc., which is more durable than a synthetic resin such as polyethylene, and has a net shape . . A hub 13 through which a guide hole 13a passes is provided at the center of the oil level stabilizer 15. Further, a float 16 that provides buoyancy to the oil level stabilizer 15 is provided on the outer peripheral portion. The float 16 may have a hollow structure, or may be made of a solid oil-resistant synthetic resin having a small specific gravity. By this float 16, the specific gravity is larger than the specific gravity of the lubricating oil in which the refrigerant gas is dissolved (the refrigerant gas is dissolved in the lubricating oil under the high pressure of the gas compressor), and the oil level stabilizer 15 alone cannot float. Even in this case, it can be used as an oil level stabilizer.
[0027]
FIG. 4 is a longitudinal sectional view showing a reference example of the present invention. 4, the same reference numerals are given to the items and portions described in FIG. 1, FIG. 3, and FIG. 5, and detailed descriptions thereof are omitted.
[0028]
In FIG. 4, 17 is an oil level stabilizer which is a feature of the reference example of the present invention. The oil level stabilizer 17 has a hollow structure, and the whole plays a role of a float. A guide hole 17 a is provided in the center of the oil level stabilizer 17, and the guide hole 17 a is inserted through the guide 14 with a sufficient gap. The oil level stabilizer 17 is guided by the guide 14. As the lubricating oil surface 11 moves up and down, it moves up and down.
[0029]
In the embodiment shown in FIG. 3 and the reference example shown in FIG. 4, the oil level stabilizer 15 or 17 is floated on the surface 11 of the lubricating oil stored in the oil reservoir 5 and guided to the guide 14. Thus, the lubricating oil stored in the oil reservoir 5 and the compressed refrigerant gas temporarily stored in the discharge chamber 4 are partitioned while moving up and down according to the vertical movement of the oil surface. The oil level stabilizer 15 or 17 is restrained by the guide 14 and cannot move so much in the horizontal plane. When the oil level rises, the oil level stabilizer 15 or 17 is caught in the lower wall of the oil separator 7 and is submerged in the oil. When the oil level is lowered, it does not escape to the corner where the jet does not directly hit, and always covers the lubricating oil surface where the jet of compressed refrigerant hits, covering the compressed refrigerant gas jet and the oil reservoir. The lubricant surface is securely partitioned.
[0030]
As a guide for guiding the raising and lowering of the oil level stabilizer in this invention, a grooved guide provided on the wall surface of the discharge chamber, a ridge guide or the like may be used in addition to the rod-shaped guide of the above-described embodiment. Moreover, it is preferable that the planar shape of the oil level stabilizer is set in a range that covers the oil level to which the compressed refrigerant gas jet hits as much as possible along the discharge chamber cross-sectional shape within the oil level stabilizer raising and lowering range.
[0031]
【The invention's effect】
As described above in detail, the present invention floats the oil level stabilizer on the surface of the lubricating oil stored in the oil reservoir, and the compressed refrigerant gas temporarily stored in the discharge chamber and the lubricating oil stored in the oil reservoir. Therefore, the amount of lubricating oil in the oil sump is caught in the compressed refrigerant gas jet in the discharge chamber and flows out into the system piping outside the compressor together with the compressed refrigerant gas. This can prevent the heat exchange capacity from being reduced, and the lubricating oil can be used effectively in the gas compressor, and lubrication is possible without enclosing a large amount of lubricating oil in the gas compressor. There will be no defects.
[0032]
Further, in the above gas compressor, if a guide for guiding the raising and lowering of the oil level stabilizer is provided in the discharge chamber, the oil level stabilizer is always maintained at an appropriate position so that the compressed refrigerant gas jet and the oil surface of the oil reservoir Are reliably partitioned by the oil level stabilizer.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing an embodiment of the present invention.
FIG. 2 is a longitudinal sectional view showing another embodiment of the present invention.
FIG. 3 is a longitudinal sectional view showing another embodiment of the present invention.
FIG. 4 is a longitudinal sectional view showing a reference example of the present invention.
FIG. 5 is a longitudinal sectional view showing a conventional gas compressor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Intake chamber 2 Compressor main body 4 Discharge chamber 5 Oil reservoir 6 Lubricating oil supply path 7 Oil separator 10 Oil level stabilizer 11 Lubricating oil level 12 Oil level stabilizer 13 Hub 14 Guide 15 Oil level stabilizer 16 Float 17 Oil level Stabilizer

Claims (3)

機械的運動により圧縮機外部からの冷媒ガスを吸入圧縮する圧縮機本体と、
この圧縮機本体から吐出される圧縮冷媒ガスを一時貯留してから圧縮機外部へ戻す吐出室と、
この吐出室の下部に形成され、潤滑油を貯留する油溜まりと、
この油溜まりに貯留された潤滑油を上記圧縮機本体の機械的運動により摺動する摺動部に供給する潤滑油供給路と、
上記油溜まりに貯留された潤滑油の表面に浮かべて、油溜まりに貯留された潤滑油と吐出室に一時貯留された圧縮冷媒ガスとを仕切るとともに、網状になっている油面安定材と
を具備することを特徴とする気体圧縮機。
A compressor body that sucks and compresses refrigerant gas from outside the compressor by mechanical movement;
A discharge chamber for temporarily storing the compressed refrigerant gas discharged from the compressor body and returning it to the outside of the compressor;
An oil reservoir that is formed in the lower part of the discharge chamber and stores lubricating oil;
A lubricating oil supply path for supplying lubricating oil stored in the oil reservoir to a sliding portion that slides by mechanical movement of the compressor body;
It floats on the surface of the lubricating oil stored in the oil reservoir, partitions the lubricating oil stored in the oil reservoir from the compressed refrigerant gas temporarily stored in the discharge chamber, and forms a net-like oil level stabilizer. A gas compressor comprising the gas compressor.
油面安定材の昇降を案内するガイドが吐出室内に設けられた請求項1記載の気体圧縮機。  The gas compressor according to claim 1, wherein a guide for raising and lowering the oil level stabilizer is provided in the discharge chamber. 油面安定材に浮力を付与するフロートが設けられている請求項1または2に記載の気体圧縮機。  The gas compressor according to claim 1 or 2, wherein a float that imparts buoyancy to the oil level stabilizer is provided.
JP2002003623A 2002-01-10 2002-01-10 Gas compressor Expired - Fee Related JP4037107B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002003623A JP4037107B2 (en) 2002-01-10 2002-01-10 Gas compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002003623A JP4037107B2 (en) 2002-01-10 2002-01-10 Gas compressor

Publications (2)

Publication Number Publication Date
JP2003206861A JP2003206861A (en) 2003-07-25
JP4037107B2 true JP4037107B2 (en) 2008-01-23

Family

ID=27643170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002003623A Expired - Fee Related JP4037107B2 (en) 2002-01-10 2002-01-10 Gas compressor

Country Status (1)

Country Link
JP (1) JP4037107B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150069819A (en) * 2013-12-16 2015-06-24 삼성전자주식회사 Compressor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005299635A (en) * 2004-02-24 2005-10-27 Matsushita Electric Ind Co Ltd Compressor
CN100458168C (en) * 2004-02-24 2009-02-04 松下电器产业株式会社 Compressor
JP4992822B2 (en) * 2008-05-16 2012-08-08 株式会社豊田自動織機 Scroll compressor
JP6440927B2 (en) * 2013-02-07 2018-12-19 三菱重工サーマルシステムズ株式会社 Hermetic scroll compressor
CN105928271B (en) * 2016-06-06 2018-08-24 大连冷冻机股份有限公司 The cooling high performance oil-gas separator of boat-carrying

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150069819A (en) * 2013-12-16 2015-06-24 삼성전자주식회사 Compressor
KR102150306B1 (en) * 2013-12-16 2020-09-01 삼성전자주식회사 Compressor

Also Published As

Publication number Publication date
JP2003206861A (en) 2003-07-25

Similar Documents

Publication Publication Date Title
JP3339332B2 (en) Accumulator, refrigeration cycle device
JP4037107B2 (en) Gas compressor
KR19990006455A (en) Accumulator
CN103307730A (en) Water pan and air conditioner including water pan
JP2007178046A (en) Accumulator
CN202470362U (en) Water pan and air conditioner comprising same
JP5397077B2 (en) Engine oil return device
CN108168165B (en) Gas-liquid oil separator of fluorine refrigerating system
CN201377946Y (en) Labyrinth centrifugal oil-gas separator
JP4352228B2 (en) Breather equipment
CN101929460B (en) Horizontal arrangement type closed compressor
CN101363432B (en) Refrigerant compressor for motor vehicles
CN112576511B (en) Flow control structure, compressor and air conditioner
JP2017075564A (en) Oil pan structure for internal combustion engine
CN113339140B (en) Aircraft fuel tank
JP3624110B2 (en) Horizontal oil separation and recovery unit for oil-cooled compressor
CN214330718U (en) Oil pan of engine
CN109252912A (en) A kind of oil sump and engine
CN215595679U (en) Oil pan and have its engine
JPS5832729Y2 (en) Oil separator for oil-cooled rotary compressor
JP6553435B2 (en) Oil separation and recovery unit
CN217383381U (en) Partition plate structure, liquid storage device and compressor
CN211778004U (en) Oil storage structure, horizontal scroll compressor and air conditioner
CN210397031U (en) Oil-gas separator and compressor
CN216922504U (en) Rotary compressor is with keeping off oily structure and rotary compressor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071031

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101109

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111109

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees